
Experience Report:
Embedded, Parallel Computer-Vision with a Functional DSL

Ryan R. Newton
MIT CSAIL, Cambridge, MA, USA

newton@csail.mit.edu

Teresa Ko
UCLA Vision Lab, Los Angeles, CA, USA

tko@cs.ucla.edu

Abstract
This paper presents our experience using a domain-specific func-
tional language, WaveScript, to build embedded sensing applica-
tions used in scientific research. We focus on a recent computer-
vision application for detecting birds in their natural environment.
The application was ported from a prototype in C++. In reimple-
menting the application, we gained a much cleaner factoring of
its functionality (through higher-order functions and better inter-
faces to libraries) and a near-linear parallel speed-up with no ad-
ditional effort. These benefits are offset by one substantial down-
side: the lack of familiarity with the language of the original vision
researchers, who understandably tried to use the language in the
familiar way they use C++ and thus ran into various problems.

Categories and Subject Descriptors:
D.3.2 Concurrent, distributed, and parallel languages;

Applicative (functional) languages; Data-flow languages

General Terms: Design, Languages, Performance
Keywords: stream processing languages, computer vision

1. Introduction
A sensor network deployment typically involves a collaboration
between domain experts and computer scientists (though the lat-
ter would ideally be optional). The domain experts are often pro-
grammers themselves, often building prototypes in Matlab or C++.
The expertise in short supply is in embedded software development.
Therefore, tools that make it easier to transition from prototypes to
embedded code are of great value.

Functional programming is not known for its use in embedded
programming, to say the least. But following the recent trend in
two-stage domain-specific languages (DSLs) (3; 7; 5), we find that
a stream-processing DSL can retain the software engineering bene-
fits of functional programming (in the metaprogram), while gener-
ating good embedded code, exploiting parallelism, and partitioning
programs transparently across embedded devices and more power-
ful “servers”. In this paper we describe our experience using the
WaveScript language to implement the latest version of our com-
puter vision application for sensor networks. This paper is not about

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c� 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Figure 1. Example background subtraction results.

the WaveScript implementation, but rather the software engineer-
ing impact of specific language features on the implementation of
our application, namely: (1) multi-stage programming; (2) higher-
order functions; (3) parametric and ad-hoc polymorphism; and (4)
shared-nothing message-passing parallelism. But first we need to
describe the application itself.

2. James Reserve Vision Application
A number of pertinent questions about the impact of climate change
on our ecosystem are most readily answered by visually monitoring
fine-scale interactions between animals, plants, and their environ-
ment. For example, species distribution, feeding habits, and timing
of plant blooming events are often best observed through visual
sensing. Some quantities, such as CO2 intake of plants, have no ”in
the wild” sensor and can only be captured through visual sensing.

In this paper, we focus on detecting birds at a feeder station
in the wild with a network of cameras. Bird populations are par-
ticularly informative about changes in the ecosystem, as species
distributions can quickly change due to their mobility. The camera
infrastructure used is part of the James Reserve Wildlife Observa-
tory. A feeder station was constructed and equipped with a webcam
and server. It captures a frame a second at 704x480 pixels.

There is inherent pressure to increase a camera’s coverage at
the cost of reducing the size of the objects of interest in the image,
thereby creating a more challenging detection and recognition task.
Similarly, increasing temporal coverage (battery lifetime) pushes
for lower sampling rates, limiting the applicable methods. The
resulting image sequence will inevitably have small birds with
little features to distinguish them from one another or from the
background, and instances of the same bird being in a completely
different location in consecutive frames.

Our vision system is able to identify instances of a single bird
in spite of these challenges. The system consists of two major
components: background subtraction and bird classification. The
case study in this paper will focus on the background subtraction
component, because it is both computationally intensive and a
substantial improvement over the state of the art in this domain.

59

2.1 Background on Background
Natural environments such as the forest canopy present an extreme
challenge to background subtraction because the foreground ob-
jects, by necessity, blend with the background, and the background
itself changes due to the motion of the foliage and the rapid tran-
sition between light and shadow. For instance, images of birds at
a feeder station exhibit a larger per-pixel variance due to changes
in the background than due to the presence of a bird. Rapid back-
ground adaptation fails because birds, when present, are often mov-
ing less than the background and often end up being incorporated
into it.

Our background subtraction approach is based on building a
model of the colors seen in the neighborhood around each pixel
and then computing the difference between each new pixel value
and the historical model for that pixel’s neighborhood. Therefore,
the algorithm must maintain state for each pixel in the image (its
model) and traverse each input image, comparing each new pixel
against the model, and updating the model based on the values of
surrounding pixels. An example result can be seen in Figure 1.

The background model for the pixel located at the ith row
and jth column is in general a non-parametric density estimate,
denoted by pij(x). The feature vector, x ∈ R3, is a colorspace
representation of the pixel value. For computational reasons, we
consider the simplest estimate, given by the histogram

pij(x) =
1
|S|

X

s∈S

δ(s− x), (1)

where S, the set of pixel values contributing to the estimate, is
defined as

S = {xt(a, b) | |a− i| < C, |b− j| < C, 0 ≤ t < T}, (2)

where xt(a, b) is the colorspace representation of the pixel at the
ath row and bth column of the image taken at time t. The feature
vector, x, is quantized to better approximate the true density.

To detect foreground at time τ , a distribution, qij,τ (x), is simi-
larly computed for the pixel located in the ith row and jth column
using only the image at time τ according to

qij,τ (x) =
1

|Sτ |
X

s∈Sτ

δ(s− x), (3)

where Sτ , the set of pixel values contributing to the estimate is
defined as

Sτ = {xτ (a, b) | |a− i| < C, |b− j| < C}, (4)

The Bhattacharyya distance between qij,τ (x) and the corre-
sponding background model distribution for that location, pij,τ−1(x),
calculated from the previous frames, is computed to determine the
foreground/background labeling. The Bhattacharyya distance be-
tween two distributions is given by

d =

Z

X

p
pij,τ−1(x)qij,τ (x)dx, (5)

where X is the range of valid x’s and d ranges from 0 to 1. Larger
values imply greater similarity in the distribution. A threshold on
the computed distance, d, is used to distinguish between foreground
and background. While subtle, this combination of background
model and classifier allows for large articulated movements in
the background to be ignored and small foreground objects to be
detected.

3. WaveScript, Briefly
A WaveScript program constructs a dataflow graph of stream op-
erators that executes in a non-synchronous (event-driven) manner.
Each operator consists of a work function and optional private state.

 0

 100

 200

 300

 400

 500

 600

 700

Original Refactored PixelLevel

L
in

e
s

o
f
co

d
e

Data Acquisition
Core Algorithm

Setup

Figure 2. Background Subtraction: Lines of code.

Each work function is an imperative routine that processes a single
stream element, updates the private state for that dataflow operator,
and produces elements on output streams. The job of the Wave-
Script front-end is to partially evaluate the source (meta) program
to create the dataflow graph, whereas the WaveScript backend per-
forms graph optimizations, profiles and partitions graphs across de-
vices (6), and reduces work functions to an intermediate language
that can be fed to a number of backend code generators.

The final intermediate language for work functions is a monomor-
phic first-order language that is easily retargetable to any platform
that has a C-compiler (and many that don’t). WaveScript currently
supports many embedded platforms including TinyOS “motes”,
smartphones running JavaME, iPhones, and embedded Linux de-
vices such as routers. WaveScript is used for embedded sensing
applications that involve digital signal processing together with
more irregular event processing. For example it has been used for
acoustic localization of wild animals (2) and detection of potholes
with sensor-equipped taxicabs (4).

WaveScript itself is essentially an ML-dialect with a C-like syn-
tax, a special form for accessing first-class streams, and miscella-
neous extensions (e.g., extensible records). A top-level source pro-
gram returns a stream value. Timers and drivers for hardware sen-
sors provide stream sources, and a pair of primitives are the sole
means of processing streams: merge combines streams in real-time
order of arrival, and iterate is a “for-each” style construct whose
evaluation creates a new dataflow operator and provides its work
function, and whose return value is a new stream. The user manual
contains details (1).

4. Implementation in WaveScript
The application was ported to WaveScript from a prototype in C++.
Figure 2 shows a breakdown of how lines of code were spent
in both the C++ and WaveScript versions of the application. The
porting process consisted of four steps:

1. Port code verbatim to WaveScript.
2. Factor duplicated code using higher-order functions.
3. Remove unnecessary floating point.
4. Parameterize design; expose parallelism.

The most interesting step is exposing parallelism. The algorithm
is clearly data parallel. In fact, a separate process can compute each
pixel’s Bhattacharyya distance (and update each pixel’s model) in-
dependently. But the data-access pattern is non-trivial. To update
each pixel’s model, each process must read an entire patch of pix-
els from the image around it. Thus, tiling the matrix and assigning
tiles to worker threads is complicated by the fact that such tiles must

60

f o r r = 0 to rows−1 {
/ / c r e a t e t h e l e f t most p i x e l ’ s h i s t o g r a m from s c r a t c h
c : : I n t = 0 ;
roEnd = r − o f f s e t + S i z e P a t c h ; / / end o f p a t c h
coEnd = c − o f f s e t + S i z e P a t c h ; / / end o f p a t c h
f o r ro = r−o f f s e t to roEnd−1 { / / c o v e r t h e row

r o i = i f ro < 0 then −ro−1 e l s e
i f ro >= rows then 2 ∗ rows−1−ro e l s e ro ;

f o r co = c−o f f s e t to coEnd−1 { / / c o v e r t h e c o l
c o i = i f co < 0 then −co−1 e l s e

i f co >= c o l s then 2 ∗ c o l s−1−co e l s e co ;
/ / g e t t h e p i x e l l o c a t i o n
i = (r o i ∗ c o l s + c o i) ∗ 3 ;
/ / f i g u r e o u t which h i s t o g r a m b i n :
binB = (I n t) ((F l o a t) image [i] ∗ i n v s i z e B i n s 1) ;
binG = (I n t) ((F l o a t) image [i +1] ∗ i n v s i z e B i n s 2) ;
binR = (I n t) ((F l o a t) image [i +2] ∗ i n v s i z e B i n s 3) ;
/ / add t o t emporary h i s t o g r a m
t e m p H is t [binB] [binG] [binR] += sampleWeight ;

}
} ;
/ / copy temp h i s t o g r a m t o l e f t most p a t c h
f o r cb = 0 to NumBins1−1 {

f o r cg = 0 to NumBins2−1 {
f o r c r = 0 to NumBins3−1 {

b g H i s t [k] [cb] [cg] [c r] += t e m pH i s t [cb] [cg] [c r] ;
}}};
/ / i n c r e m e n t p i x e l i n d e x
k += 1 ;
/ / compute t h e t o p row o f h i s t o g r a m s
f o r c = 1 to c o l s−1 {

. . .
/ / Here : two more ro / co l o o p s l i k e a b o v e .
/ / These add and s u b t r a c t new da ta from t h e
/ / h i s t o g r a m t o up da t e i t i n c r e m e n t a l l y .
. . .

}}

Figure 3. An excerpt from the verbatim port.

overlap so each pixel may reach its neighbors. For these reasons, it
is not straightforward to implement this algorithm in most stream
processing languages. For example, stream processing languages
tend to require that the input to each stream operator be a linear
sequence of data. Exposing parallelism and exploiting locality in
the background subtraction stage then requires an appropriate seri-
alization of the matrix (for example, using Morton-order matrices),
but this in turn creates complicated indexing. It is reasonable to say
that the stream-processing paradigm is not a natural fit for parallel
matrix computations. Yet it can be made to work using a high-level
streaming language with a full datatypes (algebraic datatypes, dy-
namic allocation) and the additional power of meta-programming.

4.1 Porting Verbatim
Because WaveScript has imperative constructs and a C-like con-
crete syntax, it is straightforward to do a verbatim translation of C
or C++ code. This does not in any way extract parallelism (it re-
sults in a dataflow graph with one operator). But it is the best way
to establish correspondence with the output of the original program
and then proceed by correctness preserving refactorings.

The original source code possessed substantial code duplication
(Figure 3), having mainly to do with repeated processing of nested
arrays, including index calculations. The code in Figure 3 is part
of the populateBg function, which builds the initial background
model for each pixel and takes as input storage space for the models
and an input image. It has the following signature:

populateBg :: (Array4D Float, Image) -> ();

type Image = (RawImage * Int * Int); // With wid,height

type RawImage = Array Color;

type Array4D t = Array (Array (Array (Array t)));

 0

 200

 400

 600

 800

 1000

 1200

O
riginal

Verbatim

Factored

Flattened

FixedPnt

E
xe

cu
tio

n
 t
im

e
 in

 m
ill

e
se

co
n
d
s

fo
r

o
n
e
 f
ra

m
e

Variant of background subtraction algorithm

Figure 4. Single threaded performance of ported versions vs. orig-
inal C++ version. Shows average time for processing each frame
on a 3.2 gHz Xeon machine.

populateBg is called repeatedly with a series of Images to ready
the background model before processing (classifying) new frames.
In this version of the code, no significant type abstraction has yet
been applied. The “model” for each pixel is a three-dimensional
histogram in color space (the argument to populateBg is four di-
mensional to include a 3D histogram for each pixel in the image).

The background subtraction algorithm as a whole consists of
1300 lines of code containing three functions very much like
populateBg. A second function updates the model for each new
frame, and a third compares each new image with the existing
model to compute Bhattacharyya distances for each pixel. These
functions traverse both the input image and stored histograms. The
performance of the original version, initial port, and subsequent
refactorings is illustrated in Figure 4. Generally speaking, exclud-
ing automatic memory management, the object-language generated
by WaveScript shares most of the characteristics of C code.

4.2 Refactoring Code
The next step was to simply clean up the code. Some of this con-
sisted of factoring out simple first-order functions to capture re-
peated index calculations (a refactoring applied just as easily to the
original C++). Other refactorings involved using higher order func-
tions, for example, to encapsulate traversals over the image matri-
ces and thereby remove for-loops and indexing expressions. After
refactoring, the code was reduced to 400 lines. The clearer struc-
ture of the populateBg function can be seen in Figure 5. Both Fig-
ures 3 and 5 contain an optimization: the difference in histograms
for neighboring pixels is small, and one can incrementally be com-
puted from the other: adding some samples, removing others, and
thereby “sliding” the patch. But this optimization has become much
clearer in the structure of Figure 5.

In this version we have begun to abstract the types used. Rather
than a 4D nested array to represent a 5D space (a matrix of his-
tograms), we use the preexisting WaveScript 2D and 3D matrix
libraries. These provide ADTs with multiple implementations, in-
cluding a WaveScript native one and a Gnu Scientific Library wrap-
per (which uses BLAS). Not needing linear algebra, we use the for-
mer in this paper. Swapping in a flattened row-major representation
results in fewer small objects and fewer pointer dereferences, cre-
ating the performance improvement shown in Figure 4. (Note that
the initial “Factoring” damaged performance, possibly by obscur-
ing backend compiler optimizations.) Also, it’s a banal point, but
parametric polymorphism for data types is critical. Most likely, the
inconvenience of emulating this in C++ (templates) and the lack of

61

t y p e P i x e l H i s t = Matrix3D F l o a t ;
p o p u l a t e B g : : (M a t r i x P i x e l H i s t , Image) −> () ;
fun p o p u l a t e B g (bgHis t , (image , c o l s , rows)) {

/ / b g H i s t : background h i s t o g r a m s
/ / image : f rame o f v i d e o s t r e am
a s s e r t e q (” Image s i z e : ” , l e n g t h (image) , rows∗ c o l s ∗3) ;
t e m p H is t = P i x e l H i s t : make (rows , c o l s) ;
/ / S t r o n g a s s u m p t i o n abou t o r d e r o f m a t r i x t r a v e r s a l :
Ma t r ix : f o r e a c h i (bgHis t , rows , c o l s ,

fun (r , c , b g H i s t r c) {
i f c==0 then

i n i t P a t c h (r , c , rows , c o l s , t empHis t , image)
e l s e s h i f t P a t c h (r , c , rows , c o l s , t empHis t , image) ;
/ / copy temp h i s t o g r a m t o l e f t most p a t c h :
Matrix3D : m a p i n p l a c e 2 (b g H i s t r c , t empHis t , (+)) ;

})
}

Figure 5. The populateBg function builds background models
(histograms) for the “Patch” centered around each pixel. First it
creates a histogram for the leftmost pixel in a row. Then the next
pixel’s histogram is calculated incrementally by shiftPatch: (1)
removing pixels in the left most col of the previous patch from the
histogram and (2) adding pixels in the right most col of the current
pixel’s patch to the histogram. The foreachi function (as opposed
to foreach) also passes indices for the data being accessed.

built-in matrix libraries resulted in the use of monomorphic, nested
arrays in the original source.

4.3 Reducing Floating Point
One of our goals in porting this application was to run it on a wide
range of embedded hardware as well as on multicore desktops (and
partitioned between the two). In particular, we used Nokia smart-
phones (N95) with ARM processors lacking floating-point units.
Thus, the penultimate step was to reduce the use of floating point
calculations (for example, in calculating indices into the color his-
tograms), replacing them with integer or fixed-point calculations.
This results in a significant speedup even on desktop machines
(Figure 4). WaveScript offered no special support for this refactor-
ing. While it has what amounts to a built-in Num type class, which
helps write reusable code, ideally there would be some tool sup-
port for this common problem: porting to fixed point, monitoring
overflows and quantifying the loss of accuracy.

4.4 Exposing Parallelism, Design Parameterization
Finally, the most interesting part of this case study was using
WaveScript to parallelize the application. Fortunately, refactoring
for clarity (abstracting data types, matrix transforms) had gotten us
most of the way. The essential change was to move away from code
handling monolithic matrices (arrays) to expressing the transform
locally on image tiles—we use tile to refer to a fixed submatrix
of the image—and then finally at the level of the individual pixel
(with the stipulation that a pixel transform must also access its local
neighborhood). The end result was a reusable library for parallel
matrix computations (see parmatrix.ws).

The first step is to implement transforms on tiles. From the
perspective of the client code, this is the same as doing the trans-
form on the original matrix (only smaller). The library code han-
dles splitting matrices into (overlapping) tiles and disseminating
those tiles to workers. The resulting dataflow graph structure is
seen in Figure 6. The results of each independent worker are
joined, combined into a single matrix, and passed downstream to
the remaining computation. In Figure 7 we see the interface for
building tile kernels via the function tagged tile kernel. Call-
ing tagged tile kernel(x, y, w, transform, init) will construct
a stream transformer that splits matrices on its input stream into

Figure 6. An example dataflow graph resulting from using a
tile/pixel transform with rows = cols = 2 (generated by the
compiler using AT&T GraphViz). Even though the pixels are parti-
tioned into four disjoint tiles (dark purple), an extra margin must be
included around each tile (orange) to ensure that each pixel within
the tile may access its local neighborhood.

x × y tiles, with an overlap of w pixels in both dimensions. First,
the init function is called (at metaprogram evaluation) to initial-
izes the mutable state for each worker. Then, at runtime, each tile
is processed by the transform function, producing a new tile.

The type signature for tagged tile kernel is listed in Figure 7.
The “tagged” part is an additional complication introduced by the
control-structure of the application. Because there is no shared state
between kernels, all data must be passed through streams. Typical
of stream-processing applications, there is a tension between divid-
ing an application into finer-grained stream kernels and avoiding
complicated data movement between kernels (for example, pack-
ing many configuration parameters into the stream)1.

In the case of the background subtraction algorithm it is de-
sirable to pass an extra piece of information (tag) from the origi-
nal stream of matrices down to each individual tile- or pixel-level
worker, which is exactly what the interface tagged tile kernel al-
lows. For the background subtraction application, an earlier phase
of processing determines what mode the computation is in (popu-
lating initial background model, or estimating foreground) and at-
taches a mode flag (boolean) on the stream of images.

From tiles to pixels: The next step in building the parmatrix.ws li-
brary was to wrap the tile-level operator to expose only a pixel-level
transform. The modified interface is shown in Figure 8. Note that
the result—a stream transformer on matrices—has the same type
as the tile-level version. The core of the background subtraction al-
gorithm, using the pixel-level interface, is shown in Figure 9. There
is, however, one problem. When processing image data at the tile
level, it is still possible to incrementally update histograms within
a tile, albeit with decreased benefit as tiles get smaller. The pixel-
level version based on the interface in Figure 8, however, cannot
leverage this optimization. We will return to this issue in a moment.

In Figure 8, the Nbrhood type is used to represent the method
for accessing the pixels in a local vicinity. It is a function mapping

1 This is analogous to the sometimes awkward growth in the number of
function arguments in purely functional programs, where function argu-
ments are the sole means of communication between disparate program
fragments. Of course this problem can be addressed by structuring tech-
niques, for example, using a Reader monad.

62

t a g g e d t i l e k e r n e l : :
/ / F i r s t , p r o v i d e # X / Y worker s and d e p t h o f
/ / ne ighborhood a c c e s s (” o v e r l a p ”) r e q u i r e d :
(I n t , I n t , I n t ,

/ / Work f u n c t i o n a t each t i l e :
((t ag , s t , T i l e px) −> T i l e px2) ,

/ / Per−t i l e s t a t e i n i t i a l i z e r :
(T i l e px) −> s t)

−>
Stream (t a g ∗ Ma t r ix px) −> Stream (Ma t r i x px2) ;

t y p e T i l e t = (M a t r i x t ∗ (I n t ∗ I n t) ∗ (I n t ∗ I n t)) ;

Figure 7. Signature for tile-level transform. This function creates
X×Y workers, each of which handles a region of the input image.
The transform is applied to each tile, and may maintain state be-
tween invocation, so long as that state is encapsulated in a mutable
value passed as an argument to the transform. This assumes the
overlap between tiles is the same in both dimensions. A tile is a
piece of the original matrix together with metadata to tell where it
came from; its fields are: (1) a matrix, (2) tile origin on original
matrix, and (3) original image dimensions.

t a g g e d p i x e l k e r n e l w i t h n b r h o o d : :
(I n t , I n t , I n t , / / X , Y , o v e r l a p

(t ag , s t , Nbrhood px) −> px2 ,
/ / Per−p i x e l s t a t e i n i t i a l i z e r , t a k e s i n d i c e s :
(I n t , I n t) −> s t)

−>
Stream (t a g ∗ Ma t r ix px) −> Stream (Ma t r i x px2) ;

t y p e Nbrhood a = (I n t , I n t) −> a ;

Figure 8. Signature for pixel-level transform.

t a g g e d p i x e l k e r n e l w i t h n b r h o o d (
workersX , workersY , o v e r l a p ,
/ / T h i s i s t h e work f u n c t i o n a t each p i x e l .
fun (bgEst imateMode , b g h i s t , nbrhood) {

i f bgEst imateMode
then p o p u l a t e P i x H i s t (b g h i s t , nbrhood) ;
e l s e e s t i m a t e F g P i x (b g h i s t , nbrhood) ;

} ,
/ / I n i t i a l i z e per−p i x e l s t a t e ; c r e a t e a h i s t o g r a m :
fun (i , j) Matrix3D : make (NumBins1 , NumBins2 , NumBins3 , 0))

Figure 9. Background subtraction using a pixel-level transform.

(x, y) locations onto pixel values. At (0, 0) the function gives the
value of the center pixel (the one being transformed and updated).
With this we are able to express the background subtraction appli-
cation as a simple pixel-level transformation. The core of the imple-
mentation is shown in Figure 9. Given a boolean tag on the input
stream (bgEstimateMode), and a state argument that contains the
histogram for just that pixel (bghist), the kernel decides whether
to populate the background (populatePixHist) or to estimate the
foreground (estimateFgPix).

Restoring incremental histograms: The final step in porting our
background subtraction algorithm was to reenable incremental
computation of histograms in spite of the pixel-level interface to
images. This is not difficult, but it does make the interface more
complex (seen in Figure 10). Rather than direct access to neighbor-
ing pixel values, now the pixel kernel sees a sliding patch across
the image (currently square, but could be generalized to a rectan-
gle). The carried over result from the last position is used, together
with the pixels sliding into view and the pixels sliding out, to com-
pute the new result. The underlying implementation is still based

t a g g e d p i x e l k e r n e l s l i d i n g n b r h o o d : :
(I n t , I n t , I n t ,

/ / Work f u n c t i o n t a k e s p i x e l s i n and p i x e l s o u t .
/ / ’ carry ’ w i l l r e p r e s e n t t h e l a s t computed r e s u l t :

(t ag , s t , c a r r y , P i x S e t px , P i x S e t px) −> (px2 , c a r r y) ,
/ / Per−p i x e l s t a t e i n i t i a l i z e r , t a k e s i n d i c e s :

(I n t , I n t) −> s t ,
/ / F u n c t i o n t o compute t h e f i r s t c a r r y :

Nbrhood px −> c a r r y)
−>

Stream (t a g ∗ Ma t r ix px) −> Stream (Ma t r i x px2) ;

t y p e P i x S e t t = ((I n t , I n t , t) −> ()) −> ()

Figure 10. Signature for pixel-level transform supporting incre-
mental computation of result. With PixSets we avoid constructing
new sets in memory, rather we let the client ”visit” the relevant pix-
els (and indices). Whole-program function inlining removes any
performance penalty with this pattern.

on tagged tile kernel, and can only leverage incremental results
within a tile.

5. WaveScript Learning Curve
The core background subtraction algorithm was ported by the first
author, who is also the primary implementor of WaveScript, and
naturally finds it easy to use. However, as other members of the
UCLA group got involved and used WaveScript for other parts of
the application, the retraining challenges became clear. There were
two main lessons learned, having to do with C-like syntax and
quotation-free metaprogramming.

First, WaveScript’s syntactic similarity to C-family languages
does reduce initial trepidation (even if perhaps it shouldn’t). Cer-
tainly, several domain specific languages (e.g., Bluespec (7)) have
ended up mimicking C or Verilog syntax for this reason. But we
found that it also encouraged attempts to directly reuse inappro-
priate programming idioms. Setting aside basic misunderstandings
of WaveScript constructs (for example, one programmer, unfamil-
iar with type inference, thought type declarations were necessary
for assigning types to variables rather than defining new types),
the major problem we found was with the use of mutable state. Of
course, many C programmers use mutation by habit. WaveScript’s
support for mutable variables and arrays can encourage this. For ex-
ample, programmers would often declare state globally and attempt
to modify it within the work functions for stream operators:

myvar = 0;

S2 = iterate x in S1 { myvar++; ... }

Dangerously, this example actually works; the WaveScript evalu-
ation model involves reifying a stream value back into code, and
whatever state is found in the environment of the closure attached
to a dataflow operator (work function) becomes the private state for
that operator. However, sharing state between operators (the same
mutable object reachable by two closures) is disallowed and will
result in a compile-time error. The WaveScript design is predicated
on the idea that understanding these meta-program evaluation fail-
ures is easier than understanding the error messages generated by
a sufficiently sophisticated type system to rule out the errors. Nev-
ertheless, it still helps to teach a “beginner” mode, where a special
state keyword forces each operator’s state to be declared in a re-
stricted lexical scope:

S2 = iterate x in S1 {
state { myvar = 0 }
myvar++; ... }

The second major hurdle was understanding meta-programming
in WaveScript. Again, WaveScript assumes that a simple model
with some exceptions and corner cases is easier to learn than a
more sophisticated one. Specifically, unlike more general meta-

63

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p
 r

e
la

tiv
e

 t
o

 s
in

g
le

 t
h

re
a

d
e

d
 v

e
rs

io
n

Number of cores enabled

Figure 11. Parallel speedup: 16 data-parallel workers with variable
number of enabled processor cores. Test platform was an AMD
Barcelona with four quad-core processors. Cores were disabled
using Linux’s /sys/devices/system/cpu interface. The data point
at 0 shows the single threaded speed—i.e. the program configured
with only a single worker. The drop in performance at data-point 1
is due to the overhead of splitting and reassembling the matrix.

programming languages like MetaML (8), WaveScript does not use
explicit quotation and anti-quotation constructs for creating “code
values”. Rather, the programmer is told that everything outside of
an iterate will evaluate at compile-time. Nonetheless we saw fre-
quent confusion about whether a data structure should be initialized
at meta-program evaluation time, or at the beginning of runtime.

Also, there is the issue of distinguishing the capabilities of
the meta- and object-languages. Like many other two-stage DSLs,
WaveScript is an asymmetric meta-programming system, where the
meta-language differs from the object-language. (For example, the
object-language lacks closures.) Attempting to use meta-language
features in the object-language results in a compile-time error (with
code location). For example, one programmer tried to read config-
uration files at runtime, which is not possible if the code is running
on an embedded platform such as a phone. One related problem had
to do with the foreign-function interface (FFI), which can only be
accessed at runtime. Programmers ran into difficulties trying to use
the FFI before they had a firm grasp of the language. Some of these
uses of the FFI were spurious, while others were an unfortunate
consequence of the need to interface with hardware to get off the
ground in sensing applications. Possible fixes would include ban-
ning the FFI in the aforementioned beginner mode, or restricting its
use to strict idioms for data acquisition.

6. Results and Discussion
The end result of this project was a cleaned up implementation that
also exposes parallelism. (And a reusable parallel matrix library!)
Parallel speedups for the final version of the background subtrac-
tion algorithm are shown in Figure 5. These results are generated
given a single, fixed 4× 4 tiling of the matrix (16 tiles) that results
in 16 stream operators (“workers”) running on 16 threads. Another
approach is to have the metaprogram set the tiling parameters based
on the number of CPUs on the target machine. But this is compli-
cated by the need to factor the target number of threads into sepa-
rate x and y components such that xy = numthreads, which re-
sults in tiles of varying aspect ratios. Somewhat suprisingly, the op-
erating system does a great job of juggling these 16 threads among
a variable number of processor cores, with the exception of the un-
fortunate case at 11 cores. If the OS were doing poorly, we would

expect to see an outlier at 16 cores where the mapping is one-to-one
(and perhaps 8, 4, and 2).

Allowing the metaprogram to read the number of CPUs and
determine a tile size is an example of the utility of the metaprogram
as a separate phase that precedes the WaveScript compiler’s own
dataflow-graph scheduling and optimization. Still, it would be ideal
to expose more of this tuning problem to the compiler itself. In
the future, perhaps a method will be discovered to expose the
compiler’s own profile-driven optimization and auto-tuning process
so that the programmer may delegate the tile-size decision.

This application also turned out to be a good candidate for dis-
tributed (inter-device) partitioning. After performing background
subtraction most of the image is simply blacked out; with simple
run-length encoding, these frames require much less network band-
width when sent back to the server over a wireless network. More-
over, once the parmatrix.ws library is used, the space of choices
becomes more continuous. Each tile-level worker can be placed on
the embedded or server-side. Hosting half the workers results in
half the data-reduction at half the cost, and, importantly, half the
memory usage for expensive 3D histograms. For a detailed discus-
sion of WaveScript’s partitioning methodology, see (6).

Ultimately, while this application was greatly improved during
its reimplementation, some of the interfaces we used represent a
more imperative formulation than we would like—for example,
kernels accepting a mutable state argument rather than producing
a fresh state. A pure formulation would be ideal, but we are not
currently able to achieve it with the near zero performance penalty
that we require. Impure or not, abstracting control-flow was never-
theless valuable in this application.

References
[1] Wavescript users manual, http://regiment.us/wsman/.
[2] Michael Allen, Lewis Girod, Ryan Newton, Samuel Madden, Daniel T.

Blumstein, and Deborah Estrin. Voxnet: An interactive, rapidly-
deployable acoustic monitoring platform. In IPSN ’08: Information
processing in sensor networks, 2008.

[3] Lennart Augustsson, Howard Mansell, and Ganesh Sittampalam. Par-
adise: a two-stage dsl embedded in haskell. ICFP Experience Report,
pages 225–228, 2008.

[4] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Mad-
den, and Hari Balakrishnan. The pothole patrol: using a mobile sensor
network for road surface monitoring. In MobiSys ’08: Proceeding of
the 6th international conference on Mobile systems, applications, and
services, pages 29–39, New York, NY, USA, 2008. ACM.

[5] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: staged
functional programming for sensor networks. SIGPLAN Not.,
43(9):335–346, 2008.

[6] Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and
Samuel Madden. Wishbone: Profile-based partitioning for sensornet
applications. In NSDI’09: Networked Systems Design and Implementa-
tion, 2009.

[7] R. Nikhil. Bluespec system verilog: efficient, correct rtl from high
level specifications. Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04., pages 69–70, June 2004.

[8] W. Taha and T. Sheard. Multi-stage programming with explicit anno-
tations. In Partial Evaluation and Semantics-Based Program Manipu-
lation, Amsterdam, The Netherlands, June 1997, pages 203–217. New
York: ACM, 1997.

64

