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Abstract
Satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
have been used in solving a wide variety of important and
challenging problems, including automatic test generation,
model checking, and program synthesis. For these applica-
tions to scale to larger problem instances, developers cannot
rely solely on the sophistication of SAT and SMT solvers to
efficiently solve their queries; they must also optimize their
own orchestration and construction of queries. We present
Smten, a high-level language for orchestrating and con-
structing satisfiability-based search queries. We show that
applications developed using Smten require significantly
fewer lines of code and less developer effort to achieve re-
sults comparable to standard SMT-based tools.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques; D.3.3 [Program-
ming Languages]: Language Constructs and Features

Keywords Satisfiability; Satisfiability Modulo Theories;
Domain-Specific Language; Haskell

1. Introduction
Satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
have been leveraged in solving a wide variety of important
and challenging problems, including automatic test genera-
tion [5], model checking [3, 28, 31], and program synthe-
sis [33].

Problems that benefit the most from SAT and SMT are
often NP-hard combinatorial search problems that face sig-
nificant challenges when scaling to larger problem instances.
Scaling is important, because whether these applications can
be applied to practical problems depends largely on how well
they scale to larger problem instances.
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In principal, using a SAT/SMT solver allows a designer to
sidestep developing a sophisticated custom search technique
for their problem, reducing the time and effort required to
develop a solution that performs well. However, in practice
the construction of the SAT/SMT queries can significantly
impact performance, and designers are forced to exert non-
trivial effort to optimize query generation. What may have
been a relatively natural translation from a high-level prob-
lem to a SAT/SMT query in reality requires development of
a large custom computational framework for constructing
and interpreting an optimized query, requiring many man-
months of effort to implement and debug.

To illustrate this issue more concretely, consider the ap-
plication of string-constraint solving exemplified by the
SMT-based tool HAMPI [20]. In HAMPI the goal is to syn-
thesize a bounded-size string based on a template that be-
longs to the language of a given context-free grammar or
regular expression. For instance, given the template ab??cd,
where ? stands for an arbitrary character, and given the reg-
ular expression y(z*(ab)*)* | (((ab)*(cd)*)*), the
tool may synthesize either the string ababcd or abcdcd.
Intuitively, HAMPI constructs an SMT query by unrolling
the regular expression match computation over the symbolic
string input. However, to be practical, query construction
must avoid unrolling obviously false paths (in our example,
the first alternative can never match, as every string from the
template starts with a, not y), and capture sharing (in our
example, the substring match for cd, the last two characters
in the string template, is the same whether the outermost
Kleene star in the second alternative is repeated once or
twice). These optimizations improve performance by orders
of magnitude, but require thousands of lines of Java to im-
plement.

Not only does a large code base take significant time to
produce, it is also more costly to modify, making it harder to
refine the tool and limiting design exploration. For instance,
much of the reason HAMPI is efficient is because it exploits
the known size of the target string to simplify the regular
expression. A natural extension is to allow string templates
to represent variable-size strings. To synthesize a variable-
size target string, the designer has two obvious strategies:
he can make a specialized query for each possible size and
exploit size-level optimizations, or construct a single query



encoding all string sizes that exposes sharing for different
sizes to the SMT solver. It is not obvious a priori which
approach will offer the best performance; a developer would
want to implement both approaches to evaluate their relative
merit. However, given our initial HAMPI implementation,
it is straightforward to implement only the first approach;
the second approach requires significant modification to the
framework’s handling of string templates and integration of
a richer set of size-based optimizations into the already large
framework.

In essence, while SMT has succeeded in allowing design-
ers to share computational cores across many disparate tools,
it does not simplify the tasks of query orchestration and gen-
eration necessary to leverage the shared computational core
of SMT effectively. As a result, despite providing significant
value, SMT technologies are used by only those with tasks
that merit enormous amounts of developer effort and who
have sufficient development experience to build a framework
of sufficient complexity: a small set of experts.

Our goal is to reduce the overhead of developing SMT-
based tools and enable non-experts to enjoy the development
advantages that SMT provides. To this end, we have devel-
oped Smten, a high-level language for orchestrating and con-
structing satisfiability-based search queries. Smten is based
on the functional programming language Haskell [27] and
allows a developer to concisely specify the orchestration of
search queries, while automatically optimizing query con-
struction. The designer describes the high-level decomposi-
tion of their task into SMT queries directly, resulting in sig-
nificant improvements to code size, code clarity, and devel-
opment time. Smten also provides value to expert SMT de-
velopers in the form of better support for modularity, porta-
bility, and reuse.

The specific contributions of this paper are:

• We present the Smten programming abstraction for high-
level orchestration of search problems, inspired by Haskell’s
list monad and amenable to automatic reduction to the
problem of satisfiability (Section 3).
• We provide precise semantics for Smten’s search (Sec-

tion 4).
• We describe a general framework for optimized construc-

tion of SAT queries for search problems expressed using
the Smten programming abstraction (Section 5).
• We describe an abstraction-refinement based approach

for supporting search descriptions involving unbounded
computation (Section 5.1).
• We identify key optimizations in Smten crucial for per-

formance in practice that benefit a wide range of applica-
tions (Section 6).
• We have built a compiler for Smten based on the Glas-

gow Haskell Compiler [15], and have used it to develop
substantial applications (Section 7).

v ∈ Boolean Variable
Boolean b ::= true | false

Formula φ ::= b | v | ¬φ
| φ1 ∧ φ2 | φ1 ∨ φ2

Abbr ite φ φ1 φ2 = (φ ∧ φ1) ∨ (¬φ ∧ φ2)

Figure 1. Syntax of a boolean formula.

• We demonstrate experimentally via our applications from
the domains of constraint solving, model checking, and
program synthesis that Smten enables (Section 8):

More intuitive and concise implementations

Ease of design exploration and algorithmic refine-
ment, leading to improved performance

Performance comparable to existing state-of-the-art
hand-optimized implementations based on SAT and
SMT solvers

• We compare our approach to related work (Section 9).
• We discuss the benefits of a non-strict language for

search, report on our experience using Smten to develop
applications, and present relevant topics for future re-
search (Section 10).

2. Background
Automatic test generation, model checking, and program
synthesis belong to a class of applications we call satisfiability-
based search applications. The high-level goal in each of
these applications is to determine whether there exists any
solution to the problem, and if so, to find a single instance
of the potentially many solutions to the problem. For exam-
ple, automatic test generation searches for program inputs
that exercise a particular path in a program; model checking
searches for counter-examples to desired properties in mod-
els of hardware or software systems; and program synthesis
searches for a program satisfying a given specification.

A general approach used in state-of-the-art tools for solv-
ing satisfiability-based search applications is to reduce the
search problem to the problem of satisfiability and leverage
a SAT or SMT solver to efficiently solve it. An entirely dif-
ferent approach to solving satisfiability-based search appli-
cations is based on non-strict evaluation and the list monad
in Haskell, which provides a direct, modular, and concise
way to describe search problems, but suffers from combi-
natorial explosion. The Smten language combines these two
approaches, providing a direct, modular, and concise way to
describe search problems that are automatically reduced to
the problem of satisfiability and solved efficiently with the
help of SAT and SMT solvers.

2.1 Satisfiability
The problem of Satisfiability is to determine if there exists
an assignment to variables of a given boolean formula under
which the formula is satisfied. The syntax for a boolean for-



mula is shown in Fig. 1. We use the abbreviation ite φ φ1 φ2
for a commonly occurring if-then-else construct. We will of-
ten use µ as a variable representing a satisfying assignment
to a boolean formula. An assignment µ is a mapping from
variable to boolean value.

A SAT solver takes a boolean formula as input and re-
turns a satisfying assignment for the formula if one exists, or
otherwise indicates the formula is unsatisfiable. Specifically,
given boolean formula φ, a SAT solver returns Sat µ if the
formula is satisfiable with µ an arbitrary satisfying assign-
ment, and Unsat if the formula is unsatisfiable.

Though the problem of satisfiability is NP-complete [8],
SAT solvers leverage efficient heuristic search algorithms
based on DPLL [9, 10] for satisfiability that scale well for
many practical problem instances due to decades of research
and implementation efforts.

Satisfiability Modulo Theories (SMT) is an extension
to the problem of Satisfiability with additional background
theories for which there exist decision procedures [2]. For
instance, an SMT solver may support formulas with inte-
ger variables and linear arithmetic operations, or bit-vector
variables with bit-vector operations. SMT solvers leverage
higher-level information when solving the formula, e.g., the
commutativity and associativity of the operator +.

2.2 Reducing Search to Satisfiability
Consider the string-constraint solving example from the in-
troduction as an example of how a satisfiability-based search
problem can be reduced to an SMT formula. An SMT query
can be constructed for the problem of synthesizing a string
from the template ab??cd matching the regular expression
(ab)*(cd)*. At a high level, the desired query is:

("abx1x2cd" = "ababab" ) ∨ ("abx1x2cd" = "ababcd" )∨
("abx1x2cd" = "abcdcd" ) ∨ ("abx1x2cd" = "cdcdcd" )

Here the free variables x1 and x2 have been used to represent
the value of the unknown characters. The solver is responsi-
ble for finding values of x1 and x2 that satisfy the formula.

Unfortunately, SMT solvers do not support these high-
level operations on character strings. Instead, the high-level
query on character strings can be encoded using a back-
ground theory supported by the solvers, such as a theory of
bit vectors. Using ASCII to encode characters as bit vectors,
the characters a, b, c, and d map to bit-vector values 97, 98,
99, and 100 respectively; the free variables x1 and x2 are
treated as bit-vector variables; equality of strings is broken
down into element wise character equality; and equality of
characters is mapped to equality of bit vectors. With this en-
coding, we arrive at the following SMT query:

(97 = 97 ∧ 98 = 98 ∧ x1 = 97
∧x2 = 98 ∧ 99 = 97 ∧ 100 = 98) ∨

(97 = 97 ∧ 98 = 98 ∧ x1 = 97
∧x2 = 98 ∧ 99 = 99 ∧ 100 = 100) ∨

(97 = 97 ∧ 98 = 98 ∧ x1 = 99
∧x2 = 100 ∧ 99 = 99 ∧ 100 = 100) ∨

(97 = 99 ∧ 98 = 100 ∧ x1 = 99
∧x2 = 100 ∧ 99 = 99 ∧ 100 = 100)

Under the assumption that the number of characters in
the string is fixed, it is relatively straightforward to automate
the construction of this query by implementing a regular-
expression match algorithm that operates on strings of en-
coded characters instead of strings of normal characters. The
result of running the regular-expression match will be an
SMT encoding of a boolean where the equality operator,
logical AND, and logical OR construct a boolean formula
instead of evaluating to a boolean value.

Note that this query can be simplified before being sent
to the solver, resulting in the simpler query:

(x1 = 97 ∧ x2 = 98) ∨ (x1 = 99 ∧ x2 = 100)

If the number of characters in the string is not fixed,
this encoding does not work. It is not immediately obvious
what encoding to use in this case. Regardless, the regular-
expression match algorithm will have to change, because it
must operate on an encoding of a string of encoded charac-
ters instead of a direct list of encoded characters. If there is
a non-zero lower bound on the number of characters in the
string, it may make sense to implement a hybrid of these two
approaches to use the most efficient encoding of the regular-
expression match for both the fixed-size prefix of the string
and the variable-size suffix.

2.3 SMT User Challenges
Aside from the challenges of encoding high-level queries as
SMT queries and optimizing the construction of the SMT
queries, there is a fair amount of tedious work required to
use an SMT solver. This includes deciding which solver
to use, installing the solver, understanding whether to use
a text-based or native interface to the solver, learning the
syntax of queries or the proper sequence of API calls to
pose the query and interpret the model, knowing how to
correctly configure the solver, and understanding memory
management requirements for the solver.

For users who have limited or no knowledge of SMT, the
startup costs of using SMT can be prohibitively high. Expert
users of SMT with enough incentive to overcome the tedium
of using SMT solvers face the problem that their tools are
optimized for specific solvers, encodings, and query orches-
trations, making it impractical to reuse code for different ap-
plications and domains.

2.4 Modular Search with Haskell’s List Monad
An entirely different approach to solving satisfiability-based
search applications is based on non-strict evaluation and the



match :: RegEx → String → Bool

match = ...

candidates :: [String]

candidates = do

x1 ← [’a’..’z’]

x2 ← [’a’..’z’]

return [’a’, ’b’, x1, x2, ’c’, ’d’]

solutions :: [String]

solutions = do

candidate ← candidates

guard (match "(ab)∗(cd)∗" candidate)

return candidate

main :: IO ()

main = case solutions of

[] → putStrLn "No Solution"

(x:_) → putStrLn ("Solution: " ++ x)

Figure 2. Haskell list monad approach to searching for a
string from ab??cd matching (ab)*(cd)*.

list monad in Haskell. The approach is to enumerate all pos-
sible candidate solutions to the search computation and fil-
ter out invalid cases one-by-one until a satisfactory solution
is found: in essence, a simple chronological backtracking
search.

The value added by the functional programming language
Haskell is its non-strict evaluation semantics, and special do-
notation for monadic programming that can be used with the
list type. Non-strict semantics mean functions are evaluated
only when they are needed for the result of the computation.
As a consequence, in Haskell a candidate solution need
not be checked in its entirety before discovering it is an
invalid solution, and evaluation stops as soon as the first
valid solution is found, if only the first solution is inspected.
Coupled with Haskell’s do-notation and standard operations
on the list type, non-strict evaluation provides an elegant way
to describe search problems.

For example, Fig. 2 shows a sketch of Haskell code
that could be used to search for a string from the template
ab??cd that matches the regular expression (ab)*(cd)*.

The function candidates produces a list of all concrete
strings described by the template in our example. The no-
tation [’a’..’z’] is an arithmetic sequence that produces
the list of all characters from ’a’ to ’z’.

The do-notation can be thought of as a set comprehen-
sion:

{ [’a’, ’b’, x1, x2, ’c’, ’d’] | x1 ∈ [’a’..’z’],

x2 ∈ [’a’..’z’] }

Technically do-notation desugars into calls of the func-
tion map, which applies a function to every element of a list,
and concat, which flattens a list of lists into a single list of
elements:

concat (map (λx1 →
concat (map (λx2 →

[[’a’, ’b’, x1, x2, ’c’, ’d’]]

) [’a’..’z’])

) [’a’..’z’])

The solutions function uses guard to filter out those
candidate strings that match the given regular expression.

Note from the type signature of the function match that
its implementation is given for ordinary character strings,
even though it is applied to a set of possible strings. The par-
ticular set of strings being applied is not built into the imple-
mentation of match as it was when encoding SMT queries.
In this sense, the list monad approach for describing search
problems is much more modular than the SMT approach.
Of course, the list approach is also terribly inefficient for
problems of non-trivial complexity as it fails to recognize
many important opportunities for sharing when evaluating
the match function, resulting in exploding run times.

The idea behind Smten is to express search problems us-
ing the more modular list monad approach, then automati-
cally construct SMT queries based on this description rather
than re-evaluating functions for each element of a list.

The Smten runtime handles optimization of query con-
struction, and takes care of the tedium of interfacing with
the SMT solver. This will lower the barrier to entry for new
users with limited or no knowledge of SMT.

Expert SMT users with existing SMT-based tools in dif-
ferent frameworks can also benefit from Smten, but not in as
immediate a fashion. Our experiments suggest porting an ex-
isting SMT-based tool to Smten requires less effort than the
original implementation of the tool, based on orders of mag-
nitude code size reduction, but this effort is still non-trivial.
The real benefits of Smten for expert SMT users come af-
ter their tools have been ported to Smten. Smten simplifies
maintenance of these tools and design exploration for future
tool improvements. Most importantly, Smten’s modularity
makes it feasible to construct and reuse libraries for search
across a broad range of domains and applications.

3. Search with Smten
In this section we present an extension to the Haskell lan-
guage for describing search problems. We refer to the com-
bination of Haskell and this extension as Smten. Our goal
is to provide an abstraction with the same descriptive ben-
efits as the list monad, but which is also suited to efficient
evaluation using SAT/SMT.

In Smten, instead of representing a search space as a
list of candidate solutions, we introduce a primitive search
space type analogous to the list type in Haskell. The key
differences between Smten search spaces and Haskell’s list
approach that enable us to perform search intelligently by
reduction to SMT queries are:



Space List Set Interpretation
empty [] ∅
single e [e] {e}
union s1 s2 s1 ++ s2 s1 ∪ s2
map f s map f s {f(e) | e ∈ s}
join ss concat ss {e | e ∈ si, si ∈ ss}

Figure 3. Interpretation of Smten search space primitives.

• We leverage the property of search that we are interested
in only a single solution instead of all valid solutions,
allowing extraneous computation to be skipped.
• We exploit the fact that we may accept any solution, not

just the first possible satisfying solution.
• We disallow nesting searches, as this would require the

evaluation of an internal search that SAT solvers do not
support.

3.1 The Smten Search Interface
Our extension provides the following abstract data type and
operations:

data Space a = ...

empty :: Space a

single :: a → Space a

union :: Space a → Space a → Space a

map :: (a → b) → Space a → Space b

join :: Space (Space a) → Space a

search :: Space a → IO (Maybe a)

Conceptually, an expression of type Space a describes a set
of elements of type a. However, for our purposes, it is helpful
to think of expressions of type Space a as describing a
search space for elements of type a, because Smten does not
need to construct the entire set to find a single element of it.

Figure 3 shows the meaning of the primitives for describ-
ing search spaces along with the corresponding Haskell list
operation. The primitive empty is the empty search space
and single e is a search space with a single element e. The
primitive union s1 s2 is the union of two search spaces,
and differs from the corresponding list operation s1 ++ s2
in that it does not place the restriction that elements in s1 are
searched before elements in s2. The map primitive applies a
function to each element in the search space. The primitive
join collapses a search for search spaces into a search for
elements of those search spaces. As with union, join is dif-
ferent from its corresponding list operation concat in that it
does not specify an order of the elements.

The search primitive is used to search a space and is
the only new primitive operation not used to describe search
spaces. The meaning of the search primitive, given a search
space corresponding to a set of expressions s, is:

search s =

{
return Nothing if s = ∅
return (Just e) for some e ∈ s

The search primitive is not a pure function, because it is
non-deterministic and may return any possible e. It is stan-
dard practice in Haskell to treat non-pure functions like
search as IO computations to preserve referential trans-
parency. Marking search as an IO computation has the
added benefit of prohibiting nested searches.

3.2 An Example of Search in Smten
Figure 4 shows a complete implementation of our string
constraint solver in Smten.

As is natural in a functional language, regular expressions
are represented using an algebraic data type (Line #1). Here
we implicitly make use of sum, product, and recursive types.

The match function (Line #4) uses pattern matching and
higher-order functions to test whether a string matches a reg-
ular expression. Note, the description for match can be used
directly with concrete strings, whose length and characters
are all fully known.

The string template is described using an algebraic data
type Template (Line #18). A template is either Str for a
concrete string, Cat for the concatenation of strings formed
from two templates, or Free for a variable string whose
length ranges between the given bounds and whose charac-
ters may be any value.

The function candidates (Line #32) takes a template
and returns a search space computation of all candidate
strings defined by that template. The first clause of the
candidates function handles the Str case and produces
a singleton search space with the concrete string s. The sec-
ond clause handles the Cat case by concatenating the two
search spaces defined by the sub-templates ta and tb. The
final clause instantiates a free string via the helper functions
choose and replicateM. The choose function (Line #21)
converts a list of elements into a search space by recursively
constructing a union of singleton spaces of each list element.
The function replicateM (which is part of the standard li-
brary in Haskell) replicates its arguments the given number
of times and returns the cross product of all possible re-
sults (Line #25). For example, the search space described by
the expression replicateM 2 [‘a’ .. ‘c’] represents
the set of 9 strings "aa", "ab", "ac", "ba", "bb", "bc",
"ca", "cb", and "cc". Thus, the do-notation for the third
clause of candidates can be interpreted as meaning for
each possible sequence chars of h characters, each charac-
ter of which is one of the characters from ‘a’ to ‘z’, and
for each possible width w between l and h, take w characters
from chars, and include that string in the search space.

The function solutions (Line #43) takes a template and
regular expression and produces the search space of all can-
didate strings from the template that match the regular ex-
pression. It does this by first calling candidates to produce
the search space of all strings generated by the template, then
uses do-notation, which desugars into a join of a map, to
map each non-matching string into the empty set and each
matching string into a singleton set, and join the results into



1 data RegEx = Empty | Epsilon | Atom Char

2 | Star RegEx | Concat RegEx RegEx | Or RegEx RegEx

4 match :: RegEx → String → Bool

5 match Empty _ = False

6 match Epsilon s = null s

7 match (Atom x) s = s == [x]

8 match r@(Star x) [] = True

9 match r@(Star x) s = any (match2 x r)

10 (splits [1..length s] s)

11 match (Concat a b) s = any (match2 a b)

12 (splits [0..length s] s)

13 match (Or a b) s = match a s | | match b s

15 match2 a b (sa, sb) = match a sa && match b sb

16 splits ns x = map (λn → splitAt n x) ns

18 data Template =
19 Str String | Cat Template Template | Free Int Int

21 choose :: [a] → Space a

22 choose [] = empty

23 choose (x:xs) = union (single x) (choose xs)

25 replicateM :: Int → Space a → Space [a]

26 replicateM 0 s = single []

27 replicateM n s = do

28 hd ← s

29 tl ← replicateM (n-1) s

30 single (hd:tl)

32 candidates :: Template → Space String

33 candidates (Str s) = single s

34 candidates (Cat ta tb) = do

35 a ← candidates ta

36 b ← candidates tb

37 single (a ++ b)

38 candidates (Free l h) = do

39 chars ← replicateM h (choose [‘a’..‘z’])

40 w ← choose [l..h]

41 single (take w chars)

43 solutions :: Template → RegEx → Space String

44 solutions t r = do

45 s ← candidates t

46 if (match r s)

47 then single s

48 else empty

50 solve :: Template → RegEx → IO ()

51 solve t r = do

52 result ← search (solutions t r)

53 case result of

54 Nothing → putStrLn "No Solution"

55 Just x → putStrLn ("Solution: " ++ show x)

Figure 4. String constraint solver implemented with Smten.

a single set which contains only those strings that matched
the regular expression.

The function solve (Line #50) calls search to evaluate
the search, and prints the solution found, if any.

An important point about this implementation of string
constraint solving is that the description of regular expres-
sions and regular expression matching is direct, reusing stan-
dard Haskell code that operates on concrete regular expres-
sions and strings to describe search over a space of strings
(and possibly a space of regular expressions, though that is
not shown here).

3.3 The Strictness of Search
Smten allows arbitrary expressions in a search space com-
putation. This means the complete construction of a Space

expression may be non-terminating. Naively one might as-
sume that such a computation would always result in non-
termination (⊥), but because search returns only a single
element of the search space, it may be possible to return a
result even though the complete search space cannot be con-
structed. There are many situations where expressing and
searching in these necessarily incomplete search spaces is
valuable.

For example, in our string constraint solver, we may not
wish to put an upper bound on the string length. The follow-
ing example demonstrates a Space expression describing a
search space that includes strings of unbounded length:

search (union (single "b") (union aStr (single "c")))

where

aStr :: Space String

aStr = union (single "") (map (λs → ‘a’:s) aStr)

In this example, aStr is a search space defined recur-
sively that represents the infinite set of strings whose ev-
ery character is an ‘a’. The top level search happens in a
space including the string "b", all the strings from aStr,
and the string "c". This is a search for elements of the set
{"b"} ∪ {"", "a", "aa", . . .} ∪ {"c"}. Operationally, con-
structing the entire space of strings in aStr will never ter-
minate. Because we have not specified an order of elements
searched in the space, however, it is not clear whether, for
example, "c" is a valid result of this search, or if the search
may fail to terminate.

Because it can lead to more natural descriptions of prob-
lems and better modularity, we chose to take the most non-
strict view of search. In this case we allow either "b", "c", or
any string from aStr to be found, and we require the search
terminates eventually.

If there are no valid solutions to a search space for which
the complete construction would lead to non-termination,
then the entire space must be searched, and the search will
fail to terminate. For example, using the aStr search space,
the following search will fail to terminate:



x ∈ Variable
Type T ::= T1 → T2 | Unit | T1*T2 | T1+T2 | IO T | Space T

Term e, f, s ::= x | λxT . e | f e | unit | (e1, e2) | fst e | snd e

| inlT e | inrT e | case e f1 f2 | fix f
| returnio e | e >>=io f | search s
| emptyT | single e | union s1 s2 | map f s | join s

Abbr Maybe T = Unit + T, Just e = inr e, Nothing = inl unit, errT = fix (λxT . x)

Figure 5. Syntax of KerSmten types and terms.

search $ do

s ← aStr

if (elem ‘b’ s)

then single s

else empty

It is not feasible in general to expect the system could deter-
mine none of the infinite set of strings described by aStr

contain the character ‘b’. If the character ‘b’ had been
replaced with the character ‘a’ in this example, however,
the search would terminate with any one of the strings from
aStr.

4. Precise Semantics for Smten
In this section we provide a precise semantics for search
in Smten to clarify the behavior of search, especially with
respect to the strictness of search. These semantics will also
serve as a foundation for our presentation of the Smten
implementation approach in Sec. 5.

To focus on the search aspects of Smten and simplify the
presentation, we give semantics for a reduced kernel lan-
guage, called KerSmten, instead of the full Smten language
based on Haskell. KerSmten is a non-strict, strongly typed
lambda calculus with pairs, disjoint sums, general recursion
through fix, input/output (IO) computations in the Haskell-
monadic style, and the Smten search API.

Figure 5 shows the syntax of types and terms for KerSmten.
Precise typing judgments for KerSmten are not included due
to space limitations. The typing judgments for pairs, dis-
joint sums, and general recursion through fix are standard,
the IO computations are typed as in Haskell, and the search
primitives have types corresponding to the Haskell types
presented for them in Sec. 3.1.

For the syntax of terms in Fig. 5, the variables e, f , and
s all denote expressions, with the intent that e is used for
general expressions, f is used for expressions describing
functions, and s is used for expressions describing search
spaces.

KerSmten is an explicitly-typed monomorphic language.
Lambda terms are annotated with the type of the input vari-
able; inl and inr are both annotated with the unused part of
the disjoint sum; and empty is annotated with the result type
for that search space computation. This information, along

with the structure of a term, makes it clear what the type of
every term is. To reduce clutter, we sometimes omit explicit
type annotations when not relevant.

Figure 6 gives a complete small-step structured opera-
tional semantics for KerSmten evaluation. The semantics
are organized by the three different kinds of computation in
Smten: pure evaluation, search, and IO.

Pure Evaluation Pure evaluation reduces a KerSmten ex-
pression to a pure value without performing any IO or search
space computations. The primitives for IO and search com-
putations are considered values with respect to pure evalu-
ation. The transition e1 →e e2 represents a single step of
pure evaluation. The small steps for pure evaluation are stan-
dard for call-by-name evaluation. Though we do not show
the proofs here, pure evaluation is type-sound and determin-
istic.

Search Computation Search-space evaluation reduces terms
of type Space T to either the empty search space empty, or
a search space with a single element single e. The se-
mantics of search-space evaluation is split into two separate
transition relations. The transition s1 →s↑ s2 describes a
search-space expansion process, which eliminates top level
occurrences of map and join, resulting in an expanded set
of elements described using empty, single, and union.
The transition s1 →s↓ s2 describes a search space reduction
process, which eliminates top level occurrences of union by
selecting an arbitrary result.

Search space expansion is type-sound and deterministic.
Search space reduction is type-sound, but is not determinis-
tic, because it can arbitrarily select a result from either the
first or second argument to union. Combined, search space
expansion and reduction have the effect of freely exploring
the search space and selecting a result when one is found.

The rules sts-union-left and sts-union-right allow part of
a search space to be ignored (the space s in these rules), so
long as a result has already been found. This is what makes
it possible to return a search result when parts of the search
space are not completely computable. Because it is possible
to ignore parts of a search space only when a result has been
found, the entire space must be searched to determine it is
empty.



Pure Evaluation
Pure Value v ::= λxT . e | unit | (e1, e2) | inlT e | inrT e

| returnio e | e1 >>=io e2 | search e
| emptyT | single e | union s1 s2 | map f s | join s

st-beta (λx . e1) e2 →e e1[e2/x]
st-fst fst (e1, e2) →e e1
st-snd snd (e1, e2) →e e2
st-inl case (inl e) f1 f2 →e f1 e
st-inr case (inr e) f1 f2 →e f2 e
st-fix fix f →e f (fix f)

st-case-a
e→e e

′

case e f1 f2→e case e
′ f1 f2

st-fst-a
e→e e

′

fst e→e fst e
′ st-snd-a

e→e e
′

snd e→e snd e
′ st-app-a

f →e f
′

f e→e f
′ e

Search Space Expansion

S1 Value vs1 ::= emptyT | single e | union s1 s2

sts-map-empty map f empty →s↑ empty

sts-map-single map f (single e) →s↑ single (f e)
sts-map-union map f(union s1 s2) →s↑ union (map f s1) (map f s2)
sts-join-empty join empty →s↑ empty

sts-join-single join (single s) →s↑ s
sts-join-union join (union s1 s2) →s↑ union (join s1) (join s2)

sts-pure
s→e s

′

s→s↑ s
′ sts-map-a

s→s↑ s
′

map f s→s↑ map f s
′ sts-join-a

s→s↑ s
′

join s→s↑ join s
′

Search Space Reduction

S Value vs ::= emptyT | single e

sts-union-left union (single e) s →s↓ single e
sts-union-right union s (single e) →s↓ single e
sts-union-not-right union s empty →s↓ s
sts-union-not-left union empty s →s↓ s

sts-s1
s→s↑ s

′

s→s↓ s
′

sts-union-a1
s1 →s↓ s

′
1

union s1 s2→s↓ union s
′
1 s2

sts-union-a2
s2→s↓ s

′
2

union s1 s2→s↓ union s1 s
′
2

IO Computation

IO Value vio ::= returnio

stio-bind-return (returnio e1) >>=io e2 →io e2 e1
stio-search-empty search empty →io returnio Nothing

stio-search-single search (single e) →io returnio (Just e)

stio-bind-a
e1→io e

′
1

e1 >>=io e2→io e
′
1 >>=io e2

stio-pure
e→e e

′

e→io e
′ stio-search-a

s→s↓ s
′

search s→io search s
′

Figure 6. Semantics of KerSmten.



e, f, s ::= x | λxT . e | f e | unit | · · ·
| φ ? e1 : e2 | {e | φ}

Figure 7. Augmented syntax of KerSmten terms.

In Sec. 3.3 we said search in a space with some ele-
ment must terminate eventually. To express this using the
precise semantics, we need an additional fairness constraint
on application of the rules sts-union-a1 and sts-union-a2 not
shown here.

IO Computation IO computation applies to terms of type
IO T and is where search computations are executed. The
transition e1 →io e2 represents a single step of IO computa-
tion. IO computation is type-sound.

The rule stio-search-empty applies for a search space
that evaluates to empty, and stio-search-single applies for
a search space containing at least one element.

Though we have not included them here to avoid distrac-
tion, additional IO primitives could be added for performing
input and output, which is why we call this IO computa-
tion. Note that IO computations cannot be run from within a
search computation.

5. Smten Search by SAT
In this section we present a syntax-directed approach for
constructing a SAT formula from a Smten description of a
search problem.

A key insight for producing SAT formulas from Smten
search-space descriptions is to introduce two new forms of
expressions to the Smten language. The first new form of
expression is a φ-conditional expression that parameterizes
an expression by a boolean formula, allowing arbitrary ex-
pressions to be dependent on the assignment of SAT vari-
ables. The second is a set expression representing a set of
expressions by a combination of a boolean formula and an
assignment-parameterized expression. The augmented syn-
tax of KerSmten with the φ-conditional expression and set
expression is shown in Fig. 7. The syntax of boolean formu-
las φ was given in Fig. 1.

φ-Conditional Expression (φ ? e1 : e2) The φ-
conditional expression is a conditional expression param-
eterized by the value of the boolean formula φ. The value of
the expression is e1 for all boolean assignments under which
φ evaluates to true, and e2 for all assignments under which
φ evaluates to false.

The expression φ ? e1 : e2 is well-typed with type T if
both e1 and e2 are well-typed with type T .

An example of a φ-conditional expression is the expres-
sion (v ∧ w) ? 1 : 2, which is an expression with value
1 for any assignment where both boolean variables v and w
are true, and 2 otherwise.

We call an expression containing φ-conditional sub-
expressions partially concrete in contrast to normal expres-
sions that are fully concrete.

We use the notation e[µ] to refer to the concrete value of a
partially concrete expression e under given boolean assign-
ment µ, where all φ-conditional sub-expressions have been
eliminated. For example, if µ1 = {(v, true), (w, true)}
and µ2 = {(v, false), (w, true)}, then we have that
(v ∧ w ? 1 : 2)[µ1] = 1 and (v ∧ w ? 1 : 2)[µ2] = 2.

Set Expression {e | φ} The set expression is a canonical
form for expressions of type Space a:

{e | φ} = φ ? single e : empty

In this form, each satisfying assignment, µ, of the boolean
formula φ corresponds to a different element, e[µ], of the
search space. The search space is empty exactly when
φ is unsatisfiable. The set of expressions represented by
set expression {e | φ} is the set of possible values of
e for satisfying assignments of the boolean formula φ:
{e[µ] | φ[µ] = true}.

For example, the set expression {(v∧w) ? 1 : 2 | v∨w}
represents the set {1, 2}, because both µ1 and µ2 from above
are satisfying assignments of the formula (v∨w). In contrast,
the set expression {(v∧w) ? 1 : 2 | v∧w}, with conjunction
in the formula instead of disjunction, represents the singleton
set {1}, because µ1 is the only satisfying assignment of the
formula (v ∧ w).

The type of a set expression is Space T , where T is the
type of expression e. We sometimes refer to e as the body of
the set expression {e | φ}.

Each of the primitives empty, single, union, map, and
join are evaluated at runtime to construct a set expression
representing the appropriate set of elements. The primitive
(search s) is then implemented via a SAT solver as follows:

1. Construct Evaluate the expression s resulting in the con-
struction of a set expression {e | φ}.

2. Solve Run the SAT solver on the formula φ. If the result
is Unsat, then the set s is empty and we return Nothing.
Otherwise the solver gives us some assignment µ, and we
return the result Just e[µ], because e[µ] belongs to the
set s.

More precisely, we augment pure evaluation to work in
the presence of φ-conditional and set expressions, and we
define a new evaluation strategy for search space computa-
tions that reduces them to set expressions.

Augmenting Pure Evaluation Figure 8 shows the aug-
mented values and rules for KerSmten pure evaluation. Both
the φ-conditional expression and set expression are consid-
ered values with respect to pure evaluation. For the set ex-
pression, this is consistent with the rest of the search-space
primitives. For the φ-conditional expression, because it can
be of any type, this introduces a new kind of value for ev-
ery type. Consequently, we need to augment pure evaluation
with rules to handle this new kind of value.

The effect of rules st-beta-phi, st-fst-phi, st-snd-phi, and
st-case-phi is to push primitive operations inside of the φ-



Pure Value v ::= λxT . e | unit | (e1, e2) | inlT e | inrT e
| returnio e | e1 >>=io e2 | search e
| emptyT | single e | union s1 s2 | map f s | join s
| φ ? e1 : e2 | {e | φ}

st-beta-phi (φ ? f1 : f2) e →e φ ? (f1 e) : (f2 e)
st-fst-phi fst (φ ? e1 : e2) →e φ ? (fst e1) : (fst e2)
st-snd-phi snd (φ ? e1 : e2) →e φ ? (snd e1) : (snd e2)
st-case-phi case (φ ? e1 : e2) f1 f2 →e φ ? (case e1 f1 f2) : (case e2 f1 f2)

Figure 8. KerSmten pure evaluation with new expressions.

conditional expression. The reason duplicating primitive op-
erations is not as severe as the duplication of functional calls
when using the list monad is because functions whose con-
trol flow is independent of their arguments can be executed
once, instead of once for every argument.

For example, the expression (λ x . (x, x))(φ ? e1 : e2)
reduces with standard beta substitution (st-beta) to:

(φ ? e1 : e2, φ ? e1 : e2)

The approach of the list monad would be to re-evaluate this
function for e1 and e2 separately. If e1 and e2 are themselves
partially concrete, the function would need to be evaluated
for each of the possibly exponential number of concrete ar-
guments using the list monad approach, but just once using
our approach. This is the key idea behind why Smten per-
forms better than the list monad in Haskell.

We discuss in Sec. 6.1 how we can canonicalize partially
concrete expressions to avoid duplication in the primitive
operations as well.

Search-Space Evaluation Figure 9 gives a new set of rules
for evaluating search-space expressions to set expressions.
Note that the rules here do not properly describe the strict-
ness properties we need for search. In this section we focus
on what set expressions are constructed from search-space
descriptions, and later we discuss how the runtime should
generate these expressions to properly preserve strictness of
search.

To understand why these rules produce correct set expres-
sions, it is often helpful to view set expressions as the canon-
ical form of partially concrete search spaces instead of as a
set of expressions.

sx-empty The primitive empty reduces to {⊥ | false} by
the rule sx-empty. The boolean formula false has no satis-
fying assignments, so {⊥[µ] | false[µ] = true} represents
the empty set.

Interpreting the set expression as the canonical form of a
partially concrete search-space expression gives:

{⊥ | false} = false ? single ⊥ : empty

We use ⊥ for the body of the set expression, but any value
with the proper type could be used instead, because the

body is unreachable. (We leverage this fact for an important
optimization discussed in Sec. 6.2).

sx-single The primitive single e reduces to {e | true}
by the rule sx-single. The boolean formula true is trivially
satisfiable. If e is a concrete expression, this represents a
singleton set, because e[µ] is the same for all µ.

As with empty, treating the set expression as a canonical
form makes sense:

{e | true} = true ? single e : empty

Note that the argument e to single does not need to be eval-
uated to put the expression single e in set expression form.
The expression e may describe a non-terminating computa-
tion, but that has no effect on whether e may be returned as
a result of a search.

sx-union The expression (union {e1 | φ1} {e2 | φ2})
reduces to the set expression {v ? e1 : e2 | ite v φ1 φ2} by
sx-union, where v is a fresh boolean variable.

The variable v represents the choice of which argument
of the union to use; an assignment of v = true corresponds
to choosing an element from the first set, and v = false

corresponds to choosing an element from the second set. The
formula ite v φ1 φ2 is satisfied by satisfying assignments
of φ1 with v = true and satisfying assignments of φ2 with
v = false.

For example, consider the following Space expression
representing the set {1, 5}:
union (single 1) (single 5)

This evaluates to the set expression:

{v ? 1 : 5 | ite v true true}

If this were the top-level search space, the SAT solver would
be free to assign the variable v to either true or false,
selecting between values 1 and 5 respectively.

In contrast, consider the following Space expression:

union (single 1) empty

This evaluates to:

{(v ? 1 : ⊥) | ite v true false}



sx-empty empty →sx {⊥ | false}
sx-single single e →sx {e | true}
sx-union union {e1 | φ1} {e2 | φ2} →sx {v ? e1 : e2 | ite v φ1 φ2}, v fresh
sx-map map f {e | φ} →sx {f e | φ}
sx-join join {s | φ} →sx φ ? s : empty

sx-phi φ ? {e1 | φ1} : {e2 | φ2} →sx {φ ? e1 : e2 | ite φ φ1 φ2}

sx-union-a1
s1→sx s

′
1

union s1 s2→sx union s′1 s2
sx-union-a2

s2→sx s
′
2

union s1 s2→sx union s1 s
′
2

sx-phi-a1
s1→sx s

′
1

φ ? s1 : s2→sx φ ? s′1 : s2
sx-phi-a2

s2→sx s
′
2

φ ? s1 : s2→sx φ ? s1 : s′2

sx-map-a
s→sx s

′

map f s→sx map f s′
sx-join-a

s→sx s
′

join s→sx join s′
sx-pure

s→e s
′

s→sx s
′

Figure 9. SAT-Based search-space evaluation.

The only satisfying assignment of the ite v true false is
with v = true, so the value 1 must be selected.

This sx-union rule is the primary means of introducing
partially concrete expressions during evaluation.

sx-map The expression map f {e | φ} reduces to {f e | φ}
by sx-map. The map reduction applies the function f to the
body of the set expression, leaving the formula unchanged.

The map primitive can lead to arbitrary application of
functions to partially concrete expressions in the body of a
set expression.

sx-join The expression join {s | φ} reduces by the rule sx-
join to φ ? s : empty. This reduction is easy to understand
interpreting the set expression {s | φ} as the canonical form
φ ? single s : empty. Applying the join operator to both
branches of the φ-conditional expression leads to:

φ ? join (single s) : join empty

Both branches trivially reduce, resulting in:

φ ? s : empty

This expression must be further reduced before reaching
canonical form.

sx-phi A φ-conditional Space expression of the form
φ ? {e1 | φ1} : {e2 | φ2} is reduced to the set expres-
sion {φ ? e1 : e2 | ite φ φ1 φ2} by sx-phi. As with join,
using intuition about the meaning of a partially concrete set
expression helps to understand why this is correct if it is not
immediately clear.

The term φ ? {e1 | φ1} : {e2 | φ2} is equivalent to:

φ ? (φ1 ? single e1 : empty) : (φ2 ? single e2 : empty)

This can be compressed to the form:

ite φ φ1 φ2 ? single (φ ? e1 : e2) : empty

which is equivalent to {φ ? e1 : e2 | ite φ φ1 φ2}.

5.1 Avoiding Spurious Non-Termination
The reduction rules sx-phi-a1, sx-phi-a2 are used to evalu-
ate both branches of a φ-conditional set expression to set
expressions before the rule sx-phi can be applied. It is some-
what surprising that these rules can result in non-termination
for some search spaces that are completely finite. Consider
the following search space:

search $ do

x ← union (single True) (single False)

if (x | | not x)

then single x

else let y = y in y

This describes a search for a boolean value x that is either
True or False. In either case, the condition for the if is
True, so the search should always follow the then branch.
The else branch, which here is an infinite recursion, is
unreachable.

This search is entirely finite. The list monad can produce
the exhaustive list of both solutions: True and False. In our
implementation, this evaluates to an expression such as:

(x ∨ ¬x) ? (single (x ? True : False)) : (fix (λy.y))

Because we rely on the SAT solver to evaluate the condition
in this expression, the implementation does not look to see
that in every case the condition is true, so it evaluates both
branches of the condition, one of which will never reduce to
a set expression.

It is not unrealistic to expect that we could determine the
second branch is unreachable with some simplifications to
the condition in this example. In general, though, determin-
ing whether a branch is unreachable is as hard as determin-
ing whether a boolean formula is satisfiable.

One simple approach to avoid evaluating set expressions
on unreachable paths is to call the SAT solver for every
condition to determine whether a branch is reachable or not.
There are two downsides to this approach:



• The SAT solver is called for every condition, which we
expect to be prohibitively expensive
• This approach does not help any with searches involving

reachable non-terminating paths. An implementation us-
ing this approach would be overly strict in evaluation of
search as described in Sec. 3.3

We take an alternative approach that heuristically de-
tects long running computations and uses an abstraction-
refinement procedure to search for elements of the search
space that do not require the long running computations be
completed. This approach leads to many fewer calls to a SAT
solver, and results in an implementation of search with our
desired strictness properties.

In our implementation, we evaluate set expressions non-
strictly (contrary to the rules presented in Fig. 9); set expres-
sions are forced only when we need to compute the formula
part of the set expression. A consequence of this is we have
to concern ourselves only with potential non-termination
when looking at the formula being constructed, and not in
the constructions for set expressions.

Our goal, then, is to solve the problem of satisfiability
for a boolean formula where sub-terms may not be fully
computable. The high-level approach is to search first for
satisfying assignments to the formula that are not affected
by the non-computable parts of the formula.

For example, consider the boolean formula:

φ = ite x0 φ̂ x1

where x0 and x1 are boolean variables and φ̂ represents a
part of the formula that appears to be uncomputable. Even
without knowing the value of formula φ̂, it is possible to find
a satisfying assignment for φ: take x0 to be false and x1 to
be true.

Our runtime heuristically detects sub-terms of formulas
that are long-running computations. Rather than compute
their values, the runtime treats these sub-terms as black
boxes. In the previous example, φ̂ is an example of a black-
box sub-term. Given a formula φ annotated with black box
sub-terms, we generate three new formulas: p, a, and b.

The formula p corresponds to the condition under which
the black boxes of φ do not affect its value. In the above
example, p = ¬x0, because if x0 is false, the value of φ̂ is
irrelevant.

The formula a is the same as formula φ under the assump-
tion all the black box sub-terms are irrelevant. The black box
sub-terms can be replaced with any value, including true,
false, or any other value leading to a simple boolean for-
mula for a. In the above example, if φ̂ is unreachable in φ,
then φ = x1, so we take a = x1.

The formula b contains the black box sub-terms and is
equivalent to φ for all assignments where p is false. In the
above example, b = φ̂.

The meaning of each of these terms can be summarized
with the logical equality φ = ite p a b. In other words, a is

a finite approximation to φ, the approximation is exact when
p holds, and b is used to refine the approximation.

The following abstraction-refinement semi-decision pro-
cedure makes use of this construction to progressively refine
the black box parts of a boolean formula φ until a solution is
found. If there exists a solution to the search, it will be found
eventually. The procedure is:

1. Construct the terms p, a, and b for φ.

2. Check if p ∧ a is satisfiable. If so, the assignment is also
a satisfying assignment for φ and we are done.

3. Otherwise, check if ¬p is satisfiable. If not, then φ is
unsatisfiable and we are done. In this case, the formula b
is unreachable, so none of the black box sub-terms need
to be computed.

4. Otherwise, b may or may not have a solution and we re-
fine our abstraction, but may restrict it with the knowl-
edge that the cases we have considered previously may
be ruled out. That is, we repeat this procedure with¬p∧b.

6. Optimizations
Many of the optimizations required to make a tool devel-
oped with Smten work well in practice are specific to the tool
and can be expressed in the user’s code. There are a hand-
ful of important optimizations, however, which are built into
Smten. Whereas user-level optimizations lead to changes in
the high-level structure of the generated queries, the opti-
mizations built into Smten focus on reducing the cost of
generating those queries. This is achieved primarily by ex-
ploiting sharing and pruning parts of the query that have no
effect.

Characterizing the impact of these optimizations is dif-
ficult. Combinatorial search problems, by their nature, are
sensitive to scaling: small changes to the implementation can
effect performance by orders of magnitude. In our experi-
ence, this is the difference between a tool that works well in
practice and one that fails to work entirely. Nevertheless, we
attempt to describe the broad impacts of our optimizations in
this section and present some empirical results in Sec. 8.4.

6.1 Normal Forms for Partially Concrete Expressions
The rules st-beta-phi, st-fst-phi, st-snd-phi, and st-case-phi
for pure evaluation of partially concrete expressions push
their corresponding primitive operations inside the branches
of a φ-conditional expression. This duplicates work in query
generation and leads to redundancy in the generated query.
We can eliminate this duplication by normalizing partially
concrete expressions to share structure in subexpressions, so
that the primitive operations are evaluated only once. The
consequence of normalization is that none of the rules that
duplicate primitive operations will ever be applicable.



Products The normal form for a partially concrete product
is a concrete product with partially concrete components:

φ ? (e11, e12) : (e21, e22)

→ (φ ? e11 : e21 , φ ? e12 : e22)

This eliminates the need for st-fst-phi and st-snd-phi.

Booleans The normal form for a boolean expression is
a φ-conditional expression whose left branch is True and
right branch is False: φ ? True : False. As a short-
hand, we use φ to represent the normal form of the boolean
expression, and apply the following rewrite:

φ ? φ1 : φ2 → ite φ φ1 φ2

In effect, Smten boolean expressions are translated to boolean
formulas and handled directly by the SAT solver. An analo-
gous approach can be used for types with direct support in
the SMT backend, as discussed in Sec. 6.3.

Sums Sum types can be viewed as a generalization of
the boolean case. They are reduced to the canonical form
φ ? inl el : inr er using:

φ ? (φ1 ? inl el1 : inr er1) : (φ2 ? inl el2 : inr er2)

→ ite φ φ1 φ2 ? (inl φ ? el1 : el2) : (inr φ ? er1 : er2)

This allows us to replace the st-case-phi rule with one that
does not duplicate the work of the case expression:

case (φ ? inl e1 : inr e2) f1 f2 → φ ? (f1 e1) : (f2 e2)

Functions The normal form for functions are functions:

φ ? f1 : f2 → λx . φ ? (f1 x) : (f2 x)

This eliminates the need for st-beta-phi and creates addi-
tional opportunities for sharing when the same function is
applied multiple times.

6.2 Leverage Unreachable Expressions
There are many places in the implementation where unreach-
able expressions are created. For example, the rule sx-empty
reduces empty to {⊥ | false}, where ⊥ could be any value
because it is unreachable. By explicitly tracking which ex-
pressions are unreachable, we can simplify our queries be-
fore passing them to the solver. For instance, φ ? e : ex can
be simplified to e if ex is known to be unreachable, because
if ex is unreachable, φ must be true for every assignment.

Recall that our scheme to avoid spurious non-termination
(Sec. 5.1) introduces arbitrary values for black box subterms.
Using explicitly unreachable expressions instead has the ef-
fect of selecting the value that simplifies the approximation
the most.

6.3 Exploit Theories of SMT Solvers
Smten can naturally leverage SMT solvers by expanding
the syntax of formulas for types directly handled by the
solver and using a formula as the canonical representation
for these types as we do for booleans. For example, consider
the following boolean expression involving integers:

(φ1 ? 1 : 2) < (φ2 ? 2 : 3)

Without support for integers, the < operator must be pushed
into the branches of the φ-conditional for evaluation:

φ1 ? (φ2 ? (1 < 2) : (1 < 3))

: (φ2 ? (2 < 2) : (2 < 3))

This exponential duplication of work can be avoided by
representing the integers and operations on them in an SMT
formula. In this case, we translate < to the SMT solver’s lt:

lt (ite φ1 1 2) (ite φ2 2 3)

To fully exploit an underlying theory we must have direct
access to free variables of the corresponding types. Our
search primitives encapsulate this for boolean variables:

free_Bool :: Space Bool

free_Bool = union (single True) (single False)

There is no direct way to introduce a free variable of a
different type, however. For this reason, we add new search
primitives that create free variables directly if supported by
the SMT solver. For example, for theories of integers and bit
vectors, we introduce the primitives:

free_Integer :: Space Integer

free_Bit :: Space (Bit n)

Consider the query generated for the search space:

do x ← free_Bit2

guard (x > 1)

The free Bit2 function could be implemented in terms
of existing Space primitives:

free_Bit2 :: Space (Bit 2)

free_Bit2 = Do

x0 ← union (single 0) (single 1)

x1 ← union (single 0) (single 1)

single (bv_concat x0 x1)

This would lead to a generated SMT query such as:

(bv concat (ite x0 0 1) (ite x1 0 1)) > 1

If free Bit is provided as a primitive, however, then
free Bit2 can use it directly as the implementation. This
leads to a simpler generated SMT query: x > 1, where x is
a free bit-vector variable in the SMT query.

Providing free Bit and free Integer requires mod-
ifying the implementation of Smten. This is required only
for primitive Smten types. Theories that can be expressed in
terms of currently supported SMT theories in Smten can be
expressed directly in the Smten language by composition of
the Smten primitive theories.



6.4 Formula Peep-Hole Optimizations
We perform constructor oriented optimizations to simplify
formulas as they are constructed. In each of the following
examples, the evaluation of lazily applied functions for con-
structing the formula φx can be entirely avoided:

φx ∧ false→ false

ite false φx φy → φy

ite φx φy φy → φy

6.5 Sharing in Formula Generation
Consider the user-level Smten code:

let y = x + x + x

z = y + y + y

in z < 0

It is vital we preserve the user-level sharing in the gener-
ated query, rather than generating the query:

((x+ x+ x) + (x+ x+ x) + (x+ x+ x)) < 0

To prevent this exponential growth, we are careful to
maintain all of the user-level sharing in the query when
passed to the solver, including dynamic sharing that occurs
due to user-level dynamic programming, memoization, and
other standard programming techniques.

7. Smten Compiler and Runtime
An efficient implementation of the functional programing
aspects of the Smten language requires significant devel-
opment effort that we did not wish to replicate. We can-
not implement Smten as an embedded language in Haskell
and compile using a modern compiler, such as the Glasgow
Haskell Compiler (GHC) [15], however, because our imple-
mentation approach introduces φ-conditional expressions in
the core syntax in fundamental way. Instead, we make use
of GHC in two ways. First, we leverage the GHC runtime
by implementing the Smten intermediate representation di-
rectly in Haskell. This is not as simple as a trivial syntax-
directed translation because each data type must be trans-
lated into a new data type, and all if and case expressions
must be rewritten to support the φ-conditional expression.

Second, to leverage GHC’s package management system,
parser, type inference, type checking, and module support,
we implement the Smten compiler as a GHC plugin. The
Smten plugin takes its input in the form of GHC’s core in-
termediate representation. As a result our Smten implemen-
tation supports the entirety of Haskell98 and the majority of
Haskell programs accepted by GHC. Some extensions are
not fully supported yet, most notably the Haskell foreign
function interface, because it requires a more complicated
translation.

The Smten library borrows heavily from the Haskell Pre-
lude; it supports most of the standard library functions and

libraries, including arrays, maps, and monad transformers.
We keep the Smten Prelude distinct from the Haskell Prelude
because the GHC implementation uses extensions for per-
formance and optimizations that are not fully supported in
Smten. We hope to unify the two in the future after improv-
ing our translation from the core intermediate representation
and optimization passes. Once unified, many existing user-
contributed libraries for Haskell should work out-of-the-box
in Smten.

8. Evaluation
To evaluate Smten, we used it to implement three com-
plex satisfiability-based search applications from different
domains. This includes a reimplementation of the HAMPI
string constraint solver [20], a model checker based on k-
induction, and a reimplementation of the sketch tool for pro-
gram synthesis [33].

In this section we compare our implementations against
state-of-the-art tools and discuss how it was relatively easy
to construct our own implementations that achieve perfor-
mance comparable to the originals using many fewer lines
of source code thanks to Smten. The source code for our im-
plementation of Smten and each of these applications can be
found on github at http://github.com/ruhler/ in the
smten and smten-apps repositories respectively.

8.1 HAMPI String Constraint Solving
SHAMPI is a Smten-based reimplementation of HAMPI, a
string constraint solver whose constraints express mem-
bership of strings in both regular languages and fixed-size
context-free languages.

A HAMPI input consists of the definitions for regular ex-
pressions and context free grammars (CFGs), bounded-size
string variables, and predicates on these strings referenc-
ing the regular expressions and grammars. The output from
HAMPI is a string that satisfies the constraints or a report that
the constraints are unsatisfiable.

The HAMPI tool has been applied successfully to testing
and analysis of real programs, most notably in static and dy-
namic analyses for SQL injections in web applications and
automated bug finding in C programs using systematic test-
ing. HAMPI’s success is due in large part to preprocessing
and optimizations that recognize early when a CFG cannot
match a string, regardless of the undetermined characters the
string contains.

The original implementation of HAMPI is implemented in
about 20K lines of Java and uses the STP [14] SMT solver. In
contrast, our implementation of SHAMPI is around 1K lines
of Smten code, including the lexer and parser for the string
constraint language. This is an order of magnitude reduction
in code size.

We capture HAMPI’s algorithmic sharing using a straight
forward memoization technique. The numbers presented
here are an improvement of previously published work [37]
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Figure 10. HAMPI compared to SHAMPI.

in that the whole of SHAMPI is now implemented in the
Smten language.

Our initial development of SHAMPI required approxi-
mately three weeks of effort, including efforts required to
understand the tool and important optimizations required to
run effectively. We revisited the implementation a year after
the initial development, and were happy to find we could still
understand the code and were able to identify and implement
some additional optimizations easily.

We ran both HAMPI and SHAMPI on all benchmarks pre-
sented in the original HAMPI paper. We experimented with
two different backend solvers for SHAMPI: STP, which is the
same backend solver used by HAMPI, and the Yices2 [41]
SMT solver, which performs notably better. Figure 10 com-
pares the performance of HAMPI and SHAMPI for each of
the benchmarks. Those points below the 45 degree line are
benchmarks on which SHAMPI out-performs the original
HAMPI implementation. For both SHAMPI and HAMPI, we
took the best of 8 runs. SHAMPI was compiled with GHC-
7.6.3. We ran revision 46 of a single HAMPI server instance
for all runs of all tests on HAMPI to amortize the JVM startup
cost; this also allows code specialization to happen in later
instances of each input biasing the results towards HAMPI
slightly.

Assuming our implementation includes the same algo-
rithms and optimizations for generating the queries, as we
believe to be the case, the left graph in Fig. 10 represents
the overheads associated with using the more general Smten
framework for solving the string constraint problem. The
right graph represents the benefits the framework provides
in requiring a trivial amount of effort to experiment with dif-
ferent backend solvers.

8.2 Hardware Model Checking
Hardware model checking is used to verify properties of
hardware systems. The hardware is modeled using a finite
state transition diagram. We have implemented Saiger, a
model checker that supports the input and property check-
ing required by the 2010 hardware model checking compe-
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Figure 11. Saiger compared to PdTrav.

tition [18]. It tests whether any bad states are reachable from
an initial state.

Saiger was implemented using a direct transliteration
of the k-induction approach to model checking described
in [31]. The core k-induction algorithm is described in less
than 100 lines of Smten, with an additional 160 or so lines
for parsing and evaluation of hardware described in the
Aiger format, around 50 lines to adapt the Aiger format to
the core algorithm, and approximately 70 lines for parsing
options and calling the core algorithm. In total, Saiger is less
than 400 lines of Smten code, and took on the order of one
week of effort to implement.

Figure 11 shows the performance of Saiger on the bench-
marks from the 2010 hardware model checking competition
compared to PdTrav [4]. PdTrav is the best model checker
in the 2010 competition able to identify both SAT and UN-
SAT models that we were able to run ourselves. Those points
above the 45 degree line are cases on which version 3.2.0 of
PdTrav out-performs Saiger. Those points below the 45 de-
gree line are cases on which Saiger out-performs PdTrav.
For a large majority of the benchmarks Saiger out-performs
PdTrav, especially on those benchmarks for which counter-
examples to the property were found, labeled as SAT bench-
marks. There are a number of UNSAT benchmarks on which
our model checker exceeds the 900 second timeout limit
that PdTrav is able to solve. This is almost certainly due to
PdTrav using an interpolant-based approach to model check-
ing, which can result in significantly smaller search spaces in
proving unsatisfiability over the straightforward k-induction
algorithm we implemented. While we have not investigated
it thoroughly, we are confident that implementing such an
algorithm in Smten would yield similar results.

Saiger demonstrates the ease with which complex appli-
cations can be described in Smten and perform well. The
code for the core algorithm matches exactly the descriptions
from the paper presenting the algorithm. This means it is
easy to understand and modify. Additionally, the core model
checking algorithm is completely independent from the form
used to represent the hardware model. The core algorithm
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could be reused unmodified for many different models, and
perhaps even for software model checking.

8.3 Sketch Program Synthesis
To showcase Smten’s ability to express complex multi-
query computations we implemented the core subset of the
Sketch [33] program synthesis tool. Sketch is a state-of-
the-art language and SAT-based tool that takes as input a
sketch of a program where some expressions are replaced
with holes, and a specification of the program’s desired be-
havior. The Sketch tool outputs a complete program filling
the provided holes such that it meets the specification given.

For example, the following is a sketch of an optimized
function for isolating the rightmost unset bit of a word, along
with an unoptimized specification:

bit[W] i0sketch(bit[W] x) implements isolate0 {

return ~(x + ??) & (x + ??);

}

bit[W] isolate0 (bit[W] x) {

bit[W] ret=0;

for (int i = 0; i < W; i++)

if (!x[i]) { ret[i] = 1; break; }

return ret;

}

Here, the token ?? represents a hole for the synthesizer to
fill in. The output of running the sketch tool on this example
is a synthesized optimized function:

bit[W] i0sketch (bit[W] x) implements isolate0 {

return ~(x + 0) & (x + 1);

}

The core of Sketch is realized by a Counter-Example Guided
Inductive Synthesis (CEGIS) procedure [32]. CEGIS de-
composes a doubly quantified formula into a sequence of
alternating singly quantified queries that can be directly an-
swered by SAT solvers. Sketch has been used in a variety of
contexts to predict user preferences [6], optimize database
applications [7], and factoring of functionalities [40].

The original Sketch tool was developed over almost a
full decade and represents over 100K lines of code (a mix
of approximately 86K lines of Java and 20K lines of C++
code). In comparison our implementation, called Ssketch,
is only 3K lines of Smten. While our implementation does
not support all the features of the Sketch language, e.g.,
stencils, uninterpreted functions or package management, it
does include support for the core language features.

Implementing Ssketch has required greater development
effort than both SHAMPI and Saiger, because of the large set
of features in the Sketch language. The majority of effort
required for us to implement Ssketch is devoted to imple-
menting the semantics and features of the Sketch language,
and not effort specifically devoted to the program synthesis
or query generation aspects of Ssketch. The effort is compa-
rable to the effort that would be required to develop a tradi-
tional compiler for the Java-like language of Sketch.

To evaluate our implementation of Ssketch against the
original implementation of Sketch, we ran both tools on
the gallery benchmarks provided in the Sketch distribution.
Figure 12 shows the results of running our implementation
of Ssketch and version 1.6.4 of the original Sketch tool on
the gallery benchmarks supported by Ssketch. The number
of iterations required for the CEGIS algorithm is sensitive
to which counter-examples are returned by the underlying
solver. Because of randomness used internally in Sketch,
running Sketch repeatedly on the same benchmark can pro-
duce very different results. For this reason, we ran the orig-
inal Sketch 20 times on each benchmark. Ssketch is more
repeatable for a given choice of backend solver, but switch-
ing to a different solver has the same effect as randomness in
the original Sketch implementation. For this reason, we ran
our version of Ssketch 8 times on each benchmark with each
backend solver supported by Smten. In Fig. 12, for a given
benchmark, the left line and boxes show the runtime for each
of the 20 runs of the original Sketch tool on the benchmark.
The right line and boxes show the runtime for each of the
runs of Ssketch on the benchmark, colored by the backend
solver used.
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The takeaway from Fig. 12 is that for these benchmarks,
our implementation of Sketch using Smten is comparable
in performance to the original version of Sketch, which
is remarkable, considering how many fewer lines of code
our implementation required, and the years of optimization
effort invested in the original implementation of Sketch.

Not all of the gallery benchmarks in the Sketch distribu-
tion are supported by our implementation of Ssketch. Three
of the benchmarks require uninterpreted functions or sten-
cils, language features not implemented in Ssketch. Nine of
the benchmarks use features supported by Ssketch, but fail
to terminate. When we first implemented Ssketch, this was
the case for all of the benchmarks shown in Fig. 12, and
is typical of development of an SMT-based tool. It is fairly
straight-forward, though time consuming, to minimize the
failing test cases and identify the reason it fails to complete.
Once the problem is understood, it is usually simple to mod-
ify the Smten code for Ssketch to fix the problem. We ex-
pect with further investigation of the failing gallery bench-
marks, we could achieve results comparable to Sketch on all
the benchmarks.

Examples of performance problems we identified and
fixed in our initial version of Ssketch include computing
the length of a bulk array access based on the original ar-
ray rather than after truncating an array by a potentially par-
tially concrete amount, implementing correct behavior when
a Sketch function has no return statement, correctly identify-
ing static bounds on loop unrolling, and using an association
list to represent the variable scope rather than a balanced bi-
nary tree, whose structure is more sensitive to the order in
which variables are updated.

8.4 Optimizations
It is difficult to quantify the effects of the individual Smten
optimizations discussed in Sec. 6. For example, the normal
forms for partially concrete expressions are built into our im-
plementation of Smten in a fundamental way. We can, how-
ever get a sense of the effects of some of the other optimiza-
tions. Figure 13 compares the performance of Ssketch with
and without peephole optimizations (which includes prun-

ing based on unreachable expressions) and sharing optimiza-
tions in the Smten implementation on the Sketch mini per-
formance tests.

The behavior reflected in these graphs is that a large
number of test cases are unaffected by the optimizations,
but a fair number of the test cases are significantly effected
by the optimizations, be it the peephole optimizations or
preservation of sharing.

9. Related Work
A variety of approaches have been explored for making it
easier to develop high-performance solutions to search prob-
lems in general. We primarily focus here on those relating to
use of SAT and SMT solvers and those relating to use of
functional language like Haskell for describing search prob-
lems.

The background theories of SMT solvers allow the de-
veloper to directly express their queries at a much higher
level than SAT solvers, which SMT solvers take advan-
tage of to improve performance. Some SMT solvers such
as Z3 [11] and Yices [12] support record types and lambda
terms. While this support allows the developer to rely more
on the solver for optimizations of higher-level constructs,
SMT solvers do not yet support the general purpose pro-
gramming required by developers to construct a query based
on a complex input specification from the user.

Libraries such as the python and F# bindings to the Z3
solver simplify interfacing with SMT solvers from general
purpose languages, but it is still up to developers to im-
plement optimizations on top of these libraries when con-
structing queries. More sophisticated interfaces to SMT have
been built using a Domain Specific Embedded Language
(DSEL) [25] approach. These DSELs [1, 13, 22, 34] pro-
vide a full metaprogramming layer to generate SMT queries.
While it is possible to embed a domain specific language in
a language such as Haskell that takes advantage of non-strict
evaluation in the construction of queries, this approach is
limited to optimizing the primitive types and operations at
the lowest level, and fails to address the much broader scope
of possible optimizations and structure in the metaprogram-
ming layer, and in particular for user defined data types.

SAT/SMT solvers have been leveraged in compilation of
functional languages, which requires construction of queries
from the syntax of a functional language. Tools such as
Leon [35] and HALO [38] generate and run queries at com-
pile time and are used for static analysis instead of the appli-
cations Smten is targeted at, where queries are generated and
evaluated at runtime and optimizations based on dynamic
data are much more important. Kuncak et al. [24] statically
generate queries for SCALA that can depend on runtime pa-
rameters, but the structure of the query is fixed statically.

Our abstraction-refinement procedure for handling poten-
tially non-terminating search spaces is similar to that used in
Leon [35], which uses incremental unrolling of functions to



avoid non-termination, and encodes the reachability of ap-
proximated terms in the SMT formula itself. Our approach
is distinct in that it does not rely on support for functions in
the underlying solver, and we do not introduce any new free
variables in the query to represent the approximated terms in
the formula.

Kaplan [23] and Rosette [36] both are intended for devel-
opment of applications that execute SAT and SMT queries
dynamically. The search interface in Kaplan is tied to fea-
tures specific to the Z3 solver rather than providing a generic
search interface that can be used with a variety of SAT and
SMT solvers. Using terminology from Rosette, Smten can
be thought of as a solver-aided host language for Haskell
instead of Racket. Unlike Rosette, Smten does not require
programs to be self-finitizing.

Our use of a set monad for describing search spaces is
consistent with work by Hughes and O’Donnell [17] show-
ing that sets are a good way to express non-deterministic
computation in a functional programming language while
preserving referential transparency. We extend that to in-
clude support for backtracking search and make use of
monadic computation [39] for describing the sets.

Other approaches have been suggested to provide better
functionality and performance for monadic search than the
list monad. Work by Kiselyov et al. [21] and monadic con-
straint programming [30] provide more flexibility and con-
trol over how the search is performed. Neither of these ap-
proaches is targeted towards using SAT and SMT to improve
the performance of the search.

Our work on Smten is closely related to Functional Logic
Programming languages like Curry [16]. We believe describ-
ing search spaces in Smten will be more familiar to program-
mers than Curry, because the search spaces are described
with functions that operate as they would on concrete data.
This is in contrast to Curry, which changes the semantic in-
terpretation of clauses in a function. It is likely techniques
from Curry could be adapted to further improve the perfor-
mance of Smten’s runtime.

The idea of describing search computation in terms of
set operations while using a different internal representa-
tion to improve performance is similar to database queries.
Database queries are expressed in terms of direct operations
on database tables, but are instead executed using sophisti-
cated data structures internal to databases. Work on database
query optimization [19, 26, 29] may be applicable to Smten,
though it is not clear how easy it would be to model the cost
of a SAT or SMT query to identify the best query to generate.

10. Discussion
One challenge we discovered while using Smten to develop
complex applications is that programs are much more sensi-
tive to small algorithmic changes than normal Haskell pro-
grams where all expressions are fully concrete. In the con-
struction of queries, Smten conceptually evaluates a func-

tion by executing the union of all paths of the function. This
means the number of possible paths and the complexity of
each plays an important role in determining performance,
not just the average path taken as in standard computation.

The best representation of a function for search in Smten
may be different than the best representation for a concrete
computation. Attempts to allow fast paths so common cases
may immediately return can actually hurt performance when
all paths must be considered, because they increase the num-
ber of paths that must be considered.

For example, consider the following list update functions
that exemplify a number of cases we encountered when
programming with Smten:

update1 :: Int → a → [a] → [a]

update1 n v [] = []

update1 n v (x:xs) =
if n == 0 then v:xs

else (x : update1 (n-1) v xs)

update2 :: Int → a → [a] → [a]

update2 n v [] = []

update2 n v (x:xs) =
(if n == 0 then v else x ) : update2 (n-1) v xs

Here update1 implements a short circuit; when the posi-
tion to update is reached, the tail is returned unmodified. In
contrast, update2 always traverses the entire list.

When we are in a Space computation where n is un-
known, but the length of the list is known, update2 takes
time linear in the length of the list to evaluate all possible
paths. Each element will be replaced with a φ-conditional
expression representing whether that element of the list was
updated or not. The function update1, however, takes time
quadratic in the length of the list to evaluate all possible
paths, because there is a separate computation path for each
position n could take, and each of those n paths has on the
order of n elements to check for the update.

We believe it is not too onerous to expect a Smten user,
whose goal is to simplify their use of SMT, to understand at a
high-level what the implications of their algorithmic choices
are when conceptually all paths must be evaluated to con-
struct a query. This is also a reason why a non-strict language
like Haskell works well for our approach, because functions
written to take advantage of lazy evaluation can be efficient
for both the average case in concrete computation, and the
union of all cases for computations involving partially con-
crete expressions.

10.1 Future Work
Smten currently works very well when search spaces are
constructed with explicit structure, but not as well at infer-
ring additional structure of a search space from constraints
placed on it. For example, recall the aStr search space pre-
sented in Sec. 3.3 that represents the set of strings of all
lengths consisting of just the character ‘a’:



aStr :: Space String

aStr = union (single []) (map (λs → ‘a’:s) aStr)

An alternative approach to describing this set is to restrict
the set of all strings to those that contain only the character
‘a’:

str :: Space String

str = do

c ← choose [‘a’..‘z’]

union (single []) (map (λs → c:s) str)

aStr :: Space string

aStr = do

s ← str

if (all (== ‘a’) s)

then single s

else empty

Currently our implementation of Smten fails to infer from
the second approach that every element of the partially con-
crete string must be ‘a’. We would like to implement better
implied value concretization [5], to make both approaches
perform equally well. This is complicated to support effi-
ciently in the presence of our existing optimizations and
while preserving an appropriate level of sharing between ex-
pressions that appear in multiple different contexts.

11. Conclusion
We have presented Smten, a non-strict, functional program-
ming language for expressing satisfiability-based search
problems. Search problems in Smten are specified by di-
rectly describing constraints on the search space. The Smten
runtime system lazily constructs and executes SMT queries
to perform the search on behalf of the user.

Smten drastically simplifies the task of developing com-
plex, high-performance, satisfiability-based search applica-
tions by automating the critical but tedious start-up costs and
optimizations required to effectively use SMT solvers, al-
lowing the developer to describe the search problem directly,
decoupling important design decisions from query construc-
tion, easing exploration of the design space, and enabling
reuse in the form of libraries that work well in large areas of
the design space.

Our evaluation of Smten on substantial satisfiability-
based search applications clearly demonstrates that appli-
cations developed using Smten require significantly fewer
lines of code and less developer effort to achieve results
comparable to standard SMT-based tools. We hope the con-
sequences of Smten will be many more high-performance
satisfiability-based search applications, especially in spe-
cialized domains that previously could not justify investing
the high costs required to develop an efficient SMT-based
tool, and joint effort in producing high quality library codes
reused across a wide range of different satisfiability-based
search applications.
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