
of a particular gradient. Further, if a gradient is re-emitted from
a source node (as is often the case) the user code should be
able to differentiate the different generations of gradient. To this
end we allow the user to query the version of a gradient it has
received. This is useful for performing initialization the first
time a gradient is received. Both dist and version return -1 if
the named gradient has not been received at the local node.

The above interface does not commit to a particular spanning
tree selection or maintenance algorithm. The developer will want
to choose a gradient implementation appropriate to the application.
Ideally the gradient-augmented TML compiler should expose a set
of choices of gradient implementation that covers the design space
outlined in [14], but our current prototype compiler provides only
simple, single-parent, link-quality unaware gradients.

B. Timed Data Gathering

This rudimentary example shows how to use the gradient interface
to sample each node’s light sensor . It uses a couple of simple
keywords not mentioned above. The startup declaration indicates
that the Gather and GlobalTree tokens will be scheduled when
the node is first turned on. The base startup keyword is similar,
but only applies to the base-station node in the network. Also
BaseReceive is predefined token handler supported only on the
base-station, and used to return results to the outside world.

startup Gather;
base startup SparkGlobal;

token SparkGlobal() {
gemit GlobalTree();
timed schedule SparkGlobal(10000);

}

token GlobalTree() {
grelay GlobalTree();

}

token Gather() {
greturn(subcall sense_light(),

BaseReceive,
GlobalTree,
NULL, NULL);

timed schedule Gather(1000);
}

This program emits a gradient from the base-station, which relays
itself until it reaches the edge of the network, and refreshes itself
every ten seconds. Once per second, every node fires the Gather
token which uses the globally present gradient to route data back to
the base-station.

C. Distributed Event Detection

Consider the problem of local event detection with unreliable
sensors. We cannot trust the reading of a single sensor, but if several
sensors within an area all detect an event, an alarm should be raised.
Here we solve the problem by spreading out a small two-hop gradient
from every node when it detects an event. When these gradients
overlap sufficiently, the alarm is raised. This program assumes the
declarations above, establishing the GlobalTree.

shared int total activation;

token EventDetected () {
emit AddActivation[MYID](1);
schedule AddActivation[MYID](1);

}

token AddActivaton[sub] (int x) {
if (dist(self) < 2)

relay AddActivaton(x);
total activation += x;
if (total activation > threshold)

greturn(BaseReceive, GlobalTree,
NULL, ALARM);

timed call SubActivation[sub](1500, x);
}

token SubActivation[sub] (int x) {
total activation -= x;
if (total activation <= 0) {

evict AddActivation[sub];
evict SubActivation[sub];

}
}

We keep the individual gradients from colliding by using subtokens
for AddActivation and SubActivation (indexed by the ID of the node
emitting the gradient). However, their overlap is still seen through the
shared variable total activation. This demonstrates the utility
of lightweight gradients spawned and destroyed from arbitrary points
in the network.

D. Leader Election
We will now build a reusable leader-election component in TML.

All the nodes that invoke ElectLeader(Ti) will participate in the leader
election for token Ti. One such node will eventually be decided
leader and receive an Ti token. Multiple leader elections can proceed
concurrently in the network; this is because ElectLeader(Ti) uses
subtokens indexed by Ti for all of its computation. The problem of
garbage collecting dead tokens is ignored for the purpose of this
example.

shared int winner;

token elect leader(tokname T) {
int current = winner;
if (current == 0 || current < MYID) {

winner = MYID;
timed schedule Confirm Fire[T](5000, T);
emit Compete(MYID, T);

}
}

token Compete(int id, tokname T) {
if (winner == 0) {

winner = MYID;
timed schedule Confirm Fire[T](5000, T);

}
if (version(Compete) == 0 || id > winner) {

winner = id;
relay Compete(id, T);

}
}

token Confirm Fire[sub](tokname T) {
if (MYID == winner) schedule T();

}

E. Compiling Regiment

As a final application example we discuss our Regiment[17]
compiler which targets TML. Regiment is a macroprogramming
language in which a high-level program manipulates “regions” of
sensor data as values in the language. Individual nodes in the network
appear as data streams, and regions are groupings of these streams as
designated by the programmer using a number of different criteria.
The program operates over these streams and regions, performing

