
Relational Envelope-based Planning

by

Natalia Hernandez Gardiol

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

c© Natalia Hernandez Gardiol, MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

December 31, 2007

Certified by. .
Leslie Pack Kaelbling

Professor
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

Relational Envelope-based Planning

by

Natalia Hernandez Gardiol

Submitted to the Department of Electrical Engineering and Computer Science
on December 31, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis proposes a synthesis of logic and probability for solving stochastic sequen-
tial decision-making problems. We address two main questions: How can we take
advantage of logical structure to speed up planning in a principled way? And, how
can probability inform the production of a more robust, yet still compact, policy?

We can take as inspiration a mobile robot acting in the world: it is faced with a
varied amount of sensory data and uncertainty in its action outcomes. Or, consider a
logistics planning system: it must deliver a large number of objects to the right place
at the right time. Many interesting sequential decision-making domains involve large
state spaces, large stochastic action sets, and time pressure to act.

In this work, we show how structured representations of the environment’s dynam-
ics can constrain and speed up the planning process. We start with a problem domain
described in a probabilistic logical description language. Our technique is based on,
first, identifying the most parsimonious representation that permits solution of the
described problem. Next, we take advantage of the structured problem description to
dynamically partition the action space into a set of equivalence classes with respect
to this minimal representation. The partitioned action space results in fewer distinct
actions. This technique can yield significant gains in planning efficiency.

Next, we develop an anytime technique to elaborate on this initial plan. Our
approach uses the envelope mdp framework, which creates a Markov decision process
out of a subset of the possible state space. This strategy lets an agent begin acting
quickly within a restricted part of the full state space, as informed by the original
plan, and to judiciously expand its envelope as resources permit. Finally, we show
how the representation space itself can be elaborated within the anytime framework.

This approach balances the need to respond to time-pressure and to produce the
most robust policies possible. We present experimental results in some synthetic
planning domains and in a simulated military logistics domain.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor

2

Acknowledgments

The fellow is either mad or he is composing verses.
— Horace, Satires

I owe enormously to many for being able to embark on and finish this work. My

advisor, Leslie Pack Kaelbling, has been a constant and inspiring source of clarity and

guidance. Without her singular ability to zero in on the very grain of a question, I am

sure I would have been completely lost. The warmth and collegiality of the Learning

and Intelligent Systems group at MIT is testament to her hard work and generosity,

and I deeply grateful to count myself as one of her students. I am also grateful

to the members of my committee, Tomas Lozano-Perez at MIT, Hector Geffner at

Universitat Pompeu Fabra in Barcelona, and Tom Dean of Brown University and

Google, for their remarkable insight and fresh perspectives on my work.

While at MIT, I have been privileged to know and work with some exceptional

people. Sarah Finney, Luke Zettlemoyer, Meg Aycinena, Emma Brunskill, James

McLurkin, Nick Matsakis, Hanna Pasula, and Mike Ross have been fantastic col-

leagues — generous with their wisdom and willing to wrestle with research (and

other!) quandaries not their own. I must also thank the MIT Outing Club and the

Cycling Team for keeping me sane; I’ve learned so much from both groups.

I am also extremely grateful to Sridhar Mahadevan, now at the University of Mas-

sachusetts, for taking me under his wing while I was an undergraduate at Michigan

State University. Were it not for that opportunity to work with him and his group

— among them, Georgios Theocharous, Khashayar Rohanimanesh, Silviu Minut — I

would certainly not have been able to take the path I did.

I would not be anywhere, of course, without my family. They have supported my

endeavors from the very first. They have instilled in me by their own example a sense

of curiosity and wonder about the natural world. They are a constant. I thank them

for letting me depend on them.

3

Contents

1 Introduction 16

1.1 Handling imperfect representations 17

1.2 Managing time-pressure to act . 18

1.3 Representing planning problems as MDPs 19

1.3.1 Representation in MDPs . 19

1.3.2 Rule language . 21

1.3.3 Encoding Markovian dynamics with rules 28

2 Preliminary notions 30

2.1 Envelope-based Planning . 30

2.2 Finding the initial envelope . 32

2.3 From a plan to a policy . 33

3 Background and Related Work 35

3.1 Representation issues in relational MDPs 35

3.1.1 First-order RMDP methods 35

3.1.2 Trading off first-order and fully-ground 37

3.2 Planning in a deterministic model . 38

3.2.1 Reduction of action spaces . 39

3.2.2 Heuristic search methods . 43

3.2.3 Dynamic Replanning, or Plan Repair 45

3.3 Equivalent transition sequences . 46

3.4 Foundation techniques . 47

4

3.4.1 Fast Forward and the FF heuristic 47

3.4.2 MDP model minimization . 48

4 Formally defining equivalence 52

4.1 Assumptions and definitions . 52

4.2 Consequences and main theorem . 59

4.3 Example of computing equivalence classes 63

5 Equivalence-based planning 66

5.1 First approach with TGraphplan . 66

5.2 State-based approach . 68

5.2.1 Outer loop: forward search . 68

5.2.2 Inner loop: heuristic computation 75

5.2.3 Being more aggressive: minimal predicate set 79

5.2.4 Planning experiments . 81

5.3 Complexity issues . 87

6 Computing an abstract envelope 88

6.1 Interval envelope MDP . 89

6.1.1 Initializing the abstract-state envelope 92

6.1.2 Computing transition probabilities 94

6.2 Proposing a change to the representation 100

6.3 Experiments . 103

7 Conclusions and future directions 110

7.1 Improving the planning . 110

7.1.1 Impact of action commutativity 111

7.1.2 Other admissible heuristics . 111

7.1.3 Considering non-optimal planning 112

7.2 More aggressive approximations . 112

7.3 Improving the envelope expansion . 113

7.4 The role of learning . 114

5

7.5 Completeness, correctness, convergence, and complexity 114

A Results 116

A.1 Blocks world . 117

A.2 Slippery blocks world . 122

A.3 Zoom blocks world . 125

A.4 MadRTS . 130

A.4.1 The b world . 130

A.4.2 The c world . 135

6

List of Figures

1-1 In this example, our task is to mount a board with a pair of nails. Given

a box of nails, a solution can be carried out in two steps: first pick a

nail from the box and put it in an empty position in the board, then,

pick another nail from the box and put that in an empty position in the

board. We would hope that this solution could be found in a way that is

relatively insensitive to the exact number of nails in the box. We would

like to avoid succumbing to the combinatorial growth experienced by

naive search for the shortest path, shown in the corresponding search

trees in the right column. 20

1-2 A complete ppddl specification of a blocks-world planning problem. 23

1-3 An example of two legal substitutions for the on-top-of predicate. . 24

1-4 Applying the pick-up-block-from(block0, block1) action in the

initial state. 26

1-5 Applying the pick-up-block-from(block5, table) action in the ini-

tial state. 27

7

2-1 A tiny example of envelope-based planning. The task is to make a two-

block stack in a domain with two blocks. The initial plan is consists

of a single move action, and the initial envelope (far left) reflects this

action sequence. The next step is to sample from this policy, and the

potentially bad outcome of breaking the gripper is noticed (middle).

After expanding the envelope to include this outcome, the policy is

revised to include executing a “repair” action from the newly incorpo-

rated state (far right). 31

2-2 A high-level schematic of the rebp planning system. There are two

main inputs to the system: a set of probabilistic rules. and a descrip-

tion of the planning problem. The next process is to find an initial

plan quickly. The final process is to refine the initial plan as resources

permit. 34

3-1 Our approach explicitly inhabits the space between fully ground and

purely logical representations, and between straight-line plans and full

mdp policies. 38

3-2 An illustration of the Graphplan algorithm finding a solution for a

block-stacking task given the initial state at left, and the goal condi-

tion at right. Maintenance actions are shown with dotted lines. For

simplicity, the mutual-exclusivity constraints are not shown. 49

4-1 A complete pddl specification of a planning problem. 53

4-2 An example of determining equivalence between states s1 and s2. The

first step is to construct the state relation graphs Gs1 and Gs2 . Nodes

are labeled with their corresponding object’s type and properties, and

edges are labeled with the corresponding relation’s name. Then, we

look for a mapping, φ, between the two graphs. 55

4-3 An example of determining whether two ground actions belong in the

same equivalence class. Two ground actions are equivalent, by defini-

tion, if they result in equivalent successor states. 56

8

4-4 Action equivalence classes can also be found directly by computing

equivalence classes among objects in the originating state. Each ground

action applicable in the abstract state [s] is a representative action for

its equivalence class. 58

4-5 The steps involved in computing action equivalence classes in a 7-

block domain. We start with the state s and the pickup operator

z. The state relation graph Gs yields the set automorphisms Φ =

{φ1, φ2, φ3}. Grouping the objects together according to the mappings

in Φ, produces the canonical state relation graph G̃s, and the canonical

state s̃. The set of action equivalence classes is then represented by

the set of actions applicable in s̃, in which different colors are used to

denote the object equivalent classes. 64

5-1 When we choose representatives from each equivalence class, we must be

careful to conserve the relationships that the underlying objects have in the

underlying world. 71

5-2 On the left side, we see how the move operator works in a ground

state. We introduce a one-of() function on canonical literals to ensure

analogous behavior in a canonical state, on the right side. 74

5-3 Calculation of the heuristic with no equivalence classes. We have to find the

smallest heuristic value amongst all the possible bindings for the goal: the

possible bindings that the plan graph represents as being possibly true at

this stage are shown at the bottom of the figure. There are twelve of them.

The set of proposition nodes given by the fifth binding in the list result in

the lowest heuristic estimate, h = 2. These proposition nodes are encircled

in the graph. 77

5-4 Calculation of the heuristic, this time with equivalence classes. Now there

are only six bindings amongst which to search. The one-of() operator is

also in effect in the heuristic computation, which ensures that we correctly

determine the set of propositions that may legally satisfy the goal. 78

9

5-5 Illustration of the repb search algorithm. The task is to achieve a

stack of any three blocks. We start with the initial state as shown. The

object equivalence classes are then computed, resulting in an abstract

version of the initial state. Then, as we search for the goal in successive

states, we update the equivalence classes of the objects in the domain.

We stop when we determine that the goal can be satisfied; in this case,

after a sequence of pick-up and put-down actions. 82

5-6 The rebp system. Given a problem description with an initial state

and a goal, the system first attempts to determine automatically the

minimal basis set of predicates it needs to reach the given goal. Then,

given this basis set, the system executes a forward-chaining, heuristi-

cally guided search, until the goal is reached. 83

5-7 Planning time vs. domain size for best-case blocksworld. Equivalence classes

are helpful as the domain gets bigger. 84

5-8 Planning time vs. domain size for random blocks-world domain. Equiva-

lence classes are helpful as the domain gets bigger, and reducing the basis

set of predicates yields computational savings. 85

5-9 Planning time vs. domain size for random depot domain. As in the blocks

world, equivalence classes are helpful as the domain gets bigger, and reduc-

ing the basis set of predicates yields computational savings. 86

6-1 In the second part of the rebp system, an envelope mdp is constructed

from the output of the planning process. The envelope mdp, and the

basis set of predicates used to express the mdp, will be expanded and

refined in subsequent steps of the algorihtm. 88

10

6-2 The sequence of canonical states may actually represent a collection of

underlying state transitions. Each canonical state represents the set

of underlying ground states consistent with the basis set of predicates

used to express the canonical state. The objects in the underlying

states may have relationships and properties not represented in the

canonical state, such as color, texture, or size, for example. 90

6-3 Each canonical, or abstract, state in the mdp describes a set of under-

lying ground states. Transitions between abstract states correspond to

a collection of underlying ground transitions, denoted above by scalar

probabilities p1, p2, and p3. Thus, we will represent the transition be-

tween two abstract states as an interval, whose upper bound is the

largest underlying probability and whose lower bound is the smallest

underlying probability. 91

6-4 The slippery blocks domain. This is an extension of the standard blocks

world in which green blocks are “slippery” and are thus more likely to

be dropped on the table. 96

6-5 First, start with a newly initialized envelope corresponding to the ex-

ample planning task of Figure 5-5. At this point, we have created the

set of states Q, consisting of each canonical state, its ground version,

and the state qout. 97

6-6 Second, we compute the nominal transition probabilities. In this case,

there are two ground actions equivalent to the pickup([3],[table])

action applicable in the canonical state. These actions yield an interval

probability of [0.6, 0.9] of transitioning to the second state, and an

interval probability of [0.1, 0.4] of falling out of the envelope. 97

6-7 Third, we do the same for the second state: the ground actions (only

one in this case) yield a probability interval of [0.6, 0.6] of transitioning

to the third state, and a probability interval [0.4, 0.4] of transitioning

out of the envelope. 98

11

6-8 Fourth, we sample from our model in order to improve our interval

probability estimates. We see that adding the ground state s′ into S1

changes our estimate of the types of transitions that can occur between

the second and third canonical states. 98

6-9 Fifth, and finally, is our completed abstract envelope mdp. From here,

we are ready to do a round of policy improvement (via value iteration)

and envelope expansion. 99

6-10 A plot of expected value vs. number of states in the MDP in the 7-

block instance of the slippery blocks world domain. The dotted line

is provided for reference across the two graphs. The average reward-

per-step accrued by each algorithm is encircled near the corresponding

curve. 106

6-11 A plot of expected value vs. number of states in the MDP in the 7- and

50-block instances of the slippery blocks world domain. The dotted line

is provided for reference across the graphs. 107

6-12 A plot of expected value vs. number of states in the MDP in the b1

instance of the MadRTS domain. The crossed dotted lines provide an

invariant reference point across all the graphs. 108

A-1 Blocksworld: sample ppddl problem description, 7-block world. The

same problem instances are used in the standard blocksworld, slippery

blocksworld, and zoom blocksworld. 118

A-2 Blocksworld: average reward per step in all problems. After 7 blocks,

the approaches that do not minimize the basis have trouble: the ones

which require a plan run out of memory or exceed the time limit,

and those which sample the mdp space produce poor policies. The

maximum score possible is 0.12. 119

A-3 Blocksworld: plot of expected value in the 7-block domain. Minimizing

the basis produces good policies in less time. 120

12

A-4 Blocksworld: plot of expected value in the 15-block domain. Planning

takes too long in the full-basis and propositional settings. 120

A-5 Blocksworld: plot of expected value in the 50-block domain. Comput-

ing a plan first produces mdps with higher expected value for a given

model size. 121

A-6 Slippery blocksworld: average reward per step in all problems. The

maximum score possible is 0.12. 122

A-7 Slippery blocksworld: 7 blocks. The fixed, minimal basis is fastest; but,

it does not achieve as high a reward during execution as the adaptive-

basis approach. 123

A-8 Slippery blocksworld: 15 blocks. Again, the adaptive basis approach

takes more computation time, but it is able to represent the interval

of expected value and produces higher reward during execution. . . . 123

A-9 Slippery blocksworld: 50 blocks. In the biggest domain, the adaptive-

basis approach is able to model the range of expected values better. . 124

A-10 Zoom blocksworld: ppddl domain description. 126

A-11 Zoom blocksworld: average reward per step in all problems. The adap-

tive basis is able to discover a more rewarding policy. 127

A-12 Zoom blocksworld: 7 blocks. 128

A-13 Zoom blocksworld: 15 blocks. 128

A-14 Zoom blocksworld: 30 blocks. While high values are achieved, this

larger problem instance exerts a greater computational burden on the

adaptive-basis approaches than on the fixed, minimal-basis ones. . . . 129

A-15 MadRTS: ppddl domain description. 130

A-16 MadRTS: sample ppddl problem description, b1 world. 131

A-17 MadRTS domain: schematics of the three b problems; b0 through b2,

from left to right. In the first domain, there are two units (green), one

food resource (brown) and one enemy (red). In the third domain, there

are six units, two food resources, and two enemies. 132

A-18 MadRTS world b: average reward per step. 132

13

A-19 MadRTS: expected value in world b0. 133

A-20 MadRTS: expected value in world b1. 133

A-21 MadRTS: expected value in world b2. 134

A-22 MadRTS domain: schematics of the three c problems; c0 through c2,

clockwise from top left.. The map is a replica of that given in the

original Mad Doc proposal document; the placement of units, enemies,

and food resources is our own. In the first domain, there are two units,

one enemy, and a variety of food resources in one area of the map. In

the third domain, there are six units and two enemies. 135

A-23 MadRTS world c: average reward per step. 136

A-24 MadRTS: expected value in world c0. 136

A-25 MadRTS: expected value in world c1. 137

A-26 MadRTS: expected value in world c2. 137

14

List of Algorithms

1 Basic forward-search algorithm. 69

2 The updateClasses() function: pseudo code for computing the equiva-

lence classes of a state s. 70

3 Pseudo code for computing the propositions for a canonical state s̃ once

the object equivalence classes for s̃ have been computed. 72

4 rebp forward-search algorithm. 81

5 Basic envelope algorithm for atomic-state mdps. 89

6 Procedure to compute a set of envelope states given a plan. 93

7 Overall repb algorithm. 102

15

Chapter 1

Introduction

For an intelligent agent to operate efficiently in a highly complex domain, its only

hope is to identify and gain leverage from structure in its domain. Household robots,

office assistants, and logistics support systems, for example, will have to solve planning

problems “in the wild”, in contrast to most planning problems addressed today, which

are carefully formulated by humans to contain only domain aspects actually relevant

to achieving the goal. Generally speaking, planning in a formal model of the agent’s

entire “wild” environment will be intractable; instead, the agent will have to find

ways to reformulate a problem into a more tractable version at run time.

Not only will such domains require an adaptive representation, but, adaptive

aspirations as well. That is, if the agent is under time pressure to act, then, we must

be willing to accept some trade-off in the quality of behavior. However, as time goes

on, we would expect the agents behavior to become more robust and to improve in

quality.

This work is about taking advantage of structured, relational action representa-

tions for planning. Our aim is to make small models of big domains in order to act

efficiently. We will go about this simplification by reducing, if possible, the number

of distinct entities and the number of alternative outcomes under consideration.

To reduce the number of effective entities (that is, domain objects), we adapt

our representation: we identify the minimum set of predicates needed to represent

our problem, and we identify logical equivalence classes of objects with respect to

16

those predicates. This, in turn, induces equivalence classes over the state space and

allows us to handle a class of states together as a group. This has the important

consequence of inducing a partition over the action space, as well. This constrained

action space, in conjunction with a determinizing step, allows us to begin the search

for plans in an informative subset of the decision space. Finally, we want to turn

these optimistic plans into increasingly robust policies by incrementally expanding

the state-space envelope, as well as the set of predicates used in representation, as

time and resources permit.

There are two main themes in our approach: that of leveraging structured rep-

resentations to maintain a small, compact model of a planning task, and that of

managing time pressure by producing policies that improve in expectation with the

amount of available computation time.

1.1 Handling imperfect representations

One source of difficulty in a complex domain is the existence of large numbers of

objects that are either irrelevant to a given planning problem or, worse, relevant

but unnecessary. We are often given these descriptions separately: a general domain

description that describes the types of objects available, the kinds of relations and

properties they can have, and the set of rules that describes the dynamics; and, a

separate problem description that specifies a particular instance of the domain along

with a specific planning objective.

A formal description of a domain instance may produce an overwhelmingly large

action space even for a modest number of objects in the world. Consider an assembly

robot, with a box of thousands of identical gears. The robot needs one of those gears

to do its job, so none of those gears are irrelevant. But, because they are equivalent,

it ought to be able to consider only a single one of them. Our goal in this work is

to exploit the effective equivalence of objects in order to simplify planning. One way

to do this is to consider objects to be similar if they share similar properties and

have similar relationships to other, similar, objects. In principle, the set of properties

17

and relationships is given by the set of predicates listed in the domain description.

However, if not all of these predicates are equally necessary to achieve the given

goal, then considering them all would mean making unnecessary distinctions between

objects. We would like to detect this phenomenon and consider distinctions among

objects only with respect to the smallest possible set of predicates necessary to achieve

a given problem. This would have the effect of reducing the effective size of the state

space and, thus, speed up the planning process.

1.2 Managing time-pressure to act

For an agent operating in the real world, a time-crunch is a fact of life: no one

will put up with a robot that takes forever to come up with the perfect way to put

gears into boxes, for example. So, this work is also about how best to manage the

computation of a strategy. When is it appropriate to make a plan, and when is it

appropriate to compute a policy? By planning, we refer to the idea of computing a

sequence of actions, to use once, for a given state/goal pair. A policy, on the other

hand, is a mapping from all states in a space to the appropriate action; in general, we

compute a policy when we expect to be given the same task repeatedly and need to

consider any possible eventuality. When do we wish to do one instead of the other,

and what can we say about the spectrum between the two? We have developed a

technique that employs envelope-based planners, which are interesting in that they

explicitly inhabit the space between a plan and a policy. The envelope refers to the

subset of states, selected via some appropriate process, that form the basis for a small,

approximate model of the agent’s policy. Any planning approach can be used as this

generating process: the envelope is then initially populated with the states from the

plan. What follows is an anytime procedure [10] that elaborates on this initial set of

states. An anytime algorithm is one that generates the best answer with the available

information and allowable time; given more computational resources, it will be able

to improve on its answer. This strategy allows an agent to make a partial policy that

hedges against the most likely deviations from the expected course of action, without

18

requiring construction of a complete policy.

We cast our planning problem in the framework of Markov decision processes

(mdps) [52]. mdps are a powerful formalism for framing sequential decision-making

problems and are an active research area with a large spectrum of solution methods.

1.3 Representing planning problems as MDPs

The problem of planning has been an important research area of AI since almost

the inception of the field. However, even its “simplest” setting, that of deterministic

strips planning, has been found to be pspace-complete. [9]. Nonetheless, traditional

AI planning techniques are often able to manage very large state spaces, largely due

to powerful logical representations that enable structural features of the state and

action spaces to be leveraged for efficiency. On the other hand, work in the operations

research community (OR) has developed the framework of mdps, which specifically

addresses uncertainty in dynamical systems. Being able to address uncertainty (not

only in acting, but, also in sensing, which we do not address in this work) is a primary

requirement for any system to be applicable to a wide range of real-world problems.

Our aim is to bring together some of these complementary features of AI planning

and mdp solution techniques to produce a system that can build on the strengths

of both. An important result that enables our approach is that problems of goal-

achievement, as typically seen in AI planning problems, are equivalent to general

reward problems (and vice versa). [45] Thus, it will be possible for us to take a given

planning planning problem and convert it to an equivalent mdp.

1.3.1 Representation in MDPs

An mdp is a tuple, 〈Q,A, T ,R〉 where: Q is a set of states; A is a set of actions

applicable in each state; R is a reward function mapping each state to a real number:

R : Q → < ; and T , the transition function, gives the probability that a state and

action pair will transition to another state: T : Q × A × Q → <. A solution for

an mdp consists in finding the best mapping from states to actions in a way that

19

put(n1,h2)

put(n2,h2)
put(n3,h1)

put(n1,h1)

put(n2,h1)

put(n3,h2)

put(n2,h1)

put(n3,h1)

put(n1,h2)

put(n2,h2)
put(n3,h1)

put(n2,h1)
put(n3,h1)

put(n1,h1)

put(n2,h1)

put(n3,h2)

put(n4,h1)
put(n5,h1)

put(n4,h1)
put(n4,h2)

put(n5,h1)
put(n5,h2)

put(n1,h2)

put(n2,h2)
put(n3,h1)

put(n2,h1)
put(n3,h1)

put(n1,h1)

put(n2,h1)

put(n3,h2)

put(n4,h1)
put(n5,h1)

put(n4,h1)
put(n4,h2)

put(n5,h1)
put(n5,h2)

●
●
●

●
●
●

put(nail1, hole2) put(nail3, hole1)

state 0 state 1 state 3

Figure 1-1: In this example, our task is to mount a board with a pair of nails. Given
a box of nails, a solution can be carried out in two steps: first pick a nail from the box
and put it in an empty position in the board, then, pick another nail from the box
and put that in an empty position in the board. We would hope that this solution
could be found in a way that is relatively insensitive to the exact number of nails in
the box. We would like to avoid succumbing to the combinatorial growth experienced
by naive search for the shortest path, shown in the corresponding search trees in the
right column.

20

maximizes long-term reward. This function, π, is called a policy.

In the past, much work on finding policies for mdps considered a state to be an

atomic, indivisible entity; that is, one referred to state s124 without knowing anything

further about its internal structure. More recently, advances have been made in

representing a mdp states in terms of factored state spaces; that is, an particular

state is seen to be a combination of state features. For example, in a two-dimensional

grid domain, state s124 might be known to correspond to a particular x, y-coordinate,

say (3, 45). In this case, the state space is factored into two features: the value of the

x-coordinate and the value of the y-coordinate.

Even though a factored state representation is an improvement over an atomic

state representation, it still has its limitations. The state features as described above

correspond to propositions about a state: e.g., the x-coordinate has value 3. This

means that the policy π, the transition function T , and the reward function R must

cover possible combinations of values of all of the state features. When there are lots

of features, or if the features can take on a large range of values, the size of the state

space grows combinatorially. As long as the transition function T and the reward

function R have a compact representation that can be exploited for efficiency during

planning, however, we can be relatively insensitive to the size of the state space.

In this work, we take advantage of a more compact way of representing state

transitions (i.e., actions). That is, rather than a state being composed of a set of

propositional features, we think of it as being composed instead of a set of logical

relationships between domain objects. Since these predicates can make assertions

about logical variables, a single predicate may in fact represent a large number of

ground propositions. This lets us use a single transition rule to represent many

ground state transitions.

1.3.2 Rule language

A well-specified planning problem contains two basic elements:

Domain Description : The domain description specifies the dynamics of the world,

21

the types of objects that can exist in the world, and the set of logical predicates

which comprise the set of relationships and properties that can hold for the

objects in this domain.

Problem Instance : To specify a given problem instance, we need an Initial World

State, which is the set of ground predicates that are initially true for a given set

of objects. We also need a Goal Condition, which is a first-order sentence that

defines the task to be achieved. The goal condition is usually a conjunction,

though disjunctive conditions are legal, and it may be universally or existentially

quantified.

The dynamics of the domain must be expressed in a particular rule language.

In our case, the language used is the Probabilistic Planning and Domain Definition

Language (ppddl) [59], which extends the classical strips language [18, 44] to prob-

abilistic domains. This allows for a very natural description of rule effects, such as

conditional effects, negated preconditions, quantified effects, and so on.

In Figure 1-2 we see a full problem specification in ppddl. In the top half of

the figure is the domain description: the definition of types, objects, predicates, and

rules for all problem instances. In the bottom half of the figure is a definition of a

concrete problem instance: the objects, the initial state, and the goal. The overall set

of objects (i.e., the universe of discourse) for a particular problem is composed of the

objects given in the problem instance and the set of objects in the domain description

– listing an object in the domain description is shorthand for saying that it will form

part of all problem instances.

Next, let’s look at the list of predicates in Figure 1-2 closely. Each n−ary predicate

takes a list of arguments of length n. We will use the term predicate to refer to a

name of a property or relation, such as on-top-of; when a predicate is asserted over a

list of arguments, such as (on-top-of ?top ?bottom), that is properly called an atom

or relation.

The names of variables begin with a question mark, so as to distinguish them from

domain objects (or constants). The name of a variable may also be followed by a type

22

(define (domain blocksworld)

 (:types block table - object)
 (:constants table - table)

 (:predicates
 (is-red ?block - block)
 (is-blue ?block - block)
 (is-green ?block - block)
 (holding ?block - block)
 (on-top-of ?block - block ?obj)
)
 (:action pick-up-block-from
 :parameters (?top - block ?bottom)
 :precondition (and (not (= ?top ?bottom))
 (forall (?b - block) (not (holding ?b)))
 (on-top-of ?top ?bottom)
 (forall (?b - block) (not (on-top-of ?b ?top))))
 :effect (and (probabilistic 0.75 (and (holding ?top)
 (not (on-top-of ?top ?bottom)))
 0.25 (when (not (= ?bottom table))
 (and (not (on-top-of ?top ?bottom))
 (on-top-of ?top table)))))
)
 (:action put-down-block-on
 :parameters (?top - block ?bottom)
 :precondition (and (not (= ?top ?bottom))
 (holding ?top)
 (or (= ?bottom table)
 (forall (?b - block) (not (on-top-of ?b ?bottom)))))
 :effect (and (not (holding ?top))
 (probabilistic 0.75 (on-top-of ?top ?bottom)
 0.25 (on-top-of ?top table)))
)
)
(define (problem bw-1) (:domain bw-1)

 (:objects block0 block1 block2 block3 block4 block5 - block)

 (:init
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)
 (:goal
 (and (exists (?fb0 - block)
 (and (is-green ?fb0)
 (exists (?fb1 - block)
 (and (not (= ?fb0 ?fb1))
 (is-green ?fb1)
 (on-top-of ?fb0 ?fb1)
 (exists (?fb2 - block)
 (and (not (= ?fb0 ?fb2))
 (not (= ?fb1 ?fb2))
 (is-blue ?fb2)
 (on-top-of ?fb1 table))))))))
)
)

types

objects

rules

objects

initial state

goal

predicates

Figure 1-2: A complete ppddl specification of a blocks-world planning problem.

23

 (on-top-of block1 table)

ψ1= { block1/?top, table/?bottom }

 (on-top-of ?top - block ?bottom - object)

 (on-top-of block1 block2)

ψ2= { block1/?top, block2/?bottom }

Figure 1-3: An example of two legal substitutions for the on-top-of predicate.

specificiation. In this case, writing ?top - block means that the variable top should

be of type “block”; not specifying a type means the variable can be of any type. The

types may be defined in a hierarchical way: in our example, the types “block” and

“table” are subtypes of the “object” type. Types are important because they restrict

the ways in which variables can be bound to domain objects. Consider Figure 1-

3. In this figure we have the relation (on-top-of ?top ?bottom) and two different

substitution, or, binding lists, ψ1 and ψ2, which are assignments of each variable to

a replacement. Applying ψ1, for example, produces the ground atom, or proposition,

(on-top-of block1 table). Note that it would not be a legal to substitute table

(which is of type “table”) for top, which is a “block”; however, since bottom is of type

“object” and “table” is a subtype of object, replacing bottom with table is perfectly

fine. Once we have produced proposition, we can assign a truth value to it.

A logical atom or sentence is said to be ground or closed when all of its variables

have been ground to domain objects; conversely, and atom or sentence is unground

or open if it has at least one free occurrence of a variable — i.e., an occurrence of a

variable that is neither ground nor constrained by quantification.

Finally, a domain description must define some rules. A rule is essentially a

complex logical sentence (an implication, if you will). It is composed of: a set of

arguments or parameters — these are the free variables; a precondition; and, an

effect. The precondition specifies the condition that must be true in a state s in order

to be able to apply that rule in the state s. The effect specifies the changes (or, a

distribution over sets of changes) that occur to s as the result of applying the rule.

24

Now we consider an example of how to use a rule. Say we are in the initial state, s0,

as given above; which rule applies? There are many ways to go about this correctly.

Our approach will be as follows:

1. Put the rule’s preconditions and and effects into conjunctive normal form. Be-

cause we have a finite “universe,” we can partially ground any universally quan-

tified clauses by re-writing them them as a conjunction of n clauses, where n is

the number of domain objects and where the ith domain object substitutes for

the quantified variable in the ith clause. This process transforms the precondi-

tion into a conjunction of atoms, ρ.

2. A rule applies in a state if its precondition is true in the interpretation associated

with the state. Recall that states are represented as conjunctions of true ground

atoms (and propositions omitted from the state are assumed to be false).

Thus, determining if an antecedent is true in a state reduces to finding a subset

of the state’s ground atoms with which the antecedent can be unified. This

unification produces a binding list, ψ (or set of binding lists, if there is more

than one way to unify the antecedent).

3. Apply the substitution ψ to each effect to produce a conjunction of atoms, η

corresponding to the effect. Care must be taken in the case of conditional effects:

in this case, the condition on the effect is another conjunction of atoms ρ′. To

determine if the effect will be triggered, we append ρ′ to ρ, and recommence the

search for a unification of the new, composite ρ given the contents of the existing

binding, ψ. If there is no such unification, an empty sentence is returned;

otherwise, a conjunction of atoms corresponding to the effect is returned.

4. Compute the resulting state. Given the starting state s, we remove from s all

the propositions that are negated in η (this is also referred to as the “delete

list,” for obvious reasons), and, we add in all the non-negated propositions (i.e.,

the “add list”). To be formal, we write:

25

 (and
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)

0
542

3
1

 (and
 (on-top-of ?top ?bottom)
 (not (= ?top ?bottom))
 (not (holding block0))
 (not (holding block1))
 (not (holding block2))
 (not (holding block3))
 (not (holding block4))
 (not (holding block5))
 (not (holding block1))
 (not (on-top-of block0 ?top))
 (not (on-top-of block1 ?top))
 (not (on-top-of block2 ?top))
 (not (on-top-of block3 ?top))
 (not (on-top-of block4 ?top))
 (not (on-top-of block5 ?top))
)

 (and
 (on-top-of block0 block1)
 (not (= block0 block1))
 (not (holding block0))
 (not (holding block1))
 (not (holding block2))
 (not (holding block3))
 (not (holding block4))
 (not (holding block5))
 (not (holding block1))
 (not (on-top-of block0 block0))
 (not (on-top-of block1 block0))
 (not (on-top-of block2 block0))
 (not (on-top-of block3 block0))
 (not (on-top-of block4 block0))
 (not (on-top-of block5 block0))
)

 (and
 (holding block0)
 (not (on-top-of block0 block1))
)

 (and
 (on-top-of block0 table)
 (not (on-top-of block0 block1))
)

0

542
3

1

 (and
 (holding block0)
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)

0 542
3

1

 (and
 (on-top-of block0 table)
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)

ψ= { block0/?top, block1/?bottom }

0.75 0.25

initial state rule preconditions (in normal form)

Figure 1-4: Applying the pick-up-block-from(block0, block1) action in the initial
state.

26

 (and
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)

0
542

3
1

 (and
 (on-top-of ?top ?bottom)
 (not (= ?top ?bottom))
 (not (holding block0))
 (not (holding block1))
 (not (holding block2))
 (not (holding block3))
 (not (holding block4))
 (not (holding block5))
 (not (holding block1))
 (not (on-top-of block0 ?top))
 (not (on-top-of block1 ?top))
 (not (on-top-of block2 ?top))
 (not (on-top-of block3 ?top))
 (not (on-top-of block4 ?top))
 (not (on-top-of block5 ?top))
)

 (and
 (on-top-of block5 table)
 (not (= block5 table))
 (not (holding block0))
 (not (holding block1))
 (not (holding block2))
 (not (holding block3))
 (not (holding block4))
 (not (holding block5))
 (not (holding block1))
 (not (on-top-of block0 block5))
 (not (on-top-of block1 block5))
 (not (on-top-of block2 block5))
 (not (on-top-of block3 block5))
 (not (on-top-of block4 block5))
 (not (on-top-of block5 block5))
)

 (and
 (holding block5)
 (not (on-top-of block5 table))
)

0 5
42
3

1

 (and
 (holding block5)
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)

ψ= { block5/?top, table/?bottom }

0.75
0.25

initial state rule preconditions (in normal form)

 ()

 (and
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)

0
542

3
1

Figure 1-5: Applying the pick-up-block-from(block5, table) action in the initial
state.

27

Figure 1-4 and Figure 1-5 show two different examples of this procedure given the

initial state s0, the rule pick-up-block-from, and two possible binding lists. The first

figure shows the case of picking up block 0 from block 1, which yields a distribution

over two possible states: one with probability 0.75 in which we succeed in picking up

the block, and one with probability 0.25 in which we drop the block on the table. The

second figure shows the case of picking up block 5 from the table. Here, the condition

(not (= ?bottom table)) was false with {table/?bottom}. So, this means there is

probability 0.75 of picking up the block, and, probability 0.25 of no change.

We will say “rule” or “operator” when we mean an open or unground rule such as

they appear in the domain description, and we will say “action” to denote a ground

instance of a rule.

The benefit of supporting the ppddl formalism is access to the benchmark plan-

ning domains, such as those used in the icaps planning competitions held over the

past few years. This permits our work to be more directly comparable to related

approaches.

1.3.3 Encoding Markovian dynamics with rules

As mentioned above, an mdp is traditionally defined as a tuple, 〈Q,A, T ,R〉 where:

Q is a set of states; A is a set of actions; R is a reward function; and T is a transition

function.

As a step towards working with more compact models of a domain, we define a

relational mdp (rmdp) as a tuple 〈P ,Z,O, T ,R〉:

States: The set of states Q is defined by a finite set P of relational predi-

cates, representing the relations that can hold among the finite set of domain ob-

jects, O. Each rmdp state is an interpretation of the domain predicates over the

domain objects. By interpretation, we mean a mapping from all ground predi-

cates to truth values. For example, given the atom on(A,B) and domain objects

block1 and block2, we would produce the propositions on(block1, block2) and

on(block2, block1), which might be respectively assigned {true, false}, {false,

true}, {false, false}, but probably not {true, true}.

28

Actions: The set of ground actions, likewise, depends, on the set of rules Z and

the objects in the world.

Transition Dynamics: For the transition dynamics, we use a compact set of

rules based on the standard Probabilistic Planning and Domain Definition Language

(ppddl) [59] as discussed above. To briefly review, a rule’s behavior is defined by

a precondition and a probabilistic effect, each expressed as conjunctions of logical

predicates. A probabilistic effect describes a distribution over a disjoint set of logical

outcomes. A rule applies in a state if its precondition is true in the interpretation

associated with the state. Each outcome then describes a possible resulting ground

state. In our system, we currently use rules that are designed by hand; they may,

however, be obtained via learning [60, 50].

For each action, the distribution over next states is given compactly by the dis-

tribution over outcomes encoded in the rule schema. The rule outcomes themselves

usually only specify a subset of the domain predicates, effectively describing a set of

possible resulting ground states. To fill in the values of the domain predicates not

menioned in the outcome, we assume a static frame: state predicates not directly

changed by the rule are assumed to remain the same.

Rewards: A state is deterministically mapped to a scalar reward according to

function R(s). This can be given as, say, a list of conjunctions associating particular

conditions (for example, the goal condition) with a scalar reward or penalty.

Given this basic understanding, we can now begin to put together the pieces of

our approach.

29

Chapter 2

Preliminary notions

As alluded to above, the difficulty of planning effectively in complex, ongoing problems

is maintaining an efficient, compact model of the world in spite of potentially large

ground state and action spaces.

2.1 Envelope-based Planning

Plexus works by considering a subset of states with which to form a restricted mdp,

and then searching for an optimal policy in this restricted mdp. The state space

for the restricted mdp is called the envelope: it consists of a subset of the whole

system state space, and it is augmented by a special state called out representing

any state outside of the envelope. The algorithm then works by alternating phases

of envelope alteration, which adds states to or removes states from the envelope,

and policy generation, which computes a policy for the given envelope. In order

to guarantee the anytime behavior of the algorithm, Dean et al. extensively study

the issue of deliberation scheduling to determine how best to devote computational

resources between envelope alteration and policy generation.

A small example of refining an initial plan is shown in Figure 2-1, which consists

of a sequence of fringe sampling and envelope expansion. A complete round of delib-

eration involves sampling from the current policy to estimate which fringe states —

states one step outside of the envelope — are likely. The figure shows the incorpora-

30

1 2
OUT

1 2 2
1

1.0
1.0

1.0

0.7

0.3
1 2

OUT

1 2

1.0
1.0

1.0

0.3

0.97

.03

OUT

1 2 2
1

1.0
1.0

1.0

0.7

0.3

2
1

0.7

Figure 2-1: A tiny example of envelope-based planning. The task is to make a two-
block stack in a domain with two blocks. The initial plan is consists of a single move
action, and the initial envelope (far left) reflects this action sequence. The next step
is to sample from this policy, and the potentially bad outcome of breaking the gripper
is noticed (middle). After expanding the envelope to include this outcome, the policy
is revised to include executing a “repair” action from the newly incorporated state
(far right).

tion of an alternative outcome of the policy action in which the gripper breaks. After

the envelope is expanded to include the new state, the policy is re-computed. In the

figure, the policy now specifies the fix action in case of gripper breakage.

Thus, deliberation can produce increasingly sophisticated plans. The initial plan-

ner needs to be quick, and as such may not be able to find conditional plans, though it

can develop one through deliberation; conversely, searching for this conditional plan

in the space of all mdp policies, without the benefit of the initial envelope, could

potentially have taken too long.

The Plexus algorithm was originally developed for atomically represented robot-

navigation domains, which generally have the characteristics of high solution density,

low dispersion rate (i.e., a small number of outgoing transitions at each state), and

continuity (i.e., that the value of a state can be reasonably estimated by considering

nearby states). These features made it reasonable to execute a depth-first search in

order to find the first set of states for the envelope. Arbitrary relational planning

domains may not necessarily share these characteristics.

The principal observation here is that, since our planning domain is expressed as

an rmdp with the transition dynamics as a set of logical rules, then why not exploit

the vast array of techniques from classical AI planning to find an initial envelope

efficiently? The structure of the logical rules can also be taken advantage of in the

31

envelope elaboration, as well.

2.2 Finding the initial envelope

Given that we have a set of rules and the problem description, the next step in

envelope-based planning is finding the initial envelope. We know that in a relational

setting, the underlying mdp space implied by the full instantiation of the representa-

tion is potentially huge.

When a ppddl-style rule is grounded in a domain, it yields an exponential number

of actions as the number of domain objects grows. Since large numbers of actions

will grind any forward-searching procedure to a halt, we want to avoid considering

all the actions during our plan search. Constraining the search appropriately will be

essential in this phase.

In Chapters 4 and 5, this will be discussed in detail. But for now, we note the

essence of the issue: To cope with a potentially large branching factor, we have

identified a technique called equivalence-class sampling.

We partition into equivalence classes the actions that produce similar effects with

respect to our basis set of predicates. We will define this similarity in some detail

further on. The forward-search can then proceed by considering only a canonical

action from each class. The canonical action, which we will define in detail later,

is representative of the effects of any action from that class. Eliminating redundant

actions in this way has the potential to significantly reduce the branching factor. In

addition, we can carry out an analysis based on the predicates necessary to achieve

the goal to identify a minimal set of domain predicates that can be used to produce

a solution. Such a minimal effective representation, if one exists, can further help

mitigate the combinatorial effects of searching in large domains. As we will see later,

this procedure happens dynamically and is informed by the given start state and goal

condition.

32

2.3 From a plan to a policy

Turning the initial trajectory into a space-efficient mdp in which to do policy genera-

tion will also require some care, which we will discuss in Chapter 6. We must go from

the sequence of actions returned by initial plan to a set of states that will comprise

our envelope mdp.

In essence, we compute the set of mdp states iteratively by applying the sequence

of actions in our plan starting from the initial state. An important feature of the

transformation, however, is that transitions that initiate in an envelope state but do

not land in an envelope state are redirected to a special out state. The leftmost mdp

in Figure 2-1 shows this for a small example task.

Envelope expansion, or deliberation, involves adding to the subset of world states

in our envelope mdp. When the envelope is created from the initial trajectory, only

the highest-probability outcome is considered for each action. In the deliberation

phase, we analyze what the other probable outcomes might be for the actions in our

policy. If we find that a particular other outcome is relatively likely, or carries a high

penalty, we may wish to incorporate that outcome into our envelope mdp.

Importantly, we would like the resulting mdp to take advantage of the minimal

representation discovered in the previous step. This will mean that each mdp state

becomes an abstract state, actually representing a set of possible underlying states.

This will have implications for how we compute transition probabilities and, thus,

compute desirable policies.

To implement envelope-based planning in relational domains, then, we need a set

of probabilistic relational rules, which tell us the transition dynamics for a domain;

and we need a problem description, which tells us the states and reward. Together,

the description of a domain and a problem instance fully specify our planning task.

Figure 2-2 gives a high-level schematic for the rebp system. As we will see, using the

equivalence-based envelope method, we can take advantage of relational generaliza-

tion to produce good initial plans efficiently, and use envelope-growing techniques to

improve the robustness of our plans incrementally as time permits. rebp is a plan-

33

Figure 2-2: A high-level schematic of the rebp planning system. There are two main
inputs to the system: a set of probabilistic rules. and a description of the planning
problem. The next process is to find an initial plan quickly. The final process is to
refine the initial plan as resources permit.

ning system that tries to dynamically reformulate an apparently intractable problem

into a small, easily handled problem at run time.

34

Chapter 3

Background and Related Work

In the next few sections, we cover some background material and review past work

as it relates to specific facets of our approach.

3.1 Representation issues in relational MDPs

As we saw previously, structured representations for mdps allow the expression of

world dynamics in a compact, problem-size independent way. However, when it

comes time to plan with such representations, many approaches end up working with

propositionalized versions of the problem, because doing so lends itself to established

solution techniques. What representational and algorithmic techniques can we use to

avoid working directly in potentially large ground state and action spaces?

3.1.1 First-order RMDP methods

One way of working with a model whose size is independent of the problem instance,

of course, is never to ground the model at all.

Some recent approaches towards solving mdps describe states in terms of logical

formulae. They use structured representations of world dynamics to estimate the

value of a state without ever resorting to a ground description.

In one of the earlier papers on this topic, Boutilier et al. find policies for first-

35

order mdps expressed in the situation calculus. Their technique is called symbolic

dynamic programming (sdp), and is based on first-order decision-theoretic regression

(fodtr) [8]. sdp solves for the value-function of a first-order domain by manipulating

logical expressions that stand for sets of underlying states. These logical statements

express states that have the same value function; by regressing that expression back-

wards through a logical action operator, one obtains an expression and a value for the

states in that action’s pre-condition. Keeping the set of regressed expressions compact

— a new logical formula is created for every action that might have produced a given

state — seems to be hard and to require complex theorem-proving. It may be that in

the worst case, the algorithm produces one logical expression corresponding to each

ground state. In subsequent work, Sanner and Boutilier build on the fodtr work

with approximate linear programming for First-order mdps (foalp). The idea is to

represent the value function of a domain more compactly, as the linear combination

of a set of logical basis functions. Each basis function is intended to represent some

aspect of the goal and combines additively with the other basis functions. Sanner and

Boutilier develop a first-order version of the approximate linear programming algo-

rithm to solve for the required weights. This approach has the advantage of avoiding

the combinatorially exploding representation of the value function of sdp and of other

approaches using an exact value iteration approach [30, 39]. However, the computa-

tional challenge shifts to deriving and ensuring consistency of the potentially large

number of constraints (since there are, in principle, an infinite number of situations

to consider). Sanner and Boutilier show some experiments in a simulated elevator

domain, and note that the foalp approach produces policies which evaluate favor-

ably compared to some intuitive heuristically-guided policies. They do also note that

running times in their experiments ranged from five minutes with one basis function

to two hours for six basis functions. Unlike many mdp approaches, however, foalp

does provide bounds on the value functions.

Grossman et al. [30] also propose a symbolic version of the value iteration al-

gorithm; instead of the situation calculus, however, their approach uses the fluent

calculus. The situation calculus expresses a state as the result of a sequence of ac-

36

tions starting from the initial state; thus, to access the value of a fluent, a situation

term must sometimes be “unrolled” until the value of the fluent is determined. In

contrast, the fluent calculus manipulates the values of the fluents directly and ex-

presses a state as the collection of fluent values. It is essentially a predicate logic.

Otherwise, the idea is essentially the same as before; i.e., to find a minimal, symbolic

partition of the state space and associate each partition with the correct utility value.

Like Boutilier et al., Grossman et al. model a stochastic action as a collection of “de-

terministic” actions, the choice of which is under “nature’s control”; each component

outcome is associated with a probability of being “chosen.” As before, the algorithm

starts from the goal and regresses through each action operator to obtain an expres-

sion and a value for preceding states. The same complexity issues with maintaining

the compactness of the regressed expressions are also factors in this approach.

Symbolic treatments of First-order mdps are attractive in the promise of being

able to represent a value function logically, independently of the size of the ground

state space. However, in practice, it seems that the computational challenges are

significant. In fact, propositional approaches are still extremely compelling in practice

due to their simplicity and well-understood behavior.

3.1.2 Trading off first-order and fully-ground

So, on the one hand we have propositional approaches which are simple but suffer from

combinatorial explosion; and, on the other hand we have symbolic approaches which

seek to maintain a small representation, but, involve considerable computational heft.

The underlying message is nevertheless clear: the more an agent can compute

logically and the less it attends to particular domain objects, the more general its

solutions will be. We propose a middle path: we agree to ground things out, but in

a principled, restricted way. We will represent world dynamics by a set of relational

rules. Relational representations allow the structure of the domain to be expressed in

terms of object properties rather than object identities and thus yield a much more

compact representation of a domain than the equivalent propositional version can.

Furthermore, relational representations permit the exploitation of structure in the

37

Figure 3-1: Our approach explicitly inhabits the space between fully ground and
purely logical representations, and between straight-line plans and full mdp policies.

dynamics: for example, in a blocks world, it often does not matter which block is

picked up first as long as a stack of blocks is produced in the end. If it were possible

to identify under what conditions actions produce equivalent kinds of effects, the

planning problem could be simplified by considering a representative action (from

each equivalence class) rather than the whole action space. That is one way in which

we can limit the impact of grounding a domain. Then, by extending the envelope

method of Dean et al.[13] to use these structured dynamics, we can work with an

envelope of states and refine the policy by gradually incorporating nearby states into

the envelope. This approach avoids the wild growth of purely propositional techniques

by restricting attention to a useful subset of states. Our approach strikes a balance

along two axes: between fully ground and purely logical representations, and between

straight-line plans and full mdp policies.

3.2 Planning in a deterministic model

Part of our job in implementing the envelope method of Dean et al.[13] will be to

compute an initial envelope of states. To make this computation efficient, we consider

38

making a plan in a determinized version of our domain model: we simplify the original

probabilistic model by assuming the most likely effect as the only effect for each rule.

In the case of deterministic actions, a solution plan is said to exist if there is a

sequence of actions that leads from the starting state to the goal. In the case of

stochastic actions, however, we have no control over the actual outcome; we only

know the distributions over outcomes. What does it mean for a solution straight-line

plan to exist in this case? Since a straight-line plan considers only a single outcome

at each step, we designate the anticipated outcome to be the one expected by the

planning procedure; usually, this is just the most likely outcome. Thus, in this case,

a plan exists if there is a sequence of actions whose expected outcomes yield a state

sequence that leads to the goal. We accept as a goal state any state that entails the

goal conditions g.

Because the envelope algorithm will later consider devations from the original set

of states, planning with deterministic approximation of our original model provides

Once we have taken this step, our task reduces to a deterministic planning problem.

We will need to take advantage of the structure of the domain dynamics in order to

plan efficiently, however, since combinatorial explosion may still produce unwieldy

state and action spaces.

The reduction of action space in order to plan more efficiently is an idea that

has a rich history. We try to improve upon these past approaches by doing the

reduction dynamically and in the presence of arbitrarily complex relational structure.

We survey some relevant past work in the following sections.

3.2.1 Reduction of action spaces

A great deal of work in identifying action “symmetries” to reduce the effective action

space has come out of work on constraint satisfaction problems (CSPs). Constraint

satisfaction refers to the problem of deciding what values it is possible to assign to

a set of variables such that the specified equality and/or inequality constraints are

maintained.

Ellman [15] describes an approximation technique for solving constraint-satisfaction

39

problems (CSPs). In his problem, there are objects in the domain that must be as-

signed to variables: for example, a set of jobs, each of a certain duration, that must

be assigned to start times in such a way that all jobs finish before a deadline; or, a

set of balls of a certain weight, that must be assigned to one of two partitions, such

that the total weight in each partition is equal. The objects in the domain have one

characteristic measure (such as duration or weight), and these objects are clustered

with respect to this measure in order to obtain a prescribed number of equivalence

classes. These classes of “symmetric” objects enable entire subsets of solutions to be

pruned: if a particular assignment is not a solution to the CSP, it is not necessary to

test an assignment that just permutes the assignments of variables to the objects in

the class.

While finding equivalence classes of objects seems like the right idea in spirit, the

use of a simple feature to guide the clustering will be insufficient in truly relational

domains.

Joslin and Roy [38] use the idea of isomorphisms to detect symmetry in planning

problems represented as constraint-satisfaction problems. Importantly, this computa-

tion is done as a pre-processing step (rather than in-line) and goals must be specified

as fully ground sentences.

In the context of planning, the work by Fox and Long [19, 20, 21] attempts to

identify symmetries in action effects in order to prune the action space. This work is

the most closely related to ours.

Fox and Long first present a notion of symmetric states that is used to simplify

planning [19]. That is, if two actions result in symmetric outcomes, then it is only

necessary to consider one of them in planning.

Object equivalence is defined as follows. Two objects are defined to be equivalent

if they have the same initial and final properties and attributes. The example in the

paper is of the gripper domain: There are two rooms, a robot with two grippers,

and a number of balls begin in one room. The task is to move all the balls to the

next room. This problem is highly symmetric; however, unless ball identities are

abstracted away, the search for a plan becomes mired in permuting the different

40

orderings of when particular balls are moved.

Object equivalence is established at the beginning of the planning process. Two

actions are considered to be symmetric if their parameter lists contain objects drawn

from the same symmetry collections. Once an object is acted on, it loses symmetry

with its original group. Fox and Long describe the different bookkeeping techniques

needed to track which objects belong to which symmetry group as planning proceeds.

The main shortcoming of the technique as described here is that symmetry groups

are not re-computed as planning progresses, and thus the advantage gained by the

computation is quickly lost as different actions are tried.

In the follow-up paper [20], Fox and Long define object symmetry as before. Two

objects are functionally identical if they share identical initial states and can make

only identical transitions. That is, two objects are identical if they are never explicitly

named in any operator schema, and if substituting one for the other yields an iden-

tical problem description. However, now, their algorithm is capable of maintaining

symmetries during the planning process. This is achieved by replacing the previous

level-independent data structure with a level-dependent one. In this context, “level”

refers to a level in the plan-graph construction. The experiments reported are on a

variation of the Gripper domain, extended to six rooms.

In the 2005 paper, the authors show experiments in a blocks world domain. How-

ever, there is an important element introduced here, that of an almost-symmetry

among objects. That is, objects can be made almost symmetric by abstracting away

the specific domain objects to which they are related: for example, it matters that

block 1 is on something, but, it doesn’t matter what. Then, block 1 can be con-

sidered almost symmetric to any other block that is also on something, regardless of

what that something is or how many there are.

The next step in Fox and Long’s approach is to figure out which objects are equiv-

alent by analyzing their relations in the initial state and goal condition. Then, the

search for a plan uses an existing heuristic, called the FF “helpful actions” heuris-

tic, [36] to put at the top of the list the actions that work on objects almost-symmetric

to ones that have already been worked on. Intuition is that if it has been determined

41

to be good idea to take an action on block 1, then down the line, it might be a good

idea to do the same thing with an equivalent block.

The ideas presented are appealing: one would like to be able to identify equivalent

states and eliminate plans that traverse equivalent sequences. And, the authors do

prove soundness and completeness of their approach. Nevertheless, there is a rather

weak notion of what makes objects equivalent: it relies essentially on unary prop-

erties of objects rather than their participation in a complex web of relationships.

Furthermore, the notion is incompatible with a first-order statement of a goal: the

calculation of symmetry requires analyzing an object’s properties both in the initial

state and a goal state, so, a fully ground goal state is required. It would not be

feasible to specify a goal condition such as, “put all of the blocks on the table into a

stack”, which actually specifies a number of satisfying ground states.

The goal of Haslum and Jonsson [34] is also to reduce the number of operators

(actions) in order to reduce the branching factor and speed up search. They define

the notion of redundant operator sets. Intuitively, an operator is redundant with

respect to an existing sequence of operators if it does not produce any effects different

from those already produced by the the sequence. The set of redundant operators,

considering sequences up to a pre-determined length, are computed before starting to

plan; however, this is a computation that is pspace-hard in general. An approximate

algorithm is also given. In the familiar blocks-world, for example, this method would

remove an atomic move action, since its effects would be redundant to the two-step

sequence of pickup and putdown actions. Planning efficiency increases when such

redundancies are found, even though their presence is a function of a given domain

specification and perhaps not a fundamental characteristic of the problem. A search

for this type of redundancy is something that could be used in combination with our

algorithm, since each approach seeks redundancies of different kinds.

Other related work is that of Guere and Alami [31]. In their approach, they

define the idea of the “shape” of a state. A state “shape” is in some sense a notion

of equivalence: the main idea is if there is a substitution of one ground state’s object

names for another state’s object names that produces the same list of facts, then

42

the two states have the same “shape”. An algorithm is given to try to construct all

the “shapes” for a particular domain instance. To extract a plan/solution, it looks

for an action that connects a state in the starting “shape” to a state in the goal

“shape”. There is potential for concern in that one needs to have computed all the

members/substitutions of the “shape” classes offline for a particular domain instance

(say, for a blocks world with 50 blocks). In our work, by contrast, we try to estimate

equivalence classes on the fly given the current state of the search. As a result, we

can avoid considering shapes of states that are in very distant parts of the state space

from the initial state.

3.2.2 Heuristic search methods

Conceptually, our strategy is also related to mdp planning algorithms that take ad-

vantage of a known starting state and a heuristic estimate of state values in order to

avoid exploring an entire state space for a solution. This is a very powerful strategy,

since, by conditioning on a known initial state, we can avoid parts of the state space

that are “far” from the path between the initial state and the goal.

In one of the first approaches of this type, Real-Time Dynamic Programming

(rtdp) [1], each trial simulates a greedy policy until the goal is reached (or some

number of steps have passed), and then it updates the value function only over the

visited states. This is also described as “asynchronous value iteration”, since not all

states are updated on each round of the algorithm. Because it uses a heuristic to

estimate the value of unknown states, it is quick to produce good policies but slow

to converge on the whole state space since only “good” states are visited. rtdp is a

real-time algorithm, in the sense that execution and value-function updates can be

interleaved. It converges with probability one to an optimal policy for any state s in

the known set of starting states. rtdp assumes a complete and accurate model of

its environment, which is specified as an atomic mdp; or, it can also learn this model

as it goes along (a variant called adaptive rtdp). Barto et al. show results of some

experiments in their “race track” domain, a grid-based control problem in which a

simulated car must decide how to use its actions (accelerating or braking in one of

43

the cardinal directions) to most quickly reach a “finish line” given a set of states

that form a “starting line”. The “shortest path” heuristic was used to ranke candiate

states.

A subsequent algorithm, lao* [32], again uses a heuristic to estimate the value

of a state. It is based on the classic a* algorithm, which returns solutions in the

form of a sequence of actions; lao* finds solutions that may take the form of cyclic

graphs. In contrast with rtdp, it is an offline algorithm: i.e., it searches for a

solution before beginning execution. It searches in the space of directed, possibly

loopy graphs, in which each node is a state and each arc is an action transition.

It searches by building a path from the start state to a non-terminal state, called

a partial plan, whose value is given by the heuristic estimate for the so-called tip

state. On each iteration of the algorithm, lao* chooses the best partial plan, and

non-deterministically chooses which action transition out of the tip state from which

to continue the search. DP backups are done only on the expanded part of graph.

lao*, by virtue of its descendence from a*, inherits a number of techniques for

efficient search and thus converges more quickly than the original rtdp. Like rtdp,

lao* is designed to solve stochastic shortest-path problems given a start state and to

find a solution that minimizes the expected cost of reaching a goal state. lao* can

also be extended to solve infinite-horizon problems. lao* converges to an ε-optimal

solution after a finite number of iterations, given an admissible heuristic evaluation

function. Hansen and Zilberstein evaluate lao* on the “race track” problem of Barto

et al. and show that it is able to converge faster than rtdp.

A more recent approach, Labeled Real-Time Dynamic Programming (lrtdp) [6],

is an improvement that speeds up convergence of the original rtdp algorithm. It does

this by labeling a state and its downstream as solved, so it can focus on updating the

values of unvisited states.

Heuristic planning approaches share our objective of seeking to avoid the evalua-

tion of a whole, potentially large, state space by using a heuristic estimate. However,

computing a good heuristic can often be rather expensive, and it may not always be

obvious how to choose a good heuristic. Furthermore, these approaches are agnostic

44

on the problem of potentially large action spaces, which is impossible to ignore for

relational domains.

3.2.3 Dynamic Replanning, or Plan Repair

This body of work consists of heuristic methods for robotic path planning for do-

mains in which the dynamics, or knowledge about the dynamics, may change. These

approaches usually consist of first finding an initial path with a traditional search,

and when new information about the domain is obtained, considering only a subset

of the MDP states for re-evaluation [17, 41, 55]. Replanning, or repairing an existing

plan is a powerful idea: when the unexpected happens, it is often more efficient to

repair an established plan rather than to restart from scratch.

One of the first algorithms in this line is the Focussed D* algorithm by Stentz [55].

The focussed D* algorithm first finds a path using an A*-like search; then, as the

robot moves and updates its path-cost information, the planned path is incrementally

modified by considering the remaining discrepancy between the goal and the robot’s

current position. The algorithm is characterized as a generalization of A* to domains

in which the dynamics change over time. However, like in A*, the domain dynamics

are assumed to be deterministic.

The D* Lite algorithm [41] is similar in spirit to Focussed D*, but is algorithmically

different. It is based on the Lifelong Planning A* algorithm (LPA*) [40, 42], which

dynamically re-computes the shortest path from start to goal as new information

about path costs is received. D* Lite improves on LPA* to dynamically recompute

the shortest path from the goal to its current position. In addition to being at least as

efficient as Focussed D*, D* Lite is accompanied by an extensive theoretical analysis

by virtue of its foundation on LPA*[42]. D* Lite also assumes a deterministic domain.

To deal with non-deterministic MDP domains, Ferguson and Stentz propose a dy-

namic programming (DP) algorithm called Focussed Dynamic Programming (FDP) [17].

The idea is to choose some subset of states for DP updates, and then to to order those

updates in the most effective way. FDP uses two heuristics: a less expensive heuristic

decides which states get inserted into a queue, and a relatively more expensive one

45

is used to prioritize the states in the queue. The basic FDP algorithm uses these

two heuristics to avoid computing values for all states in the MDP when planning a

path from start to goal. Three changes are needed in the basic algorithm to allow

an existing plan to be repaired when new information is received: the states’ value

estimates need to be revised if path knowledge changes; the algorithm must keep in

consideration all states that might possibly become relevant; and, computation must

be focused on the robot’s current position (which is constantly changing).

So far, the work in the area of plan repair depends crucially on the use of grid-

based coordinates, since the heuristics that estimate path distances must be able to

measure the distance between two positions.

3.3 Equivalent transition sequences

The correctness of our overall approach relies on the idea that there can be equivalent

transition sequences in a dynamic system, and that a characteristic of a particular

transition sequence (such as reaching a goal state, or, failing to reach a goal state) is

true of any transition sequence to which it is equivalent.

This notion appears in some of the earliest work on the use of symmetry for

simplifying analysis of dynamic systems. Some of these approaches can be found in

the context of model checking for Petri nets.

Starke [54] was one of the first to take advantage of symmetries in reachability

analysis for Petri nets. Petri nets are models of concurrent, discrete-time, dynamic

systems that consist of place nodes, transition nodes, and directed arcs that connect

place nodes to transition nodes. [51]. Noticing that reachability graphs, from which

all the behavioural properties of a Petri net can be derived, were often prohibitively

expensive to compute in full — their size corresponds to the number of states of the

system modelled by the net — Starke developed a method for detecting symmetries

in the net and thereby producing a factorized reachability graph. This factorized

reachability graph, which represents symmetric transitions only once, can be much

smaller and faster to compute than the original reachability graph.

46

Later, Emerson and Sistla [16] showed how to exploit such symmetry in the field

of model-checking. They assume a system composed of many identical processes that

has a global state transition graph M. Given any group G contained in the set of

automorphisms of M, they define the graph M̄ to be the quotient structure of M

with respect to G. Then, when some specification formula f is to be tested in the

modelM, it is sufficient to test it in the potentiallly much smaller model M̄ instead.

This idea has shown up more recently in the work of Rintanen [53], who has con-

sidered equivalence at the level of transition sequences for use in SAT-based planners.

As a pre-processing step, the problem designer defines a function E that partitions

the domain states into classes, and automorphisms are found in the graph represent-

ing the transitions between all the states. A formula is generated to encode when two

transition sequences are interchangeable, as well as another formula that prevents ex-

amining two transitions when they are known to be interchangeable. These formulae

are added to the SAT formula for the planning or model checking problem. These

formulae can sometimes be quite large, and the design function E will need to be

specified by a designer for any particular application.

3.4 Foundation techniques

Our work relies heavily on some preceding techniques, which we will review in the

next few sections.

3.4.1 Fast Forward and the FF heuristic

The Fast-Forward planning system (ff) developed by Hoffmann and Nebel is one of

the best known and most successful planning systems for propositional domains. It is

a forward-chaining, heuristic-based, state-space planner. Its success is due in part to

its ingenious heuristic (the principle of which is originally due to Bonet and Geffner

in their HSP system [5]). To make its heuristic estimate, ff relaxes the given task

into a simpler, relaxed task by ignoring the delete lists of all rule operators. The

heuristic value of a state, i.e., how far we estimate the state to be from the goal, is

47

just the number of steps taken to solve this relaxed task. Since the number of steps

will be an underestimate of the true distance, this technique produces an admissible

heuristic.

Underlying the computation of the ff heuristic is a Graphplan-style algorithm.

The Graphplan algorithm was originally developed for traditional strips domains

and is very effective [3] in those domains. Graphplan finds the shortest straight-

line plan by iteratively growing a forward-chaining structure called a plan graph and

testing for the presence of goal conditions at each step.

Figure 3-2 shows an illustration of the Graphplan plan graph in action. The exam-

ple is a blocks-world planning task, with initial state given at left, and goal condition

at right. The first layer of the plan graph simply lists the set of propositions available

in the initial state. Next, the algorithm determines what actions are applicable given

the propositions in the previous layer, and keeps track of which actions compete with

each other for propositions — these are called mutual exclusivity, or mutex for short,

constraints. The next layer in the graph consists of all the propositions added by

the actions in the last layer, in addition to all the propositions in the previous layer,

propagated by implicit “maintenance” actions. If, in the latest layer of the graph, the

necessary propositions exist to satisfy the goal condition, the Graphplan algorithm

executes a backtracking search from the most recent layer to the earliest, for a mutex-

free set of actions that produces the propositions necessary to achieve the goal. In

Figure 3-2, the goal is to have block3 on block1, block1 on block2, and block2 on

the table. The propositions necessary to satisfy the goal are circled in red. In this

case, the action sequence of picking up block3 and then putting it down on block1

is sufficient, since the remaining propositions were true in the initial plan layer and

appear in the final layer via only maintenance actions.

3.4.2 MDP model minimization

The idea behind MDP model minimization is to group states together that exhibit

the same response to action effects, thereby preserving the Markovian property of the

system [11, 26, 12, 27].

48

Figure 3-2: An illustration of the Graphplan algorithm finding a solution for a block-
stacking task given the initial state at left, and the goal condition at right. Main-
tenance actions are shown with dotted lines. For simplicity, the mutual-exclusivity
constraints are not shown.

49

The idea of MDP minimization is based on techniques from FSA minimization

[37]. In a deterministic FSA, states can be considered equivalent if they exhibit the

same output and state transitions under all actions. A relation that groups pairs of

states in this way is termed a bisimulation. FSA minimization algorithms depend on

the notion of a split operation: given a partition P of the state space, two blocks of

states B and C in the partition, and an action, produce a new partition that refines

the block B into smaller groups of states that transition similarly into C.

Givan et al.[11, 26] consider model minimization as it applies to planning. They

argue that it may be unnecessarily aggressive to distinguish between states whose be-

havior differs on action sequences not leading to the goal. They sketch how classical

goal-regression planning can be cast as computing an approximate partial FSA min-

imization. Partial means that the partition may be coarser (i.e., group more states

together) than the true minimal partition, and approximate means that the sets of

states may overlap, rather than being a true partition. The sketch is as follows: in

the first step, the split operation starts from the goal state, and regresses an action

backward, producing a refinement that consists of blocks corresponding to the pre-

conditions that enable the execution of the action. Unless care is taken, however, a

naive regression algorithm may continue to produce splits without realizing that the

generated blocks, described by boolean formulas, denote the same, or overlapping,

sets of ground states. Unfortunately, enforcing mutual exclusivity requires testing

a boolean formula for satisfiability, which is NP-complete. Givan et al. suggest an

algorithm that modifies the original solution in two ways: first, the language that de-

scribes the minimized MDP is reduced (i.e., a reachability analysis throws out fluents

deemed to be irrelevant); and second, a less optimal but easier to compute split

operation (i.e., it splits at least as much as the optimal operation) is applied in the

smaller space.

In the stochastic setting, it is necessary to consider the probability of a transition

between states, not just the output behavior given a particular transition sequence.

The notion of stochastic bisimulation is proposed as a criterion for state equiva-

lence. [11, 27] Two states i and j are said to belong to a stochastic bisimulation

50

relation, E, if they share two properties. First, their immediate rewards must be

equal both to each other and to that of the other states in their respective blocks;

and second, given an action α and two states i′ and j′ in the relation, the probability

of the transition under α from i to i′’s block must equal that of the transition from

j to j′’s block. The stochastic bisimulation E induces a partition P on the group of

states; in other words, bisimilar states get grouped into the same block.

Unfortunately, computing an exact stochastic bisimulation relation with an opti-

mal split operation is NP-hard. One may ease the computational burden by con-

sidering a less than optimal split operation; there is, of course, a trade-off between

the ease of computation and the amount of minimization that is achieved. Dean and

Givan [27] show how the previous work of Boutilier and Dearden [7] can be cast as

iteratively computing an approximate stochastic bisimulation partition.

Another way to relax the problem of MDP minimization is to consider states that

share approximately the same transition behavior. Dean et al. [12] formalize this with

their notion of approximate homogeneity. The main computational tool is an MDP

in which transition probabilities and rewards are closed intervals, rather than scalar

values. An approximately optimal policy can be found for such a bounded-parameter

MDP (BMDP) using an extension of the usual value iteration algorithm for MDPs

called interval value iteration. Thus, partition blocks are summarized with interval

statistics, and the goal is to find a partition whose component states have reward and

transition probabilities that differ by less than ε, called the ε-approximate stochastic

bisimulation property. An initial partition is constructed based on immediate reward,

and then is successively refined by searching for clusters of approximately-similarly

behaving sub-blocks.

We will need results from the work in bounded-parameter MDPs when we trans-

form a plan trajectory into an envelope MDP. While the above approaches involve

propositional MDPs and do not also involve grouping actions, we note that the states

in our approach are abstract states, which represent groups of underlying states.

Thus, many of the results — in particular, the interval value iteration algorithm —

are directly applicable to our setting.

51

Chapter 4

Formally defining equivalence

The complexity of planning is driven primarily by the length of the solution and

the branching factor of the search. The solution length can sometimes be effectively

reduced using hierarchical techniques. The branching factor can often be reduced,

in effect, by an efficient heuristic. We will provide a novel method for reducing the

branching factor by dynamically grouping the agent’s actions into state-dependent

equivalence classes, and only considering a single action from each class in the search.

This method can dramatically reduce the size of the search space, while preserving

correctness and completeness of the planning algorithm. It can be combined with

heuristic functions and other methods for improving planning speed.

To be clear about the kinds of things we’ll be working with, we provide as an

example pddl description of a blocks-world planning problem in Figure 4-1, just

to have it handy. This is almost the same as the ppddl description in Figure 1-2;

however, in this chapter we will only consider deterministic effects.

4.1 Assumptions and definitions

Assumption 1 (Sufficiency of Object Properties). We assume a domain object’s

function is determined solely by its properties and relations to other objects, and not

by its name.

An important consequence of this assumption is that it will be necessary to support

52

(define (domain blocksworld)

 (:types block table - object)
 (:constants table - table)

 (:predicates
 (is-red ?block - block)
 (is-blue ?block - block)
 (is-green ?block - block)
 (holding ?block - block)
 (on-top-of ?block - block ?obj)
)
 (:action pick-up-block-from
 :parameters (?top - block ?bottom)
 :precondition (and (not (= ?top ?bottom))
 (forall (?b - block) (not (holding ?b)))
 (on-top-of ?top ?bottom)
 (forall (?b - block) (not (on-top-of ?b ?top))))
 :effect (and (holding ?top) (not (on-top-of ?top ?bottom)))

)
 (:action put-down-block-on
 :parameters (?top - block ?bottom)
 :precondition (and (not (= ?top ?bottom))
 (holding ?top)
 (or (= ?bottom table)
 (forall (?b - block) (not (on-top-of ?b ?bottom)))))
 :effect (and (not (holding ?top)) (on-top-of ?top ?bottom))
)
)

(define (problem bw-1) (:domain bw-1)

 (:objects block0 block1 block2 block3 block4 block5 - block)

 (:init
 (on-top-of block0 block1)
 (on-top-of block1 table)
 (on-top-of block2 table)
 (on-top-of block3 block4)
 (on-top-of block4 block5)
 (on-top-of block5 table)
 (is-red block0)
 (is-red block1)
 (is-green block2)
 (is-red block3)
 (is-green block4)
 (is-red block5)
)
 (:goal
 (and (exists (?fb0 - block)
 (and (is-green ?fb0)
 (exists (?fb1 - block)
 (and (not (= ?fb0 ?fb1))
 (is-green ?fb1)
 (on-top-of ?fb0 ?fb1)
 (exists (?fb2 - block)
 (and (not (= ?fb0 ?fb2))
 (not (= ?fb1 ?fb2))
 (is-blue ?fb2)
 (on-top-of ?fb1 table))))))))
)
)

types

objects

rules

objects

initial state

goal

predicates

Figure 4-1: A complete pddl specification of a planning problem.

53

fully quantified goal sentences, a considerable generalization to the propositional goals

typically handled by planning systems. If we are in a setting in which a few objects’

identities are in fact necessary, say by being named in the goal sentence, then we

encode this information via supplementary properties. That is, we add a relation such

as is-block14(X) that would only be true for block14. Obviously, if identity matters

for a large number of objects, the approach presented here would not generate much

improvement.

Intuitively, we mean to say that two objects are equivalent to each other if they

are related in the same way to other objects that are, in turn, equivalent.

We will start by defining an equivalence relation on states. To do this, we will

view the relational state description of a state s as a graph, called the state relation

graph, and denoted Gs. The nodes in the graph correspond to objects in the domain,

and the edges correspond to binary relations between the objects. Relations with

more than two arguments, e.g., refuel(h1,level1,level2), can be represented making

edges that “split” the relation, e.g., refuel1(h1,level1) and refuel2(level1,level2). In

addition, nodes and edges have a label, L, which is a set of strings. The label for

each node contains the object’s type and the values of any other unary predicates

in the domain; the label for each edge contains the relation’s name. Two states are

equivalent if there is a one-to-one mapping between the objects that preserves node

and edge labels of the state relation graphs. That is:

State equivalence: Two states s1 and s2 are equivalent, denoted s1 ∼ s2, if there

exists an isomorphism, φ, between the respective state relation graphs: φ(Gs1) = Gs2.

In Figure 4-2, we have an example of state equivalence. To determine if states

s1 and s2 are equivalent, we construct their respective state relation graphs: Gs1 and

Gs2 . For each object in the state, we add one node to the graph. This node is labeled

with the object’s type and any unary properties. For example, note node 0 in s1

is labeled with the type Block and the property isgrey(). Next, for each relation

between objects in the state, we add one edge between the corresponding nodes in

the graph. This edge is labeled with the name of the relation. Referring to the figure

54

0

42

2

table

0

3

1 5

4

type:Block
isgrey()

type:Block
iswhite()

type:Block
isblack()

type:Table

5

table

3

1

type:Block
isgrey()

type:Block
iswhite()

type:Block
isblack()

type:Table

onon

s1 s2

Gs1 Gs2

2

table

0

4 5

table

3

1

φ(Gs1) = Gs2

Figure 4-2: An example of determining equivalence between states s1 and s2. The
first step is to construct the state relation graphs Gs1 and Gs2 . Nodes are labeled
with their corresponding object’s type and properties, and edges are labeled with the
corresponding relation’s name. Then, we look for a mapping, φ, between the two
graphs.

55

0

γ(a1, s) γ(a2, s)

3

0

42

s
3

5

42

3

5

0

425

5

table

3

4 4

table

2

φ(Gγ(a1, s)) = Gγ(a2, s)

2

0

5

3 0

a2

 pickup(3,5)
a1

 pickup(0,2)

[a1] = { pickup(0,2), pickup(3,5) }

a1 = pickup(0,2)
a2 = pickup(3,5)
a3 = pickup(4,table)

ã1 = pickup(0,2)
ã3 = pickup(4,table)

Figure 4-3: An example of determining whether two ground actions belong in the
same equivalence class. Two ground actions are equivalent, by definition, if they
result in equivalent successor states.

56

again, we see that, for example, the edge between nodes 0 and 2 is labeled on, since

the on relation holds between blocks 0 and 2 in s1. Finally, we look for a mapping,

φ, between the two graphs that respects the given labeling.

We use the notation γ(a, s) to refer to the state that results from taking action a

in state s. If a is an action following the pddl syntax, then we calculate γ(a, s) by

removing from s all the atoms in a’s delete list and adding all the atoms in a’s add

list. We will sometimes refer to this calculation of γ(a, s) as “propagating” s through

the dynamics of a. More precisely, we write:

γ(a, s)) = φ(s ∪ add(a) \ del(a)),

Where del(a) refers to set the atoms that are negated in the effect of a, and add(a)

refers to the set of atoms that are non-negated in the effect of a.

With respect to a given state s, then, we define two ground actions a1 and a2 to

be equivalent if they produce equivalent successor states, γ(a1, s) and γ(a2, s):

Action equivalence: Two actions a1 and a2 are equivalent in a state s, denoted

a1 ∼ a2, iff γ(a1, s) ∼ γ(a2, s)

An example is shown in Figure 4-3. We see how taking two instances of the

pickup action in state s produce two different successor states that can be found to

be equivalent to each other, using the procedure described above. In this case, we

would put these two actions in to the same equivalence class. This process is repeated

for all pairs of ground actions in s.

Just a word on notation : we will write [o] to designate the equivalence class

(which is a set) of an entity o. It will sometimes be convenient to use the

shorthand notation õ to indicate that we are referring to o as a representative

entity of its equivalence class.

Since our objective is to group all actions in a state into equivalence classes, this

definition can be unwieldy to use directly in the calculation of equivalent actions: it

requires propagation of the state through each action’s dynamics in order to look for

pairs of resulting states that are equivalent. We can, instead, overload the notion

57

0

2

5

table

3

42

0

φ(Gs) = Gs

2

table

0

4

[4]

[0]

[2]

0

42

s
3

5

a1 = pickup(0,2)
a2 = pickup(3,5)
a3 = pickup(4,table)

Gs~

ã1 = pickup(0, 2)
ã3 = pickup(4, table)

s~

~ ~

~ ~

~

~ ~

~

[table]

Figure 4-4: Action equivalence classes can also be found directly by computing equiv-
alence classes among objects in the originating state. Each ground action applicable
in the abstract state [s] is a representative action for its equivalence class.

58

of isomorphism to apply to actions and develop a test on the starting state and

actions directly, without propagation. In ppddl and related formalisms, actions can

be thought of as ground applications of predicates. Thus, each argument in a ground

action will correspond to an object in the state, and, thus, to a node in the state

relation graph. So, two actions applicable in a state s are provably equivalent if: (1)

they are each ground instances of the same operator, and (2) there exists a mapping

φ(s) = s that will map the arguments of one action to arguments of the other. In

this case, since the isomorphism φ that we seek is a mapping between s and itself, it

is called an automorphism. We compute action equivalence via the notion of action

isomorphism, defined formally as follows:

Action isomorphism: Two actions a1 and a2 are isomorphic in a state s, denoted

a1 ∼s a2, iff there exists an automorphism for s, φ(s) = s, such that φ(a1) = a2.

This idea is illustrated in Figure 4-4: to compute the equivalence classes for the

actions applicable in a state s, we first find the set Φ of automorphisms of the graph

Gs. This set of automorphisms induces a grouping into equivalence classes of the

objects in s. An equivalence class containing an object consists of the set of objects

to which it was mapped in one of the automorphisms φ ∈ Φ. This grouping on objects

lets us construct a representative graph G̃s, with one node per representative object.

When we compute the set of actions applicable in the corresponding representative,

or canonical, state, s̃, we will have found exactly the set of representative actions for

each equivalence class.

4.2 Consequences and main theorem

To show that the relations ∼ and ∼s defined in the definition of state equivalence

and action isomorphism are in fact equivalence relations, we have to show that they

are reflexive, symmetric, and transitive.

Lemma 1. Relation-graph isomorphism defines an equivalence relation on states and

actions.

Proof. First, a state s produces a unique relation graph Gs, and there always exists

59

the identity mapping from Gs to Gs, so we conclude s ∼ s. Next, if s1 ∼ s2, then there

exists φ such that φ(Gs1) = Gs2 . Since φ is bijective, it has an inverse, φ−1(Gs2) = Gs1 ,

and so we conclude s2 ∼ s1. Finally, if s1 ∼ s2 and s2 ∼ s3, then there exist φ1 such

that φ1(Gs1) = Gs2 and φ2 such that φ2(Gs2) = Gs3 . Thus φ2(φ1(Gs1)) = Gs3 , which

implies s1 ∼ s3. The argument for actions is analogous. �

Since the relation ∼ is an equivalence relation, we denote the equivalence class

containing item x as [x].

Next, we see that if a logical sentence is satisfied in a state s, then it can be

satisfied in any state s̃ ∈ [s]. We assume that a ground state is a fully ground list of

facts (which we can treat as a conjunction of ground atoms). When we say that a

state entails a sentence, we are speaking purely of syntactic entailment.

Lemma 2. If a sentence ρ is syntactically entailed by a state s, then it is entailed by

any s̃ ∈ [s]

Proof. Let φ(s) = s̃. If sentence ρ is entailed by s, then there is some substitution

ψ for the variables in ρ such that ψ(ρ) is a subset of s. In other words, s |= ρ if

and only if ∃ψ.ψ(ρ) ⊆ s. Assume ρ is entailed by s, and let ψ(ρ) ⊆ s. We know by

equivalence of s and s̃ that there exists a mapping φ−1 such that:

φ−1(s̃) = s.

So, ψ(ρ) ⊆ φ−1(s̃),

and, (φ−1)−1(ψ(ρ)) ⊆ s̃.

Let ψ′ = φ ◦ ψ.

Then, ψ′(ρ) ⊆ s̃, and, thus

s̃ ` ρ.

�

What we are saying in the above proof is this: if we have a substitution (ψ) that

makes a sentence (ρ) true in a state (s), then, we can make that sentence true in a

60

second state (s̃) by composing the mapping between the two states (Ψ) along with

our original substitution (ψ) to make a new, satisfying, substitution (ψ′).

As an example, consider the states s1 and s2 (in Figure 4-2) and a sentence,

ρ : on(A,B), on(B,D). Applying the substitution, ψ = {A/0, B/2, D/table} to ρ

yields the ground sentence

on(0, 2), on(2, table),

which is a subset of the complete state in s1:

on(0, 2), on(2, table), on(4, table), is− table(table).

Now, previously, we found that there exists a φ such that φ(s1) = s2, meaning

that, each object v in s1 corresponds uniquely to φ(v) in s2:

v φ(v)

0 1

2 3

4 5

table table

To get the substitution that makes ρ true in s2, we compose ψ with φ:

{φ(0)/A, φ(2)/B, φ(table)/D},

which yields the substitution

{1/A, 3/B, table/D}

and, thus, the ground sentence

on(1, 3), on(3, table),

61

which is a subset of the complete state in s2:

on(1, 3), on(3, table), on(5, table), is− table(table).

The next lemma establishes the equivalence of the states produced by taking

isomorphic ground actions in equivalent states.

Lemma 3. Let s1 and s2 be equivalent states. If two actions a1 ∈ z|s1 and a2 ∈ z|s2

are isomorphic according to the definition of isomorphic actions, then the successor

states γi(a1, s1) and γi(a2, s2) determined by their respective outcomes are equivalent.

Proof. By definition, for a given outcome i of z, γi(a1, s1) = s1∪addi(a1)\deli(a1),

so:

φ(γi(a1, s1)) = φ(s1 ∪ addi(a1) \ deli(a1))

= φ(s1) ∪ φ(addi(a1)) \ φ(deli(a1))

= s2 ∪ addi(a2) \ deli(a2)

= γi(a2, s2)

thus, γi(a1, s1) ∼ γi(a2, s2)

�

Now we almost have all the pieces to state the main theorem. We know that

equivalent schema applications, in equivalent current states, produce equivalent suc-

cessor states. Now, we must show that a sequence of schema applications can be

replaced by an equivalent sequence to produce equivalent ending states.

Definition 1 (Equivalent Planning Procedures). Let P be a planning procedure such

at at each state s, P selects an action a. Consider a planning procedure P’ such that

at each state s̃ ∼ s, P’ chooses an action ã ∼ a. Then P and P’ are defined to be

equivalent planning procedures.

62

Theorem 1. Let P be a complete planning procedure.1. Any planning procedure P’

equivalent to P is also a complete planning procedure. That is,

∀ãi ∈ [ai], γ(a1, . . . , an, s0)→ g ⇒ γ(ã1, . . . , ãn, s0)→ g .

Proof. We prove the theorem by induction. First, consider the initial step. If a1

in s0 is equivalent to ã1 in s0, then γ(a1, s0) ∼ γ(ã1, s0) (by Lemma 3). Next, we need

to show that if ai+1 in γ(a1, . . . , ai, s0) is equivalent to ãi+1 in γ(ã1, . . . , ãi, s0), then

γ(a1, . . . , ai+1, s0) ∼ γ(ã1, . . . , ãi+1, s0). Again, Lemma 3 guarantees that

γ(ai+1, γ(a1, . . . , ai, s0)) ∼ γ(ãi+1, γ(ã1, . . . , ãi, s0)), thus,

γ(a1, . . . , ai+1, s0)) ∼ γ(ã1, . . . , ãi+1, s0)).

Hence, γ(a1, . . . , an, s0) ∼ γ(ã1, . . . , ãn, s0),

and by Lemma 2, γ(ã1, . . . , ãn, s0)→ g. �

Thus, any plan that existed before in the full action space will have an equivalent

version in the new, partitioned action space.

Planning in the reduced action space consisting of representatives from each equiv-

alence class preserves completeness. It does, however, have an effect on plan paral-

lelism. Since we are limited to only one action of each class on each step, a planning

procedure that might have used two instances of the same class in parallel would have

to serialize them.

4.3 Example of computing equivalence classes

To summarize the process, we consider an example. In Figure 4-5, an example problem

instance contains 7 blocks, colored red and blue. Given the state s in the figure, our

1A complete planning procedure is one which is guaranteed to find a path to the goal if one exists.

63

z = pickup(?top - Block, ?bot - Object)
6

5

42

3s

0

2 4

6

Table

51

3

1

0

Gs

4

table

3

2

1

0

φ1(Gs) = Gs

6

5

6

table

5

2

1

0

φ2(Gs) = Gs

4

3

6

table

5

2

1

0

φ3(Gs) = Gs

4

3

1

table

0

2

Gs~

~

~ ~

~

[2]

[0]

[1]
ã1 = pickup(0, 1)
ã3 = pickup(2, table)

s~

~ ~

~ ~

[table]

Figure 4-5: The steps involved in computing action equivalence classes in a 7-block
domain. We start with the state s and the pickup operator z. The state relation graph
Gs yields the set automorphisms Φ = {φ1, φ2, φ3}. Grouping the objects together
according to the mappings in Φ, produces the canonical state relation graph G̃s, and
the canonical state s̃. The set of action equivalence classes is then represented by the
set of actions applicable in s̃, in which different colors are used to denote the object
equivalent classes.

64

task is to compute which actions, if any, fall into the same equivalence class. We

explain the procedure in detail below, using the figure for reference.

1. Compute the set of automorphisms, Φ for the state relation graph Gs of s. In

Figure 4-5, we have drawn the state relation graph for the state s. There exist

three unique automorphisms of Gs: Φ = {φ1, φ2, φ3}.

2. Compute the equivalence classes of objects. The set Φ induces an equivalence

partition among the objects. The equivalence class for each object o ∈ s is

[o] = {oi|∃φi.φi(o) = oi}.

If we let õ stand for the representative object of this equivalence class, we can

construct the canonical graph G̃s, which consists of one node per representative

object. The canonical state s̃ is constructed analogously: each object in s

is a representative of each class, and each relation between canonical objects

represents the relationship between corresponding objects of each class.

3. The set of actions applicable in the canonical state constitutes the set equivalence

actions. In this case, there are two classes of actions: one consisting of actions

similar to a1, which pick up one block from another block; and, one consisting

of actions similar to a2, which pick up one block from the table.

4. Return a reduced action set consisting of one representative from each equiva-

lence class. We return the set {ã1, ã3}.

65

Chapter 5

Equivalence-based planning

Having formally defined equivalences of actions and objects, we now discuss how they

can be used to speed up planning. Recall that since we have formulated our mdp

problem relationally, our approach will to take advantage of techniques from classical

planning to produce a straight-line plan as as efficiently as possible and then use the

state sequence induced by this plan to seed our envelope mdp.

We will first look briefly at a planning approach that does not work well but has

instructive shortcomings. Then, we will look at a more successful approach, one that

uses the action equivalence classes described above in the context of a heuristic-based

forward-search planner. We will see that the action equivalence classes are not only

useful in the main forward search, but also have the potential to significantly improve

the heuristic evaluation. In our experience, computing the heuristic can often be

a considerable portion of the overall computational effort; thus, any gains here are

important.

5.1 First approach with TGraphplan

Since transitions in an mdp setting are stochastic, our first approach was to look for

classical planning approaches that can handle stochastic actions. TGraphplan is one

simple, established technique. It is based on the well-known Graphplan algorithm,

which finds the shortest straight-line plan by iteratively growing a forward-chaining

66

structure called a plangraph and testing for the presence of goal conditions at each

step. Blum and Langford [4] describe the probabilistic extension, TGraphplan, (tgp)

which works by returning a plan’s probability of success rather than a just a boolean

flag. tgp can find straight-line plans fairly quickly from start to goal that satisfy

a minimum probability. Given tgp’s success in probabilistic strips domains, our

initial idea was to use the trajectory found by tgp to populate our initial envelope.

Of course, our relational mdp describes a large underlying mdp. tgp and other

Graphplan descendants work by grounding out the rules and chaining them forward

to construct the plangraph. Large numbers of actions cause severe problems for

Graphplan-based planners [49] since the branching factor quickly chokes the forward-

chaining plangraph construction.

In order to mitigate the potentially large branching factor, we would like to gain

leverage from any equivalence classes among actions that we might be able to identify.

When we apply this definition into the TGraphplan setting, however, the following

issue arises: in each layer of the plan graph, there is no notion of “current state.”

In the Graphplan algorithm, the first level in the graph contains the propositions

corresponding to the facts in the initial state. Each level beyond the first contains

two layers: one layer for all the actions that could possibly be enabled based on the

propositions on the previous level, and a layer for all of the possible effects of those

actions. Thus, each level of the plan graph simply contains a list of all propositions

that could possibly be true. The only information at our disposal is that of which

propositions are mutually exclusive from one another.

In order to partition actions into equivalence classes, we adopt the following cri-

terion. We define the extended state of an action to be all those propositions in the

current layer that are not mutually exclusive with each other nor with any of the

action’s preconditions. Thus, we group two actions together if the ground objects in

each argument list are isomorphic to each other with respect to each action’s extended

state.

Computing equivalence based on extended states will create a finer set of equiv-

alence classes as compared to ground states: the set of propositions that could be

67

possibly true is greater than or equal to the set that will actually become true. Thus,

the equivalence classes produced by this criterion will be at least as fine (and probably

more fine-grained) as those that exist in any actual state reachable at that layer.

While this is a reasonable first step, it quickly becomes clear that even in moderately-

sized domains, the extended-state-based approach isn’t aggressive enough and that

much more leverage is needed. Thus, we move on to formulate the planning problem

as a state-based search.

5.2 State-based approach

In a state-based search, we start with a ground state and apply the operators in our

domain to explore resulting states. We look for some sequence of operations that

will produce a ground state that satisfies the goal. Since we manipulate the states

directly, this means that we can use our definition of equivalence classes on states to

partition the action space as compactly as possible. This also means that we need to

define some kind of heuristic to guide our search. Recall that our state-based search,

to keep things as simple as possible, will take place in deterministic approximation of

the original model: the planner will return a plan by considering only the most-likely

outcome for each action. We’ll see later how this plan serves as a starting point for

the envelope-expansion phase.

For now, will divide the discussion of the state-based approach into two parts.

First, we will discuss the “outer loop”: that is, the main forward-chaining search for

a plan. Then, we will discuss the “inner loop”: how to compute a heuristic efficiently.

5.2.1 Outer loop: forward search

A typical forward-search planner has the basic structure:

68

Input: Initial state s0, goal condition g, set of rules Z

Output: Sequence of actions from s0 to a goal state

Initialize agenda with s01

while agenda is not empty do2

Select and remove a state s from the agenda3

if s satisfies goal condition g then4

return path from root of search tree to s5

else6

Find set A of ground actions applicable in s7

foreach a ∈ A do8

Add the successor of s under a to the agenda9

Algorithm 1: Basic forward-search algorithm.

Our approach will make some modifications to this basic outline. First, we include

a step before Line 1 that takes the initial ground state and reformulates it as an

canonical state, as introduced in the previous chapter. This means that, rather

than containing a list of relations among ground objects, the abstract state only

contains relations among canonical objects: those objects that are representatives of

an equivalence class.

The steps at Lines 7 and 9 also undergo a change. Instead of generating successors

from each ground action, we find the set A of equivalence classes of actions applicable

in s. Only a single successor state will be generated for each equivalence class of

actions.

Reformulating the initial state

We were introduced to this idea in the previous chapter. We want to construct a

canonical observation, or state, that captures the relationships between equivalence

classes of objects.

From here onward, we will often use interchangeably the terms node and object,

and also state and state relation graph, since there is a one-to-one correspondence

69

between objects and nodes, and states and graphs.

This means finding, first, the set Φ of automorphisms in the state relation graph

Gs0 of s0. We will compute the set of object equivalence classes of s, which starts out

empty, as we go. We proceed as follows: for each node n ∈ Gs0 and equivalence class

C of s, determine if there exists an isomorphism φ that maps n and the representative

node of the class C. If so, then we know that n belongs in C. Otherwise, we create a

new class C ′ and add n as first member. Which node gets chosen as a representative

node for a class is arbitrary. In our implementation, we just use the first node that

was added to the class. Pseudo code for this procedure is shown in Algorithm 2,

below:

Input: Canonical state s̃

/* initialize classes of s̃ with an empty list */

s̃.objectEqClasses = {}

foreach CanonicalObject o ∈ s̃ do

foreach EquivalenceClass e ∈ s̃.objectEqClasses do
õ = representative element of e

/* in the context of state s̃, determine if there is an

isomorphism φ that maps o to õ */

if isomorphic(o, õ) then
foundClass = True

break

/* if none of the object equivalence classes we have so far

contain o, create a new one */

if not foundClass then

newClass = { }

newClass.add(o)

s̃.objectEqClasses.add(newClass)

Algorithm 2: The updateClasses() function: pseudo code for computing the

equivalence classes of a state s.

70

2

1

4 3 2

10

4 3

0

on(4, table)
on(0,3)
on(1,2)

on([4], [table])
on([0], [3])

S

S∼

on([4], [table])
on([0], [2])

Figure 5-1: When we choose representatives from each equivalence class, we must be careful
to conserve the relationships that the underlying objects have in the underlying world.

Now that we know which objects belong to which equivalence class, we must

add to the state s̃ the canonical propositions describing the relationship between the

classes. But here we must stop and think carefully: if a relation exists between

two objects of different classes, we cannot simply create a proposition between the

representative objects of each class. Consider Figure 5-1, in which we show a ground

state s and its corresponding canonical state, s̃. In this case, we know that blocks 0

and 1 belong to the same class, as do blocks 3 and 2. But only the proposition

on-top-of([block0],[block3]), is consistent with the interpretation associated with

s, but not on-top-of([block0],[block2]). It is important to keep this straight

because, in the next step, we will be looking for applicable actions in s̃. The action

pick-up(block0,block3) is a legal action, and pick-up(block0,block2) is not.

To construct a consistent set of canonical propositions, we follow the procedure

in Algorithm 3, below. The basic idea is to pick a representative object o for the first

object equivalence class arbitrarily. Then, the remaining object equivalence classes

will be represented by those objects related to o in the underlying ground state. We

do this until we run out of objects related to o. If there are object equivalence classes

remaining to be represented in the canonical state, we start the process again with a

new arbitrarily chosen o.

71

Input: Canonical state s̃

/* Keep track of which classes have been computed so far in s̃ */

seenEqClasses = {}

foreach EquivalenceClass e ∈ s̃.objectEqClasses do
õ = representative element of e

addRelatedObjects(s̃, õ, seenEqClasses)

Define addRelatedObjects()

Input: Canonical state s̃, Canonical object õ, List seenEqClasses

/* recursively collect all canonical objects related to õ, and

each relation we collect is added to the canonical state, s̃ */

foreach Object o in relatedTo(õ) do

Predicate p = nameOfRelationBetween(õ, o)

s̃.addProposition(p, õ, o)

seenClasses.add(equivalenceClassOf(o))

/* recursive step */

addRelatedObjects(s̃, o, seenEqClasses)

Algorithm 3: Pseudo code for computing the propositions for a canonical state
s̃ once the object equivalence classes for s̃ have been computed.

At this point, we have constructed a canonical state consisting only of the rela-

tionships between canonical objects. This, then, is our initial observation, and we are

ready to find out which actions apply in this state.

Find the set of action equivalence classes

Given an abstract state s̃, the equivalence classes of actions can be induced directly.

For each operator Z, we determine which actions are applicable in s̃. This is done

analogously to determining which ground actions are applicable in a ground state, s,

but here is the difference: in the ground case, the universe of discourse consisted of

the set of domain objects; in the canonical case, the universe of discourse has been

reduced to the set of representative objects of each object equivalence class. So, we

72

need only consider ground actions whose preconditions are true given the canonical

propositions in s̃. To extend the terminology we have been using, we call the ground

actions in the canonical case canonical ground actions. For example, in Figure 5-1,

yields two possible canonical ground actions: pick-up-block-from([4],[table]) and

pick-up-block-from([0],[block3]).

We’re not quite done, however. What if we had a variation of the basic blocks

world in which we have an operator move(top, bottom, target) that moves a block

top from bottom onto target, in one step? As we can see in Figure 5-2 (left side), 1

moving block 0 to block 1 is a legal operation in state s. How could we permit the

same operation in s̃, since blocks 0 and 1 are in the same equivalence class and are

represented by a single canonical literal [0] ?

We introduce a one-of() function on canonical literals. That is to say, when

building up a candidate binding list, ψ, we bind the result of the one-of() function to

the corresponding variable. By default, one-of ([0]) simply returns the representative

object for the class [0]. However, its power comes in when we come across an

inequality clause in the sentence we are trying to unify. An inequality clause, such

as (not (= ?a ?b)) constrains the legal unifications of the clause to those that bind

a and b to distinct domain objects.2 If such an inequality constraint is encountered,

the one-of() function, which keeps track of which elements of the class it has doled

out to the binding list so far, looks to see if it can provide another distinct element

of the class. If not, the binding fails.

Let’s see how this works in Figure 5-2 (right side). By default, any time the

function one-of ([0]) is bound in the list ψ, it will return 0 . However, in order to

satisfy the constraint (not (= one-of ([0]) one-of ([0]))), one-of ([0]) must be able

to return a domain object distinct from block 0. In this case, block 1 is available and

will be bound to the variable ?target.

1Note that the move operator as shown in Figure 5-2 is a simplification so as not to encumber
the discussion at hand with excessive detail. It will not, as written, behave as expected; but, we can
just make a note of that and carry on.

2Otherwise, no such constraint is assumed, and it would be perfectly legal to try to move block 0
onto itself.

73

 (and
 (on 0 3)
 (on 1 2)
 (on 2 table)
 (on 3 table)
 (on 4 table)
)

0
24
1

3

 (and
 (on ?top ?bottom)
 (not (= ?top ?bottom))
 (not (= ?top ?target))
)

 (and
 (on 0 3)
 (not (= 0 3))
 (not (= 0 1))
)

 (and
 (on 0 1)
 (not (on 0 3))
)

 (and
 (on 0 1)
 (on 1 2)
 (on 2 table)
 (on 3 table)
 (on 4 table)
)

ψ= { 0/?top, 3/?bottom, 1/?target }

ground state s

ground preconditions

0

24
1

3

ground effect

preconditions for
move(top, bottom, target)

 (and
 (on [0] [3])
 (on [3] [table])
 (on [4] [table])
)

 (and
 (on ?top ?bottom)
 (not (= ?top ?bottom))
 (not (= ?top ?target))
)

 (and
 (on one-of([0]) one-of([3]))
 (not (= one-of([0]) one-of([3])))
 (not (= one-of([0]) one-of([0])))
)

 (and
 (on 0 1)
 (not (on 0 3))
)

 (and
 (on [0] [1])
 (on [1] [2])
 (on [2] [table])
 (on [4] [table])
)

ψ= { one-of([0])/?top, one-of([3])/?bottom, one-of([0])/?target }

ground preconditions

preconditions for
move(top, bottom, target)

ground effect

2
10

4 3

3

0

24
1

lifted state s∼

Figure 5-2: On the left side, we see how the move operator works in a ground state.
We introduce a one-of() function on canonical literals to ensure analogous behavior
in a canonical state, on the right side.

74

Find the successor states

Given that we started from an abstract state s̃ and applied an action to it, we would

like to avoid repeating this work when calculating the classes in the successor state.

In order to conserve as much work as possible, we notice that each action only manip-

ulates a subset of the objects, and, thus, that only a subset of the equivalence classes

will change in s̃′.

Let’s look at the left side of Figure 5-2 again. The effect of the move operator

changes the on relationship between blocks 0 and 1, and blocks 0 and 3. We want only

recalculate the object equivalence classes necessary to reflect the change. This can be

done simply by initializing s̃′ to be a copy of s̃ and removing the manipulated objects,

blocks 0, 1, and 3 from their equivalence classes before copying the classes over to

s̃′. To be completely correct, we must also remove from their equivalence classes any

objects related to the manipulated objects: this is because an object is only a member

of an equivalence class by virtue of sharing similar relationships with the other objects

in its class. Once its relationships change, it may belong to a different class. In our

example of Figure 5-2, this results in blocks 0, 1, 2, and 3 being removed from their

equivalence classes.

Once we have pulled out all the manipulated, and indirectly manipulated, objects

from their equivalence classes, we simply run the procedure of Algorithm 2 on s̃′.

This updates the classes for s̃′. Then, we can follow with the procedures of Figure 3

to calculate the canonical propositions for s̃′. The result for our example is seen at

the bottom of the left side of Figure 5-2.

Having computed each successor state in this way, we will need to evaluate each

state with some heuristic (which we’ll describe later in this section) and insert them

accordingly into the search agenda.

5.2.2 Inner loop: heuristic computation

The most expensive part of the algorithm is in the heuristic evaluation of a candidate

action. This is because we adapt the well-known ff heuristic in order to make it

75

admissible. The Fast-Forward (FF) algorithm is well-established and known to pro-

duce an admissible heuristic efficiently [36]. FF works by using a Graphplan-style

structure to solve a relaxed planning problem. A relaxed plan is one that ignores

mutual-exclusion interactions between propositions in the graph. It can quickly esti-

mate a lower bound on the number of steps necessary to achieve a goal; this estimate

is inadmissible, however, since it is not necessarily the shortest relaxed plan. We can

turn this into an admissible heuristic by searching in the plan graph for the short-

est relaxed plan. Taking the time to compute an admissible heuristic guarantees an

optimal, shortest-length plan. We know from our previous experience with TGraph-

plan, however, that managing a large branching factor will be crucial to getting a

plangraph-based approach off the ground.

We have developed a technique for solving relaxed planning problems that takes

advantage of the computation of equivalence classes occurring in the main search loop.

The result is a heuristic computation, based on the ff idea, that is considerably more

efficient than simply using ground actions.

Let’s work with our running example. Imagine we are given the state in Figure 5-

1, and that we have to evaluate how far this state is from our goal of three blocks in

a stack. That is, we would like to underestimate how many steps it would take, from

this state, to reach the goal.

A straightforward calculation of the heuristic would proceed as in Figure 5-3.

The initial proposition layer in the plan graph is built up with the facts from the

initial state. The next layer, an action layer, contains all of the possible actions that

might be applicable given the previous layer, ignoring any mutual exclusion effects.

3 The resulting proposition layer includes all of the possible effects of the preceding

actions. We test our goal condition over the union of the layers, since this includes

3We take advantage of one trick here to reduce branching factor: because we know that the
initial layer represents the true state of the world, we compute the actions in the first action layer
in accordance with any pre-condition requirements. For example, the pick(2) action, which is not
legally executable in the ground state, is not added in this layer since we know block 2 is not clear.
For subsequent layers, however, actions are added “optimistically”: as long as the positive atoms in
the precondition exist in the previous layer, the action can be added without regard to negated or
interacting precondition atoms.

76

table
4 3 2

1

on(1, 2)

on(2, t)

on(3, t)

on(4, t)

holding(1)

holding(3)

holding(4)

on(1,3)

on(1,4)

on(1,t)

on(3,1)

on(3,4)

on(3,2)

on(4,1)

on(4,3)

on(4,2)

pick(1)

pick(3)

pick(4)

put(1,3)

put(1,4)

put(1,t)

put(3,4)

put(3,2)

put(3,1)

put(4,1)

put(4,3)

put(4,2)

3
1

3

1

4

2

1
2

3

4

4
1

1
3

4
3

2
3

1
4

3
4

2
4

1

Goal:
 ∃ A, B, C : (on A B), (on B C), (on C table),

A ≠ B, B ≠ C, A ≠ C.

3
1

2 4
3
1

1
3

2
1
3

4
4
3

2
4
3

1
1
4

3
1
4

2
3
4

2
3
4

1

h = 2h = 4h = 4

4
1

2
4
1

3

h = 6

(a)

(b)

Figure 5-3: Calculation of the heuristic with no equivalence classes. We have to find the
smallest heuristic value amongst all the possible bindings for the goal: the possible bindings
that the plan graph represents as being possibly true at this stage are shown at the bottom
of the figure. There are twelve of them. The set of proposition nodes given by the fifth
binding in the list result in the lowest heuristic estimate, h = 2. These proposition nodes
are encircled in the graph.

77

on([1], [2])

on([2], [t])

on([3], [t])

holding([1])

holding([3])

on([1],[3])

on([1],[t])

on([3],[1])

on([3],[3])

on([3],[2])

pick([1])

pick([3])

put([1],[3])

put([1],[t])

put([3],[3])

put([3],[2])

put([3],[1])
4

table
3 2

1

1

43
4343

2

1
2

Goal:
 ∃ A, B, C : (on A B), (on B C), (on C table),

A ≠ B, B ≠ C, A ≠ C.

1
43

43

1

1
43 43

43

43
2

1
43

1
43
2

1
43
43

1
43

2 43 2

h = 2h = 4h = 4 . . . h = 6

(a)

(b)

43
43

1

Figure 5-4: Calculation of the heuristic, this time with equivalence classes. Now there are
only six bindings amongst which to search. The one-of() operator is also in effect in the
heuristic computation, which ensures that we correctly determine the set of propositions
that may legally satisfy the goal.

78

every proposition that could possibly be true. If a satisfying assignment is found,

we return the number of actions required to produce the propositions needed for the

goal. In order to be an admissible heuristic, we must look for the smallest number of

actions. The only way to do this is to consider all possible satisfying assignments for

the goal and to return the smallest action count out of all of them. In the example

of Figure 5-1, the heuristic estimate is h = 2.

However, we should to take advantage of the fact that we know about some equiv-

alence relationships in our initial state. We can certainly start off the initial layer of

the plan graph with the set of canonical propositions in our initial state instead of

the whole list of ground facts. That in itself seems simple enough. The next action

layer is simply the set of ground actions applicable given the previous set of facts, just

as before. However, when we calculate the effects this action layer, we are presented

with a problem: how should we represent the effect of this action correctly? Consider,

for example, the pick-up([3]) action in Figure 5-4. The class [3] represents the class of

blocks equivalent to block 3. As soon as we add the fact holding([3]) to the planning

graph, we represent the fact that we could be holding any block that was originally

equivalent to block 3. This is consistent with the idea of the relaxed planning graph:

it represents the superset of propositions achievable at a given plan-graph length.

This technique results in overall fewer propositions being created in the plan graph.

This is potentially a large savings on the computational cost of the goal test. The fact

that we are searching for the shortest relaxed plan (because we need an admissible

heuristic) means that we must search for all possible bindings for the goal formula.

This is a search that is, in the worst case, is exponential in the number of propositions

that satisfy a clause in the formula.

5.2.3 Being more aggressive: minimal predicate set

A key component of dealing with potentially “imperfect” representations is not only

grouping together similar objects, but, adapting the representation to eliminate fur-

ther unnecessary distinctions. Imagine, for example, that we would like to move nails

from one box to another. Suppose that as part of the initial domain description we

79

are given the metal composition of each nail. But, for the nail transfer task, knowing

the composition of the nails doesn’t matter. Thus, we would like to start out with

some minimal set of predicates that depends on the goal, in order to group together

as many nails as possible.

The basic idea is this: two objects in a state can be considered equivalent if there is

an automorphism in the state that maps one object to the other. The more complex

the graph, the fewer automorphisms there will be. Thus, if we can be aggressive

about keeping the graph as simple as possible, by restricting the set of predicates for

which we add edges, then, we will be able to group more objects together. We will

use the term basis set to refer to the set of predicates used to construct the state

relation graphs for a problem instance. In order to be as efficient as possible, we want

to determine the minimal basis set that will let us solve our problem.

We compute this minimal set as follows. At the beginning of the planning process,

we make a call to the heuristic solver from the initial state. The heuristic solver returns

a plan to solve the relaxed planning problem using the original representation. We

know that this plan is the most optimistic underestimate of the sequence of actions

needed to achieve the goal. We compute the minimal basis β by starting from the

starting from the goal and working backwards: for every proposition node used in

satisfying the goal, called a subgoal, add the corresponding predicate to β. Then,

work backwards through each action: take as the next “subgoal” the precondition

nodes of the action in the last layer.

By the time we reach the first layer in the graph, we will have included all the

predicates necessary to express the satisfaction of the goal and the satisfaction of a

set of actions that can achieve the goal.

Thus, our complete forward-search algorithm is as follows:

80

Input: Initial state s0, goal condition g, set of rules Z

Output: Sequence of actions from s0 to a goal state

Find a minimal representational basis, β

Canonicalize s0 → s̃0

Initialize agenda with s̃0

while agenda is not empty do
Select and remove a state s from the agenda

if s satisfies goal condition g then
return path from root of search tree to s

else

Find representative set A′ of actions applicable in s

foreach a ∈ A′ do
Add the successor of s under a to the agenda

Algorithm 4: rebp forward-search algorithm.

As an illustrating example of this algorithm, we again turn to a small blocksworld

problem in Figure 5-5. The objective is to find three blocks that form a stack. The

initial, fully-ground state contains two blocks on the table, and two blocks in a two-

block stack. The relations in our domain are on-top-of(?b - block,?x - object)

and holding(?b - block), and the operators are pick-up(?b - block,?x - object)

and put-down(?b - block,?x - object).

Our final system is described schematically in Figure 5-6.

5.2.4 Planning experiments

In this section, we show some simple experiments intended to illustrate the compu-

tational advantages possible with the equivalence-based approach. We compare four

algorithms in three domains.

The first algorithm we call the baseline: it is a simple state-based, best-first,

forward-search planner that uses our adapted FF heuristic to guide its search. In the

event that the heuristic evaluates two or more actions with the same heuristic value,

81

4
3

21

Ca
no

ni
ca

l s
ta

te
:

4
3

21

4

2 4

21

3
21

4

3

21

3

1

4

3 21

43

G
oa

l:
 ∃

 A
, B

, C
 :

 (o
n

 A
 B

),
(o
n

 B
 C

),
(o
n

 C
 ta

bl
e)

,
A
≠

B,
 B

 ≠
 C

, A
 ≠

 C
.

In
itia

l s
ta

te
:

Co
m

pu
te

 in
itia

l
eq

ui
va

le
nc

e
cla

ss
es

pi
ck

up
([3

],[
ta

bl
e]

)
h

=
1

pi
ck

up
([1

],[
2]

)
h

=
3

pu
t([

3]
,[1

])
h

=
0

pu
t([

3]
,[4

])
h

=
2

Figure 5-5: Illustration of the repb search algorithm. The task is to achieve a stack
of any three blocks. We start with the initial state as shown. The object equivalence
classes are then computed, resulting in an abstract version of the initial state. Then,
as we search for the goal in successive states, we update the equivalence classes of the
objects in the domain. We stop when we determine that the goal can be satisfied; in
this case, after a sequence of pick-up and put-down actions.

82

Figure 5-6: The rebp system. Given a problem description with an initial state and
a goal, the system first attempts to determine automatically the minimal basis set
of predicates it needs to reach the given goal. Then, given this basis set, the system
executes a forward-chaining, heuristically guided search, until the goal is reached.

it selects one of those actions at random. The baseline algorithm does not compute

equivalence classes nor try to reduce the basis set of predicates — it works in the

original, propositional, state space.

Second, we have rebp-full: this is the baseline planner with the ability to compute

equivalence classes among actions and objects. It does not try to reduce the basis

set, however.

Third is rebp-min, which extends rebp-full by approximating the original repre-

sentation with a minimal basis set.

These planners are implemented in Java with an eye to correctness rather than

speed, and are thus not as fast as optimized or well-tuned implementations. Therefore,

we also compare against a freely available, highly efficient, implementation of FF

itself [57]. Also, we only compare planning time. Solution length for FF may vary,

since it is not an optimal planner.

The first set of experiments explores the most simplest setting possible. We used

the blocks world domain of the 2004 icaps planning competition for the dynamics,

and we set up a series of very simple problem instances: starting with three blocks on

the table, and growing up to 100 blocks on the table, the goal is to place three blocks

in a stack. A plot of planning time vs. domain size is shown in Figure 5-7. In this

83

0507 15 21 32 45 60 80 100
4

6

8

10

12

14

16

18
blocks1

Domain Size

pl
an

ni
ng

 ti
m

e

ff
nul
ful
apx

FF

baseline

REBP-min
REBP-full

Ideal blocks-world

Domain Size

Pl
an

ni
ng

 T
im

e
(m

s)

Figure 5-7: Planning time vs. domain size for best-case blocksworld. Equivalence classes
are helpful as the domain gets bigger.

84

FF

baseline

REBP-full REBP-min

Random blocks-world

Domain Size

Pl
an

ni
ng

 T
im

e
(m

s)
 (L

og
 s

ca
le

)

Figure 5-8: Planning time vs. domain size for random blocks-world domain. Equivalence
classes are helpful as the domain gets bigger, and reducing the basis set of predicates yields
computational savings.

experiment, all the blocks are the same color, so, nothing is gained by ignoring the

color predicates, which are not necessary to satisfy the precondition of the pick-up or

put-down actions, or the goal. Thus, as we expect, rebp-full and rebp-min perform

exactly the same.

The second set of experiments also explores planning time as a function of domain

size, but in a slightly less straightforward way. We picked a random 5-block problem

instance from the 2004 planning competition archives. Then, we produce problem

instances of increasing size by replicating this initial state. A plot of planning time

vs. domain size is shown in Figure 5-8. The initial problem instance contained blocks

of three different colors, so, rebp-a can reduce its computational effort by reducing

its basis set to just on-top-of and holding, which it does.

The third set of experiments was done in an adaptation of the aips 2002 “depot”

85

FF
baseline

REBP-min
REBP-full

Random depot

Domain Size

Pl
an

ni
ng

 T
im

e
(m

s)

Figure 5-9: Planning time vs. domain size for random depot domain. As in the blocks
world, equivalence classes are helpful as the domain gets bigger, and reducing the basis set
of predicates yields computational savings.

86

domain [58], a logistics domain. A problem instance in this domain consists of a

set of trucks, hoists, pallets, crates, distributors, and depots. The trucks and crates

are initialized randomly among the distributors, and the objective is to move any

two crates to the target pallet at the depot. As in the blocks-world domain above,

increasing the number of crates does not lengthen the solution; but, the increased

number of objects proves difficult to handle for the FF and baseline algorithms. The

plot of planning time vs. domain size is shown in Figure 5-9.

5.3 Complexity issues

A question that immediately arises is whether it is wise to embed the computation

of graph automorphisms in our search loop. The difficulty of the graph isomorphism

a long-standing open question in the field of complexity theory, and it is currently

unknown whether the problem is NP-complete. One can construct instances in which

even a well-regarded algorithm such as nauty [46] is forced to do an exponential-time

search for an isomorphism. However, for a broad class of graphs, there also always

exist conditions under which nauty can run in polynomial time [47]. Our experience

has shown that searching for isomorphisms can be fast when extremely constrained

by labeling and typing, as in our case. In our empirical studies, the amount of time

spent computing isomorphisms remains a small fraction of the total execution time.

The computation time of the algorithm is more severely affected by the heuristic

evaluation, since it is potentially an exponential operation for each action that must

be evaluated.

87

Chapter 6

Computing an abstract envelope

In this chapter, we will see how to use the output of our deterministic planning process

to bootstrap an mdp and directly address uncertainty in the domain.

The output of the planning phase is a sequence of canonical actions, which cor-

responds to a sequence of canonical states. The canonical states are represented in

a basis set of predicates that may be smaller than or equal to the set of predicates

originally given in our domain description.

Figure 6-1: In the second part of the rebp system, an envelope mdp is constructed
from the output of the planning process. The envelope mdp, and the basis set of
predicates used to express the mdp, will be expanded and refined in subsequent steps
of the algorihtm.

88

We will use this abstract state sequence to initialize an envelope mdp, which was

defined in earlier sections. We will manipulate this envelope mdp in two ways: first,

as in the original Plexus algorithm, we will sample from our policy and incorporate

deviations from the initial path; second, new to this work, we will incorporate mod-

ifications to the representation to increase the accuracy in our value estimate. The

overall system is described schematically in Figure 6-1.

6.1 Interval envelope MDP

To have it fresh in our minds, we recall the basic steps of the original Plexus algorithm

for atomic-state mdps:

Determine initial sequence of states

Compute transition probabilities between all states for all applicable actions

while Have time to compute do

Compute policy (value iteration)

Sample deviations from envelope and expand

Algorithm 5: Basic envelope algorithm for atomic-state mdps.

However, now, each state in our mdp is an abstract state, and it stands for a

set of underlying ground states as illustrated in Figure 6-2. Thus, we cannot simply

represent a transition between such states with a point probability. We must allow for

the possibility that the dynamics driving the transition may be different depending

on which underlying ground states are participating in the transition.

Instead, we represent each transition probability as an interval, as depicted in Fig-

ure 6-3. Interval mdps, and the corresponding Interval Value Iteration algorithm, were

first presented by Givan et al. [28, 29].

Let us formally define an abstract-state, interval envelope mdp (called an amdp

for short) as an extension of the basic relational mdp we saw in Section 1.3.3. An

amdp M is a tuple 〈Q,P ,Z,O, T ,R〉, where:

States: The abstract state space, Q∗, is defined by a basis set P of relational pred-

89

Figure 6-2: The sequence of canonical states may actually represent a collection of
underlying state transitions. Each canonical state represents the set of underlying
ground states consistent with the basis set of predicates used to express the canonical
state. The objects in the underlying states may have relationships and properties not
represented in the canonical state, such as color, texture, or size, for example.

90

Figure 6-3: Each canonical, or abstract, state in the mdp describes a set of under-
lying ground states. Transitions between abstract states correspond to a collection
of underlying ground transitions, denoted above by scalar probabilities p1, p2, and
p3. Thus, we will represent the transition between two abstract states as an interval,
whose upper bound is the largest underlying probability and whose lower bound is
the smallest underlying probability.

91

icates, representing the relations that hold among the equivalence classes of domain

objects, O. The set of states Q of M , is the union of the set Q′ ⊆ Q∗ and a special

state qout. That is, Q = Q′ ∪ {qout}. The set Q′, also called the envelope, is a subset

of the entire abstract state space, and qout is an additional special state that captures

transitions from any q ∈ Q′ to a state outside the envelope. Through the process of

envelope expansion, the set of states Q will change over time.

Actions: The set of actions, A, of M is composed of the ground instances of set

of rules Z applicable in the envelope states of M .

Transition Dynamics: In an interval mdp, T gives the interval of probabilities

that a state and action pair will transition to another state: T : Q×A×Q → [<,<].

We will see how to compute this transition function in the sections below.

6.1.1 Initializing the abstract-state envelope

In this section, we look at how to compute initial set of states Q corresponding to

the plan produced by the planning phase.

Each state qi ∈ Q′ of our amdp M is a composite structure consisting of:

• s̃i: a canonical state, in which we represent only the relations among the repre-

sentatives of each object equivalence class.

• Si: a set of underlying ground states consistent with the above canonical state.

The first state, q0, of M is computed from the initial state of the planning problem

straightforwardly: the set S0 is initialized to contain the ground initial state of the

planning problem, and the canonical state s̃0 is the canonical version, with respect to

basis P , of the initial state.

We compute the second state, q1, by taking the first action, a0, in our plan. The

next canonical state s̃1 is computed by propagating s̃0 through a0 by the procedure

described in Section 5.2.1. The ground state of q0 can be efficiently propagated as

well, and, we add the result to S1. This procedure is repeated until we’ve processed

the last action.

92

More formally, the procedure to compute the envelope, Q′, from a plan p is:

Input: Canonical Initial State s̃0, Plan p, Basis β

Output: Set of envelope mdp states Q′

Initialize q0 with s̃0 and with S0 = {s0}

Initialize Q′ = {q0}

foreach action ai in p, i = 0 . . . n do
Propagate s̃i to obtain s̃i+1

Propagate the si in Si to obtain si+1

Initialize qi+1 with s̃i+1 and with Si+1 = {si+1}

Q′ = Q′ ∪ {qi+1}

Algorithm 6: Procedure to compute a set of envelope states given a plan.

At this point, we have a set of mdp states Q′ = ∪n+1
i=0 {qi}. To complete the set of

states, Q, we add the special state qout.

This procedure lets us keep a record of the true ground state sequence, the si’s,

as we construct our model. Why do this, when we’ve gone through so much trouble

to compute the canonical states? The problem is not that any individual ground

state is too large or difficult to represent, but, that the combined search space over

all the ground states is combinatorially much larger. If we do not keep the ground

information around in some form, it will be impossible to determine how to modify

the basis set later.

While each mdp state keeps around its underlying ground state for this purpose,

it is only the canonical state that is used for determining behavior. Since a canoni-

cal state represents a collection of underlying ground states, the policy we compute

using this approach actually encompasses more of the state space than we actually

physically visit during the planning process.

93

6.1.2 Computing transition probabilities

Now that we have a set of states Q, we need to determine the transitions, and the

probability of those transitions, between the states in Q. This computation proceeds

in two phases. First, we compute the nominal interval probabilities of transitioning

between canonical states. Second, we sample from our underlying state space to flesh

out the interval of probabilities describing each transition. Below, we will speak of

updating a probability interval P = [a, b] with the probability p, which means: if

p < a, then P becomes [p, b]; if p > b, then P becomes [a, p]

The computation of the nominal interval probabilities proceeds as follows:

1. For each state qi, we find the set of actions Ai applicable in s̃i.

2. For each action ak ∈ Ai, and each state qj ∈ Q′ we compute the transition

probability between qi and qj:

(a) Initialize the ground transition probability. That is, take the first ground

state in Si and propagate it through action ak. If the resulting ground state

is equivalent to qj with respect to the basis P , and p is the probability of

the outcome of ak corresponding to that transition, then set the probability

of transitioning from qi to qj via action k as the interval Pijk = [p, p].

(b) For each remaining ground state s ∈ Si, compute the probability, p′, of

transitioning to qj via action ak.1 Update the interval Pijk with p′.

3. Compute the probability of transitioning to qout from qi and ak. This involves

keeping a list, as we execute the above steps, of the out-of-envelope probability

for each ground application of the action ak. More precisely: for each s ∈ Si,

when we apply ak and detect a transition of probability p to a state within the

envelope, we update ak’s out-of-envelope probability with 1 − p. This ensures

1Strictly speaking, we will need to use the inverse of the mapping φ between s and s̃i to translate
the action ak into the analogous action applicable in s. This is because, while s may belong to
the equivalence class of states represented by s̃i, it may have objects of different actual identities
belonging to each object equivalence class.

94

that the out-of-envelope probabilities are consistent for each representative ac-

tion, ak.

The above procedure computes the basic transitions and transition probabilities

for our mdp.

Next, in order to improve our interval estimates, we do a round of sampling from

our model. The idea is to see if we can uncover, via this sampling, any ground states

that yield transition probabilities outside of our current interval estimate. This is

done as follows:

1. For each state qi ∈ Q′, action ak ∈ Ai, and state qj 6=i ∈ Q′: let the ground state

s′ be the result of propagating a state s ∈ Si through ak.

(a) If there exists a state qk such that the probability of transitioning from s′

to qk under an action is outside of the current interval for transition of qj

to qk for that action, add s′ to Sj.

Let us work through an example. To do that, we introduce one of our experiment

domains, called the slippery blocks world. This domain is an extension of the standard

blocks world, except that in this domain, our ability to successfully pick up or put

down a block is modified when the block is “slippery.” Green blocks are slipperier

than red or blue blocks. In Figure 6-4 we see the ppddl description of this domain.

Note the conditional effect in each action: if the block is green, then the probability

of a successful pick-up outcome changes from 0.9 to 0.6; likewise, the probability of a

successful put-down outcome changes from 0.9 to 0.6. Please see Figures 6-5 through

6-9 for a detailed example of the procedures just described.

Once we have our transition probabilities, we compute the policy on the mdp

by following the interval value iteration algorithm of Givan et al. [28, 29]. Interval

transition probabilities result in interval estimates of value. In our implementation,

a state’s value is reported as average value in the interval.

95

(define (domain slipperyblocks)

 (:types block table - object)
 (:constants table - table)

 (:predicates
 (is-red ?block - block)
 (is-blue ?block - block)
 (is-green ?block - block)
 (holding ?block - block)
 (on-top-of ?block - block ?obj - object)
)

 (:action pick-up-block-from
 :parameters (?top - block ?bottom - object)
 :precondition
 (and (on-top-of ?top ?bottom)
 (not (= ?top ?bottom))
 (forall (?b - block) (not (holding ?b)))
 (on-top-of ?top ?bottom)
 (forall (?b - block) (not (on-top-of ?b ?top))))
 :effect
 (and
 (when (is-green ?top)
 (probabilistic
 0.6 (and (holding ?top) (not (on-top-of ?top ?bottom)))
 0.4 (and (on-top-of ?top table) (forall (?b - block) (not (on-top-of ?top ?b))))))
 (probabilistic
 0.9 (and (holding ?top) (not (on-top-of ?top ?bottom)))
 0.1 (and (on-top-of ?top table) (forall (?b - block) (not (on-top-of ?top ?b))))))
)

 (:action put-down-block-on
 :parameters (?top - block ?bottom - object)
 :precondition
 (and (not (= ?top ?bottom))
 (holding ?top)

 (not (holding ?bottom))
 (or (= ?bottom table)
 (and (forall (?b - block) (not (on-top-of ?b ?bottom))))))
 :effect
 (and
 (not (holding ?top))
 (when (is-green ?top)
 (probabilistic 0.6 (on-top-of ?top ?bottom)
 0.4 (on-top-of ?top table)))
 (probabilistic 0.9 (on-top-of ?top ?bottom)
 0.1 (on-top-of ?top table)))
)

)

conditional
effect

conditional
effect

Figure 6-4: The slippery blocks domain. This is an extension of the standard blocks
world in which green blocks are “slippery” and are thus more likely to be dropped on
the table.

96

Figure 6-5: First, start with a newly initialized envelope corresponding to the example
planning task of Figure 5-5. At this point, we have created the set of states Q,
consisting of each canonical state, its ground version, and the state qout.

Figure 6-6: Second, we compute the nominal transition probabilities. In this case,
there are two ground actions equivalent to the pickup([3],[table]) action applicable
in the canonical state. These actions yield an interval probability of [0.6, 0.9] of
transitioning to the second state, and an interval probability of [0.1, 0.4] of falling out
of the envelope.

97

Figure 6-7: Third, we do the same for the second state: the ground actions (only one
in this case) yield a probability interval of [0.6, 0.6] of transitioning to the third state,
and a probability interval [0.4, 0.4] of transitioning out of the envelope.

Figure 6-8: Fourth, we sample from our model in order to improve our interval
probability estimates. We see that adding the ground state s′ into S1 changes our
estimate of the types of transitions that can occur between the second and third
canonical states.

98

Figure 6-9: Fifth, and finally, is our completed abstract envelope mdp. From here,
we are ready to do a round of policy improvement (via value iteration) and envelope
expansion.

99

6.2 Proposing a change to the representation

Having formulated our mdp in this way, with an abstract state space and with proba-

bility intervals represented as intervals, we are confronted very naturally with a type

of structure search problem. We may want to add a predicate, or set of predicates,

into the representation basis in order to tighten these intervals, and, consequently, to

lessen the uncertainty in our value estimates.

The point of augmenting the basis set is to be able to express transition prob-

abilities, and thus the expected value of a policy, more precisely. The next logical

question is how to frame a procedure for representation. We begin by noting that the

transition probabilities are encoded in the rule schemas given as part of our planning

description. Therefore, in our case, a representation that is missing some potentially

useful predicates suffers from an inability to apply a necessary action, or, in an in-

ability to effect a particular conditional outcome of that action. For example, in the

slippery blocks world case, the minimal basis ignores color completely. While this

representation speeds up the planning, by allowing blocks of different colors to be

put into the same equivalence class, it does not allow modeling the fact that blocks

of color green will experience a transition via the conditional outcome of the pick-up

and put-down actions, and thus a different transition probability.

The basic mechanism is to add a function, called proposeBasis(), which takes as

an argument a rule and the current basis, and returns a list of candidate predicate

sets to be added to the basis. What does it mean for an operator to “suggest”, or

propose, a predicate set? Consider an operator with a condition w on an effect. If

we are interested enabling this effect, then the operator must propose the set (which

may simply be a singleton) of required predicates missing from our representation. If

more than one additional predicate is required to express a condition, then no benefit

will be observed until all required predicates have been added, one at a time. This is

a classic structure-search issue. Because we know we are dealing with rule schemas

whose conditions have this characteristic, we can take the shortcut of proposing sets

of predicates at a time.

100

There are two places in the algorithm in which to refine the representation. The

first is as a part of the existing envelope-refinement loop. As part of that, we keep a

sorted list of the transitions in our mdp. Currently, we sort transitions in descending

order by width of the interval; i.e., the maximally uncertain transitions are at the top

of the list.2 Then, when we need to suggest a refinement, we start with the transition

at the top of the list and request its proposal.

The second opportunity comes when we reach a representational “failure” point.

In the process of sampling from actions that were not originally in our optimistic

plan, and, thus, made no contribution the original choice of basis, computing their

effects might have unexpected results. This becomes obvious when we produce an

outcome state that has no applicable actions. We call this a “failure” point, and we

deal with it as follows. First, we remove, as much as possible, the trajectory that

leads to this state. We do this by iterating backward from the failed state until we

either reach the initial state, or, a state that has more than one incoming transition.

At this point, we re-route that single outgoing transition to the out state. We set

a flag that disallows any future sampling from that action. Then, starting from the

offending state, we work our way backwards through the transitions until we find a

transition with that has a non-empty predicate set to propose. If we do find one, we

add this proposal to a high-priority list of candidate predicate sets. Then, the next

time the mdp considers a new proposal, it selects from this list.

Once we have determined a proposal to try, we initialize a new mdp using the

original plan and the new basis. Then, the regular phases of policy improvement and

envelope expansion happen for both of them in parallel. We can add as many parallel

mdps as desired. In our current implementation, we keep no more than 5 interval

mdps in parallel.

At any given time, the policy of the system is that of the mdp with the highest

policy value.

2We could imagine sorting this list by other metrics. For example, we could be risk-averse and
sort them by the lower value bound.

101

So, the general rebp algorithm is:

Input: Initial state s0, Goal condition g, Set of rules Z

Compute minimal basis representation, β

Let plan P = rebpForwardSearch(s0, g, Z) /* Algorithm 4 */

begin Initialize envelope mdp M with P and β :
Compute transitions and transition probabilities for M

Do interval value iteration in M until convergence

end

Initialize a list of mdps m = {M}

while have time to deliberate do

foreach mdp Mi in m do
Do a round of envelope expansion in Mi

if failure to find applicable action in a state q′ then

Remove the q′ from Mi

Select the first non-empty proposal basis, β′, corresponding to the

sequence of actions between q′ and q0

if β′ not empty then append to the front of the list of proposals, li

else
Sort transitions of Mi in descending order

Compute a proposal basis β′ from the top transition

if β′ not empty then append β to end of list li

Do interval value iteration in Mi until convergence

if li not empty then

Select a basis β′ from the list

Construct a new mdp M ′ with plan P and basis β′.

Append M ′ to list m of mdps.

Sort the list m by decreasing average policy value

Algorithm 7: Overall repb algorithm.

102

Basis type

Adaptive Fixed,
minimal

Fixed, full Propositional
(no classes)

Initial plan adap-init minb-init fulb-init prop-init

Start state adap-null minb-null fulb-null prop-null

Table 6.1: The matrix of experiments. We compared two ways of initializing the enve-
lope mdp — with the output of the planning phase (“Initial plan”), and with only the
initial state (“Start state”) — with four ways of working with the basis representation.
The last column, (“Propositional”), does no equivalence class computations.

6.3 Experiments

In this section we examine a set of experiments done in four different domains. The

objective in each domain is to compute a high-valued policy with as compact a model

as possible. We will look at the various ways of combining the techniques described

in this work, and we’ll try to identify the impact of each on the behavior we observe.

We describe the different algorithms below.

Complete Basis + Initial Plan (fulb-init): This is the basic relational envelope-

based planning algorithm. A plan is found in the original representation basis,

and this plan initializes a scalar-valued envelope mdp.

Minimal Basis + Initial Plan (minb-init): This is an extension of rebp that

first computes a minimal basis set for the representation. Because it uses a

scalar-valued mdp, no basis modification is done.

Adaptive Basis + Initial Plan (adap-init): This is the full technique: computa-

tion of a minimal basis plus an interval mdp for basis and envelope expansion.

No initial plan (fulb-null, minb-null, adap-null): We also control for the impact

of the initial plan by combining each style of equivalence-class representation

with a trivial initial envelope consisting of just the initial planning state.

Propositional (prop-init, prop-null): Finally, to control for the impact of the

equivalence classes, we initialize a scalar-valued mdp in the full, propositional

103

representation (this is the “baseline” algorithm of Chapter 4, which does not

compute equivalence classes) with an initial plan, and with the initial state,

respectively.

The four domains are:

Blocksworld: this is simply the standard blocks world, the same one we saw in the

second set of experiments in the last chapter. We include this to get a baseline

for the algorithms’ behavior. The first problem instance contains 5 blocks, and

the goal is to put five of them in a stack. The largest domain contains 50

blocks; all have the same goal. The ppddl description of this domain was given

in Figure 1-2 on page 23.

Slippery blocksworld: an extension of blocks world in which some blocks (the

green ones) are “slipperier” than the other block. While color may be ignored

for the purposes of getting a solution quickly, higher quality policies result from

detecting that the color green is informative. The ppddl description of this

domain was given in Figure 6-4 on page 96.

Zoom blocksworld: a different extension of blocks world in which the action set is

augmented by a one-step move action. This action gets things done quickly,

but, is less reliable than a sequence of pick-up and put-down. However, in order

to switch to using the pick-up action, the “holding” predicate must be in the

representation. The ppddl description of this domain can be seen in Figure A-

10 on page 126.

MadRTS world: this domain is an adaptation of a real-time military logistics plan-

ning problem. 3 The world consists of a map (of varying size), some soldiers,

and some enemies. The goal is to move the soldiers so as to outnumber the

enemies at their location (the enemies don’t move). However, the success of

3Our ppddl planning problem was adapted from a scenario originally described by the Mad
Doc Software company of Andover, MA in a proposal to address the Naval Research Lab’s TIELT
military challenge problem [48]. While no longer taking place in a real-time system, we call this
planning domain the MadRTS domain to signal this origin.

104

a move action depends on the health of the soldier. A soldier can transfer,

collect, and consume food resources in order to regain good health. The ppddl

description of this domain is in Figure A-15 on page 130.

We plot the results in two ways. We plot expected value (take as the expected

value of state q0 in the mdp, or the average of the interval, in the case of an interval

mdp) vs. the number of states in the mdp, as a way of showing the value of the

policy as a function of the size of the model. Next to each such graph, we also plot

the same expected value as a function of the computation time (as measured by a

CPU-cycle monitoring package). In the experiments which required no computation

of a plan first, time is measured from the beginning of the construction of the initial

mdp; for those that did, the first data point is plotted also after construction of the

mdp plus the amount of time spent planning. To compute the accumulated reward,

we ran 900 steps of simulation in each domain (corresponding to about 8 successful

trials in the blocks worlds), selecting actions according to the policy, and selecting an

action randomly %15 of the time. This was to force the policy to react to a situation

which it might not have expected. In the interval mdps, action selection is done by

choosing the action with the highest average value. A reward of 1.0 was given upon

attainment to the goal, and we report the average accumulated reward per step.

Let us examine some representative results from the experiments. More complete

results can be found in Appendix A. Figure 6-10, contains a plot of value vs. number

of mdp states for the adaptive and the minimal (fixed) basis algorithms in the 7-block

slippery blocks world. The ppddl description of this problem instance is in Figure A-

1 on page 118 The interesting thing to note is that, even though the minimal-basis

approaches get a similar expected value to the adaptive basis (0.4 for adap-init and

minb-null), the adaptive-basis approaches are able to accumulate more reward in

during execution. This is because not representing the green predicate results in a

model that is slightly optimistic, and the mdp is unable to distinguish green blocks

nor formulate a policy to avoid them. Thus, the adaptive-basis approach yields a

more accurate model.

105

Policy value vs. Number of MDP states
7 blocks

Fixed, minimal basisAdaptive basis

.107

.095

.098

.091

Figure 6-10: A plot of expected value vs. number of states in the MDP in the
7-block instance of the slippery blocks world domain. The dotted line is provided
for reference across the two graphs. The average reward-per-step accrued by each
algorithm is encircled near the corresponding curve.

Figure 6-11 contains a plot of value vs. number of mdp states for the adaptive and

the full (fixed) basis algorithms in the 7- and 50-block slippery blocks worlds. The

observation here is that the envelope expansion benefits greatly from the compaction

of the state space resulting from the smaller basis. The fulb-null algorithm, which

uses the complete representation (that is, it distinguishes all the colors of the blocks)

is unable to get off the ground in the 7-block domain; while the adap-null algorithm

follows closely behind adap-init. In the much larger domain, adap-null is still able

to produce a reasonable model, while fulb-null produces nothing. 4

Figure 6-12 shows a plot of value vs. number of mdp states for the all algorithms

in the b1 instance of the MadRTS world. The ppddl description of this problem is

in Figure A-16 on page 131. Of note here is simply that, in general, the adaptive-basis

algorithms are able to provide the highest expected value for a given model size.

4When no data is shown in a graph, it is because the the preceding experiments in the suite —
that is, the smaller ones — had already exceeded the time-limit, which was approximately two hours
for any given problem instance.

106

Figure 6-11: A plot of expected value vs. number of states in the MDP in the 7- and
50-block instances of the slippery blocks world domain. The dotted line is provided
for reference across the graphs.

107

Figure 6-12: A plot of expected value vs. number of states in the MDP in the
b1 instance of the MadRTS domain. The crossed dotted lines provide an invariant
reference point across all the graphs.

108

The essential message that can be draw from these experiments consists of these

three points:

1. Adjusting basis representation can yield more accurate model.

2. Equivalence classes help in envelope expansion.

3. Finding minimal basis representation, in conjunction with an initial plan, pro-

duces the highest value per number of states in MDP.

In general, better policies are found when gradually elaborating an initial solution

than are found by trying to solve a problem all at once. The equivalence classes

further aid this elaboration because they constrain the sampling done in the envelope

mdp during envelope expansion.

109

Chapter 7

Conclusions and future directions

In this thesis, we have described a formalism for planning with equivalence classes of

objects which is dynamic, domain-indpendent, and works under arbitrarily complex

relational structure. We have shown the results of some experiments that demonstrate

efficiency gains as problems become large in several domains.

Furthermore, we have used this idea to bootstrap the solution of planning problems

in uncertain domains by implementing envelope-based planning as an interval mdp.

We have also presented some experiments that show the advantage of this anytime

approach to refinement of policy.

However, since the work described in this thesis is an initial step towards planners

of this kind, there are many ways in which the approach could be improved.

7.1 Improving the planning

As our implementation currently stands, the biggest bottleneck in the planning algo-

rithm, which is implemented as a best-first search with random tie-breaking, is the

heuristic evaluation of states. This is because we have adapted the FF heuristic to be

an admissible heuristic, which ultimately yields solutions of optimal length, but which

involves searching the relaxed plan graph for the shortest relaxed plan. As a result,

depending on the order of the search, this is a potentially exponential operation. We

discuss these ramifications next.

110

7.1.1 Impact of action commutativity

In the logistics-style domains, there is a greater potential for actions that could be

executed in parallel, or, irrespective of order. For example, in a sequential plan, it may

not matter which we do first: either hoist a crate at the first depot, or move a truck

towards the depot. While our equivalence-class analysis eliminates such permutations

among objects of the same class (and thereby realizes considerable efficiency gains), it

does not do so for structurally distinct objects, nor does it eliminate permutations in

order among parallelizable action sequences. As a result, the heuristic computation

in these domains, because it seeks to optimize for the shortest path, becomes more

costly.

This issue is discussed by Haslum and Geffner [33] and Korf [43], who suggest a

solution based on imposing a fixed ordering on such actions. If the rebp approach

is to be extended efficiently into a greater variety of domains, this is one issue that

must be addressed.

7.1.2 Other admissible heuristics

There are other admissible heuristics that may be more efficient to compute than

our adaptation of the FF heuristic. For instance, Haslum and Geffner describe

a family of heuristics that trades off informativeness with efficiency of computa-

tion [33]. Edelkamp [14] surveys this approach and others but finds that, in heuristic

search planning, the heuristics are either not admissible, or, admissible but too weak.

Edelkamp proposes by contrast an approach based on pattern databases [14, 43]. Pat-

tern databases are pre-computed tables of distances between abstractions of states.

Edelkamp’s approach is appealing in that it finds optimal plans if possible, and ap-

proximates the optimal solution in more challenging planning problems (in propo-

sitional, deterministic settings); however, space consumption grows rapidly — for

example, searching for solutions in benchmark blocks-world domains of more than 13

blocks grinds to a halt the various optimal, general planners studied.

Thus, how to improve the efficiency of the heuristic for a larger variety of domains

111

while preserving its informativeness is a key open question. It is also important to

recognize that no one heuristic is best suited for all types of domains — some may be

more effective in logistics-style domains, others for puzzle-style domains, and so on.

7.1.3 Considering non-optimal planning

The impact of rebp seems largest in the area of optimal planning, in which the

shortest solution must be found, since rebp provides a way to reduce branching

factor without losing optimality.

However, in Edelkamp’s study [14], as well as in our own experience and that of

other researchers, FF’s approach to finding approximate (non-optimal) solutions via

hill-climbing is a time-effective approach in large problem instances. The experiments

presented in this work were constructed to illustrate the properties of our algorithm

specifically when planning difficulty is a function of increased problem size and not

of increased solution length; but, there are vast numbers of planning problems out

there who are not necessarily guaranteed to scale in this way.

One way to move in this direction may well be to use object equivalence classes in

conjunction with the non-admissible FF heuristic. This would produce a plan faster,

but it could be a longer solution. However, after discovering this initial solution,

rebp can then invoke the anytime envelope expansion phase, which may proceed to

discover a shorter solution given more computational resources. This is a tactic we

have not yet explored.

7.2 More aggressive approximations

The idea behind minimizing the set of predicates used to represent the planning prob-

lem was to force more objects into the same equivalence class and, thus, approximate

the original planning problem with a smaller one. This approach turned out to be

effective in our experiments, but it is only a rudimentary start based on a simple

syntactic analysis of the goal sentence and action preconditions. It may be profitable

to investigate other ways of calculating approximate representations. Learning may

112

play an important role here, as discussed in a later section.

Furthermore, as problems increase in size and complexity, it will be necessary to

consider approximations to the isomorphism-based equivalence we have developed for

objects. For example, approximate graph isomorphism is an idea investigated in a

recent paper by Fox and Long [22]. Additionally, at the risk of including an even more

complex problem into the inner loop of our algorithm, it may be possible to find a

more generalizable notion of equivalence in considering isomorphism or approximate

isomorphism over substructures of graphs rather than whole graphs. Finally, one

might consider other types of distance metrics on graphs, such as kernel functions of

structured data [56, 35, 23, 24]. While a distance function on states might put more

actions into the same equivalence class, it is less obvious how to use it to produce

object equivalence classes, or whether it would be compatible with the incremental

computation of object equivalence classes we have described.

7.3 Improving the envelope expansion

In the original paper on the Plexus algorithm [13], Dean et al. describe various tech-

niques for estimating the value of incorporating a new state into the envelope mdp.

If a candidate state is not expected to improve the expected value much, then it

is not added to the envelope. Our implementation is simpler: all candidate states

are accepted during envelope expansion. Thus, there is nothing to stop the envelope

from growing, in the limit, to the size of the abstract state space. Obviously, this is

a concern in large domains, and it would be beneficial to incorporate some kind of

value analysis to this step.

Furthermore, now that we are dealing with relational domains — instead of the

atomic-state domains of the original Plexus algorithm — it may be that a factored

or hierarchical approach to the the envelope and basis expansion would be worth

considering. For example, it may make little sense to search for refinements between

trucks, routes, and crate-contents all at the same time, as is currently done.

The basis expansion, in particular, may benefit from a sensitivity analysis. In

113

the current implementation, we base our search for the refinement of the predicate

set based on the width of the transition probability intervals. However, if this wide

interval is in a part of the state space with relatively low risk or reward, why bother

refining it? It would be more worthwhile to refine instead those intervals with the

greatest impact on the value estimate.

Finally, there is the question of how to most efficiently compute the transition

probability intervals. We have chosen a method based on sampling from the under-

lying state space, which, while having the advantage of simplicity and fidelity to the

state space in question, comes with a computational cost. It may be worth considering

computing these intervals analytically, by syntactic analysis of the rule schemas.

7.4 The role of learning

Learning is entirely absent from rebp, but there are many aspects which might benefit

from it. For example, the idea of reducing the number of actions under consideration

by minimizing the basis predicate set brings to mind the idea of affordances [25]; that

is, the types of actions that are possible to effect on an object. There is the idea

that people are able to restrict the number of affordances they consider for an object

as a function of their motives [2]. Would it be possible to learn to “see” objects as

equivalent, given the role that they play in eventually achieving a goal? This may

yield more adaptive approaches than our current idea of computing a minimal basis

set of predicates before beginning to plan.

7.5 Completeness, correctness, convergence, and

complexity

Finally, what can we say about the computational characteristics of the full rebp

algorithm?

We have theoretical guarantees on the planning side as long as we use the full

predicate set. What happens when we use a reduced predicate set? The computation

114

of the reduced predicate set simply guarantees that we will be able to solve a relaxed

plan, but it guarantees nothing about being able to solve the non-relaxed version. A

mechanism for dealing with possible failures of this type will need to be investigated.

This approximation of the state space also impacts the mdp side. What are the

convergence properties for an abstract, interval envelope mdp? It seems plausible to

expect so, but, we have not proved whether Dean and Givan’s analysis for bounded-

parameter mdps [28] holds this case.

Also missing is a thorough complexity analysis of the algorithm. Because it is a

rather straightforward implementation, it is almost assuredly not as efficient in its

current state as it might be. On the planning side: the algorithm is, in the worst

case, exponential in the branching factor. On the mdp side, the greatest bottleneck

is in testing for state equivalence when doing the sampling to improve the transition

probability interval estimates. As we mentioned in Section 5.3, computing isomor-

phisms is not a limiting bottleneck in practice. What we have observed is that, if an

isomorphism is not present, the computation tends to fail quickly. Thus, we only seem

to pay the full cost of the computation in the case where the cost is able to be offset

by its long-term benefits. Being able to characterize and guarantee this observation,

however, is important and open future work.

Nonetheless, it seems hard to avoid computational complexity when dealing with

inherently hard problems such as planning, which is at least pspace-complete even

in the propositional, deterministic case [9]. The best we can hope for is not to let

unnecessary complexity get the better of us. The work described in this thesis is one

small step towards that goal.

115

Appendix A

Results

Below, we show a representative selection of the full set of experiments. In general, the

experiments were carried out as follows. For the algorithms that required an initial

plan, a corresponding mdp was initialized with the output of the planning system.

Then, 150 rounds of deliberation were done. For the algorithms that required no

initial plan, an mdp was initialized with a single state, the initial state as given by

the planning problem description. Then, 200 rounds of deliberation were done. In

some of the more memory-intensive domains, the number of deliberation rounds was

reduced to 60. At the end of each deliberation round, value iteration was used to

compute policies, with a discount factor of 0.9. Finally, to compute the accumulated

reward, we ran 900 steps of simulation in each domain at the end of the deliberation

rounds. This corresponds to about 8 successful trials in the blocks worlds. Actions

were selected according to the policy, with random action selection occurring %15 of

the time. This was to force the policy to react to an unexpected state. In the interval

mdps, action selection is done by choosing the action with the highest average value.

A reward of 1.0 was given upon attainment to the goal, and we report the average

accumulated reward per step.

We plot the results in two ways. We plot expected value (taken as the expected

value of state q0 in the mdp, or the average of the interval, in the case of an interval

mdp) vs. the number of states in the mdp, as a way of showing the value of the policy

as a function of the size of the model. In conjunction with each such graph, we also

116

plot the same expected value as a function of the computation time, as measured by

a CPU-cycle monitoring package. In the experiments which required no computation

of a plan first, time is measured from the beginning of the construction of the initial

mdp; for those that did, the first data point is plotted after construction of the mdp,

plus the amount of time spent planning. Error bars denote mean squared error above

and below each data point.

A.1 Blocks world

This domain is simply intended as a control, as there is no difference expected between

the fixed, minimal basis and the adaptive one. The results show that there is not

significant overhead to the adaptive approach in this domain. The ppddl description

of this domain was given in Figure 1-2 on page 23.

117

(define (problem blocks-problem)
 (:domain blocks-domain)
 (:objects block0 block1 block2 block3 block4 block5 block8 - block)
 (:init
 (on-top-of block0 block3)
 (on-top-of block1 block2)
 (on-top-of block2 table)
 (on-top-of block3 table)
 (on-top-of block4 table)
 (is-green block0)
 (is-blue block1)
 (is-green block2)
 (is-blue block3)
 (is-red block4)
 (on-top-of block5 block8)
 (on-top-of block8 table)
 (is-green block5)
 (is-blue block8)
)
 (:goal
 (and
 (exists (?fb0 - block)
 (and
 (exists (?fb1 - block)
 (and
 (not (= ?fb0 ?fb1))
 (on-top-of ?fb0 ?fb1)
 (exists (?fb2 - block)
 (and
 (not (= ?fb0 ?fb2))
 (not (= ?fb1 ?fb2))
 (on-top-of ?fb1 ?fb2)
 (exists (?fb3 - block)
 (and
 (not (= ?fb0 ?fb3))
 (not (= ?fb1 ?fb3))
 (not (= ?fb2 ?fb3))
 (on-top-of ?fb2 ?fb3)
 (exists (?fb4 - block)
 (and
 (not (= ?fb0 ?fb4))
 (not (= ?fb1 ?fb4))
 (not (= ?fb2 ?fb4))
 (not (= ?fb3 ?fb4))
 (on-top-of ?fb3 ?fb4)
 (on-top-of ?fb4 table)
))))))))))
)
)
)

Figure A-1: Blocksworld: sample ppddl problem description, 7-block world. The
same problem instances are used in the standard blocksworld, slippery blocksworld,
and zoom blocksworld.

118

Figure A-2: Blocksworld: average reward per step in all problems. After 7 blocks,
the approaches that do not minimize the basis have trouble: the ones which require
a plan run out of memory or exceed the time limit, and those which sample the mdp
space produce poor policies. The maximum score possible is 0.12.

119

Figure A-3: Blocksworld: plot of expected value in the 7-block domain. Minimizing
the basis produces good policies in less time.

Figure A-4: Blocksworld: plot of expected value in the 15-block domain. Planning
takes too long in the full-basis and propositional settings.

120

Figure A-5: Blocksworld: plot of expected value in the 50-block domain. Computing
a plan first produces mdps with higher expected value for a given model size.

121

A.2 Slippery blocks world

This is the slippery blocks domain. In general, being able to adapt the basis to detect

the green predicate resulted in high-valued policies that also corresponded with good

execution behavior. By contrast, being forced to look for a solution in the full-size

basis resulted in higher computation and memory costs. The ppddl description of

this domain was given in Figure 6-4 on page 96.

Figure A-6: Slippery blocksworld: average reward per step in all problems. The
maximum score possible is 0.12.

122

Figure A-7: Slippery blocksworld: 7 blocks. The fixed, minimal basis is fastest; but,
it does not achieve as high a reward during execution as the adaptive-basis approach.

Figure A-8: Slippery blocksworld: 15 blocks. Again, the adaptive basis approach
takes more computation time, but it is able to represent the interval of expected
value and produces higher reward during execution.

123

Figure A-9: Slippery blocksworld: 50 blocks. In the biggest domain, the adaptive-
basis approach is able to model the range of expected values better.

124

A.3 Zoom blocks world

The ppddl description of this domain can be seen in Figure A-10. This ended up

being a trickier domain than anticipated. While a policy consisting of “zoom” actions

reaches the goal faster, we expected to see the adaptive-basis approaches switch over

to using the more reliable pick-up and put-down actions as they discovered the holding

predicate. While this is indeed what happens, as evidenced by the higher rewards

seen in Figure A-11, it ends up requiring considerable envelope exploration to uncover

the new policy. More directed envelope exploration may be able to address this.

125

(define (domain blockszoom)

 (:types block table - object)
 (:constants table - table)

 (:predicates
 (is-red ?block - block)
 (is-blue ?block - block)
 (is-green ?block - block)
 (holding ?block - block)
 (on-top-of ?block - block ?obj - object)
)

 (:action pick-up-block-from
 :parameters (?top - block ?bottom - object)
 :precondition
 (and (on-top-of ?top ?bottom)
 (not (= ?top ?bottom))
 (forall (?b - block) (not (holding ?b)))
 (on-top-of ?top ?bottom)
 (forall (?b - block) (not (on-top-of ?b ?top))))
 :effect (probabilistic
 0.9 (and (holding ?top)
 (not (on-top-of ?top ?bottom)))
 0.1 (and (on-top-of ?top table)
 (forall (?b - block) (not (on-top-of ?top ?b))))))

 (:action put-down-block-on
 :parameters (?top - block ?bottom - object)
 :precondition
 (and (not (= ?top ?bottom))
 (holding ?top)

(not (holding ?bottom))
 (or (= ?bottom table)
 (and (forall (?b - block) (not (on-top-of ?b ?bottom))))))
 :effect (and (not (holding ?top))
 (probabilistic 0.9 (on-top-of ?top ?bottom)
 0.1 (on-top-of ?top table))))

 (:action zoom
 :parameters (?top - block ?bottom - object ?target - object)
 :precondition
 (and (on-top-of ?top ?bottom)
 (not (= ?top ?bottom))

 (not (= ?top ?target))
 (not (= ?bottom ?target))

 (forall (?b - block) (not (holding ?b)))
 (forall (?b - block) (not (on-top-of ?b ?top)))
 (or (= ?target table)
 (and (forall (?b - block) (not (on-top-of ?b ?target))))))
 :effect (and (not (holding ?top))
 (probabilistic 0.60 (and (on-top-of ?top ?target)
 (not (on-top-of ?top ?bottom)))

 0.39 (and (assign (on-top-of ?top table))
 (when (not (= ?target table))

 (assign (on-top-of ?target table))))
 0.01 (and (on-top-of ?top table)
 (when (not (= ?bottom table))
 (not (on-top-of ?top ?bottom)))))))

)

"zoom"
rule

Figure A-10: Zoom blocksworld: ppddl domain description.

126

Figure A-11: Zoom blocksworld: average reward per step in all problems. The adap-
tive basis is able to discover a more rewarding policy.

127

Figure A-12: Zoom blocksworld: 7 blocks.

Figure A-13: Zoom blocksworld: 15 blocks.

128

Figure A-14: Zoom blocksworld: 30 blocks. While high values are achieved, this
larger problem instance exerts a greater computational burden on the adaptive-basis
approaches than on the fixed, minimal-basis ones.

129

A.4 MadRTS

(define (domain maddomain)

 (:types territory movable - object
 resource unit enemy squad - movable
 food - resource)

 (:predicates (at ?u - movable ?t - territory)
 (adj ?start - territory ?end - territory)
 (member ?u - unit ?squad - squad)
 (htop ?u - unit)
 (has ?u - unit ?r - resource)

)

 (:action move
 :parameters (?u - unit ?terrOld - territory ?terrNew - territory)
 :precondition (and (or (adj ?terrOld ?terrNew) (adj ?terrNew ?terrOld))

 (at ?u ?terrOld))
 :effect

 (and (when (htop ?u)
 (probabilistic .99 (and (at ?u ?terrNew)

 (not (at ?u ?terrOld))
 (probabilistic .7 (not (htop ?u))))))

 (probabilistic .51 (and (at ?u ?terrNew)
 (not (at ?u ?terrOld))
 (not (htop ?u))))
)
)

 (:action collect
:parameters (?u - unit ?terr - territory ?f - resource)
:precondition (and (at ?u ?terr) (at ?f ?terr))
:effect (and (has ?u ?f) (not (at ?f ?terr)))

)

 (:action use
:parameters (?u - unit ?f - resource)
:precondition (has ?u ?f)
:effect (and (htop ?u))

)

 (:action transfer
:parameters (?u1 - unit ?u2 - unit ?f - resource)
:precondition (has ?u1 ?f)
:effect (and (not (has ?u1 ?f)) (has ?u2 ?f))

)
)

Figure A-15: MadRTS: ppddl domain description.

The general ppddl description of this domain is in Figure A-15, and a sample

domain description is in Figure A-16. These were challenging problems for all al-

gorithms, likely due in part to the problem of action commutativity discussed in

Section 7.1.1.

A.4.1 The b world

Schematics of the three problem instances are given in Figure A-17. These were

challenging problems. Policies of slightly higher value are eventually found with the

adaptive basis, but this produces no appreciable increase in the amount of accrued

reward. In general, the adaptive basis with initial plan and the minimal basis with

initial plan seem to perform about the same. A more sophisticated, or directed,

130

(define (problem madrts)
(:domain maddomain)
(:objects
 t3 t8 t9 t13 t12 t18 - territory
 squad1 - squad
 u1 u2 u3 u4 - unit
 f1 - food
 e1 - enemy)
(:init
 (adj t3 t8)
 (adj t3 t9)
 (adj t8 t13)
 (adj t9 t13)
 (adj t8 t12)
 (adj t12 t18)
 (adj t13 t18)
 (at u1 t3)
 (at u2 t3)
 (at u3 t3)
 (at u4 t3)
 (htop u1)
 (htop u2)
 (htop u3)
 (htop u4)
 (member u1 squad1)
 (member u2 squad1)
 (member u3 squad1)
 (member u4 squad1)
 (at f1 t9)
 (at e1 t18)
)
(:goal
 (forall (?e - enemy)
 (and (at ?e ?loc)

(exists (?u1 - unit)
(exists (?u2 - unit) (and (not (= ?u1 ?u2))

 (at ?u1 ?loc)
 (at ?u2 ?loc))))))

)
)

Figure A-16: MadRTS: sample ppddl problem description, b1 world.

way of exploring the fringe may be needed to bring about a change in policy: even

though the adaptive-basis approach can represent a policy to explicitly seek out and

consume food resources, the many action changes may place it quite “far” from the

initial envelope and make it hard to discover through random exploration.

131

Figure A-17: MadRTS domain: schematics of the three b problems; b0 through b2,
from left to right. In the first domain, there are two units (green), one food resource
(brown) and one enemy (red). In the third domain, there are six units, two food
resources, and two enemies.

Figure A-18: MadRTS world b: average reward per step.

132

Figure A-19: MadRTS: expected value in world b0.

Figure A-20: MadRTS: expected value in world b1.

133

Figure A-21: MadRTS: expected value in world b2.

134

A.4.2 The c world

Schematics of the three problem instances are given in Figure A-22. As before,

these were challenging problems. In the larger of the two instances, the minb-init

method starts to run into memory problems, probably due to our implementation.

The adap-init method does succeed in finding a good-valued policy, however.

Figure A-22: MadRTS domain: schematics of the three c problems; c0 through c2,
clockwise from top left.. The map is a replica of that given in the original Mad Doc
proposal document; the placement of units, enemies, and food resources is our own.
In the first domain, there are two units, one enemy, and a variety of food resources
in one area of the map. In the third domain, there are six units and two enemies.

135

Figure A-23: MadRTS world c: average reward per step.

Figure A-24: MadRTS: expected value in world c0.

136

Figure A-25: MadRTS: expected value in world c1.

Figure A-26: MadRTS: expected value in world c2.

137

Bibliography

[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time

dynamic programming. Artificial Intelligence, 72(1), 1995.

[2] Gordon Bernedo-Schneider. Cognitive modeling of motivations for artificial

agents. In E. Rome, P. Doherty, G. Dorffner, and J. Hertzberg, editors, Towards

Affordance-Based Robot Control, number 06231 in Dagstuhl Seminar Proceed-

ings, Abstracts Collection. Internationales Begegnungs- und Forschungszentrum

für Informatik (IBFI), Dagstuhl, Germany, 2006.

[3] Avrim L. Blum and Merrick L. Furst. Fast plannning through planning graph

analysis. Artificial Intelligence, 90:281–300, 1997.

[4] Avrim L. Blum and John C. Langford. Probabilistic planning in the graphplan

framework. In 5th European Conference on Planning, 1999.

[5] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence,

Special issue on Heuristic Search, 129, 2001.

[6] Blai Bonet and Hector Geffner. Labeled RTDP: Improving the convergence of

real-time dynamic programming. In ICAPS-03, 2003.

[7] Craig Boutilier and Richard Dearden. Using abstractions for decision-theoretic

planning with time constraints. In 12th AAAI, 1994.

[8] Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic dynamic program-

ming for first-order MDPs. In 17th International Joint Conference on Artificial

Intelligence (IJCAI), 2001.

138

[9] Tom Bylander. The computational complexity of propositional STRIPS plan-

ning. Artificial Intelligence, 69, 1994.

[10] Thomas Dean and Mark Boddy. An analysis of time-dependent planning. In

AAAI-88, 1988.

[11] Thomas Dean and Robert Givan. Model minimization in Markov decision pro-

cesses. In AAAI, 1997.

[12] Thomas Dean, Robert Givan, and Sonia Leach. Model reduction techniques for

computing approximately optimal solutions for Markov decision processes. In

UAI, 1997.

[13] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson. Planning

under time constraints in stochastic domains. Artificial Intelligence, 76, 1995.

[14] Stefan Edelkamp. Plannning with pattern databases. In European Conference

on Planning, 2001.

[15] T. Ellman. Abstraction via approximate symmetry. In Proceedings of the 13th

International Joint Conference on Artificial Intelligence, 1993.

[16] F. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal

Methods in System Design: An International Journal, August 1996.

[17] David Ferguson and Anthony Stentz. Focussed dynamic programming: Extensive

comparative results. Technical Report CMU-RI-TR-04-13, Robotics Institute,

Carnegie Mellon University, March 2005.

[18] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[19] M. Fox and D. Long. The detection and exploitation of symmetry in planning

problems. In IJCAI, 1999.

[20] M. Fox and D. Long. Extending the exploitation of symmetries in planning. In

AIPS, 2002.

139

[21] M. Fox, D. Long, and J. Porteous. Abstraction-based action ordering in planning.

In IJCAI, 2005.

[22] M. Fox, D. Long, and J. Porteous. Discovering near symmetry in graphs. In

Proceedings of AAAI, 2007.

[23] Thomas Gartner, Kurt Driessens, and Jan Ramon. Graph kernels and gaus-

sian processes for relational reinforcement learning. In Thirteenth International

Conference on Inductive Logic Programming (ILP-2003), 2003.

[24] Thomas Gartner, John W. Lloyd, and Peter A. Flach. Kernels and distances for

structured data. Machine Learning, 3(57), 2004.

[25] James J. Gibson. The theory of affordances. In Robert Shaw and John Bransford,

editors, Perceiving, Acting, and Knowing. Lawrence Erlbaum Associates, 1977.

[26] Robert Givan and Thomas Dean. Model minimization, regression, and proposi-

tional STRIPS planning. In 15th IJCAI, 1997.

[27] Robert Givan, Tom Dean, and Matthew Greig. Equivalence notions and model

minimization in Markov decision processes. Artificial Intelligence, 147:163–223,

2003.

[28] Robert Givan, Sonia Leach, and Thomas Dean. Bounded parameter Markov de-

cision processes. In Proceedings of the European Conference on Planning (ECP-

97), 1997.

[29] Robert Givan, Sonia Leach, and Thomas Dean. Bounded parameter Markov

decision processes. Artificial Intelligence, 2000.

[30] A. Grossman, S. Holldobler, and O. Skvortsova. Symbolic dynamic program-

ming within the fluent calculus. In Proceedings of the IASTED International

conference on Artificial and Computational Intelligence, 2002.

[31] E. Guere and R. Alami. One action is enough to plan. In IJCAI, 2001.

140

[32] Eric Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that

finds solutions with loops. Artificial Intelligence, 2001.

[33] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In AIPS,

2000.

[34] P. Haslum and P. Jonsson. Planning with reduced operator sets. In AIPS, 2000.

[35] David Haussler. Convolution kernels on discrete structures. Technical Report

UCSC-CRL-99-10, University of California at Santa Cruz, July 1999.

[36] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation

through heuristic search. JAIR, 14, 2001.

[37] J.E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.

In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, New

York, 1971. Academic Press.

[38] David Joslin and Amitabha Roy. Exploiting symmetry in lifted CSPs. In AAAI,

1997.

[39] K. Kersting, M. van Otterlo, and L. de Raedt. Bellman goes relational. In

International Conference on Machine Learning (ICML-04), 2004.

[40] Sven Koenig and Maxim Likhachev. D* Lite. In Proceedings of the Eighteenth

National Conference on Artificial Intelligence (AAAI), 2002.

[41] Sven Koenig and Maxim Likhachev. Incremental A*. In Advances in Neural

Information Processing Systems 14 (NIPS 2001), 2002.

[42] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning A*. Arti-

ficial Intelligence, 155:93–146, May 2004.

[43] R. Korf. Finding optimal solutions to Rubik’s cube using pattern databases. In

AAAI, 1998.

141

[44] Nicholas Kushmerick, Steve Hanks, and Daniel Weld. Algorithm for probabilistic

planning. Artificial Intelligence, 76, July 1995.

[45] Stephen M. Majercik and Michael L. Littman. Contingent planning under un-

certainty via stochastic satisfiability. Artificial Intelligence, 147, 2003.

[46] B. McKay. Practical graph isomorphism. Congr. Numer., 30, 1981.

[47] T. Miyazaki. The complexity of McKay’s canonical labeling algorithm. Groups

and Computation II, 28, 1997.

[48] Matthew Molineaux and David W. Aha. TIELT: A testbed for gaming environ-

ments. In National Conference on Artificial Intelligence (AAAI), 2005.

[49] B. Nebel, J. Koehler, and Y. Dimopoulos. Ignoring irrelevant facts and operators

in plan generation. In Proc. European Conference on Planning (ECP-97), 1997.

[50] Hanna M. Pasula, Luke S. Zettlemoyer, and Leslie Pack Kaelbling. Learning

symbolic models of stochastic domains. Journal of Artificial Inteligence Research,

29, 2007.

[51] Carl Adam Petri. Fundamentals of a theory of asynchronous information flow.

In First IFIP World Computer Congress, pages 386–390, publisher = North

Holland, 1963.

[52] M. Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 1994.

[53] J. Rintanen. Symmetry reduction for SAT representations of transition systems.

In ICAPS, 2004.

[54] P. H. Starke. Reachability analysis of Petri nets using symmetries. Source Sys-

tems Analysis Modelling Simulation, 8, 1991.

[55] Anthony Stentz. The focussed D* algorithm for real-time replanning. In 14th

Internationational Joint Conference on Artificial Intelligence (IJCAI), 1995.

142

[56] S.V.N. Vishwanathan and A. Smola. Fast kernels for string and tree matching. In

B. Schölkopf, K. Tsuda, and J.P. Vert, editors, Kernel Methods in Computational

Biology. MIT Press, 2004.

[57] website. FF Homepage. http://members.deri.at/ joergh/ff.html.

[58] website. IPC-02 Homepage: 2nd International Planning Competition.

http://planning.cis.strath.ak.uk/competition, 2002.

[59] H. Younes and M. Littman. PPDDL1.0: An extension to PDDL for express-

ing planning domains with probabilistic effects. In In Proceedings of the 14th

International Conference on Automated Planning and Scheduling, 2003.

[60] Luke Zettlemoyer, Hanna Pasula, and Leslie Pack Kaelbling. Learning planning

rules in noisy stochastic worlds. In Twentieth AAAI (AAAI-05), 2005.

143

