
Computing action equivalences for planning

Natalia H. Gardiol, Leslie Pack Kaelbling
MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139
nhg@mit.edu,lpk@csail.mit.edu

Abstract

In order for autonomous artificial decision-makers to
solve realistic tasks, they need to deal with searching
through large state and action spaces under time pres-
sure. We study the problem of planning in such do-
mains. We show how structured representations of ac-
tion effects can help us partition the action space in to
a smaller set of approximate equivalence classes at run
time. The pared-down action space can be used to iden-
tify a useful subset of the state space in which to search
for a solution. This analysis allows us to collapse the ac-
tion space and yields large gains in planning efficiency.

Introduction
In many logical planning domains, the crux of finding a solu-
tion often lies in overcoming an overwhelmingly large action
space. In the blocks world domain, for example: the number
of ways to make a stack of a certain height grows exponen-
tially with the number of blocks on the table, so this appar-
ently simple task becomes daunting very quickly. We want
planning techniques that can deal with large state spaces and
large, stochastic action sets, since most compelling, realistic
domains have these characteristics.

One way to describe large stochastic domains compactly
is to use relational representations. Such a representation al-
lows dynamics of the domain to be expressed in terms of ob-
ject properties rather than object identities, and, thus, yields
a much more compact representation of a domain than the
equivalent propositional version can.

Even planning techniques that use relational representa-
tions, however often end up operating in a fully-ground state
and action space when it comes time to find a solution, since
such spaces are conceptually much simpler to handle. In this
case, a key insight gives us leverage: often, several action
instances produce similar effects. For example, in a blocks
world it often does not matter which block is picked up first
as long as a stack of blocks is produced in the end. If it were
possible to identify under what conditions actions produce
equivalent kinds of effects, the planning problem could be
simplified by considering a representative action (from each
equivalence class) rather than the whole action space.

This work is about taking advantage of structured, rela-
tional action representations. We want to identify logically

similar effects in order to reduce the effective size of the ac-
tion space.

Related Work
The idea of exploiting symmetries in a planning prob-
lem in order to reduce the search space has a rich his-
tory. Fox and Long present a notion of symmetric states
that is used to simplify planning (Fox & Long 1999; 2002;
Fox, Long, & Porteous 2005). Two objects are defined to be
equivalent if they have the same initial and final properties
and attributes. In their most recent work, object symme-
try (computed with respect to a pre-specified abstraction of
the object relationships) is used to supplement the FF algo-
rithm (Hoffmann & Nebel 2001) during search.

Guere and Alami (Guere & Alami 2001) also try to re-
strict search by analyzing domain structure. In their ap-
proach, they define the idea of the “shape” of a state. An al-
gorithm is given to try to construct all the “shapes” for a par-
ticular domain instance. To extract a plan/solution, it looks
for an action that connects a state in the starting “shape” to
a state in the goal “shape”. These shapes must be computed
off-line for any particular domain instance.

The work of Haslum and Jonsson (Haslum & Jonsson
2000) shares a very similar goal: reduce the number of op-
erators in order to reduce the branching factor and speed up
search. They define the notion of redundant operator sets:
intuitively, an operator is redundant to an existing sequence
of operators if it does not add any new effects to the se-
quence. The set of redundant operators are computed before
starting to plan; however, this is a computation that appears
to be PSPACE-hard in general. An approximate algorithm is
also given. Planning efficiency increases when these redun-
dancies are found, but this kind of redundancy may not exist
in all domains.

Additionally, Rintanen (Rintanen 2004) has looked at
equivalence at the level of transition sequences for use in
SAT-based planners.

The approach described in this paper, however, is in-
tended to be a general method for reducing the action space
that can be applied on-the-fly in a domain-independent man-
ner. The equivalence classes of actions that are computed at
each step produce an action set that can be used by any plan-
ning algorithm. We propose one such algorithm below.

Relational Envelope-based Planning
The Relational Envelope-based Planning algorithm (REBP)
(Gardiol & Kaelbling 2004) is well-suited to address plan-
ning problems with large underlying spaces. It proceeds
in two phases. First, given a domain theory and a prob-
lem instance, an initial plan of action is found quickly using
classical planning techniques. Classical planning produces
a focused search within high-probability sequences of ac-
tions, and yields an initial sequence called an envelope of
states (Dean et al. 1995). Second, with additional time, this
initial plan can be made more robust by considering devia-
tions from the original envelope. Conditioned on a ground
initial state, the number of states we expect to experience
on the way to the goal is relatively small; thus, the effective-
ness of REBP lies in limiting the state space in which policies
searched for to an informative, reachable subset.

A fundamental step, however, is to produce the initial en-
velope efficiently. When the action space is large, however,
this can be hard to do. In this case, a key insight gives us
leverage: different ground action instances often produce
qualitatively similar effects. For example, in a blocks world
it often does not matter which block is picked up first as
long as a stack of blocks is produced in the end. If it were
possible to identify under what conditions actions produce
equivalent kinds of effects, the planning problem could be
simplified by considering a representative action (from each
equivalence class) rather than the whole action space. The
resulting reduction in branching factor can result in huge
planning efficiency gains. Figure 1 shows an example.

Finding the initial envelope
Finding a trajectory of states with which to populate the ini-
tial envelope involves solving a planning problem from the
ground initial state to a state satisfying a logical goal condi-
tion.

We represent planning domains in a subset of the PPDDL
language.1 A problem description contains the following el-
ements: P , a set of logical predicates, denoting the proper-
ties and relations that can hold among the finite set of do-
main objects,O; Z , a set of transition schemas; and T , a set
of object types. A schema z ∈ Z , when applied in a state s,
produces a set of ground actions, z|s.

To find this plan, we execute heuristic-based search using
the FF heuristic. (Hoffmann & Nebel 2001). The algorithm
is shown in Figure 2.

Equivalence in relational domains
We need to properly define action equivalence in order to
execute the steps b) and c) of the planning algorithm in Fig-
ure 2. To that end, we make the following crucial assump-
tion:

Assumption 1 (Sufficiency of Object Properties). A domain
object’s function is determined only by its properties and
relations to other objects, and not by its name.2

1We do not consider conditional outcomes.
2What if we are in a setting in which a few objects’ identities

are in fact necessary? One could encode this information via sup-

1. Start with initial ground state, s and empty plan, P
2. Find state s', the best successor to s:
 a. calculate all ground actions applicable in s
 b. partition set of actions into equivalence classes
 c. apply a representative action a from each class,
 compute the most likely resulting state, s'
 evaluate s' using FF heuristic, h(s')
 d. if a unique state s' has the lowest h(s') value
 add the producing action, a, to P
 e. else,
 do breadth-first search until lowest h(s') found

 add the sequence of actions from s to s' to P
3. If s' is the goal, return the plan P.
4. Else, set s<=s', and return to step 2.

Figure 2: Planning algorithm. Note steps b) and c), which com-
pute and make use of the reduced action space given by a partition
over the actions.

For example, consider a blocks world in which the only
two properties are the relation on() and the attribute color().
Then if two blocks block14 and block37 are both red, are
both on the table, and have nothing on them, they would be
considered functionally equivalent. If block37 had another
block on top of it, however, it would not be equivalent to
block14. Intuitively, two objects are equivalent to each other
if they are related in the same way to other objects that are,
in turn, equivalent.

Here is the main contribution. We establish that a plan-
ning procedure that uses only equivalence-class representa-
tives is complete whenever the original planning procedure,
which had access to the whole action space, is complete. We
need the following pieces: first, whenever goal is satisfied in
a particular state s, then it must be satisfied by any state in
s’s equivalence class; second, equivalent actions taken from
equivalent states produce equivalent successor states. These
pieces let us construct an inductive argument to show that,
from a given starting state, the successive substitution of one
ground action by another in its equivalence class leads us to
a state that still satisfies the goal.

Previous work on object equivalence, or symmetry, has
used single, unary relations as a basis for computing sim-
ilarity (Ellman 1993; Fox & Long 1999; 2002). However,
we want to study object equivalence when more complex
relationships are present. To aid our analysis, we view a re-
lational state description as a graph, called the state relation
graph. The nodes in the graph correspond to objects in the
domain, and the binary relations between the objects corre-
spond to the edges. For each pair of related nodes, we con-
struct an edge representing the relation. In addition, nodes
and edges are labeled with a string (or set of strings). Each
node is labeled with the object’s type, and each edge is la-
beled with the relation’s name. If an object also participates
in a unary relation, we augment its label set with that predi-
cate’s name. 3 Thus, we can establish equivalence between

plementary properties, by adding a relation such as block14(X)
that would only be true for block14. Obviously, if identity matters
for a large number of objects, the approach described here would
not be suitable.

3At present, we consider up to binary relations. In the case of
relations with more than two arguments, we would have to consider

Figure 1: In this figure, we have an example domain in which the task is to fly each of the three helicopters onto one of two carriers. In a) is
shown a picture of the search tree if we were to enumerate all the ground actions. However, there are only a few qualitatively different states,
as seen on the bottom, in c). If we could eliminate distinguishing between actions that produce equivalent states, our search tree would be
much more compact (b).

Figure 3: The steps involved in computing action equivalence. In part (a), the instantiation of the pickup operator z in a state s produces four
ground actions. In part (b), the state relation graph for s shows we can map blocks 3 and 4 to blocks 5 and 6, respectively. This allows us to
map the instantiation of pickup(3,4) to pickup(5,6), and vice-versa. Thus, the four ground actions correspond to three equivalence
classes.

two states by computing an isomorphism between the state
relation graphs.

Definition 1 (State equivalence). Two states are equivalent,
written s1 ∼ s2, if there exists an isomorphism, Φ, between
the respective state relation graphs such that Φ(Gs1) = Gs2 .

Next, we need to define equivalence for actions. Intu-
itively, two actions should be considered equivalent if they
produce equivalent states. However, this requires propagat-
ing a state through a transition rule for each calculation. A
way to define action equivalence without doing such a prop-
agation is to overload the notion of isomorphism to apply to
sentences (of which actions are a special case).

Definition 2 (Action Equivalence). The applications of ac-

a hypergraph representation to allow for edges of more than two
nodes.

tion schema z in states s1 and s2 yield the sets of ground
actions z|s1 and z|s2 . Two ground actions a1 ∈ z|s1 and
a2 ∈ z|s2 are equivalent if and only if there exists a Φ such
that Φ(Gs1) = Gs2 and Φa(a1) = a2.

Essentially, we will be grouping two instances of an op-
erator into the same equivalence class if there exists an au-
tomorphism between objects in the state that allows us to
re-write one action instance as the other. Figure 3 shows an
example of this computation.

Now we move to the next important step: we need to guar-
antee that if the goal condition, if satisfied in a particular
state s, can be satisfied by any state equivalent to s. We
prove that if a logical sentence is satisfied in a state s, then
it is satisfied in any state s̃ ∈ [s], where [s] is the equiva-
lence class of s. We must be clear about the logical setting:
we assume that an un-ground sentence (i.e., a goal condi-

tion) contains no constants, and that a ground state is a fully
ground list of facts (which we can treat as a conjunction or
set of ground relations).

We provide one more definition for an important interme-
diate concept:
Definition 3 (Equivalent Planning Procedures). Let P be
a planning procedure such at at each state s, P selects an
action a. Consider a planning procedure P’ such that at each
state s̃ ∼ s, P’ chooses an action ã ∼ a. Then P and P’ are
defined to be equivalent planning procedures.
Theorem 1. Let P be a complete planning procedure. Any
planning procedure P’ equivalent to P is also a complete
planning procedure. That is,4

γ(a1, . . . , an, s0) → g ⇒ γ(ã1, . . . , ãn, s0) → g

Thus, any serial plan that exists in the full action space
has an equivalent version in the partitioned space. (?)

Experimental Validation
As a check, we did a small study to illustrate the computa-
tional savings of planning with equivalence class sampling.
Figures ?? shows these results. The experiments were done
in the ICAPS 2004 blocks-world domain, varying the num-
ber of blocks from 2 to 7. In each case, the goal was to stack
all of the blocks, and the starting state was with all blocks
on the table. The x-axis of the graphs shows the plan step,
and the y-axis shows the number of actions expanded in the
search at that step. The top graph shows a linear y-axis, and
the bottom graph shows it log-scale. Each curve corresponds
to the performance of each algorithm in each size blocks
world. The dashed lines correspond to the planning algo-
rithm that uses all the actions, and solid lines correspond to
the planning algorithm that uses a representative from each
equivalence class.

With just five blocks in the domain, already the combina-
torial growth in the branching factor is such that searching
in the whole action space is hopeless. The equivalence-class
based planner shows a consistently small branching factor
even with six and seven blocks. The computational savings
of computing the action classes is significant even in this
small test domain. Further experiments are forthcoming in
other domains from the ICAPS planning competition.

Conclusion
This is work explicitly attempts to define what it means for
planning operators to be equivalent in the presence of com-
plex relational structure. We formalize such a definition and
illustrate the benefit of equivalence-class analysis for plan-
ning.

Taking advantage of structured action representations
helps us ignore the distracting complexity and focus in-
stead on the interesting complexity in a problem. We pro-
vide a formal basis for computing action equivalence classes

4Some notation: γ(a1, . . . , an, s0) denotes the state that results
from executing the sequence of actions a1, . . . , an starting from
state s0. The arrow denotes entailment.

that guarantees a complete planning procedure while signif-
icantly reducing the branching factor of the search. While
our original motivation is the REBP algorithm, our findings
are useful for efficient planning in general.

References
Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains. Artificial Intelligence 76.
Ellman, T. 1993. Abstraction via approximate symmetry.
In Proceedings of the 13th International Joint Conference
on Artificial Intelligence.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In 16th Interna-
tional Joint Conference on Artificial Intelligence.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In AIPS.
Fox, M.; Long, D.; and Porteous, J. 2005. Abstraction-
based action ordering in planning. In International Joint
Conference on Artificial Intelligence.
Gardiol, N. H., and Kaelbling, L. P. 2004. Envelope-based
planning in relational MDPs. In Advances in Neural Infor-
mation Processing 16 (NIPS-2003).
Guere, E., and Alami, R. 2001. One action is enough to
plan. In International Joint Conference on Artificial Intel-
ligence (IJCAI’01).
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In Artificial Intelligence Planning Systems.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14.
Rintanen, J. 2004. Symmetry reduction for SAT represen-
tations of transition systems. In International Conference
on Automated Planning and Scheduling.

