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PHYSICS-LIKE MODELS OF COMPUTATION* 
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Reversible Cellular Automata are computer-models that embody discrete analogues of the classical-physics notions of space, 
time, locality, and microscopic reversibility. They are offered as a step towards models of computation that are closer to 
fundamental physics. 

1. Introduction 

Reversible Cellular Automata (RCA) are 
computer-models that embody discrete analogues 
of the classical-physics notions of space, time, 
locality, and microscopic reversibility. 

In this paper, I will describe some RCA, explain 
how they can be used as computer models, and 
discuss RCA analogues of energy and 
entropy-concepts  that are fundamental in phys- 
ics, but have not played a fundamental role in 
computer theory. 

2. Cellular automata 

In CA, 'space' is a regular lattice of 'cells', each 
of  which contains one of a small allowed set of 
integers. Only cells that are close together interact 
in one ' t ime-step ' - the time evolution is given by 
a rule that looks at the contents of a few neigh- 

* This research was supported in part by the Defense Ad- 
vanced Research Projects Agency and was monitored by the 
Office of Naval Research under Contracts Nos. 
N00014-75-C-0661 and N00014-83-K4)125, and in part by 
NSF Grant No. 8214312-IST. 

**Von Neumann[10] was interested in the problem of 
evolution -could  life emerge from simple rules? He exhibited a 
CA rule that permitted computers, and in which these comput- 
ers could reproduce and mutate. In this paper, I refer only to 
the existence of computers when I use the term universal. 

bouring cells, and decides what should change. At 
each step, this local rule is applied everywhere 
simultaneously[ 10]. 

The best-known example of such a 'digital- 
world' is Conway's[5] "Game of Life". On a sheet 
of graph-paper, fill each cell with a '1' or a '0'. 
In each three-by-three neighbourhood there is a 
center cell and eight adjacent cells. The new state 
of each cell is determined by counting the number 
of  adjacent l ' s -  if exactly two adjacent cells con- 
tain a one, the center is left unchanged. If  three are 
ones, the center becomes a one. In all other cases, 
the center becomes a zero. 

Such a rule gives rise to a set of characteristic 
patterns that 'move' (reappear in a slightly dis- 
placed position after some number of steps) pat- 
terns that are stable (unchanging with time) pat- 
terns that oscillate (pass through some cycle of 
configurations) and many very complicated inter- 
actions and behaviours. The evolution of a given 
initial configuration is often very hard to antici- 
pate (see colour plate in [9]). 

One way to show that a given rule can exhibit 
complicated behaviour is to show (as has been 
done for "Life"[4]) that in the corresponding 
'world' it is possible to have computers. If you start 
the automaton with an appropriate initial state, 
you will see digits acting as signals moving about 
and interacting with each other to perform all of 
the logical operations of a digital computer. Such 
a computer-automaton is said to be universal.** 
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3. Reversible cellular automata evolution be invertible? 

Any  CA rule can be described by an equat ion o f  

the form* 

Si, t+ 1 =f (S{qa) ,  (1) 

where S~., + l is the state o f  the cell at posit ion ' i '  and 

at time ' t  + I ' ,  and f (S {~} , t )  is a funct ion o f  the states 
o f  cells in a ne ighbourhood  of  i, at time t. 

In general, (1) gives rise to a non-invertible 

dynamics.  I f  f is the 'Life '  rule, this evolution is not  
reversible - if an area now contains only zeros, did 

it contain zeros one step ago, or  were there perhaps 
some isolated ones that  just changed? Its impos- 
sible to tell. 

It turns out  to be very easy to write down C A  

laws that  give an invertible d y n a m i c s - j u s t  as easy 

as construct ing irreversible ones, in fact. Consider  
first the following finite difference equation,  with xt 
a real variable: 

x,+,  = f ( x , )  -- x,_ 1. (2) 

I f  you  want  to compute  xt+l, you  must  know x, 

and x,_ 1 - -  these two constitute the complete 's tate '  

o f  the system. For  what  functions f will the time 

X t _  1 = f  (x~) - X t + l ,  ( 3 )  

therefore any f a t  all will do**! Knowing  x for  two 

consecutive times allows you  to calculate any 
preceding or  any succeeding value o f  x (To my 

knowledge Fredkin [2] was the first to study revers- 

ibility in finite-difference-equations o f  this sort.) 
The generalization to C A  is s t raightforward - let 

x in (2) be replaced by ci, the contents o f  the cell 

at posit ion ' i '  in our  au tomaton ,  

ci.t + l = f (C{i},t) - -  Ci, t - 1' (4) 

w h e r e f  (c/i},,) is any function involving the contents 
o f  cells near posit ion ' i ' ,  at time ' t ' ,  and the 

difference is taken mod  the number  o f  allowed cell 

values***. I f  we let the state o f  a cell cor respond 
to its contents  in two successive steps, then (4) can 
be reexpressed in the form (1), but  its reversibility 

is not  manifest t .  

Such rules can be universal (I give an example in 

the appendix). Reversible computa t ion  is a rela- 

tively new idea [1, 3, 8] that  has been used to show 

that  a fundamental  lower bound  on dissipation in 

computers  associated with the irreversibility o f  

conventional  logic elements[6] can be avoided. 

*This serves to clarify what sorts of systems we're dealing 
with, but is often not the simplest or most illuminating way to 
express the rule. 

**Assuming integer addition and subtraction is done without 
error, if such an equation is iterated on a digital computer, its 
time evolution remains exactly reversible, despite roundoff and 
truncation errors in computing f 

***Differences mod-k and logical functions can always be 
re-expressed as ordinary polynomial functions. For example, if 
A and B are binary variables, then (A - B )  2 is the same as 
A + B(mod 2), 1 - A  is the same as not(A), A *B is the same 
as and(A, B), etc. Thus (4) is equivalent to.an ordinary real- 
variable finite difference equation with integer initial conditions. 

tThe global time evolution generated by (4) is not guaran- 
teed to be invertible unless suitable boundary conditions are 
chosen, such as no boundary (i.e. an infinite or periodic space) 
or 'fixed' boundaries (cell values on the boundary are not 
allowed to change with time). 

:~Spatial correlations will not arise if they are initially absent, 
but time correlations are often very evident, and are character- 
istic of the particular rule being employed - see the next section. 

4. Entropy in RCA 

I f  we fill the cells o f  our  au toma ton  with ran- 

domly  chosen binary values and then evolve it 
according to the Life rule, we see a complex ebb 

and flow of  structures and activity, with so-called 

'gliders' arising here and there, moving across 
clumps of  zeros, and then being drawn back into 
a complex boiling ' soup '  o f  activity, or  perhaps 
rekindling complicated interactions in an area 
which had settled down into uncoupled,  short  
period oscillating structures. 

If, instead o f  the Life rule, we follow some 
invertible time evolution, we invariably find that, 
at each step, the state o f  the au toma ton  looks just 

as r andom as when we started:~. This is expected 
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from a simple counting argument, since most 
configurations look random (only a very few 
random-looking initial configurations can be 
mapped by a given number of  invertible steps into 
the few simple-looking configurations, since the 
overall mapping is bijective). 

This is not meant to imply that RCA are less 
interesting than irreversible CA. Starting an RCA 
from a random state is like starting a thermo- 
dynamic system in a maximum entropy s t a t e -  its 
not allowed to get any simpler since its randomness 
can't  decrease, and it can't  get more complicated, 
since its already as random as it can be, and so 
nothing much happens. 

If we start an RCA from a very non-random 
state (e.g. some small pattern on a background of  
zeros) then we can have an interesting time evo- 
lution. If  we choose a rule and an initial state that 

allow information to propagate, then what tends 
to happen is that the state of  the RCA becomes 
more and more complicated. More precisely, if 
each state of  the automaton is viewed as a 
'message', with the contents of  the cells being the 
characters of  the message, and if only local mea- 
sures of  correlation are applied, then the amount  
of information* in successive messages is in- 
creasing. Of  course th~ automaton is really only 
repeatedly encrypting its state, and so if all cor- 
relations are taken into account the amount  of  
information really never changes. What  happens is 
that the automaton will introduce some redun- 
dancy into the message, and use more cells to 
encode the same information. Information that 
was initially localized becomes spread out as cor- 
relations between the states of  many cells, and it 

*For a discussion of  the information content o f  a message, 
cf. [71. 

**(4) generates a locally invertible time evolution. If we 
know the values of  cells near position i at two successive times, 
we can tell what the preceding value of  the center cell was. 

***In mechanics, this corresponds to degrees of  freedom 
that, for certain initial conditions, are decoupled from the rest. 

t F o r  rules with 2 states per cell, only two rules, "count the 
parity of  the neighbourhood" and its complement, have no 
configuration of  part o f  the neighbourhood that makes the 
remaining neighbours irrelevant. 

becomes very difficult for a locally invertible evo- 
lution to put the redundant pieces back 
together**. To use an analogy, an invertible 
mapping could change two copies of  this document 
into one copy, and several sheets of  blank paper. 
Two separate invertible mappings, each acting 
only on one of  the copies, could not accomplish 
this end. 

From the point of  view of  creatures 'living' 
inside an RCA, their inability to make use of 
complicated correlations between large numbers of  
cells means that for all practical purposes, the 
entropy of  the automaton increases. To use a 
thermodynamic analogy, if I want to compress a 
gas, it doesn't help me to know that the gas was 
all in one corner of  the room just a few minutes 
ago. I have no ability to make use of  the compli- 
cated correlations that this statement implies, and 
so I say that entropy increased when the gas 
expanded to its current volume. 

5. Conservation laws in second-order RCA 

In general, an RCA has as many conserved 
quantities as there are ce l l s - i t  'remembers' the 
initial state of  each cell, since you can recover this 
information by running the system backwards. Do 
these give rise to any invariants which can be 
computed in a local manner from the current state 
of  the system? Can we find an invariant that is 
analogous to a classical mechanical energy? 

In RCA, the simplest locally-computable invari- 
ants are of course cells whose values never 
change***. Such situations can arise because many 
rules ignore the remainder of  the neighbours when 
part of  the neighbourhood has some particular 
configurationt. For  example, consider any rule 
that, in all cases where the center cell of the 
neighbourhood is 1, ignores the rest of the neigh- 
bours and returns a 2. Such a rule, when used with 
(4), results in a very simple conservation law. If  we 
look at the case in one dimension where the 
automaton at two consecutive time-steps looks like 
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this: 

t - I  . . . 1 . . .  
t . . . 1 . . .  

'.' indicates a cell whose value is 
irrelevant to the discussion (5) 

then the center cell here will always be a 1. 
For  a more interesting l-dimensional example, 

consider a 2 state per cell CA with a rule f that 
returns a 1 iff each of  the two cells adjacent to the 
center is the same as the center: 

1, if c x _  1,t = Cx,t = Cx + 1,t (6) 
f (C{x}' t)= O, otherwise. 

* In irreversible CA, a guarantee that a cell will always be 
part of  such a pair does not  guarantee that  it always has  been. 

** An extreme instance of  'decoupling'  of  entire regions 
occurs with any rule that doesn ' t  depend on the center cell, but  
depends on its nearest neighbours. For example, in 1D we might 
have a region that looks like this: 

t - - I  . . .  1 . 1 . 0 . 1 . . .  
t . . .  1 . 0 . O . l . 1 . . .  
t + l  . . .  ? . ? . ? . ? . . .  

From (4) it is clear that  we have enough information to 
compute the states of  the cells marked with ' ? ' - t h e  system 
decouples into two entirely independent (but interleaved) sub- 
lattices, each evolving without reference to the other, 

With this rule, 'a '  and 'b '  standing for any binary 
values, and a ,  their binary complements, the 
second-order time evolution given by (4) says that 

• b E .  ~ t + l  . a ~ .  (7) 

which is again of  the same form, so these two cells 
are decoupled from the rest of  the automaton. Any 
cell which is n o t  initially part of  such a pair will 
never be (and never was)*; counting all such cells 
gives us an (invariant) estimate of  how many cells 
are available to represent dynamically changing 
information (but only an es t imate-  whole regions 
may be decoupled from the rest of the automaton 
because they are surrounded by a wall of decou- 
pled cells**; a local counting wouldn't  reveal this). 

If we concentrate on the active (as opposed to 
the decoupled) cells, we can distinguish various 
kinds of  activity, and try to associate conserved 
quantities with each. As a simple 1-dimensional 
example, consider 'dislocations' propagating in a 
regular background pattern of cells. Using the rule 
(6) again, consider the sequence of steps shown in 
fig. 1 (light and dark squares stand for 0's and l 's 
respectively; dislocations are triplets in a back- 
ground of pairs and are outlined for emphasis). In 
this evolution, the number of  such 'signals' is the 
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same as the number  of  blocks of  cells we start off 
with the form .. . . . . . .  and is conserved. bb . . . ,  

I f  two such dislocations collide, we know that 
they can ' t  just completely stop moving. Proof: if we 
tried to invert the evolution, we wouldn' t  know 
when to start the signals moving again. In fig. 2, 

the following quantity is the same for every pair of  
consecutive time-steps: 

( ""aa"i) # of  cells in blocks of  form bb 

( ""c'c"i) 
+ # of  cells in blocks of  form d d .  

(8) 

The first term counts the number of  moving sig- 
nals, and so could be thought of  as a 'kinetic- 
energy' analogue. The second term accounts for 
the disappearance of  this 'K.E. '  during a collision, 
and so could be considered a potential-energy 
analogue. 

* Iff~ is the global rule that applies to the solid blocking, and 
fa to the dotted blocking, then St+ l =fs(fd(St)) describes the 
evolution using a time independent rule. By including a small 
amount of positional information in the state of each cell, this 
rule can be written in the form(l). 

6. First-order RCA 

Rathe r  than  cont inue  to analyze  R C A  in o rde r  

to d iscover  conse rva t ion  laws, we will now proceed  

to cons t ruc t  a class o f  a u t o m a t a  tha t  all obey a 

very s imple local conse rva t ion  law: the to ta l  num- 

ber  o f  l ' s  never  changes,  and  nei ther  does  the 

number  o f  O's. 

The  tr ick we will use is qui te  general ,  but  it will 

be i l lus t ra ted in 2 d imens ions  with 2 states per  cell. 

Fig. 3 shows a Car tes ian  lat t ice o f  cells, d iv ided  

into 2 x 2 b locks  o f  cells. We  t reat  each 2 × 2 b lock  

as a conservat ive- logic[3]  gate, with 4 inputs  (its 

cur rent  state)  and  4 ou tpu t s  (its next  state).  These 

'ga tes '  are  in te rconnec ted  in an ent i rely un i fo rm 

and  pred ic tab le  m a n n e r - i n  app ly ing  the rule to 

the 2 × 2 blocks,  we a l te rna te  between using the 

solid b lock ing  in this d i a g ra m for one step, and  

then using the do t t ed  b locking  for  the next*. Fig. 

I i. ̧  ....... 

b q ............ 

~ i ,~ - , 

Fig. 3. 
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On .__. DO 
DO D13 

no ~ nm 
mo DO 

Dm , mD 
mD Dm 

Dm _+ Dm 
Dm om 

mm _+ mm 
Dn Dm 

mml ~, m m  
mm N i l  

Fig. 4. 

4 shows an example of  a conservative rule (one that 
conserves l ' s  and O's) that is reversible. In the case 
of  all O's or all l 's,  there is no choice, they remain 
unchanged. Any rotation of  one of  the blocks on 
the left is mapped onto the corresponding rotation 
of  the result to its r i gh t - t h i s  rule is rotationally 
symmetrical, and these are all of  the possible cases. 
Since each distinct initial state of  a block is mapped 
onto a distinct final state, this rule is reversible. As 
will be shown later, the automaton corresponding 
to this rule is universal. 

One could easily have written down an example 
of  a rule that conserved l 's  and O's, but that didn' t  
always map a distinct initial state of  a block into 
a distinct final state - such a rule would be conser- 
vative, but not reversible. As the corresponding 
automaton evolved, it would forget all sorts of  
details about  the initial state, but it would always 
remember the numbers of  l ' s  and O's.* Thus the 
existence of  an interesting local conservation law 
does not depend on the rule being reversible! 

In the language of digital logic, a gate from 
which it is possible to construct any boolean func- 
tion of any number of  input variables is a universal 

* For each gate (block), we can tell after each step how many  
possible predecessors the result-block has. Thus  we can count  
exactly how much  information is lost at each step. 

**The BBMCA models space as being uniformly filled with 
gates, and so a connection is already apparent.  

gate. I f  a logic gate is not universal, then no 
interconnection of such gates can be a computer. 

Thus the only candidates for universal CA's  in the 
scheme described above are those whose rule corre- 
sponds to a universal logic gate. 

In order to promote the CA rule of  fig. 4 as a 
link between classical mechanics and computat ion,  
I will first discuss Fredkin's Billiard Ball Model 
(BBM) of computation[3] - a classical mechanical 
system that can be used to do digital computation.  
It will then be easier to discuss this rule, which I 
call the B B M C A -  a purely digital model of  com- 
putation which is closely related to the BBM. 

7. The billiard ball model of computation 

The BBM is a classical mechanical system, and 
obeys a continuous dynamics -pos i t ions  and ve- 
locities, masses and times are all real variables. In 
order to make it perform a digital computation,  we 
make use of  the fact that integers are also real 
numbers. By suitably restricting the initial condi- 
tions we allow the system to have, and by only 
looking at the system at regularly spaced time 
intervals, we can make a continuous dynamics 
perform a digital process. In this case, we begin 
with a 2-dimensional gas of  identical hard spheres. 
I f  the center of  a sphere is present at a given point 
in space at a given point in time, we will say that 
there is a '1' there, otherwise there is a '0 '  there. 
The l 's  can move from place to place, but their 
number never changes. 

The key insight behind the BBM is this: every 
place where a collision of  finite-diameter hard 
spheres might occur can be viewed as a boolean logic 
gate**. What  path a ball follows depends upon 
whether or not it hits a n y t h i n g - i t  makes a deci- 
sion. 

To see how to use this decision to do boolean 
logic, consider fig. 5. At points A and B and at time 
ti, we either put balls at A, B, or both, or we put 
none. Any balls present are moving as indicated 
with a speed 's ' .  I f  balls are present at both A and 
B, then they will collide and follow the outer 
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A? AB 

f 

B? AB 

Fig. 5. 

outgoing paths• Otherwise, only the inner outgoing 
paths will be used. At time t = ti, position A is 
a 1 if a ball is there, and 0 otherwise (similarly for 
position B). At t = tf, the four labeled spots have 
a ball or no ba l l -  which they have is given by the 
logical function labeling the spot. For  example, if 
A = 1 and B = 0 ,  then the ball coming from A 
encounters no ball coming from B, and ends up at 
the point labeled "A and not B".  A place where a 
collision might occur acts as a reversible, universal 
[3] l-conserving logic-gate, with two inputs and 
four outputs. A path that may or may not contain 
balls acts as a signal-carrying wire. Mirrors 
(reflectors) allows bends in the paths. In order to 
be able to use the outputs from such a collision- 
gate as inputs to other such gates, we need to very 
precisely control the angle and timing of  the col- 
lisions, as well as the relative speeds of  the balls. 
We make this simple to do by severely restricting 
the allowed initial conditions. Each ball must start 
at a grid point of  a Cartesian lattice, moving 
'along' the grid in one of  4 allowed directions. See 
fig. 6. All balls move at the same speed• The time 
it takes a ball to move from one grid point to 
another we call our unit of  time. The grid spacing 
is chosen so that balls collide while at grid-points. 
See fig. 7. All collisions are right angle collisions, 
so that one time-step after a collision, balls are still 
on the grid. Fixed mirrors are positioned so that 
balls hit them while at a grid point, and so stay on 
the grid. See fig. 8. By using mirrors, signals can be 

! X 
f • • I 

Fig. 6. 

Fig. 7 

Fig. 8. 

A** ,, B 

7 t ~-k 
B /  " A  

Fig. 9. 

routed and delayed as required to perform digital 
logic. The configuration of  mirrors in fig. 9 solves 
the problem of  making two signals cross without 
affecting each other. (Notice that if two balls come 
in together, the signals cross but the balls don't!). 
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Mirrors and collisions determine the possible 
paths that signals may follow ('wires'). In order to 
ensure that all collisions will be right-angle col- 
lisions (and not head-on, for example, which would 
take us off our grid) we can label all 'wires' with 
arrows, and restrict initial conditions and inter- 
connections so that a ball found on a given 'wire' 
always moves in the labeled direction. 

Thus our universal gates can be connected as 
required to 'build' a computer. Computations can 
be p ipe l ined-an  efficient 'assembly-line' way of 
doing things, where questions flow in one end and 
finished products (answers) flow out the other, 
while all the stages in between are kept busy. 
Reversibility turns out not to be a great 
h indrance-unwanted  intermediate results can be 
mostly 'erased' by copying the answer once you 
have it, and then running the computation back- 
wards to get rid of everything but a copy of the 
inputs. 

This then, in brief, is the BBM. Kinetic energy 
is conserved, since all collisions are elastic. Mo- 
mentum is not conserved, since the mirrors are 
assumed to be fixed (infinitely massive). 

8. The BBM cellular automaton 

When viewed only at integer time-steps, the 
BBM consists of a Cartesian lattice of  points, each 
of which may 'contain' a 0 or a 1, evolving 
according to a local rule. It would therefore seem 

to be a straightforward matter to find a CA rule 
that duplicates this digital time evolution. 

Unfortunately, the most direct translation of the 
BBM into a CA has several problems. First of all, 
to have separate states of  a cell to represent 4 kinds 
of balls (4 directions) an empty cell and a mirror, 
and to have the balls absolutely conserved (as they 
are in the original BBM) would require a standard 
"change the center cell" rule with 6 states per cell, 
and a 17 cell neighbourhood. Such a rule has a very 
large number of possible configurations for its 
neighbourhood, which makes it unwieldy. More-  
over, many of these configurations involve such 
events as head-on collisions, which were disallowed 
in the B B M - a  CA rule, however, should be 
defined for all configurations. It is not at all clear 
how to extend the BBM rule to these extra cases, 
and still have it remain reversible and 'energy' 
conserving. 

At the expense of making collisions cause a 
slight delay, we can get away with the very simple 
rule of fig. 4, which involves only 2 states per cell 
in a 4 cell neighbourhood, is reversible, and con- 
serves the number of ones (and zeros) in all cases. 

The IIDDD .._. DDDlI (and rotations) case in fig. 

4 is the one that causes an isolated'l '  to propagate 
in a straight line, in one of  four directions (depending 
on which of the four corners of  its starting block 
you put it in). See fig. 10. The legend "solid" or 
"dot ted"  below each of these automaton 
configurations tells you whether the grouping of 
cells into blocks for the next application of the rule 

4 
x,,~..,. ~ J  

dotted 

. . . .  " "~ '~ t  " ~ ' "  ~ " i  ^'~'~" ~ " "  ~ 

L ,  
solid 

Fig. 10. 

i 

dotted 
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solid 

F i g .  11 .  

...... t ......... i ) ,  - 
1 

..... ) ...... lli m r-  

k 
dotted 

is indicated by the solid or  the dot ted  lines. In 
the diagrams,  a 0 is shown as an emp ty  (blank)  
cell, a one is shown as a filled-in cell. Since 
El l  __~ El l  (and rotat ions) ,  a square  o f  four  
a m  Elm 
ones straddling the b o u n d a r y  o f  two adjacent  blocks 
will be s t a b l e - w e  will use such squares  to const ruct  
mirrors. See fig 11. The four  l ' s  s traddle two dot ted 
blocks horizontal ly,  then two solid blocks vertically, 
and then two dot ted again.  Since E l l  ~ 1112 

. m a  Elm 
(and rotat ions) ,  pairs o f  travelling ones pe r fo rm 
a billiard-ball type collision. See fig. 12. In all o f  

these figures, the paths  the ones were originally 
following have been lightly drawn in, to show that  
the ' and '  case shown results in an ou tward  dis- 
placement ,  just  as in the BBM. (Unlike the BBM, 
there is a delay in such a collision, which we'll have 
to worry  abou t  in synchronizing signals). Finally, 
I l l  ~ 11/  (and rotat ions)  permits  the re- 12111 E l m  
flection o f  double  signals by a mirror .  See 
fig. 13. The  'mi r ro r '  consists o f  two adjacent  
stable squares  (notice that  a square is stable no 
mat te r  what  you put  next to it - its 

i 
.................. ,,:~ .......... >,o:.~ ........... 

i l l  

i ... ,, / "  ....................... ~~::'"" !"~'t .............. 

i~..,,,.,~ i l l  i ""~ 

in 
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.: '-. 

", i ..". t /  

........ :':~". . . . . . . . .  i !  ....... 1:7~<-- -- 

"¢mll" m) \ (  
......... <):2. . . . . . . . . .  "~,~ 

~ i  
k:LJ 

solid 

- - )  

;.:~] 

mi  ................... ~ 2 : : :  ...... 
• i " ,  .... / f  

............. :!::.,....,... ,,.^,,~ ........ '\.,~ 
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. . . . . . . . . . . . .  , ............. o?~ ....... 
i"",..: ~ " t  
i l l  .... ~ "  ....................... . .............. ::..';:L.. g 

' ! 1  ........ i " \ . 7 t  ...... 

7 i  i ~ '  i i .......... 

dotted 

..,,,,,¢ 

23 

F i g .  12 .  

- +  

! i I /  

I I  .,... 

! !  I ".,, 
.............. j:;':~ ................................... ' ~ ' i  ~ 

..... .,,, ,J,., 

i / .  d:  ...... 

dotted 

N ,  

7 I,,,f:11 

L::I 

J I ~<j 
--i~ ......... 7 ........ 

, ' '11\. 

! i ........ ::,-.,~ 
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dotted 

'decoupled').  Again, the signal path has been 
lightly drawn in. After each reflection such as that 
shown above, the signal has been delayed by a 
distance of  one block along the plane of the mirror  
(in this picture, the signal winds up one block- 

column behind where it would have been had it not 
hit the mirror). 

* We can tell how many steps a signal will take to traverse 
a given path (from one position where the signal is moving 
freely to another) by simply drawing the path joining the two 
points (including all points that may be visited by at least one 
'1') and counting how many cells are on the path. 

In the BBM, such a reflection would cause no 
horizontal delay. We can compensate for such 
extra delays, as well as add any desired horizontal 
delay of  2 or more blocks. See fig. 14. 

Suppose we want to arrange for two signals to 
collide, with the plane of  the collision being hori- 
zontal. I f  we get the two signals aligned vertically 
and they are approaching each other as they move 
forward, they will collide properly. We can 
adjust the time it takes one or both signals to 

reach a given vertical column by using delays such 

as those in fig. 14". 

"\~ m~m mm 
i "'. i / " x t  . . . . . . . . . . . . . . .  ~. ............. ~,~:: . . . . . . . . . . .  • . . . . . .  ~ ,  

. . . . . .  i x  ! \  

F 
. t 

~m m e  Hi 
[ ~  )m mm ) 

2-delay 

F i g .  1 4 .  

3-delay ~i ~ 

"% { 

I ni ' i "  i N  
1 n~i,,- "d Him 
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I r l  DD . r i  __. n l  
DD --* HD on dotted steps, and Dn DD 
on the solid steps, etc.) then we get another rule 
that is also computation universal. Its universality 
can be shown in a direct manner by using this rule 
to simulate the BBMCA (this rule can simulate a 
given BBMCA computation isomorphically using 
eight times as much space, and four times as much 
time)*. 

Fig. 15. 

In order to allow signal-paths to cross without 
interacting, we use signal timing. By leaving a gap 
long enough for one signal (2 blocks) between all 
signals, we need only delay one of  the paths by 2 
blocks along the plane of  the collision we're avoid- 
ing, in order to allow the signals to pass each other 
harmlessly. This gap is also enough to allow us to 
separate parallel output paths from a collision. See 
fig. 15. After the collision (fig. 12) the upper path 
already has a 1-block horizontal delay relative to 
the lower path. The mirror introduces a further 
1-block delay, and so the upper signal passes 
through the timing-gap left in the lower signal 
path. With the addition of  some extra syn- 
chronization and crossover delays, any BBM cir- 
cuit can now be translated into a BBMCA circuit. 
Since the BBM has been shown to be a universal 
computer, the BBMCA is also. 

There are many rules similar to the BBMCA 
that are also universal - for example, if we take the 
BBMCA rule of  fig. 4 and modify it so that for 
each case shown,  the result (right-hand side) is 
rotated 90-degrees clockwise on the 'dotted' steps, 
and counterclockwise on the 'solid' steps (i.e. 

*The idea for this B B M C A variation arose out  o f  a 
discussion with Tommaso  Toffoli. 

9. Relationship of BBMCA to conservative logic 

The collision-gate of  fig. 5 has two inputs and 
four outputs. If we wish to consider it to be a 
conservative-logic gate (one that conserves both 0's 
and l's) then we must regard it as a gate with four 
inputs and four outputs, two of  the inputs being 
constrained to always be zeros. 

The gate upon which the BBMCA is based also 
has four inputs and four outputs. Is there some 
connection here? Let us redraw the BBMCA rule 
in a different form (see fig. 16). The mapping of  
input variables onto output variables of  the 
BBMCA has been redrawn as if the inputs all 
arrive and leave in a vertical column. If  we use this 
correspondence to draw the four possible cases 
with a = d = 0, drawing []  for 0, • for 1, and 
showing each input/output case, we get an evo- 
lution (see fig. 17) which is logically the same as the 
collision gate. Thus the BBMCA rule of  fig. 4 can 
be regarded as a completion of  the collision-gate to 
a (reversible) conservative-logic gate! 

a-I I-A 
b-f I-a ab AB becomes 

cd --* CD c-I I-c 
d-I I-D 

Fig. 16. 

o-I I-o o-I I-O 
0-1 I-0 m-I I-o 
o-I I-o o-I I-n 
O-I I-[] []-I I-[] 

Fig. 17. 

D-I I-D D-I l-m 
D-I l-i U-I l-n 
"-I I °n l-I l-n 
D-I l-n D-I l-m 
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10. Energy in the BBMCA 

In the BBM, the kinetic energy is proportional 
to the number of  moving l's. In the BBMCA, if we 

l e t  Px,y,t-1/2 = Cx, y,t - -  Cx,y,t-t, then 2 Y~xy(P x,y,,.l/2/2) 
counts the number of  moving ones (each moving 
one disappears from one cell, and appears in 
another, so Zxyp 2_ which counts how many places 
change-  would count each moving one twice). 

The ones that aren't  moving are at those places 
that were a one at t - 1, and still are one at time 
t. Thus the number of  stationary ones is 

•xyCx,y,tCx,y,t  - 1. A complicated way of  writing the 
(constant) total number of  ones is 

2 
Et.l/2 -~ ~ Px,y,t 1/2 .4_ ~'~ " "  2 _ ,.., e , c ,_  1. (9) 

xy 

During a collision, some of  the 'kinetic-energy' 
changes into 'potential-energy', and then it 
changes back again.* 

Since (9) is a constant for a n y  rule for which 
2 Exj,c~,~,, is constant, it is not possible to derive the 

particular rule from this expression. We might (for 
example) introduce the rule into (9) by using it to 
eliminate c, (thus writing E as a function of Pt-U2 

and c t_  ~) and see if we can push the mechanics 
analogy further. 

Using number-of-ones to play the role of energy 
in BBMCA circuits and considering circuits for 
which we have only a statistical knowledge of  what 
the different inputs will be, elaborate thermo- 
dynamic analogues can be established, but this will 
be discussed elsewhere. Although the overall sys- 
tem has a single deterministically evolving state, 
from the point of view of  small pieces of the 
system, their inputs may appear random. 

11. Conclusion 

The laws of nature are the ultimate computing 
r e s o u r c e - - t h e  most efficient computation imag- 

* One can think o f  mechanical models o f  the BBMCA for 
which the two terms of  (9) are proportional to the physical 
kinetic and potential energy o f  the system midway between two 
steps. 

inable would make the most direct possible use of 
the physical interactions and degrees of freedom 
available. Physical quantities and concepts would 
have a direct computational interpretation. Com- 
puter scientists cannot hope to find the right 
quantities to use to talk about efficient com- 
putation until they have models of computation 
that are much closer to fundamental physics. Re- 
versible Cellular Automata are offered as a step 
towards this end. 

Appendix A 

A s e c o n d - o r d e r ,  r e v e r s i b l e ,  u n i v e r s a l  a u t o m a t o n  

This appendix describes another BBM-type au- 
tomaton. As before, we begin with a 2-dimensional 
cartesian lattice, this time with 3 states per cell, 
which we can designate as - 1, 0, + 1, and which 
we will draw as ' \ ' ,  blank, and '/' respectively in 
diagrams. 

The time evolution will be given by 

Cx,y,, + l = f(cl~,~l,,) - Cx,y,,_ ~, w h e r e f  (e{x,y},t) is a func- 
tion that 'looks' at the 3 × 3 neighbourhood with 
cx, ~, as its center cell, and ' - '  is taken mod3. 

For each possible configuration of  the neigh- 
bourhood, f will return a value of  - 1, 0, or + 1. 
Just as head-on collisions never arise in BBM 
computations, many configurations of  this R C A  

need not arise in order to 'build' a universal 
computer. We will leave these cases undef ined-  
each choice for these undefined cases defines a 
distinct universal RCA. 

An isolated '/' or ' \ '  will correspond to a travel- 
ling billiard b a l l -  if only the cases defined here 
arise, the number of such 'balls' will be conserved. 
An isolated '/ ' will propagate along a positively 
sloped d iagonal -  its evolution will be governed by 
the following cases: 

ooo ooo /oo ooo o/o ooo ooo ooo 
ooo o/o ooo ooo ooo /oo oo/ ooo 
ooo ooo ooo oo/ ooo ooo ooo o/o 
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all return a '0' as the value f o r f ;  

00/ 000 
000 000 
000 /00 

both yield a value of  '/ ' (i.e. + 1). A sample time 
evolution (using halftones to show a cell's contents 
at time t - 1  and solid lines for time t, with 
diagonals lightly drawn through all cells) is shown 
in fig. 18. Intuitively, this rule at time t tries to 
make the ' / '  travel both forwards and backwards 
along its diagonal-subtracting away a ' / '  where it 
was at time t - 1 just leaves a ' / '  in the forwards 
direction. 

We define this rule to be rotationally symmetric. 
It will be helpful to adopt the following con- 
vention: the 90-degree clockwise rotation of  

ooo \oo 
/ is 

000 000 

/oo ooo 

-+\ .  

Inversions are defined analogously. Thus an iso- 
lated ' \ '  will follow a negatively sloped diagonal 
path if the propagation of  signals is governed by 
the cases: 

ooo ooo /oo o/o 
O,  

000 0/0 000 000 

000 000 000 000 

000 - - , /  
000 

/00 

(and rotations and inversions). 

For  compactness in writing the complete rule, 
we adopt the convention that inversions as well as 
rotations of  the cases given are mapped onto the 
corresponding inversions or rotations of  the result 
given. 

These cases become zero: 

\ \ \  \\0 \\0 \\0 \\0 \\/ 
ooo ooo IOO /oo 1/o ooo 
//I tlO ooo oo/ oo/ /f\ 

\V \o\ \o\ \o\ \oo \oo \oo 
iot ooo ioo foo ooo I\O I\1, 
i \ \  IOl ooo OOl too ooo ooo 

\oo \oo \oo \oo \oo \oo 
IO\ IO\ IOO IOO 1oo IOO 
ooo OOl \oo \Ol ooo OOl 

\oo \oo \oo \oo \oo \oo \oo 
/oo IOO /Ol /o/ //\ //o / /o '  
o/o o// ooo oo/ ooo ooo oo/ 

\Ol \ot \Ol oo\\ o\ \  o\o 
ooo IO\ fo\ ooo ooo ooo 
1o\ \Ol ooo ooo Oli ooo 

o\o o\o o\o oo\ oo\ oo\ oo\ 
ooo ooo /o/ o\o oo\ ooo ooo' 
OOl o/o o\o ooo oo/ ooo oo/ 

oo\ ooo ooo o o o / \ \ / \ \  fo\ 
OOl o\o ooo IO\ ooo IOl ooo 
ooo ooo ooo \ot \tl \ V  \Ol 

These cases become one: 

\oo \oo 
/\o/oo 
Vo /\o 

00\ 000 

/\o ooo 
Vo /oo 

\oo \oo \o/ \o/ \Ol V \  o\o 
/oo / o o / o \ / o o / o o  ioo /\o 
/oo /o/ OOl ooo oo/ooo \/o 

000 000 000 000 000 

ooo I\\ i\o I\O I\1 
tOl VI \1o VI \1o 

oV oV oV 
\oo oo\ ooo' 
/oo ooo /oo 

(plus rotations and inversions). There are 2617 
undefined cases. 

Using this rule, a mirror is shown in fig. 19. We 
needed to define certain cases just to allow a mirror 
to remain unchanged when no signals are nearby. 
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A signal bouncing on a mirror is shown in fig. 20. 
(Notice that there is no horizontal delay, as there 
was in the BBMCA). If this signal had been shifted 
one column to the right, it would have passed the 
mirror unaffected. We put some mirrors near 
places where signals might collide, so that (with its 
small neighbourhood) this rule can simulate an 
attractive co l l i s ion- the  signal paths will be dis- 
placed inward in a collision, rather than outward 
as in the BBM. See fig. 21. (If a signal arrives on 
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