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Abstract. Orthogonal Frequency-Division Multiplexing (OFDM) hascene
the preferred modulation scheme for both broadband and hiigate digital
wireless protocols because of its spectral efficiency abdsmess against mul-
tipath interference. Although the components and ovetalicture of different
OFDM protocols are functionally similar, the charactecstof the environment
for which a wireless protocol is designed often result ifiedént instantiations of
various components. In this paper we present a new baselaoelsping trans-
mitter case, namely 802.15.3 (WUSB), to existing OFDM fraumek which con-
sists highly parametrized code in Bluespec for two diffeneineless baseband
processing cases, namely 802.11a (WiFi) and 802.16 (WiMAXg design cy-
cle for transmitter of WUSB took only six week’s for two deségs which were
not familiar with Bluespec, WUSB protocol or the OFDM framea.

1 Introduction

Wireless systems are experiencing rapid development as apmiications call for mo-
bile and distributed use. To effectively meet the vastlyirag application requirements
(e.g.,power, bitrate, and flexibility) a variety of different wiess protocols have been
designed. In recent years, Orthogonal Frequency-DiviMaitiplexing (OFDM) has
become preferred modulation scheme for both broadbandighdtirate digital wire-
less protocols because of its spectral efficiency and rabastagainst multipath inter-
ference. These protocols are sufficiently similar that mafype component blocks in
transceivers across protocols could be described usirgathe parametric module with
different parameters in the various forms including b#sizdefault values, pipelining
strategies and combinational functions.

Despite the capability for sharing and the significant timespure on designers to
ship designs quickly, in practice engineers still writetedesign from scratch ignoring
possible reuse between designs. Much of this is due to théhfaovhile most hardware
description languages (HDLSs) like Verilog and VHDL provitthe ability for parame-
terization, only very low-level parameterization is sugpd (.g.,values and bit-sizes)
leaving many important parameterizations very hard to rilesc



Recently, Ng et. al. developed a parameterized suite faktjugenerating OFDM
baseband transceivers [1] in Bluespec SystemVerilog (B&W)gh-level hardware de-
scription language which can be compiled mechanically effioient high-quality RTL
code [2]. This suite consists of a number of highly paranieterOFDM component
blocks which can be reused across multiple designs. Theaep#ric designs cause no
additional hardware overhead, as the Bluespec compileraranve all static parame-
terization during design elaboration.

The OFDM framework provides specific baseband implemeatfor both the
802.11a (WiFi) and 802.16 (WiMAX) protocols. Using this astarting point we add
the design of a 802.15.3 (WUSB) transmitter. This work toekyittle time, taking
only six weeks for two designer unfamiliar with both BSV an&M protocols to
complete.

2 OFDM Framework

The OFDM Framework used has been developed as part of the ARbf€Ct by Nokia
Research Center and Massachusetts Institute of Technf@bdhe project started out
focusing on studying the cost-area tradeoffs possible enRML design of a 802.11a
transmitter [5]. As the project progressed it became cleaitr inany of the key blocks
in both the transmitter and reciever, the receiver sizégihtbecame clear that many of
the key blocks, while complex, were reusable across malifDM-based protocols.
This framework has been released to the public under the Ménse [4].

The structure of OFDM implementations described in thisneavork is shown in
Figure 1. To aid comprehension, we briefly discuss the hégletifunctionality of each
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Fig. 1. Structure of the OFDM Framework and changes made



2.1 Transmitter

TX Controller: Receives information from the MAC. Adds header data befotea
payload and generates control for all the subsequent hlocks

Scrambler: Randomizes the data stream to remove repeated patterns.

FEC Encoder: Encodes and adds some redundancy to data making it possitiresf
receiver to detect and correct errors. The encoded datanifymed to reduce the trans-
mitted number of bits.

Interleaver: Interleaves bit stream to provide robustness against bunats.

Mapper: Passes interleaved data through a serial to parallel ciemyerapping groups
of bits to separate carriers, and encoding each bit groupdmuéncy, amplitude, and
phase. The output of the Mapper contains the values of datzasters for an OFDM

symbol.

Pilot/Guard I nsertion: Adds the values for pilot and guard subcarriers to OFDM sym-
bols.

IFFT: Converts OFDM symbols from the frequency domain to the timaalin.

CP Insertion: Copies some samples from the end of the symbol to the frontddo a
some redundancy to the symbols to avoid Inter-Symbol laterfce. The block also
adds a preamble before the first transmitted symbol.

After CP insertion, OFDM symbols are outputted to a DAC, vahionverts them
to analog signals which can them be transmitted.

2.2 Receiver

The receiver roughly applies the transmitter transforometiin reverse. However, it
requires some additional feedback to help synchronize tioet@xpected phase.

Synchronizer: Detects the starting position of an incoming packet basqat@ambles.

Serial to Parallel (S/P): Removes the cyclic prefix (CP) and then aggregates samples
into symbols before passing them to the FFT. It also proaghat control information
from the RX Controller to subsequent blocks.

FFT: Converts OFDM symbols from the time domain into the freqyedamain.

Channel Estimator: Compensates for frequency-dependent signal degradedissdb
on pilots and corrects the errors caused by multi-pathfiertence.

Demapper: Demodulates data and converts samples to encoded bits.
Deinterleaver: Reverses the interleaving and restores the original asraegt of bits.

FEC Decoder: Uses the redundant information to detect and correct eoccarred
during transmission.

Descrambler: Reverses the scrambling.

RX Controller: Based on the decoded data, the RX Controller generates thmkto
feedback to S/P block.



3 TheWUSB Transmitter

The OFDM Framework provided a very good starting point for 8BJimplementa-
tion. It included almost all of the functionality neededdamost changes were just
changes to parameters of the framework. Only few bigger g@ésito the framework
were needed. Figure 1 illustrates the structure of OFDM Ermonk and changes nec-
essary for WUSB. In this chapter we discuss some of the spetifinges and how they
were represented.

3.1 Parameterization

Many of the modifications needed in the WUSB design are cegdtiy the component
module parameterization. Table 1 lists some of the pararsetténgs of each protocol.

Convolutional Encoder: One of the simplest examples of parameterization we en-
countered was in the convolutional encoder. In this designneeded to generate a
3-bit output for each 1-bit input using a moving history ofi@ut bits. To represent this
change the input and output sizes to match the expected(Batexl 24 respectively)
and pass in three values representing the individual potyaldor each output bit. The
computation necessary for each output bit can be descripedsingle polynomial in
Z». These are represented as Bit values. Thus we need to pass in 3 8-bit values to
the parameterized module.

Due to a restriction in the current Bluespec compiler, toggate a separate Verilog
module for this block, the Bluespec module be non-pararzettr This requires us to
add a small wrapper module to restrict the type and provigestodules arguments to
make the module self-contained.

t ypedef 8 ConvEncoder | nDataSz;
t ypedef TMil #( 3, ConvEncoder | nDat aSz) ConvEncoder Qut Dat aSz;
nodul e nkConvEncoder | nst ance( ConvEncoder #( TXd obal Ctrl,
ConvEncoder | nDat aSz,
ConvEncoder Qut Dat aSz) ) ;
ConvEncoder #( TXd obal Ctrl, ConvEncoder | nDat aSz
, ConvEncoder Qut Dat aSz) convEncoder
<- nkConvEncoder (convEncoder GL, convEncoder @, convEncoder G3);
return convEncoder;
endnodul e

Puncturer: A slightly more interesting parameterization can be founihe puncturer.
Puncturing is a feature of the FEC encoder which allows thesimitter to reduce the
number of bits being sent. For higher transmission ratepwiroise channels, the en-
coded data is punctured by deleting bits before transmmsasnal replacing them with
fixed values on reception. This reduces the number of bite tabried over the channel
as we can depend on the error correction in the receiver teaity reconstruct the data.
The WUSB protocol specifies 7 separate puncturing modeshifhwb are already
described the previous framework. To add a new puncturindgenae define the new



functionspunct ur er Hal f which takes 3 bits and returns 2 bits gnuct ur er El evenThi rt ySecond

which takes 33 bits and returns 32 bits.

function Bit#(2) puncturerHalf (Bit#(3) Xx);
return {x[2], x[0]};

endf uncti on

function Bit#(32) puncturerEl evenThirtySecond (Bit#(33) X);

return x[31
endf unction

0]

Each function is then extended to the apply to the input ssiregLthepar Func function.

These new functions, along with the other functions cowading to the other modes
along with a function which determines which function cepends to which mode
(punct urer MapCtrl).

puncturer <- nkPuncturer(puncturerMpCrl,
par Func(f0_sz, puncturerHal f),
par Func(f1_sz, puncturer TwoThi rd),

par Func(f6_sz, puncturerFiveEigth) );
Using functions as parameters is possible because fusdi@nconsidered first-order
objects in Bluespec.

Blocks Parameters WiFi WIMAX WUSB
Scrambler | Generator| X7+X%+1 XxBrx¥i1 [xBrx¥ia
Polynomial
Convolutional Generator| 133oct & 171oct| 133oct & 171oct|1330ct, 1650¢
Polynomials & 171oct
Interleaver |Coding Rat¢ 1/2, 2/3, 1/2, 2/3, 1/2,11/32,
3/4 3/4, 5/6 5/8, 3/4
No. Stages 2 2 3
Mapper | Modulation| BPSK, QPSK, BPSK, QPSK, QPSK
Schemes |16-QAM, 64-QAM 16-QAM, 64-QAM
Pilot & Guard No. Pilot 4 8 12
Insertion | Subcarriers
No. Guard 12 56 10
Subcarrierg
FFT/IFFT Size 64 256 128
Cyclic Prefix Size 1/4 1/32, 1/16, N/A
Insertion 1/8, 1/4
Table 1. Algorithmic settings for WiFi, WIMAX and WUSB

3.2 Further Changes

—

Since the frame header is protocol specific, the transmmissimtroller also needs to
be changed. Figure 2 illustrates the WUSB frame format. Vltiilis format is similar
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Fig. 2. PLCP Frame Format for WUSB

to both the WiFi and WIMAX protocols, these differences aot well-suited to pa-
rameterization, since the description complexity reqluieexpress the controller in a
parametric way is worth the cost of writing a new module.

The biggest change in the controller was the addition of a satambler. In WiFi
all header data is scrambled. In WIMAX all header data is sestrambled. In WUSB
we had to change scrambling of the headers, since a condrinatithe MAC header
and header checksum (HCS) needed to be scrambled and the €dd¥érishould not
be scrambled. Since the scrambled parts of the header da tia Byte alignment, we
either needed to change the scrambler to support non-kgteedl scrambling, add a
new module to the main pipeline for adding tail bits after BtdY header or add a side
scrambler that is used only for encoding scrambled part @hiader. We choose to
implement the later two options. The two options we congderre illustrated in Fig-
ure 3 We decided to use a separate side scrambler. This alk®be library scrambler
implementation more easily. The side scrambler is only disetieaders; the payload
is still scrambled by the main scrambler instance in thelipe
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L
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Fig. 3. Implementation Options for Header Scrambling. Option 1saaldheader filler” module
to add tail bits. Option 2 uses a separate side-scramblsiderscrambling.



Interleaver: In WiFi and WIMAX the data interleaving is done only insidensiyol. In
WUSB, the interleaver must support interleaving of datassisymbol triplets. This
change did not require changing the parameteric interteanty a new interleaving
function using three symbols as an input, not one.

Preamble Generation: In WUSB, there are 4 different preambles added to symbols in
both the time and frequency. The choice for these is not BpdciAs a result we only
implemented the first choice. Augmenting the system to addther preambles can be
easily done.

Previous OFDM transmitters did not need to support frequatmmain preambles.
To add this functionality, we need to add a new block into apeline: the CP Channel
Training Block. This block adds 6 prefixed sequences to tpetinf the IFFT sepa-
rately. The system sends this frequency preamble befoirgeithe symbol header
and payload.

Mapping Values:

In WiFi and WIMAX the mapping always remains the same in WU®Breé are
two different mappings. At data rates below 110 Mbps we eaddD input bits to 50
complex numbers and calculate complex conjugate of the etsrdind append it to
end to form a single OFDM Symbol. At faster rates this reduegids removed and
an OFDM symbol is formed directly of 200 input bits. Other rfa is contents of the
guard bits at the edges of frequency. WiFi and WiMAX uses geocontents of guard
bits. Instead in WUSB we replicate outermost data bits aedhesm as content of the
guard bits.

The Mapper for WUSB only needs to support QPSK-modulatiow, tnerefore
input and output sizes are less constrained than other sshelimere other modulation
schemes more restrict the choices, meaning the providedyeterized mapper did not
cover all cases for the protocol. To generate a WUSB mappéragde¢o manually strip
modulation and generate a specialized mapper. A more pésarezl mapper must be
designed to capture this implementation as well.

4 Implementation Results

In the following section we describe the result of synthedithe WUSB transmitter
and evaluate the value of the OFDM framework.

4.1 Technical Results

The WUSB transmitter is synthesized with Synopsys Desigm@ler to 130 nm tech-
nology with 1.5 V operating voltage and power dissipatiomdguired through gate-
level simulation at 100 MHz.

The results of the synthesis are presented in the Table 2.0fitse area and power
are consumed by the 128-point IFFT block. We compare ougds$o two comparable
FFT implementations compatible with our design.

To meet the frequency requirements of the protocol, we meiablle to complete an
IFFT in 312.5 ns. We use a folded pipeline design using theedalmespec pipelining



Component|# of Gates (K)Power (mW)| Component# of Gates (K)Power (mW
TX Controlle 2.8 1.18 Scrambler 0.5 0.085
FEC Encodey 7.5 231 Interleaver 15.9 481
Pilot & Guard 47.5 14.4 CP Channell 46.2 10.2

Insertion Training
IFFT 718.2 36.2 CP Insertion 23.6 0.45
Mapper 57.8 11.3 Total 920 92.3

Table 2. Area and Power Dissipation of WUSB Transmitter

framework [5]. Thus it is easy to quickly change the aredfyerance tradeoff. Our
final IFFT design uses 32 radix-2 butterflies and requiresytfes of computation per
input.

To match the performance requirements for our IFFT bloclkdede run at 48
MHz. In fact, the critical path % ns which allows the block to be clocked at 105 MHz.

Other FFT implementations in the literature have similautes. Mathew et. al [6],
use a pseudo parallel datapath structure to calculate pdiP8+FT in 10 cycles that
can be clocked at 275 MHz. The architecture used 3 buttedfgyest, and with each but-
terfly stage containing 8 separate datapaths. Power figoiréisi$ design are measured
using a clock speed of 3BMHz.

Chen et. al [7] present a different 128-point FFT core, withrfradix-Z and four
radix-2/2 butterflies. The first two and last two stages each use aatepsets of
butterflies requiring 32 cycles to compute one input. Theghealso used six eight-
bank single ported RAMs, two coefficient ROMs, and two adslignerators. While
the authors were only able to run the system at 66 MHz, scdiowgn the technology
would give comparable results to ours.

The comparison FFT presented here is shown in Table 3. Aikkp@mer consump-
tion numbers is normalized to 130 nm technology to give adaimparison between
designs. the maximum clock describes how fast each desigruoarequired clock de-
scribes how fast the design must run to achieve the perfaenaguirement. The pa-
rameterized BSV code requires approximately 50% more arealgghtly more power
compared to [6], and 3.5 times more area compared [7]. Frgrareence much of this
area overhead is due to our choices of using radix-2 bu#erls the base block in our
design. Larger radices would improve the design, though Wauld require the FFT
either be partitioned into two parts, or the inputs changethat the 2 size input is
naturally factor by the radix size.

5 Development Experience

The WUSB design was done by two engineers as a six-week pr@aty one had
any previous hardware design experience (i.e. VHDL). THe gi#ent approximately
two weeks learning the language, the OFDM framework, and\hkSB specification



NamgButter{ Radix of [# of GatefPowel Tech [max.cl{req. cI{

flies | Butterflies| (K) (mw) (MH2z) | (MHz)
BSV| 32 2 718.2 | 36.2|130 nm 105 | 44.8
[6] 24 8,2 968 60.6 180 nm 275 | 31.7

normalized 504.9 | 31.6
[7] 8 4,2, |5.85mn?| n/a [250nm 66 | 102.3
approx. 760.3
normalized 205.6

Table 3. comparison between FFT architectures

before starting on the design. The remaining four weeks toptete the transmitter
design and the much of the receiver design. We estimatettivatild take another 1-2
weeks to complete the receiver design.

One of the keys points which makes the OFDM framework so &¥eds the rich
parameterization properties of Bluespec. Bluespec'styipk structure, parameterized
types, and higher-order functions, made expressing mutifeqgiarameterized designs
natural. Functions do not need to be represented as bibrgdct be a parameter. Most
of the work involved in using the library was simply understang what block was
desired.

The OFDM systems modular decomposition also proved to beyhigluable. be-
cause all modules were expected to be latency insensitdeéhave FIFO buffering,
adding new stages to the pipeline and setting up completeeteshes were both easy.
One can handle each input or output to a module separately.

Other Bluespec language features also proved to be hetpfuhiumber of minor
ways. Bluespec's static elaboration allowed the desigretexpressed recursively; the
system elaborates the description into non-recursiveriggign automatically. Type
provisos which represent the assumptions needed to usetoiunf module provided
both useful documentation as well guarantees that designiseeng parameterized in
legal ways.

6 Conclusions

The primary goal of this work was not to see how much time affortefvas needed
in generating a new protocol; it was to see how effectiveghHievel design language
ideas could be leveraged by engineers not already steefiegllemguage. In our views,
this work has been a stunning success. The OFDM framewarligthwell structured,
represents a fairly sophisticated system with significamameterization. For inexperi-
enced engineers to be able to understand, use, and evenrgubmsystem in so short
a time argues for how natural the system is represented.

Our experience suggests that in the hands of experiencéghées, our findings
will be even more magnified, leading to greater focus on macyelr design choices
and hopefully leading to better implementation results.
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