
802.15.3 Transmitter: A fast design cycle using OFDM
framework in Bluespec

Teemu Pitkänen1, Vesa-Matti Hartikainen1, Nirav Dave2, and Gopal Raghavan3

1 Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
[teemu.pitkanen, vesa-matti.hartikainen]@tut.fi
2 Massachusetts Institute of Technology, Cambridge, USA

ndave@csail.mit.edu
3 Nokia Research Center Cambridge

Nokia Corporation
gopal.raghavan@nokia.com

Abstract. Orthogonal Frequency-Division Multiplexing (OFDM) has become
the preferred modulation scheme for both broadband and highbitrate digital
wireless protocols because of its spectral efficiency and robustness against mul-
tipath interference. Although the components and overall structure of different
OFDM protocols are functionally similar, the characteristics of the environment
for which a wireless protocol is designed often result in different instantiations of
various components. In this paper we present a new baseband processing trans-
mitter case, namely 802.15.3 (WUSB), to existing OFDM framework which con-
sists highly parametrized code in Bluespec for two different wireless baseband
processing cases, namely 802.11a (WiFi) and 802.16 (WiMAX). The design cy-
cle for transmitter of WUSB took only six week’s for two designers which were
not familiar with Bluespec, WUSB protocol or the OFDM framework.

1 Introduction

Wireless systems are experiencing rapid development as more applications call for mo-
bile and distributed use. To effectively meet the vastly varying application requirements
(e.g.,power, bitrate, and flexibility) a variety of different wireless protocols have been
designed. In recent years, Orthogonal Frequency-DivisionMultiplexing (OFDM) has
become preferred modulation scheme for both broadband and high bitrate digital wire-
less protocols because of its spectral efficiency and robustness against multipath inter-
ference. These protocols are sufficiently similar that manyof the component blocks in
transceivers across protocols could be described using thesame parametric module with
different parameters in the various forms including bitsizes, default values, pipelining
strategies and combinational functions.

Despite the capability for sharing and the significant time pressure on designers to
ship designs quickly, in practice engineers still write each design from scratch ignoring
possible reuse between designs. Much of this is due to the fact that while most hardware
description languages (HDLs) like Verilog and VHDL providethe ability for parame-
terization, only very low-level parameterization is supported (e.g.,values and bit-sizes)
leaving many important parameterizations very hard to describe.



Recently, Ng et. al. developed a parameterized suite for quickly generating OFDM
baseband transceivers [1] in Bluespec SystemVerilog (BSV), a high-level hardware de-
scription language which can be compiled mechanically in toefficient high-quality RTL
code [2]. This suite consists of a number of highly parameterized OFDM component
blocks which can be reused across multiple designs. These parametric designs cause no
additional hardware overhead, as the Bluespec compiler canremove all static parame-
terization during design elaboration.

The OFDM framework provides specific baseband implementations for both the
802.11a (WiFi) and 802.16 (WiMAX) protocols. Using this as astarting point we add
the design of a 802.15.3 (WUSB) transmitter. This work took very little time, taking
only six weeks for two designer unfamiliar with both BSV and OFDM protocols to
complete.

2 OFDM Framework

The OFDM Framework used has been developed as part of the ARMOproject by Nokia
Research Center and Massachusetts Institute of Technology[3]. The project started out
focusing on studying the cost-area tradeoffs possible in the RTL design of a 802.11a
transmitter [5]. As the project progressed it became clear that many of the key blocks
in both the transmitter and reciever, the receiver size, it then became clear that many of
the key blocks, while complex, were reusable across multiple OFDM-based protocols.
This framework has been released to the public under the MIT license [4].

The structure of OFDM implementations described in this framework is shown in
Figure 1. To aid comprehension, we briefly discuss the high-level functionality of each
blocks:

Fig. 1. Structure of the OFDM Framework and changes made



2.1 Transmitter

TX Controller: Receives information from the MAC. Adds header data before actual
payload and generates control for all the subsequent blocks.

Scrambler: Randomizes the data stream to remove repeated patterns.

FEC Encoder: Encodes and adds some redundancy to data making it possible for the
receiver to detect and correct errors. The encoded data is punctured to reduce the trans-
mitted number of bits.

Interleaver: Interleaves bit stream to provide robustness against bursterrors.

Mapper: Passes interleaved data through a serial to parallel converter, mapping groups
of bits to separate carriers, and encoding each bit group by frequency, amplitude, and
phase. The output of the Mapper contains the values of data subcarriers for an OFDM
symbol.

Pilot/Guard Insertion: Adds the values for pilot and guard subcarriers to OFDM sym-
bols.

IFFT: Converts OFDM symbols from the frequency domain to the time domain.

CP Insertion: Copies some samples from the end of the symbol to the front to add
some redundancy to the symbols to avoid Inter-Symbol Interference. The block also
adds a preamble before the first transmitted symbol.

After CP insertion, OFDM symbols are outputted to a DAC, which converts them
to analog signals which can them be transmitted.

2.2 Receiver

The receiver roughly applies the transmitter transformations in reverse. However, it
requires some additional feedback to help synchronize to tothe expected phase.

Synchronizer: Detects the starting position of an incoming packet based onpreambles.

Serial to Parallel (S/P): Removes the cyclic prefix (CP) and then aggregates samples
into symbols before passing them to the FFT. It also propagates the control information
from the RX Controller to subsequent blocks.

FFT: Converts OFDM symbols from the time domain into the frequency domain.

Channel Estimator: Compensates for frequency-dependent signal degradation based
on pilots and corrects the errors caused by multi-path interference.

Demapper: Demodulates data and converts samples to encoded bits.

Deinterleaver: Reverses the interleaving and restores the original arrangement of bits.

FEC Decoder: Uses the redundant information to detect and correct errorsoccurred
during transmission.

Descrambler: Reverses the scrambling.

RX Controller: Based on the decoded data, the RX Controller generates the control
feedback to S/P block.



3 The WUSB Transmitter

The OFDM Framework provided a very good starting point for WUSB implementa-
tion. It included almost all of the functionality needed, and most changes were just
changes to parameters of the framework. Only few bigger changes to the framework
were needed. Figure 1 illustrates the structure of OFDM Framework and changes nec-
essary for WUSB. In this chapter we discuss some of the specific changes and how they
were represented.

3.1 Parameterization

Many of the modifications needed in the WUSB design are captured by the component
module parameterization. Table 1 lists some of the parameter settings of each protocol.

Convolutional Encoder: One of the simplest examples of parameterization we en-
countered was in the convolutional encoder. In this design,we needed to generate a
3-bit output for each 1-bit input using a moving history of 8 input bits. To represent this
change the input and output sizes to match the expected rates(8 and 24 respectively)
and pass in three values representing the individual polynomial for each output bit. The
computation necessary for each output bit can be described by a single polynomial in
Z2. These are represented as 8− bit values. Thus we need to pass in 3 8-bit values to
the parameterized module.

Due to a restriction in the current Bluespec compiler, to generate a separate Verilog
module for this block, the Bluespec module be non-parameterized. This requires us to
add a small wrapper module to restrict the type and provides the modules arguments to
make the module self-contained.

typedef 8 ConvEncoderInDataSz;
typedef TMul#(3,ConvEncoderInDataSz) ConvEncoderOutDataSz;
module mkConvEncoderInstance(ConvEncoder#(TXGlobalCtrl,

ConvEncoderInDataSz,
ConvEncoderOutDataSz));

ConvEncoder#(TXGlobalCtrl, ConvEncoderInDataSz
, ConvEncoderOutDataSz) convEncoder

<- mkConvEncoder(convEncoderG1, convEncoderG2,convEncoderG3);
return convEncoder;

endmodule

Puncturer: A slightly more interesting parameterization can be found in the puncturer.
Puncturing is a feature of the FEC encoder which allows the transmitter to reduce the
number of bits being sent. For higher transmission rate, in low-noise channels, the en-
coded data is punctured by deleting bits before transmission and replacing them with
fixed values on reception. This reduces the number of bits to be carried over the channel
as we can depend on the error correction in the receiver to correctly reconstruct the data.

The WUSB protocol specifies 7 separate puncturing modes, of which 5 are already
described the previous framework. To add a new puncturing mode, we define the new



functionspuncturerHalf which takes 3 bits and returns 2 bits andpuncturerElevenThirtySecond
which takes 33 bits and returns 32 bits.

function Bit#(2) puncturerHalf (Bit#(3) x);
return {x[2], x[0]};

endfunction
function Bit#(32) puncturerElevenThirtySecond (Bit#(33) x);
return x[31:0];

endfunction

Each function is then extended to the apply to the input size using theparFunc function.
These new functions, along with the other functions corresponding to the other modes
along with a function which determines which function corresponds to which mode
(puncturerMapCtrl).

puncturer <- mkPuncturer(puncturerMapCtrl,
parFunc(f0_sz,puncturerHalf),
parFunc(f1_sz,puncturerTwoThird),
...,
parFunc(f6_sz,puncturerFiveEigth) );

Using functions as parameters is possible because functions are considered first-order
objects in Bluespec.

Blocks Parameters WiFi WiMAX WUSB
Scrambler Generator X7

+X4
+1 X15

+X14
+1 X15

+X14
+1

Polynomial
Convolutional Generator 133oct & 171oct 133oct & 171oct 133oct, 165oct

Polynomials & 171oct
Interleaver Coding Rate 1/2, 2/3, 1/2, 2/3, 1/2,11/32,

3/4 3/4, 5/6 5/8, 3/4
No. Stages 2 2 3

Mapper Modulation BPSK, QPSK, BPSK, QPSK, QPSK
Schemes 16-QAM, 64-QAM 16-QAM, 64-QAM

Pilot & Guard No. Pilot 4 8 12
Insertion Subcarriers

No. Guard 12 56 10
Subcarriers

FFT/IFFT Size 64 256 128
Cyclic Prefix Size 1/4 1/32, 1/16, N/A

Insertion 1/8, 1/4
Table 1. Algorithmic settings for WiFi, WiMAX and WUSB

3.2 Further Changes

Since the frame header is protocol specific, the transmission controller also needs to
be changed. Figure 2 illustrates the WUSB frame format. While, this format is similar



Fig. 2. PLCP Frame Format for WUSB

to both the WiFi and WiMAX protocols, these differences are not well-suited to pa-
rameterization, since the description complexity required to express the controller in a
parametric way is worth the cost of writing a new module.

The biggest change in the controller was the addition of a side scrambler. In WiFi
all header data is scrambled. In WiMAX all header data is sentunscrambled. In WUSB
we had to change scrambling of the headers, since a combination of the MAC header
and header checksum (HCS) needed to be scrambled and the PHY header should not
be scrambled. Since the scrambled parts of the header do not fit the byte alignment, we
either needed to change the scrambler to support non-byte aligned scrambling, add a
new module to the main pipeline for adding tail bits after thePHY header or add a side
scrambler that is used only for encoding scrambled part of the header. We choose to
implement the later two options. The two options we considered are illustrated in Fig-
ure 3 We decided to use a separate side scrambler. This allowsuse the library scrambler
implementation more easily. The side scrambler is only usedfor headers; the payload
is still scrambled by the main scrambler instance in the pipeline.

Fig. 3. Implementation Options for Header Scrambling. Option 1 adds a “header filler” module
to add tail bits. Option 2 uses a separate side-scrambler forside scrambling.



Interleaver: In WiFi and WiMAX the data interleaving is done only inside symbol. In
WUSB, the interleaver must support interleaving of data across symbol triplets. This
change did not require changing the parameteric interleaver, only a new interleaving
function using three symbols as an input, not one.

Preamble Generation: In WUSB, there are 4 different preambles added to symbols in
both the time and frequency. The choice for these is not specified. As a result we only
implemented the first choice. Augmenting the system to add the other preambles can be
easily done.

Previous OFDM transmitters did not need to support frequency-domain preambles.
To add this functionality, we need to add a new block into our pipeline: the CP Channel
Training Block. This block adds 6 prefixed sequences to the input of the IFFT sepa-
rately. The system sends this frequency preamble before sending the symbol header
and payload.

Mapping Values:
In WiFi and WiMAX the mapping always remains the same in WUSB there are

two different mappings. At data rates below 110 Mbps we encode 100 input bits to 50
complex numbers and calculate complex conjugate of the numbers and append it to
end to form a single OFDM Symbol. At faster rates this redundancy is removed and
an OFDM symbol is formed directly of 200 input bits. Other change is contents of the
guard bits at the edges of frequency. WiFi and WiMAX uses zeros as contents of guard
bits. Instead in WUSB we replicate outermost data bits and use them as content of the
guard bits.

The Mapper for WUSB only needs to support QPSK-modulation, and therefore
input and output sizes are less constrained than other schemes where other modulation
schemes more restrict the choices, meaning the provided parameterized mapper did not
cover all cases for the protocol. To generate a WUSB mapper wehad to manually strip
modulation and generate a specialized mapper. A more parameterized mapper must be
designed to capture this implementation as well.

4 Implementation Results

In the following section we describe the result of synthesisof the WUSB transmitter
and evaluate the value of the OFDM framework.

4.1 Technical Results

The WUSB transmitter is synthesized with Synopsys Design Compiler to 130 nm tech-
nology with 1.5 V operating voltage and power dissipation isacquired through gate-
level simulation at 100 MHz.

The results of the synthesis are presented in the Table 2. Most of the area and power
are consumed by the 128-point IFFT block. We compare our designs to two comparable
FFT implementations compatible with our design.

To meet the frequency requirements of the protocol, we must be able to complete an
IFFT in 312.5 ns. We use a folded pipeline design using the same Bluespec pipelining



Component # of Gates (K)Power (mW) Component# of Gates (K)Power (mW)

TX Controller 2.8 1.18 Scrambler 0.5 0.085

FEC Encoder 7.5 2.31 Interleaver 15.9 4.81

Pilot & Guard 47.5 14.4 CP Channel 46.2 10.2

Insertion Training

IFFT 718.2 36.2 CP Insertion 23.6 0.45

Mapper 57.8 11.3 Total 920 92.3

Table 2. Area and Power Dissipation of WUSB Transmitter

framework [5]. Thus it is easy to quickly change the area/performance tradeoff. Our
final IFFT design uses 32 radix-2 butterflies and requires 14 cycles of computation per
input.

To match the performance requirements for our IFFT block needs to run at 44.8
MHz. In fact, the critical path 9.5 ns which allows the block to be clocked at 105 MHz.

Other FFT implementations in the literature have similar results. Mathew et. al [6],
use a pseudo parallel datapath structure to calculate a 128-point FFT in 10 cycles that
can be clocked at 275 MHz. The architecture used 3 butterfly stages, and with each but-
terfly stage containing 8 separate datapaths. Power figures for this design are measured
using a clock speed of 33.3 MHz.

Chen et. al [7] present a different 128-point FFT core, with four radix-22 and four
radix-22/2 butterflies. The first two and last two stages each use a separate sets of
butterflies requiring 32 cycles to compute one input. The design also used six eight-
bank single ported RAMs, two coefficient ROMs, and two address generators. While
the authors were only able to run the system at 66 MHz, scalingdown the technology
would give comparable results to ours.

The comparison FFT presented here is shown in Table 3. Area and power consump-
tion numbers is normalized to 130 nm technology to give a faircomparison between
designs. the maximum clock describes how fast each design can run, required clock de-
scribes how fast the design must run to achieve the performance requirement. The pa-
rameterized BSV code requires approximately 50% more area and slightly more power
compared to [6], and 3.5 times more area compared [7]. From experience much of this
area overhead is due to our choices of using radix-2 butterflies as the base block in our
design. Larger radices would improve the design, though they would require the FFT
either be partitioned into two parts, or the inputs changed so that the 27 size input is
naturally factor by the radix size.

5 Development Experience

The WUSB design was done by two engineers as a six-week project. Only one had
any previous hardware design experience (i.e. VHDL). The pair spent approximately
two weeks learning the language, the OFDM framework, and theWUSB specification



NameButter- Radix of # of GatesPower Tech max.clk req. clk
flies Butterflies (K) (mW) (MHz) (MHz)

BSV 32 2 718.2 36.2 130 nm 105 44.8
[6] 24 8, 2 968 60.6 180 nm 275 31.7

normalized 504.9 31.6
[7] 8 4, 2, 5.85mm2 n/a 250 nm 66 102.3

approx. 760.3
normalized 205.6

Table 3. comparison between FFT architectures

before starting on the design. The remaining four weeks to complete the transmitter
design and the much of the receiver design. We estimate that it would take another 1-2
weeks to complete the receiver design.

One of the keys points which makes the OFDM framework so effective is the rich
parameterization properties of Bluespec. Bluespec’s richtype structure, parameterized
types, and higher-order functions, made expressing much ofthe parameterized designs
natural. Functions do not need to be represented as bit-vectors to be a parameter. Most
of the work involved in using the library was simply understanding what block was
desired.

The OFDM systems modular decomposition also proved to be highly valuable. be-
cause all modules were expected to be latency insensitive and have FIFO buffering,
adding new stages to the pipeline and setting up complete testbenches were both easy.
One can handle each input or output to a module separately.

Other Bluespec language features also proved to be helpful in a number of minor
ways. Bluespec’s static elaboration allowed the design to be expressed recursively; the
system elaborates the description into non-recursive description automatically. Type
provisos which represent the assumptions needed to use a function of module provided
both useful documentation as well guarantees that designs are being parameterized in
legal ways.

6 Conclusions

The primary goal of this work was not to see how much time and effort was needed
in generating a new protocol; it was to see how effectively high-level design language
ideas could be leveraged by engineers not already steeped inthe language. In our views,
this work has been a stunning success. The OFDM framework, though well structured,
represents a fairly sophisticated system with significant parameterization. For inexperi-
enced engineers to be able to understand, use, and even augment the system in so short
a time argues for how natural the system is represented.

Our experience suggests that in the hands of experienced designers, our findings
will be even more magnified, leading to greater focus on much larger design choices
and hopefully leading to better implementation results.



References

1. Ng, M.C., Vijayaraghavan, M., Dave, N., Arvind, Raghavan, G., Hicks, J.: From WiFi to
WiMAX: Techniques for high-level ip reuse across differentOFDM protocols. In: Proc. IEEE
MEMOCODE, Nice, France (2007) 71–80

2. Arvind, Nikhil, R.S., Rosenband, D.L., Dave, N.: High-level Synthesis: An Essential Ingredi-
ent for Designing Complex ASICs. In: Proceedings of ICCAD’04, San Jose, CA (2004)

3. http://www.research.nokia.com/projects/armo
4. http://opensource.nokia.com/projects/armo-open-source-hardware/index.html
5. Dave, N., Pellauer, M., Gerding, S., Arvind: 802.11a Transmitter: A Case Study in Microar-

chitectural Exploration. In: Proceedings of Formal Methods and Models for Codesign (MEM-
OCODE), Napa, CA (2006)

6. Mathew, J., Maharatna, K., Pradhan, D., Vinod, A.P.: Exploration of power optimal imple-
mentation technique of 128-pt fft/ifft for wpan using pseudo-parallel datapath structure. In:
Proc. IEEE ICCS, Singapore (2006) 1–5

7. Chen, S., Yu, Y., Chen, B., Lai, S., Zeng, Y., Zhang, Y., Wang, C.: Design of a 128-point
fourier transform chip for uwb applications. In: Proc. IEEEICSICT, Shanghai, China (2006)
1957 – 1959

8. IEEE: 802.15 High Rate Alternative PHY Task Group (tg3a) for Wireless Personal Area Net-
works, Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a, IEEE
P802.15-03


