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Abstract
The ability to partition sensor network application code across
sensor nodes and backend servers is important for running com-
plex, data-intensive applications on sensor platforms that have
CPU, energy, and bandwidth limitations. This paper presents
Wishbone, a system that takes a dataflow graph of operators
and produces an optimal partitioning. With Wishbone, users
can run the same program on a range of sensor platforms, in-
cluding TinyOS motes, smartphones running JavaME, and the
iPhone. The resulting program partitioning will in general be
different in each case, reflecting the different node capabili-
ties. Wishbone uses profiling to determine how each opera-
tor in the dataflow graph will actually perform on sample data,
without requiring cumbersome user annotations. Its partition-
ing algorithm models the problem as an integer linear program
that minimizes a linear combination of network bandwidth and
CPU load and uses program structure to solve the problem ef-
ficiently in practice. Our results on a speech detection applica-
tion show that the system can quickly identify good trade-offs
given limitations in CPU and network capacity.

1 Introduction
An important class of sensor computing applications
are data-intensive, involving multiple embedded sensors
each sampling data at tens or hundreds of kilohertz and
generating many megabytes per second in aggregate. Ex-
amples include acoustic localization of animals, gun-
shots, or speakers; structural monitoring and vibration
analysis of bridges, buildings, and pipes; object tracking
in video streams, etc. Over the past few years, impres-
sive advances in sensor networking hardware and soft-
ware have made it possible to prototype these applica-
tions. However, two challenges confront the developer
who wants to deploy and sustain these applications:

• Heterogeneity: Thanks to hardware advances, one
can run these applications on a variety of embed-
ded devices, including “motes”, smartphones (which
themselves are varied), embedded Linux devices
(e.g., Gumstix, WiFi access points), etc. This rich-
ness of hardware and software is good because it al-
lows the developer to pick the right platforms for a
task and evolve the infrastructure with time. On the
other hand, it poses a software nightmare because
it requires code to be developed multiple times, or
ported to different platforms.

• Decomposition: A simple way of designing such
systems would deliver all the gathered data to a cen-
tral server, with all the computation running there.

This approach may consume an excessive amount of
bandwidth and energy. A different approach is to
run all of the computation “in the sensor network”,
but often the computational capabilities of the sen-
sor nodes are insufficient. The question is: how best
to partition an application between the server(s) and
the embedded nodes? Improper partitioning can lose
important data, waste energy, and may cause appli-
cations to simply not work as desired.

No current solution addresses both of these challenges.
To support heterogeneity, one might be able to write pro-
grams in a language like Java. Unfortunately, some plat-
forms do not support Java, or may not support it in its full
generality; in addition, Java virtual machines for embed-
ded devices are of uneven quality. More importantly, it
is difficult to partition such a program in a way that will
perform well on any given platform without a significant
amount of tuning and manual optimization. That, in turn,
limits the ability to swap out the underlying hardware
platform, or even to move computation between the em-
bedded nodes and servers.

We have developed Wishbone, a system that allows
developers to achieve both goals for applications that sat-
isfy two conditions:

• Streaming dataflow model: The application should
be written as a stream-oriented collection of opera-
tors configured as a dataflow graph.

• Predictable input rates and patterns: The input data
rates at the sensors gathering data don’t change in
unpredictable ways.

To use Wishbone, the developer writes a program in a
high-level stream-processing language, WaveScript [16],
which has a common runtime for both embedded nodes
and servers. We have extended our open-source Wave-
Script compiler to produce efficient code for several em-
bedded platforms: TinyOS 2.0, smartphones running
Java J2ME, the iPhone, Nokia tablets, various WiFi ac-
cess points, and any POSIX compliant platform support-
ing GCC. These platforms are sufficiently diverse that
generating high-performance native code from a shared
high-level language is itself a challenge. Fortunately, we
have an advantage in WaveScript’s domain-specificity:
the compiler has additional information that it can use to
optimize programs for specific streaming workloads.

We have used WaveScript in several applications, in-
cluding: locating wild animals with microphone arrays,
locating leaks in water pipelines, and detecting potholes
in sensor-equipped taxis. For the purposes of this paper,



we chose to focus on two applications that highlight the
program partitioning features of Wishbone: a speech de-
tector that identifies when a person is speaking in a room
and a 22-channel EEG application. Each is based on an
application currently in use by our group (EEG) or by
other groups (speaker detection). Both were ported1 to
WaveScript for the evaluation in this paper.

The key function of Wishbone is, given a WaveScript-
produced dataflow graph of stream operators, to parti-
tion it into in-network and server-side components. It
uses a profile-driven approach, where the compiler exe-
cutes each operator against programmer-supplied sample
data, using real embedded hardware or a cycle-accurate
simulation. After profiling, we are able to estimate the
CPU and communication requirements of every opera-
tor on every platform. Wishbone depends on this sample
data being representative of the actual input the sensor
will see during deployment; we believe this is a valid as-
sumption and justify it in our experiments.

Determining a good partitioning is difficult even af-
ter one uses a profiler to determine the computational
and network load imposed by each operator. Wishbone
models the partitioning problem as an integer linear pro-
gram (ILP), seeking to minimize a combination of net-
work bandwidth and CPU consumption subject to hard
upper bounds on those resources. With these criteria,
our ILP formulation will find optimal solutions—and al-
though ILP is an NP-hard problem, in practice our imple-
mentation can partition dataflow graphs containing over
a thousand operators in a few seconds.

Our results show that the system can quickly identify
the optimal partition given constraints on CPU and net-
work capacity. And picking the right partition matters. In
our evaluation, our weakest platform got 0% of speaker
detection results through the network successfully when
doing all work on the server, and 0.5% when doing all
work at the node. We can do 20× better by picking the
right intermediate partition. Because the optimal parti-
tioning changes depending on the hardware platform and
the number of nodes in the network, manual partitioning
is likely to be tedious at best. For larger graphs (such
as our 1412 node electroencephalography (EEG) appli-
cation), doing the partitioning by hand with any degree
of confidence becomes extremely difficult.

Finally, we note that we do not intend that Wishbone
be used only as a completely automated partitioning tool,
but also as a part of an interactive design process with the
programmer in the loop. In addition to recommending
partitions, Wishbone can find situations in which there
is no feasible partitioning of a program; e.g., because

1WaveScript is an imperative language with a C-like syntax. An
initial port of an application from C/C++ is very quick: cut, paste, and
clean it up. Refactoring to expose the parallel/streaming structure of
the application may be more involved.

fun F I R F i l t e r ( c o e f f s , s t rm ) {
N = Array : l e n g t h ( c o e f f s ) ;
f i f o = FIFO : make (N ) ;
f o r i = 1 to N−1 { FIFO : enqueue ( f i f o , 0 ) } ;
i t e r a t e x in s t rm {

FIFO : enqueue ( f i f o , x ) ;
sum = 0 ;
f o r i = 0 to N−1 {

sum += c o e f f s [ i ] ∗ FIFO : peek ( f i f o , i ) ;
} ;
FIFO : dequeue ( f i f o ) ;
emit sum ;

}
}

fun L o w F r e q F i l t e r ( s t rm ) {
e v e n S i g n a l = GetEven ( s t rm ) ;
o d d S i g n a l = GetOdd ( s t rm ) ;
/ / even samples go t o one f i l t e r , odds t h e o t h e r :
lowFreqEven = F I R F i l t e r ( hLow Even , e v e n S i g n a l ) ;
lowFreqOdd = F I R F i l t e r ( hLow Odd , o d d S i g n a l ) ;
/ / now recombine them
AddOddAndEven ( lowFreqEven , lowFreqOdd )

}
fun G e t C h a n n e l F e a t u r e s ( s t rm ) {

low1 = L o w F r e q F i l t e r ( s t rm ) ;
low2 = L o w F r e q F i l t e r ( low1 ) ;
low3 = L o w F r e q F i l t e r ( low2 ) ;

h igh4 = H i g h F r e q F i l t e r ( low3 ) ; / / we need t h i s
low4 = L o w F r e q F i l t e r ( low3 ) ;
l e v e l 4 = MagWithScale ( f i l t e r G a i n s [ 3 ] , h igh4 ) ;

h igh5 = H i g h F r e q F i l t e r ( low4 ) ; / / and t h i s one
low5 = L o w F r e q F i l t e r ( low4 ) ;
l e v e l 5 = MagWithScale ( f i l t e r G a i n s [ 4 ] , h igh5 ) ;

h igh6 = H i g h F r e q F i l t e r ( low5 ) ; / / and t h i s one
l e v e l 6 = MagWithScale ( f i l t e r G a i n s [ 5 ] , h igh6 ) ;
zipN ( [ l e v e l 4 , l e v e l 5 , l e v e l 6 ] ) ;

}

Figure 1: Excerpts from running code in EEG-application. The
“low level” FIRFilter function constructs new dataflow opera-
tors using iterate. FIRFilter is stateful because it maintains
and modifies fifo. Higher level functions such as LowFreq-
Filter and GetChannelFeatures wire together a larger graph.

the bandwidth requirements will always exceed avail-
able network bandwidth, or because there are insufficient
CPU resources to place bandwidth-reducing portions of
the program inside the sensor network. In these cases,
the programmer will have to either switch to a more pow-
erful node platform, reduce the sampling rates or the
number of sensors, or be willing to run the network in
an overload situation where some samples are lost. In
the overload case, Wishbone can compute how much the
data rates need to be reduced to achieve a viable partition.

2 Language and front-end compiler
The developer writes a program in WaveScript that con-
structs a dataflow graph of stream operators. Each op-
erator consists of a work function and optional private
state. The job of the WaveScript front-end compiler is
to partially evaluate the program to create the dataflow
graph, whereas the WaveScript backend performs graph
optimizations and reduces work functions to an interme-
diate language that can be fed to a number of backend
code generators. Each work function contains an im-



perative routine that processes a single stream element,
updates the private state for that dataflow operator, and
produces elements on output streams. (Later, we will
single out stateless operators that maintain no mutable
state between invocations.)

A WaveScript source program can manipulate streams
as values and thereby wire together operator graphs, as
seen in Figure 1. The example in Figure 1 contains psue-
docode that wires together the cascading filters found in
one of the 22-channels of our EEG application. The eval-
uation of the iterate form creates a new dataflow opera-
tor and provides its work function. The return value of an
iterate is its output stream. For example, the function
FIRFilter in Figure 1 takes a stream as one of its inputs
and returns a stream. Within the body of the iterate the
emit keyword produces elements on the output stream.
The equal (=) operator introduces new variables and the
last expression in a {...} block is its return value. Type
annotations are unnecessary.

2.1 Program Distribution

Thus far, our description applies to WaveScript programs
that run on a single node. To support distributed execu-
tion, we extended the language to allow developers to
specify which part of the dataflow graph should be repli-
cated on all embedded nodes. This specification is log-
ical rather than physical; the physical locations of oper-
ators are computed by Wishbone’s partitioner using the
programmer’s annotations and profiler data.

To create the logical specification in Wishbone, the
user places a subset of the program’s top-level stream
bindings in a Node{} namespace. All operators in the
Node{} namespace are replicated once per embedded
node. This separation is particularly important for state-
ful operators, because stateful operators in the Node par-
tition have an instance of their state for every node in the
network. Stateful operators on the server side are instan-
tiated only once.

As an example, consider the code snippet in Fig-
ure 2, which shows a node/server program that samples
data from the microphone and filters it. The operator
readMic, producing the stream s1, must reside on each
node, as it samples data from hardware only available on
the embedded node. Because the filtAudio call produc-
ing s2 is in the Node partition, its operators will be repli-
cated once per node, but can be physically placed either
on the embedded node or the server, depending on what
the partitioner determines would be best. If filtAudio
creates stateful operators, their state will need to repli-
cated once per node, regardless of where they are placed.
This example illustrates the basic repartitioning model,
and shows that, while the system is free to move some
operators, there are certain relocation constraints the par-
titioner must respect, discussed in the next section.

s2s2 s2

f
s3

main

implicit merge 
point

embedded node partition

server partition

radio msgs

s1s1 s1
Unpinned nodes
Moveable by partitioner

namespace Node {
s1 = readMic(...)
s2 = filtAudio(s1)

}
s3 = f(s2)
main = s3

Figure 2: A program skeleton specifying a replicated stream
computation across all embedded nodes.

2.1.1 Relocation Constraints

Operators are classified as movable or pinned as fol-
lows. First, operators with side-effects—for example,
OS-specific foreign calls to sample sensors and blink
LEDs—are pinned to their partition. Likewise, operators
on the server that print output to the user or to a file are
pinned. Stateless operators without side-effects are not
pinned and are always moveable, allowing them to be
moved into the other partition if the system determines
that to be advantageous. Finally, stateful operators are
treated differently for the node and server partitions. It is
not generally possible to move stateful server operators
into the network—they have a serial execution seman-
tics and a single state instance. However, it is possible
to move stateful operators from the node partition to the
server. The state of the operator is duplicated in a table
indexed by node ID. Thus, a single server operator can
emulate many instances running within the network.

Relocating stateful operators in this way raises a dif-
ferent issue—message loss on wireless links. Operators
in the node partition may safely assume that all edges be-
tween the raw sensors and themselves are lossless. Re-
locating an operator to the server means putting poten-
tial data loss upstream of it that was not there previously.
Stateless operators are insensitive to this kind of loss be-
cause they process each element without any memory of
preceding elements, but stateful operators may perform
erratically in the face of unexpected missing data, unless
they have been intentionally engineered to tolerate it.

Because tolerance to data loss in stateful operators is
an application-specific issue, Wishbone supports two op-
erational modes that can be specified by the programmer
at compile time. In conservative mode it will not relocate
stateful operators onto the server, refusing to add lossi-
ness to a previously lossless edge. In permissive mode,
the system will automatically perform these relocations.
In the future, it would be possible to extend the system to
make many finer distinctions, such as labeling individual
edges as loss-tolerant, or grouping operators together in
blocks that cannot be divided by a lossy edge.



2.1.2 Restrictions

The system we present in this paper targets a restricted
domain: first, because we focus on a specific dataflow
model and, second, because of limitations of our current
implementation. (Section 9 will discuss generalizing and
extending the model.) Presently, our implementation re-
quires that any path through the operator graph connect-
ing a data source on the node to a data sink on the server
may only cross the network once. The graph partitioning
algorithm in Section 4 does, however, support back-and-
forth communication. The reason for the restriction is
that we haven’t yet implemented arbitrary communica-
tion for all of our platforms. Note that this does not rule
out all communication from the server to the nodes, it is
still possible, for example, to have configuration param-
eters sent from a server to in-network operators.

We make the best of this restriction by leveraging it
in a number of ways. As we will see, it enables a sim-
plified version of the partitioning algorithm. It can also
further filter the set of moveable operators as described
in Section 2.1.1, because pinning an operator pins all up-
or down-stream operators (can’t cross back).

3 Profile & Partition
The WaveScript compiler, implemented in the Scheme
language, can profile stream graphs by executing them
directly within Scheme during compilation (using sam-
ple input traces). This produces platform-independent
data rates, but cannot determine execution time on em-
bedded platforms. For this purpose, we employ a sep-
arate profiling phase on the device itself, or on a cycle-
accurate simulator for its microprocessor.

First, the partitioner determines what operators might
possibly run on the embedded platform, discounting
those that are pinned to the server, but including movable
operators together with those that are pinned to the node.
The code generator emits code for this partition, insert-
ing timing statements at the beginning and end of each
operator’s work function, and at emit statements, which
represent yield points or control transfers downstream.

The partition is then executed on simulated or real
hardware. The inserted timing statements print output to
a debug channel read by the compiler. For example, we
execute instrumented TinyOS programs either on TMote
Sky motes or by using the MSPsim simulator2. In either
case, timestamps are sent through a real or virtual USB
serial port, where they are collected by the compiler.

For most platforms, the above timestamping method is
sufficient. That is, the only relevant information for parti-
tioning is how long each operator takes to execute on that

2We also tried Simics and msp430-gdb for simulation, but MSP-
sim was the easiest to use. Note that TOSSIM is not appropriate for
performance modeling.

platform (and therefore, given an input data rate, the per-
cent CPU consumed by the operator). For TinyOS, some
additional profiling is necessary. To support subdividing
tasks into smaller pieces, we must be able to perform a
reverse mapping between points in time (during an oper-
ator’s execution) and points in the operator’s code. Ide-
ally, for operator splitting purposes, we would recover a
full execution trace, annotating each atomic instruction
with a clock cycle. Such information, however, would
be prohibitively expensive to collect. We have found it is
sufficient to instead simply time stamp the beginning and
end of each for or while loop, and count loop iterations.
As most time is spent within loops, and loops generally
perform identical computations repeatedly, this enables
us to roughly subdivide execution of an operator into a
specified number of slices.

After profiling, control transfers to the partitioner. The
movable subgraph of operators has already been deter-
mined. Next, the partitioner formulates the partitioning
problem in terms of this subgraph, and invokes an exter-
nal solver (described in Section 4) to identify the optimal
partition. The program graph is repartitioned along the
new boundary, and code generation proceeds, including
generating communication code for cut edges (e.g., code
to marshal and unmarshal data structures). Also, after
profiling and partitioning, the compiler generates a visu-
alization summarizing the results for the user. The visu-
alization, produced using the well-known GraphViz tool
from AT&T Research, uses colorization to represent pro-
filing results (cool to hot) and shapes to indicate which
operators were assigned to the node partition.

4 Partitioning Algorithms
In this section, we describe Wishbone’s algorithms to
partition the dataflow graph. We consider a directed
acyclic graph (DAG) whose vertices are stream operators
and whose edges are streams, with edge weights repre-
senting bandwidth and vertex weights representing CPU
utilization or memory footprint. We only include vertices
that can move across the node-server partition; i.e., the
movable subset. The server is assumed to have infinite
computational power compared to the embedded nodes,
which is a close approximation of reality.

The partitioning problem is to find a cut of the graph
such that vertices on one side of the cut reside on the
nodes and vertices on the other side reside on the server.
The bandwidth of a given cut is measured as the sum
of the bandwidths of the edges in the cut. An example
problem is shown in Figure 3.

Unfortunately, existing tools for graph partitioning are
not a good fit for this problem. Tools like METIS [12]
or Zoltan [7] are designed for partitioning large scien-
tific codes for parallel simulation. These are heuristic
solutions that generally seek to create a fixed number of
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Figure 3: Simple motivating example. Vertices are labeled with
CPU consumed, edges with bandwidth. The optimal mote par-
tition is selected in red. This partitioning can change unpre-
dictably, for example between a horizontal and vertical parti-
tioning, with only a small change in the CPU budget.

balanced graph partitions while minimizing cut edges.
Newer tools like Zoltan support unbalanced partitions,
but with a specified ratios, not allowing unlimited and
unspecified capacity to the server partition. Further, they
expect a single weight on each edge and each vertex.
They cannot support a situation where the cost of a ver-
tex changes depending on the partition is it placed in.
This is the situation we’re faced with: diverse hardware
platforms that not only have varying capacities, but for
which the relative cost of operators varies (for example,
due to a missing floating point unit).

We may also consider traditional task scheduling algo-
rithms as a candidate solution to our partitioning prob-
lem. These algorithms assign a directed graph of tasks
to processors, attempting to minimize the total execution
time. The most popular heuristics for this class of prob-
lem are variants of list scheduling, where tasks are prior-
itized according to some metric and then added one at a
time to the working schedule. But there are three major
differences between this classic problem and our own.
First, task-scheduling does not directly fit the nondeter-
ministic dataflow model, as no conditional control flow is
allowed at the task level—all tasks execute exactly once.
Second, task-scheduling is not designed for vastly un-
equal node capabilities. Finally, schedule length is not
the appropriate metric for streaming systems. Schedule
length would optimize for latency: how fast can the sys-
tem process one data element. Rather, we wish to op-
timize for throughput, which is akin to scheduling for a
task-graph repeated ad infinitum.

Thus we have developed a different approach. Our
technique first preprocesses the graph to reduce the parti-
tion search space. Then it constructs a problem formula-
tion based on the desired objective function and calls an
external ILP solver. By default, Wishbone currently uses
the minimum-cost cut subject to not exceeding the CPU
resources of the embedded node or the network capacity

of the channel. Cost here is defined as a linear combina-
tion of CPU and network usage, α·CPU+β·Net (which
can be a proxy for energy usage). Therefore we set four
numbers for each platform: the CPU/Network resource
limits, and coefficients α, β. The user may override these
quantities to direct the optimization process.

4.1 Preprocessing

The graph preprocessing step precedes the actual parti-
tioning step. The goal of the preprocessing step is to
eliminate edges that could never be viable cut-points.
Consider an operator u that feeds another operator v such
that the bandwidth from v is the same or higher than the
bandwidth on the output stream from u. A partition with
a cut-point on the v’s output stream can always be im-
proved by moving the cut-point to the stream u → v; the
bandwidth does not increase, but the load on the embed-
ded node decreases (v moves to the server). Thus, any
operator that is data-expanding or data-neutral may be
merged with its downstream operator(s) for the purposes
of the partitioning algorithm, reducing the search space
without eliminating optimal solutions.

4.2 Optimal Partitionings

It is well-known that optimal graph partitioning is NP-
complete [8]. Despite the intrinsic difficulty of the prob-
lem, the problem proves tractable for the graphs seen in
realistic applications. Our pre-processing heuristic re-
duces the problem size enough to allow an ILP solver to
solve it exactly within a few seconds to minutes.

4.2.1 Integer Linear Programming (ILP)

Let G = (V,E) be the directed acyclic graph (DAG) of
stream operators. For all v ∈ V , the compute cost on the
node is given by cv > 0 and the communication (radio)
cost is given by ruv for all edges (u, v) ∈ E. One might
think of the compute cost in units of MHz (megahertz
of CPU required to process a sample and keep up with
the sampling rate), and the bandwidth cost in kilobits/s
consumed by the data going over the radio. Adding ad-
ditional constraints for RAM usage (assuming static allo-
cation) or code storage is straightforward in this formu-
lation, but we do not do it here. For each of these costs
we can use either mean or peak load (profiling computes
both). Because our applications have predictable rates,
we use mean load here. Peak loads might be more appro-
priate in applications characterized by “bursty” rates.

The DAG G contains a set of terminal source ver-
tices S, and sink vertices T , that have no inward and
outward edges, respectively, and where S, T ⊂ V . As
noted above, we construct G from the original operator
graph such that these boundary vertices are pinned—all
the sources must remain on the embedded node; all sinks
on the server. Recall that the partitioning problem is to
find a single cut of G that assigns vertices to the nodes



and server. We can think of the graph G as corresponding
to the server and a single node, but vertices assigned to
the node partition are instantiated on all physical nodes
in the system.

We encode a partitioning using a set of indicator vari-
ables fv ∈ {0, 1} for all v in V . If fv = 1, then operator
v resides on the node; otherwise, it resides on the server.
The pinning constraints are:

(∀u ∈ S) fu = 1
(∀v ∈ T ) fv = 0
(∀v) fv ∈ {0, 1} .

(1)

Next, we constrain the sum of node CPU costs to be
less than some total budget C.

cpu ≤ C where cpu =
∑
v∈V

fvcv (2)

A simple expression for the total cut bandwidth is∑
(u,v)∈E(fu − fv)2ruv . (Because fv ∈ {0, 1}, the

square evaluates to 1 when the edge (u, v) is cut and to 0
if it is not; |fu−fv| gives the same values.) However, we
prefer to formulate the integer programming problem as
one with a linear rather than quadratic objective function,
so that standard ILP techniques can be used.

We can convert the quadratic objective function to a
linear one by introducing two variables per edge, euv and
e′uv , which are subject to the following constraints:

(∀(u, v) ∈ E) euv ≥ 0
(∀(u, v) ∈ E) e′uv ≥ 0
(∀(u, v) ∈ E) fu − fv + euv ≥ 0
(∀(u, v) ∈ E) fv − fu + e′uv ≥ 0 .

(3)

The intuition here is that when the edge (u, v) is not
cut (i.e., u and v are in the same partition), we would
like euv and e′uv to both be zero. When u and v are in
different partitions, we would like a non-zero cost to be
associated with that edge; the constraints above ensure
that the cost is at least 1 unit, because fu− fv is -1 when
u is on the server and v on the embedded node. These
observations allow us to formulate the bandwidth of the
cut, cap that bandwidth, and define the objective function
in terms of both CPU and network load.

net < N where net =

 ∑
(u,v)∈E

(euv + e′uv)ruv


(4)

objective : min (α cpu + β net) (5)

Any optimal solution of (5) subject to (1), (2), (3), and
(4) will have euv +e′uv equal to 1 if the edge is cut and to
0 otherwise. Thus, we have shown how to express our
partitioning problem as an integer programming prob-
lem with a linear objective function, 2|E|+ |V | variables

(only |V | of which are explicitly constrained to be inte-
gers), and at most 4|E| + |V | + 1 equality or inequality
constraints.

We could use a standard ILP solver on the formulation
described above, but a further improvement is possible
if we restrict the data flow to not cross back and forth
between node and server, as described in Section 2.1.2.
On the positive side, the restriction reduces the size of
the partitioning problem, which speeds up its solution.

With the above restriction, we can then flip all edges
going from server to node for the purpose of partitioning
(the communication cost would be the same under our
model). With all edges pointed towards the server, and
only one crossing of the network allowed, another set of
constraints now apply:

(∀(u, v) ∈ E) fu − fv ≥ 0 (6)

With (6) the network load quantity simplifies:

net =

 ∑
(u,v)∈E

(fu − fv)ruv

 . (7)

This formulation eliminates the euv and e′uv variables,
simplifying the optimization problem. We now have
only |V | variables and at most |E| + |V | + 1 con-
straints. We have chosen this restricted formulation
for our current, prototype implementation, primarily be-
cause the per-platform code generators don’t yet support
arbitrary back-and-forth communication between node
and server. We use an off-the-shelf integer programming
solver, lp solve3, to minimize (7) subject to (1) and (2).

We note that the restriction of unidirectional data flow
does preclude cases when sinks are pinned to embed-
ded nodes (e.g., actuators or feedback in the signal pro-
cessing). It also prevents a good partition when a high-
bandwidth stream is merged with a heavily-processed
stream. In the latter case, the merging must be done
on the node due to the high-bandwidth stream, but the
expensive processing of the other stream should be per-
formed on the server. In our applications so far, we have
found our restriction to be a good compromise between
provable optimality and speed of finding a partition.

4.3 Data Rate as a Free Variable

It is possible that the partitioning algorithm will not be
able to find a cut that satisfies all of the constraints (i.e.,
there may be no way to “fit” the program on the embed-
ded nodes.) In this situation we wish to find the maxi-
mum data rates for input sources that will support a vi-
able partitioning. The algorithm given above cannot di-
rectly treat data rate as a free variable. Even if CPU and

3lp solve was developed by Michel Berkelaar, Kjell Eikland,
and Peter Notebaert. It uses branch-and-bound to solve integer-
constrained problems, like ours, and the Simplex algorithm to solve
linear programming problems.



network load varied linearly with data rate, the resulting
optimization problem would be non-linear. However, it
turns out to be inexpensive to perform the search over
data-rates as an outer loop that on each iteration calls the
partitioning algorithm.

This is because in most applications, CPU and net-
work load increase monotonically with input data rate. If
there is a viable partition when scaling input data rates by
a factor X , then any factor Y < X will also have a viable
partitioning. Thus Wishbone simply does a binary search
over data rates to find the maximum rate at which the par-
titioning algorithm returns a valid partition. As long as
we are not over-saturating the network such that sending
fewer packets actually result in more data being success-
fully received, this maximum sustainable rate will be the
best rate to pick to maximize outputs (throughput) of the
data flow graph. We will re-examine this assumption in
Section 7.

5 Wishbone Platform Backends
In this section, we describe three new WaveScript
code generators we built for Wishbone, which are de-
scribed here for the first time. These support ANSI C,
NesC/TinyOS and JavaME.

5.1 Code Generation: ANSI C and JavaME

In contrast with the original WaveScript C++ back-
end (and XStream runtime engine), our current C
code-generator produces simple, single threaded code
in which each operator becomes a function definition.
Passing data via emit becomes a function call, and the
system does a depth-first traversal of the stream graph.
The generated code requires virtually no runtime and is
easily portable. This C backend is used to execute the
server-side portion of a partitioned program, as well as
the node-side portion on Unix-like embedded platforms
that run C, such as the iPhone (jailbroken), Gumstix, or
Meraki.

Generating code for JavaME also straightforward, as
Java provides a high level programming environment that
abstracts hardware management. The basic mapping be-
tween the languages is the same as in the C backend. Op-
erators become functions, and an entire graph traversal is
a chain of function calls. Some minor problems arise due
to Java’s limited set of numeric types.

5.2 Code Generation: TinyOS 2.0

Supporting TinyOS 2.0 is much more challenging. The
difficulties are both due to the extreme resource con-
straints of TinyOS motes (typically less than 10 KB of
RAM and 100 KB of ROM), and to the restricted con-
currency model of TinyOS (tasks must be be relatively
short-lived and non blocking; all IO must be performed
with split-phase asynchronous calls). Also, program ob-
jects be serialized and split into small network packets.

Wishbone’s support for TinyOS demonstrates its ability
to use platforms with severe resource restrictions and un-
usual concurrency models.

Our prototype does not currently support WaveScript’s
dynamic memory management in code running on
motes. We may support it in the future, but it remains to
be seen whether this style of programming can be made
effective for extremely resource constrained devices. In-
stead, we enforce that all operators assigned to motes use
only statically allocated storage in our applications.

The most difficult issue in mapping a high-level lan-
guage onto TinyOS is handling the TinyOS concurrency
model. All code executes in either task or interrupt con-
text, with only a single, non-preemptive task running at a
time. Wishbone simply maps each operator onto a task.
Each data element that arrives on a source operator, for
example a sensor sample or an array of samples, will re-
sult in a depth-first traversal of the operator graph (exe-
cuted as a series of posted tasks). This graph traversal
is not re-entrant. Instead, the runtime buffers data at the
source operators until the current graph traversal finishes.

This simple design raises several issues. First, gen-
erated TinyOS tasks must be neither too short nor too
long. Tasks with very short durations incur unneces-
sary overhead, and tasks that run too long degrade sys-
tem performance by starving important system tasks (for
example, sending network messages). Second, the best
method for transferring data items between operators is
no longer obvious. In the basic C backend, we simply
issue a function call to the downstream operator, wait for
it to complete, and then continue computation. We can-
not use this method under TinyOS, where it would force
us to perform an entire traversal of the graph in a single
very long task execution. But the obvious alternative also
presents problems: executing an operator in its entirety
before any downstream operators would require a queue
to buffer all output elements of the current operator.

The full details of TinyOS code generation are beyond
the scope of this paper. In short, the WaveScript com-
piler can convert programs programs into a cooperative
multi-tasking form (via a CPS conversion). This serves
two purposes: every call to emit can serve as a yield
point, causing the task to yield to its downstream oper-
ator in a depth-first fashion (with no queues), which in
turn will re-post the upstream operator upon completing
the traversal. Second, based on profiling data, additional
yield points can be inserted to “split” tasks to adjust gran-
ularity for system health.

6 Applications
We evaluate Wishbone in terms of two experimental ap-
plications: acoustic speech detection and EEG-based
seizure onset detection. Both of these applications ex-
ercise Wishbone’s capability to automatically partition a



Figure 4: Custom audio board attached to a TMote Sky.

single high-level program into components that run over
a network containing sensor nodes and a server or “base
station”. Neither of these applications is in itself novel.
In both cases we ported existing implementations from
Matlab and C to Wishbone and verified that the results
matched the original implementations.

6.1 Application: Seizure Onset Detection

We used Wishbone to implement a patient-specific
seizure onset detection algorithm [20]. The application
was previously implemented in C++, but by porting it
to Wishbone/WaveScript we enabled its embedded/dis-
tributed operation, while reducing the amount of code by
a factor of four without loss of performance.

The algorithm is designed to be used in a system for
detecting seizures outside a clinical environment. In this
application, a user would wear a monitoring cap that typ-
ically consists of 16 to 22 channels. Data from the cap is
processed by a low-power portable device.

The algorithm we employ [21] samples data from 22
channels at 256 samples per second. Each sample is 16-
bits wide. For each channel, we divide the stream into
2 second windows. When a seizure occurs, oscillatory
waves below 20 Hz appear in the EEG signal. To extract
these patterns, the algorithm looks for energy in certain
frequency bands.

To extract the energy information, we first filter each
channel by using a polyphase wavelet decomposition.
We use a repeated filtering structure to perform the de-
composition. The filtering structure first extracts the
odd and even portions of the signal, passes each signal
through a 4-tap FIR filter, then adds the two signals to-
gether. Depending on the values of the coefficients in the
filter, we either perform a low-pass or high-pass filtering
operation. This structure is cascaded through 7-levels,
with the high frequency signals from the last three levels
used to compute the energy in those signals. Note that at
each level, the amount of data is halved.

As a final step, all features from all channels, 66 in
total, are combined into a single vector which is input
into a patient-specific support vector machine (SVM).
The SVM detects whether or not each window contains
epileptiform activity. After three consecutive positive
windows have been detected, a seizure is declared.

There are multiple places where Wishbone can par-
tition this algorithm. If the entire application fits on the
embedded node, then the data stream is reduced to only a
feature vector—an enormous data reduction. But data is
also reduced by each stage of processing on each chan-
nel, offering many intermediate points which are prof-
itable to consider.

6.2 Acoustic Speech Detection

We used Wishbone to build a speech detection applica-
tion that uses sampled audio to detect the presence of a
person who is speaking near a sensor. The ultimate goal
of such an application would be to perform speaker iden-
tification using a distributed network of microphones.
For example, such a system could potentially be used to
locate missing children in a museum by their voice, or to
implement various security applications.

However, in our current work we are only concerned
with speech detection, a precursor to the problem of
speaker identification. In particular, our goal is to reduce
the volume of data required to achieve speaker identifi-
cation, by eliminating segments of data that probably do
not contain speech and by summarizing the speech data
through feature extraction.

Our implementation of speech detection and data re-
duction is based on Mel Frequency Cepstral Coefficients
(MFCC), following the approach of prior work in the
area. Recent work by Martin, et al. has shown that clus-
tering analysis of MFCCs can be used to implement ro-
bust speech detection [14]. Another article by Saasta-
moinen, et al. describes an implementation of speaker
identification on smartphones, based on applying learn-
ing algorithms to MFCC feature sets [19]. Based on this
prior work, we chose to exercise our system using an im-
plementation of MFCC feature extraction.

6.2.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC) are the
most commonly used features in speech recognition al-
gorithms. The MFCC feature stream represents a signif-
icant data reduction relative to the raw data stream.

To compute MFCCs, we first compute the spectrum of
the signal, and then summarize it using a bank of over-
lapping filters that approximates the resolution of hu-
man aural perception. By discarding some of the data
that is less relevant to human perception, the output of
the filter bank represents a 4X data reduction relative
to the original raw data. We then convert this reduced-



resolution spectrum from a linear to a log spectrum. Us-
ing a log spectrum makes it easier to separate convolu-
tional components such as the excitation applied to the
vocal tract and the impulse response of a reverberant en-
vironment, because transforms that are multiplicative in
a linear spectrum are additive in a log spectrum.

Finally, we compute the MFCCs as the first 13 coef-
ficients of the Discrete Cosine Transform (DCT) of this
reduced log-spectrum. By analyzing the spectrum of a
spectrum, the distribution of frequencies can be charac-
terized at a variety of scales [6, 5].

6.2.2 Trade-offs in MFCC Extraction

The high level goal of Wishbone is to explore how a
complex application written in a single high level lan-
guage can be efficiently and easily distributed across
a network of devices and support many different plat-
forms. As such, the MFCC application presents an in-
teresting challenge because for sensors with very limited
resources there appears to be no perfect solution; rather,
using Wishbone the application designer can explore dif-
ferent trade-offs in application performance.

These trade-offs arise because this algorithm squeezes
a resource-limited device between two insoluble prob-
lems: not only is the network capacity insufficient to for-
ward all the raw data back to a central point, but the CPU
resources are also insufficient to extract the MFCCs in
real time. If the application has any partitioning that
fits the resource constraints, then the goal of Wishbone
is to select the best partition, for example, lowest cost in
terms of energy. If the application does not fit at its ideal
data rate, ultimately, some data will be dropped on some
target platforms. The objective in this case is to find a
partitioning that minimizes this loss and therefore maxi-
mizes the throughput: the amount of input data success-
fully processed rather than dropped at the input sources
or in the network.

6.2.3 Implementing Audio Capture

Some platforms, such as the iPhone and embedded-
Linux platforms (such as the Gumstix), provide a com-
plete and reliable hardware and software audio capture
mechanism. On other platforms, including both TMotes
and J2ME phones, capturing audio is more challenging.

On TMotes, we used a custom-built audio board to
acquire audio. The board uses an electret microphone,
four opamp stages, a programmable-gain amplifier , and
a 2.5 V voltage reference. We have found that when
the microphone was powered directly by the analog sup-
ply of the TMote, the audio board performed well when
the mote was only acquiring audio, but was very noisy
when the mote was communicating. The communi-
cation causes a slight modulation of the supply volt-
age, which gets amplified into significant noise. Us-

ing a separately regulated supply for the microphone re-
moved this noise. The anti-aliasing filter is a simple
RC filter; to better reject aliasing, the TMote samples
at a high rate and applies a digital low-pass filter (fil-
tering and decimating a 32 Ks/s stream down to 8 Ks/s
works well). The amplified and filtered audio signal
is presented to an ADC pin of the TMote’s microcon-
troller, which has 12 bits of resolution. We use TinyOS
2.0 ReadStream<uint16 t> interface to the ADC,
which uses double buffering to deliver arrays of samples
to the application.

Phones naturally have built-in microphones and mi-
crophone amplifiers, but we have nonetheless encoun-
tered a number of problems using them as audio sen-
sors. Many J2ME phones support the Mobile Media
API (JSR-135), which may allow a program to record
audio, video, and take photographs. Support for JSR-
135 does not automatically imply support for audio or
video recording or for taking snapshots. Even when au-
dio recording is supported, the API permits only batch
recording to an array or file (rather than a continuous
stream) resulting in gaps.

We ran into a bug on the Nokia N80: after recording
audio segments for about 20 minutes, the JVM would
crash. Other Nokia phones with the same operating sys-
tem (Symbian S60 3rd Edition) exhibited the same bug.
We worked around this bug using a simple Python script
that runs on the phone and accepts requests to record au-
dio or take a photograph through a TCP connection, re-
turning the captured data also via TCP. The J2ME pro-
gram acquires audio by sending a request to this Python
script, which can record indefinitely without crashing.

The J2ME partition of the Wishbone program uses
TCP to stream partially processed results to the server.
When the J2ME connects, the phone asks the user to
choose an IP access point; we normally use a WiFi con-
nection, but the user can also choose a cellular IP con-
nection. With any of these communication methods, de-
pendence on user interaction presents a practical barrier
to using phones in an autonomous sensor network. Yet
these software limitations are incidental rather than fun-
damental, and should not pose a long-term problem.

7 Evaluation
In this section we evaluate the Wishbone system on the
EEG and speech detection applications we discussed in
Section 6. We focus on two key questions:

1. Can Wishbone efficiently select the best partitioning
for a real application, across a range of hardware
devices and data rates?

2. In an overload situation, can Wishbone effectively
predict the effects of load-shedding and recommend
a “good” partitioning?
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Figure 5: Relationship between partitioning and compute-bound sustainable data rates. On the left (a), a subset of the EEG
application (one channel). The X axis shows a required data rate, the Y axis the number of operators in computed optimal node
partition. On the right (b), the speaker detection application; we flip the axes due to the small number of viable cut-points. For each
viable cut-point, we show the maximum data-rate supported on each hardware platform.

7.1 EEG Application

Our EEG application provides an opportunity to explore
the scaling capability of our partitioning method. In par-
ticular, we look at our worst case scenario—partitioning
all 22-channels (1412 operators). As the CPU budget in-
creases, the optimal strategy for bandwidth reduction is
to move more channels to the nodes. On our lower-
power platforms, not all the channels can be processed
on one node. The graph in Figure 5(a) shows partition-
ing results only for the first of 22 channels, where we
vary the input data rate on the X axis and measure the
number of operators that “fit” on different platforms. We
ran lp solve to derive a partitioning 2100 times, linearly
varying the data rate to cover everything from “every-
thing fits easily” to “nothing fits”. To remove confound-
ing factors, the objective function was configured to min-
imize network bandwidth subject to not exceeding CPU
capacity (α = 0, β = 1): that is, allow the CPU to be
fully utilized (but not over-utilized). As we increased the
data rate (moving right), fewer operators can fit within
the CPU bounds on the node (moving down). The slop-
ing lines show that every stage of processing yields data
reductions.

The distribution of resulting execution times are de-
picted as two CDFs in Figure 6, where the x axis shows
execution time in seconds, on a log scale. The top curve
in Figure 6 shows that even for this large graph, lp solve

always found the optimal solution in under 90 seconds.
The typical case was much better: 95 percent of the ex-
ecutions reached optimality in under 10 seconds. While
this shows that an optimal solution is typically discov-
ered in a reasonable length of time, that solution is not
necessarily known to be optimal. If the solver is used
to prove optimality, both worst and typical case runtimes
become much longer, as shown by the lower CDF curve

 0.1  1  10  100  1000

Seconds

Time to discover optimal
Time to prove optimal

Figure 6: CDF of the time required for lp solve to reach an
optimal partitioning for the full EEG application (1412 oper-
ators), invoked 2100 times with data rates. The higher curve
shows the execution time at which an optimal solution was
found, while the lower curve shows the execution time required
to prove that the solution is optimal. Execution times are from
a 3.2 GHz Intel Xeon.

(yet still under 12 minutes). To address this, we can use
an approximate lower bound to establish a termination
condition based on estimating how close we are to the
optimal solution.

7.2 Speech Detection Application

The speech detection application is a linear pipeline of
only a dozen operators. Thus the optimization process
for picking a cut point should be trivial—a brute force
testing of all cut points will suffice. Nevertheless, this
application’s simplicity makes it easy to visualize and
study, and the fact that the data rate it needs to process all
data is unsustainable for TinyOS devices provides an op-
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Figure 7: Data is reduced by processing, lowering bandwidth
requirements, but increasing CPU requirements.

portunity to examine the other side of Wishbone’s usage:
what to do when the application doesn’t fit.

In applying Wishbone to the development process for
our speech detection application, we were able to quickly
assess the performance on several different platforms.
Figure 7 is a detailed visualization of the performance
trade-offs, showing only the profiling results for TMote
Sky (a TinyOS platform). In this figure, the X axis repre-
sents the linear pipeline of operators, and the Y axis rep-
resent profiling results. Each vertical impulse represents
the number of microseconds of CPU time consumed by
that operator per frame (left scale), while the line repre-
sents the number of bytes per second output by that op-
erator. It is easy to visualize the trade-off between CPU
cost and data rate. Each point on the X-axis represents a
potential graph cut, where the sum of the red bars to the
left provides the processing time per frame.

Thus, we see that the MFCC dataflow has multiple
data-reducing steps. The algorithm must natively process
40 frames per second in real time, or one frame every
25 ms. The initial frame is 400 bytes; after applying the
filter bank the frame data is reduced to 128 bytes, using
250 ms of processing time; after applying the DCT, the
frame data is further reduced to 52 bytes, but using a total
of 2 s of processing time. This structure means that al-
though no split point can fit the application on the TMote
at the full rate, we can achieve different CPU/bandwidth
trade-offs by selecting different split points. Selecting
a bad partitioning can result in retrieving no data, and
the best “working” partition provides 20 times more data
than the worst. Figure 5(b) shows an axes-flipped ver-
sion of Figure 5(a): predicted data-rate as a function of
the partition point. Only viable (data reducing) cutpoints
are shown. Bars falling under the horizontal line indicate
that the platform cannot be expected to keep up with the
full (8 kHz) data rate.

As expected, the TMote is the worst performing plat-
form, with the Nokia N80 performing only about twice
as fast—surprisingly poor performance given that the
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forms. Relative execution costs of operators vary greatly on the
tested systems.

N80 has a 32-bit processor running at 55X the clock rate
of the TMote. This is due to the poor performance of
the JVM implementation. The 412 MHz iPhone plat-
form using GCC performed 3X worse than the 400 MHz
Gumstix-based Linux platform; we believe that this is
due to the frequency scaling of the processing kicking in
to conserve power.

We can also visualize the relative performance of dif-
ferent operators across different platforms. For each plat-
form processing the complete operator graph, Figure 8
shows the fraction of time consumed by each operator. If
the time required for each operator scaled linearly with
the overall speed of the platform, all three lines would be
identical. However, the plot clearly shows that the dif-
ferent capabilities of the platforms result in very differ-
ent relative operator costs. For example, on the TMote,
floating point operations, which are used heavily in the
cepstrals operator, are particularly slow. This
shows that a model that assumes the relative costs of op-
erators are the same on all platforms would mis-estimate
costs by over an order of magnitude.

7.3 Wishbone Deployment

To validate the quality of the partitions selected by Wish-
bone, we deployed the speech detection application on
a testbed of 20 TMote Sky nodes. We also used this
deployment to validate the specific performance predic-
tions that Wishbone makes using profiling data (e.g., if
a combination of operators were predicted to use 15%
CPU, did they?).

7.3.1 Network Profiling

The first step in deploying Wishbone is to profile the
network topology in the deployment environment. It is
important to note that simply changing the network size
changes the available per-node bandwidth and thus re-
quires re-profiling of the network and re-partitioning of
the application. We run a portable WaveScript program
that measures the goodput from each node in the net-
work. This tool sends packets from all nodes at an iden-
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Figure 9: Loss rate measurements for a single TMote plus
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tical rate, which gradually increases. For our 20 node
testbed the resulting network profile is typical for TMote
Sky devices: each node has a baseline packet drop rate
that stays steady over a range of sending rates, and then
at some point drops off dramatically as the network be-
comes excessively congested. Our profiling tool takes
as input a target reception rate (e.g. 90%), and returns
a maximum send rate (in msgs/sec and bytes/sec) that
the network can maintain. For the range of sending rates
within this upper bound the assumption mentioned in 4.3
holds—attempting to send more data does not result in
fewer actual bytes of data received. Thus we are free
to maximize the data rate within the upper bound pro-
vided by the network profiling tool, and thereby maxi-
mize total application throughput. This enables us to use
binary search to find the the maximum sustainable data
rate when we are in an overload situation.

To empirically verify that our computed partitions are
optimal, we established a ground truth by exhaustively
running the speech detection application at every cut
point on our testbed. Figures 9 and 10 show the results
for six relevant cutpoints, both for a single node network
(testing an individual radio channel) and for the full 20
node TMote network. Wishbone counts missed input
events and dropped network messages on a per-node ba-
sis. The relevant performance metric is the percentage
of sample data that was fully processed to produce out-
put. This is roughly the product of the fraction of data
processed at sensor inputs, and the fraction of network
messages that were successfully received.

Figure 9 shows the input event loss and network loss
for the single TMote case, as well as the resulting good-
put. On a single mote, the data rate is so high at early
cutpoints that it drives the network reception rate to zero.
At later cutpoints too much computation is done at the
node and the CPU is busy for long periods, missing in-
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Figure 10: Goodput rates for a single TMote and for a network
of 20 TMotes, over different partitionings when running on our
TMote testbed.

put events. In the middle, even a underpowered TMote
can process 10% of sample windows. This is equivalent
to polling for human speech four times a second—a rea-
sonably useful configuration.

Figure 10 compares the goodput achieved with a sin-
gle TMote and basestation to the case of a network of 20
TMotes. For the case of a single TMote, peak through-
put rate occurs at the 4th cut point (filterbank), while for
the whole TMote network in aggregate, peak throughput
occurs at the 6th and final cut point (cepstral). As ex-
pected, the throughput line for the single mote tracks the
whole line closely until cut point six. For a high-data
rate application with no in-network aggregation, a many
node network is limited by the same bottleneck as a net-
work of only one node: the single link at the root of the
routing tree. At the final cut point, the problem becomes
compute bound and the aggregate power of the 20 TMote
network makes it more potent than the single node.

We also ran the same test on an a Meraki Mini based
on a low-end MIPS processor. While the Meraki has rel-
atively little CPU power—only around 15 times that of
the TMote—it has a WiFi radio interface with at least
10x higher bandwidth. Thus for the Meraki the optimal
partitioning falls at cut point 1: send the raw data directly
back to the server.

Having determined the optimal partitioning in our
real deployment, we can now compare it to the recom-
mendation of our partitioning algorithm. Doing this is
slightly complex as the algorithm does not model mes-
sage loss; instead, it keeps bandwidth usage under the
user-supplied upper bound (using binary search to find
the highest rate at which partitioning is possible), and
minimizes the objective function. In the real network,
lost packets may cause the actual delivered bandwidth to
be somewhat less than expected by the profiler. Yet if
we stay within a regime where network loss is roughly
constant, this will reduce absolute performance but not
change the optimal cut-point.



In this case, binary search found that the highest data
rate for which a partition was possible (respecting net-
work and CPU limits) was at 3 input events per second
(with each event corresponding to a window of 200 au-
dio samples). The optimal partitioning at that data rate4

was in fact cut point 4, right after filterbank, as in the
empirical data. Likewise, the computed partitions for
the 20 node TMote network and single node Meraki test
matched their empirical peaks, which gives us some con-
fidence in the validity of the model.

In the future, we would like to further refine the preci-
sion of our CPU and network cost predictions. To use
our ILP formulation we necessarily assume that both
costs are additive—two operators using 10% CPU will
together use 20%, and don’t account for operating sys-
tem overheads or processor involvement in network com-
munication. For example, on the Gumstix ARM-linux
platform the entire speaker detection application was pre-
dicted to use 11.5% CPU based on profiling data. When
measured, the application used 15% CPU. Ideally we
would like to take an automated approach to determin-
ing these scaling factors.

8 Related Work
First we overview other systems that, like Wishbone,
automatically partition programs—either dynamically or
statically—to run on multiple devices. Generally speak-
ing, Wishbone differs from these existing systems by us-
ing a profile-driven approach to automatically derive a
partitioning, as well as its support for diverse platforms.

The Pleiades/Kairos systems [13] statically partition
a centralized C-like program into a collection of node-
level nesC programs that run on motes. Pleiades is pri-
marily concerned with the correct synchronization of
shared state between nodes, including consistency, seri-
alizability, and deadlocks. Wishbone, in contrast, is con-
cerned with high-rate shared-nothing data processing ap-
plications, where all nodes run the same code. Because
Wishbone programs are composed of a series of dis-
crete dataflow operators that repeatedly process stream-
ing data, they are amenable to our profile-based approach
for cost estimation. Finally, by constraining ourselves
to a single cut point, we can generate optimal partition-
ings quickly, whereas Pleiades uses a heuristic partition-
ing approach to generate a number of cut points.

Triage [3] is a related system for “microservers” that
act as gateways in sensor network applications. Triage’s
focus is on power conservation on such servers by using a
lower-power device to wake a higher-power device based
on a profile of expected power consumption and utility
of data coming in over the sensor network. However,

4In this case with α = 0, β = 1, although the linear combination in
the objective function is not particularly important when we are maxi-
mizing data rate because we are saturating either CPU or bandwidth

it does not attempt to automatically partition programs
across the two device classes as Wishbone does.

In stream processing there has been substantial work
looking at the problem of migrating operators at run-
time [2, 18]. Dynamic partitioning is valuable in environ-
ments with variable network bandwidth, unpredictable
load, but also comes with serious downsides in terms
of runtime overheads. Also, by focusing on static par-
titioning, Wishbone is able to provide feedback to users
at compile time about whether their program will “fit”
their sensor platform and hardware configuration.

There has been related work in the context of tradi-
tional, non-sensor related distributed systems. For ex-
ample, the Coign [11] system automatically partitions
binary applications written using the Microsoft COM
framework across several machines, with the goal of
minimizing communication bandwidth. Like Wishbone,
it uses a profile-driven approach. Unlike Wishbone,
Coign does not formulate partitioning as an optimiza-
tion problem, and only targets Windows PCs. Neubauer
and Thiemann [15] present a similar framework for parti-
tioning client-server programs. Automatic partitioning is
also widely-used in high-performance computing, where
it is usually applied to some underlying mesh, and in au-
tomatic layout of circuits. Finally, several systems, in-
cluding JESSICA2 [25], MagnetOS [4], and cJVM [1],
implement distributed Java virtual machines that appear
as a single system. These systems must use runtime
methods to load-balance threads between machines. The
overheads on communication and synchronization are
typically high, and only applications with a high ratio
of computation to communication will scale effectively.

Tenet [9] proposes a two-tiered architecture with pro-
grams decomposed across sensors and a centralized
server, much as in Wishbone. The VanGo system [10],
which is related to Tenet, proposes a framework for
building high data rate signal processing applications in
sensor networks, similar to the applications that inspired
our work on Wishbone. But VanGo is constrained to a
linear chain of filters, does not support automatic parti-
tioning, and runs only TinyOS code.

Marionette [24] and SpatialViews [17] use static par-
titioning of programs between sensor nodes and a server
that is explicitly under the control of the programmer.
These systems work by allowing users to invoke pre-
defined handlers (written in, for example, nesC) from a
high-level centralized program that runs on a server, but
neither offers automatic partitioning.

Abstract Regions [22] and Hood [23] enable opera-
tions over clusters of nodes (or “regions”) rather than sin-
gle sensors. They allow data from multiple nodes to be
combined and processed, but are targeted at coordinating
sensors rather than stream processing.



9 Future Work/Conclusions
The model presented in this paper enables communica-
tion between embedded endpoints and a central server.
But it would be straightforward to extend our model
with a basic form of in-network aggregation: namely,
tree-based aggregation that happens at every node in the
network, useful, for example, for taking average sensor
readings. This communication pattern would be exposed
as a “reduce” operator that would reside in the logical
node partition, but would implicitly take its input not just
from streams within the local node, but from child nodes
routing through it in an aggregation tree. The partition-
ing algorithm remains the same. If the reduce operator
is assigned to the embedded node, aggregation happens
in-network, otherwise all data is sent to the server.

Also, while our prototype implementation only sup-
ports networks of one type of node, the model can also
handle certain kinds of mixed networks. A single log-
ical node partition can take on different physical parti-
tions at different nodes. This is accomplished simply by
running the partitioning algorithm once for each type of
node. The server would need to be engineered to deal
with receiving results from the network at various stages
of partial processing. In the future, mixed partitions may
be desirable even for homogeneous networks. Varying
wireless link quality can create a situation where each
node should partitioned differently.

A more radical change would extend the model with
multiple logical partitions corresponding to categories of
devices. This opens up several design choices; for exam-
ple, what communication relationship should the logical
partitions should have? We have verified that we can use
an ILP approach for a restricted three tier network ar-
chitecture. (Motes communicate only to microservers,
and microservers to the central server.) But going further
would require revisiting the partitioning algorithm.
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