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Abstract

Cellular Automata are discrete physics-like systems
that can be exactly simulated by digital hardware.
These systems can incorporate many realistic physical
constraints and still be capable of performing digital
computation. Such systems bridge the boundary be-
tween physical models and computational models, and
so can play a central role in investigating the relevance
of physical ideas to the theory and practice of compu-
tation, and computational ideas to the construction
and use of physical models.

1 Introduction

Physics is the ultimate machine language. It is the
constraints and opportunities provided by the laws of
nature that ultimately determine what can be com-
puted, and how, by our engines that transform in-
formation. As ever increasing demands for greater
computational power and efficiency drive us into in-
creasingly microscopic realms technologically, we are
forced to adapt both our models of computation and
our algorithms to fit the physics.

Anticipating these trends leads us naturally to the
study of Cellular Automata (CA): discrete physics-
like systems that can be exactly simulated by digital
hardware. By incorporating physical constraints such
as locality of interaction, three-dimensionality of in-
terconnection, and uniformity of structure, such sys-
tems act as laboratories within which we can study
the possibilites of digital computation in the face of
microphysical constraints.

Because of the massive fine-grained parallelism that
is possible for physical realizations of CA, theoretical
progress in making efficient use of CA models has di-
rect practical consequences. But perhaps even more
interesting are the theoretical issues that arise when

we strive to bring our fundamental models of compu-
tation and of physics as close together as possible.

2 Why bring the models together?

CA are representative of a class of models in which
we try to incorporate computational features in a con-
text that is compatible with physical structures and
constraints. There are several reasons to investigate
such informational models which emulate physics.

• Efficiency: I have sometimes likened the pro-
cess of refining our computers to that of refining
an ore. We could imagine that we are trying to
ultimately create a chunk of 100% pure Compu-
tronium, in which as little as is physically possi-
ble is waste-material. Every available degree of
freedom is being used in a useful computational
mode, with both interaction sites and communi-
cation paths being as small and dense and fast as
possible. To achieve such an end, our computa-
tion would have to map almost exactly onto the
structure and dynamics of the matter: the com-
putation would look like the microscopic dynam-
ics of an extended material system. Thus study-
ing models of computation which incorporate re-
alistic physical structure and constraints is a step
towards harnessing the massive fine-grained par-
allelism inherent in the laws of nature.

• A Science of Computation: Computer science
doesn’t presently have the kinds of strong prin-
ciples and global techniques that physics does.
In the coming age of efficient computers with
a physics-like structure, particularly in physical
simulations, much of the conceptual and analytic
machinery of physics will be applicable to com-
puters.



Figure 1: Two physical simulations done on cam-8. (a) Spongy three-dimensional structure obtained by “major-
ity” annealing. (b) Typical attractor texture produced by one of David Griffeath’s “plurality” rules.

• Physics modeling: Traditional physical mod-
els were not conceived with digital simulation
in mind. More recently, original computa-
tional models of physical systems (such as lat-
tice gases[10]) have been developed which map
much more directly onto digital hardware (see
Figure 1). Adapting our models to the computer
will become an increasingly important activity,
since we are free to change our models, but not
the ultimate hardware constituted by the laws of
physics. I think that we will find that informa-
tional models of physics are not only easier to
simulate, but also ultimately more fundamental.

Thus there are practical as well as theoretical mo-
tivations for finding and investigating models which
bring physics and computation closer together. Not
only may they lead to maximally efficient computa-
tion, but they can act as bridges between ideas in
physics and computation, allowing both concepts and
techniques to be transferred between the two disci-
plines.

3 Cellular automata

Cellular automata are models that have one foot in
the realm of computation, and the other foot in the

realm of physics. The following list summarizes some
of the properties from each of these two realms that
have been incorporated simultaneously into CA mod-
els; we also list some properties that are noticeably
missing from our CA models.

• Computer realm:
Digital
Exact
Universal

• Physics realm:
Space
Time
Locality of interaction
Finite speed of information propagation
3-dimensional interconnectivity
Uniform laws
Conservation laws
Microscopic reversibility
Finite entropy for a finite system
Entropy proportional to volume

• Missing:
Relativity
QM



From the computer world we take the digital ab-
straction, which allows a real physical system to oper-
ate for an indefinite number of steps without accumu-
lating any error. This permits hardware to simulate
a model exactly. We also add the property of univer-
sality: a universal CA can be configured to exactly
simulate the operation of any physically possible in-
formation process.1 This can be done by changing
only the initial state of our CA without changing the
underlying updating law, much as we build machines
in the physical world without changing the underlying
laws of physics.

From nature, we abstract a number of properties
that we put into our CA. First we include discrete
versions of space and time, with 3-dimensional inter-
connectivity and a finite-range (neighborhood) inter-
action. As in nature, the laws of our discrete world are
the same everywhere. Since information can move at
most the interaction-range distance in one time-step
of the system, this defines a maximum speed of infor-
mation propagation.

Other properties are included mainly by putting
constraints on the law and the neighborhood it uses.
For example, there are several simple techniques avail-
able to achieve conservation laws and reversibility
(conservation of information) in CA systems. Perhaps
the simplest involves partitioning: we divide all of the
data bits2 in our space into disjoint local groupings,
and then update each group independently of all oth-
ers, replacing all of the bits in a given group with new
values. We then rearrange the bits between neighbor-
ing groups, and repeat the process. Now observe: if
our law for the replacement is invertible, then the over-
all dynamics will be invertible. If our law conserves
the number of ones in each group, then the number of
ones in our space will be a conserved quantity.

Reversible CA (RCA) are particularly physics-like,
because they support a realistic thermodynamics[6,
14]; computational structures that “live” inside RCA
are constrained to output (on the average) at least as
much “entropy” as comes into them, since they can’t
invertibly erase information. Thus entropy becomes
an important concept in RCA, and the connection be-
tween microscopic reversibility and the second law of
thermodynamics is illustrated in a simple system.

Entropy in RCA models is an extensive quantity.
If, for example, we use the presence of a 1 in a cell

1This universal simulation capability defines a universal com-
puter. According to our best current understanding of the laws
of physics, it is true that an ordinary digital computer, with
enough memory, is universal in this sense. This is the kind of
computer that our CA can simulate.

2Or trits, or whatever the data elements are.

of an RCA to represent the presence of a particle (in
a lattice gas simulation, say), then interchanging two
such “identical particles” (1’s) doesn’t result in a new
configuration. Thus, in general, the Gibbs paradox is
automatically avoided in RCA models.

This example also illustrates the fact that there is
nothing particularly quantum mechanical about the
concept of identical particles—they are basic to any
informational model. The finiteness of the entropy
of a finite system is also automatically built into such
discrete models; this is also a property that, in physics,
derives from quantum mechanics.

Finally, we have seen that some aspects of both rel-
ativity (finite speed of information propagation) and
quantum mechanics (identical particles, finite-state
for a finite system) are built into our CA models.
But there are important aspects of these fundamental
physical models which have not (as yet) been recon-
ciled with computational models.

4 Relativity in CA

There are a number of interesting outstanding ques-
tions regarding how much like real physics CA worlds
can be. One of the most basic, to my mind, con-
cerns whether such fully discrete and finite mod-
els can accommodate (in an appropriate macroscopic
limit) fully relativistic behavior of composite systems,
along with exact microscopic reversibility and univer-
sal computing capability. For contrast, consider for a
moment the well known (irreversible) Game Of Life.
This is a universal CA, and so is capable of support-
ing arbitrary complexity. But there is no real notion
in a Life “universe” of the “same” composite system
in various states of motion. In a (macroscopically)
relativistically invariant CA world, the same (macro-
scopic) laws of “physics” would apply to all inertially
moving objects. The same complex organisms could
exist in all states of motion, making such a world much
more like ours than Life is (if composite structures
can’t move around, its hard to see how simple pieces
can come together to form more complex objects). Of
course, since Life is universal, once we found such a
CA, we could simulate it with Life, but such a simu-
lation would involve starting the whole Life universe
off in some very special initial state.

Note that it is already well known how to achieve re-
versibility, universality, or relativistic invariance in CA
models separately. My CA version[6] of Fredkin’s Bil-
liard Ball Model incorporates the first two constraints,
while various finite difference schemes achieve rela-
tivistic invariance in the macroscopic limit. The real



problem that we’re addressing here is that of making
computer models which simultaneously incorporate as
many as possible of the fundamental constraints that
real microscopic physical systems must obey.

4.1 Quantum Computation

So far our approach to the problem of bringing in-
formational models and physics closer together has
started mostly from the computer-model end: we have
taken a digital dynamics and added physical proper-
ties and constraints to it. We could continue this ap-
proach, trying to simulate quantum mechanics with
a CA model (the putatively impossible “hidden vari-
ables” problem[2]). Reference [24] describes some sig-
nificant progress in this direction.

Here we will start instead from the physics end,
beginning by asking if there are “reasonable” mod-
els of physical systems in which every physical degree
of freedom is mapped onto a computational degree
of freedom. Of course, it is precisely those computer
models which incorporate fundamental physical con-
straints which are candidates for modeling with such
“reasonable” physical models. In classical mechanics,
Fredkin’s Billiard Ball Model is a good example of this
approach: he modeled reversible, bit-conserving logic
using elastic collisions of billiard balls[5].

But our best models of nature are quantum me-
chanical, and so it makes sense to try to find mi-
croscopic QM models of computation[4, 9, 8, 12, 18].
Since the Schrödinger evolution of a closed QM sys-
tem is unitary (and hence invertible), and since even in
QM relativity requires microscopic physical dynamics
to be local (locations that are spatially near each other
affect each other most quickly), it is natural to think
of trying to model a reversible CA as a QM system of
coupled spins.

Before trying to make a more realistic model, one
can begin by asking whether it is possible at all to
have a model of the sort we have in mind, even given
complete freedom to invent a suitable (hermitian and
local) hamiltonian.3 Choosing my CA version of the
Billiard Ball Model as the computational system to
model, I was able to achieve[18] (with some help from
Mike Biafore) one dimension of parallelism in a two di-
mensional system of spins. This example pointed up
that there are difficult (some now claim insurmount-
able) synchronization problems: it is hard to coordi-
nate the actions of the different pieces that make up a

3Such ideal models are also directly useful for setting upper
bounds on the physical resources a computation requires (e.g.,
energy tied up), as well as for studying fundamental issues of
information in physics.

coherent microscopic “QM” simulation of a fully par-
allel deterministic system in more than one dimension.

It turns out that the sorts of synchronization
schemes one is driven to use to achieve determinis-
tic parallel QM computation in one dimension involve
only local synchrony: the system can be at widely dif-
ferent stages of the computation at widely separated
positions. This suggests that a relativistically invari-
ant CA would be more naturally modeled by such a
system—this may be at least part of the problem. Or
perhaps QM, at least as presently formulated, only
admits deterministic fully-parallel computation at the
macroscopic scale. If you equate such deterministic
computation with classical mechanics (think of Fred-
kin’s Billiard Ball Model) this seems like a real pos-
sibility. Thus by trying to bring QM and CA models
close together, we are addressing questions about the
essence of the difference between classical and quan-
tum systems.

5 Cellular Automata Machines

To bring our CA models to life as miniature uni-
verses that can be watched and analyzed, Tom Tof-
foli and I have invested much of our time for several
years on the design and construction of Cellular Au-
tomata Machines (CAMs)[13, 11]. More recently, I
have completed the design and construction of a new
kind of CAM[16, 20, 25], a Space Time Event Proces-
sor (STEP machine), that is particularly well suited
to the simulation and analysis of CA systems that em-
body physical properties.

Cam-8 takes advantage of (1) the parallelism and
uniformity of a CA space, and (2) a restriction to
lattice-gas-like data movement (but with arbitrary ve-
locities in n dimensions), to allow the hardware equiv-
alent of a workstation to run CA models on many
millions of sites several times faster than a Cray Y-
MP or Thinking Machines CM-2. This is a mod-
ularly scalable architecture, with each module han-
dling a chunk of space, and modules stacked together
in 3-dimensions. The machine consists essentially of
drams used for cell states, and srams used for lookup
tables that implement the CA transition rule, with a
little bit of custom glue logic to handle the data move-
ment and tie everything together. There are no con-
ventional processors.

We expect this machine to be an important adjunct
to our more theoretical investigations of CA systems.
We are also making arrangements to make copies of
this machine available to the research community.
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