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Abstract

We propose an FPGA chip architecture based on
a conventional FPGA logic array core, in which I/O
pins are clocked at a much higher rate than that of the
logic array that they serve. Wide data paths within
the chip are time multiplexed at the edge of the chip
into much faster and narrower data paths that run off-
chip. This kind of arrangement makes it possible to
interface a relatively slow FPGA core with high speed
memories and data streams, and is useful for many
pin-limited FPGA applications. For efficient use of
the highest bandwidth DRAM’s, our proposed chip in-
cludes a RAMBUS DRAM interface, a burst-transfer
controller, and burst buffers.

This proposal is motivated by our work with virtual
processor cellular automata (CA) machines—a kind of
SIMD computer. Our next generation of CA machines
requires reconfigurable FPGA-like processors coupled
to the highest speed DRAM’s and SRAM’s available.
Unfortunately, no current FPGA chips have appro-
priate DRAM I/O support or the speed needed to eas-
ily interface with pipelined SRAM’s. The chips pro-
posed here would make a wide range of large-scale
CA simulations of 3D physical systems practical and
economical—simulations that are currently well be-
yond the reach of any existing computer. These chips
would also be well suited to a broad range of other sim-
ulation, graphics, and DSP-like applications.

1 Introduction

In this paper, we propose an FPGA architecture
based on our experience in designing, constructing,
and programming cellular automata (CA) machines:
virtual-processor SIMD machines optimized for the
large-scale simulation of spatial arrays of synchronous
cellular-logic[22, 13, 15, 17, 10].

Much of the initial impetus for this large-scale CA
machine work came from the discovery in the mid-
1980’s[7, 13] of simple CA algorithms that can be used

to simulate the behavior of materials and fluids[9].
The large spatial scale needed in these calculations
makes a DRAM-based virtual-processor approach at-
tractive: we simulate large spatial arrays of fine-
grained processors using small numbers of physical
processors, keeping the state information in DRAM.

Since these kinds of calculations can be highly
pipelined, the ultimate limiting factor in simulation
speed is DRAM-bandwidth. Our 1988-technology
CAM-8 machine[17] uses conventional nibble-wide
DRAM’s, and gets only about 6 MBytes/sec of I/O
bandwidth per DRAM-chip. Nevertheless, small-scale
versions of this machine with about the hardware
complexity of a personal computer are still “state-of-
the-art” for CA simulations of physical systems[12]—
competing directly with “supercomputers.” Modern
DRAM chips, such as RAMBUS DRAM’s and syn-
chronous DRAM’s, have about 100 times as much
memory bandwidth available. This provides an ob-
vious opportunity for greatly improved performance:
entirely new realms of 3D physical simulation and vol-
ume image processing could be made computationally
accessible.

Instead of simply designing another generation
of specialized ASIC’s tailored for this application—
which would soon have to be replaced with yet an-
other generation—its appropriate to ask what kind
of general-purpose chip could be turned to this prob-
lem. Given appropriate DRAM I/O and buffering,
the operation of each physical processor could be im-
plemented without loss of performance by a wide and
slow pipelined logic circuit: thus an FPGA chip would
be an obvious choice if one existed that had a high-
speed interface to modern DRAM memories. Table
lookup algorithms are also very useful in this kind
of application, and so we might wish for an FPGA
chip that could also interface with pipelined SRAM’s,
which currently run their I/O pins at up to 200 MHz.
Finally, the reprogrammability of an FPGA imple-
mentation would add powerful new functionality to
our CA machine[15, 10, 19, 3].



Architectural innovations that would enable an
FPGA chip to serve well in our CA applications are
discussed in the next section. In subsequent sec-
tions, we will use the example of implementing a CA-
machine to make clear how our suggested set of fea-
tures fit together not only in this particular case, but
also in a rather broad class of related applications.

2 An FPGA chip architecture

In this section, we discuss a proposed FPGA chip
based on a conventional FPGA logic array core, in
which I/O pins are clocked at a much higher rate than
that of the logic array that they serve (Figure 1a).
This style of architecture has long been prevalent in
the graphics community, where wide data paths within
a chip may be time multiplexed at the edge of the chip
into much faster and narrower data paths that run off-
chip. This kind of arrangement makes it possible to
interface a relatively slow FPGA core with high speed
memories and data streams, and is useful for other pin-
limited FPGA applications such as logic simulation[2].

To allow our “slow” FPGA core to efficiently em-
ploy high-speed DRAM’s, a dedicated DRAM con-
troller and associated buffer memories are essential.
Figure 1a is a block diagram of our proposed chip ar-
chitecture. The speeds shown are illustrative, and re-
flect the speeds of currently available memories. This
diagram shows data paths and four functional blocks:

1. FPGA logic array core: Although both
the time-multiplexed usage of I/O pins and issues
of reconfiguration will be distinctive, the FPGA
logic-array core itself could be almost any exist-
ing reconfigurable design: existing logic-synthesis
tools should be useable here essentially without
change.

2. DRAM I/O controller: In addition to
the conventional parameters used to control a
memory burst transfer, such as starting address,
length, source stride, and destination stride, we
include a bit-rotate operation: the whole trans-
fer, considered as a single string of bits, may be
rotated by some number of bit positions as part of
the I/O operation. This simplifies bit-plane shift-
ing operations, which are useful graphical primi-
tives, and will be indispensable primitives in our
CA machine implementation. We will also allow
the DRAM controller to reconfigure the FPGA
core, so that multiple configuration contexts can
be stored in the DRAM in order to make dynamic
reconfiguration of large arrays of such FPGA’s
practical.

3. Double buffer: We have two buffer areas
on the chip for memory transfers: one is used to
buffer data bursts to or from DRAM (the burst
buffer), while the other is used actively for pro-
cessing by the FPGA core (the active buffer). The
two buffers then exchange roles. The unusual fea-
ture that we add is that both of these buffers are
corner-turning memories: they allow a 2D array
of bits to be read or written along either a row
or a column. This is illustrated in Figure 1b. If
you think of the rows in the figure as bit-planes
in a graphical application, then the columns are
pixels: the corner turner allows data stored as
bit-planes to be read in, and then pixels that cut
across bit-planes to be read out, for processing by
the FPGA core. This is in fact the way that our
CA simulations will use this hardware.

4. Cache buffer: For applications (such as
our CA simulations) in which data is streamed
through a pipelined circuit in the FPGA core,
it may sometimes be necessary to cache data
words—or parts of data words—at the full
pipeline rate, to be used later. To keep up with
the data pipeline, it must be possible to both
read and write the cache buffer at each core clock.
This makes it inefficient to simulate such a cache
within the FPGA core itself, and so we include a
separate memory buffer for this, which the FPGA
core array directly manages.

In the diagram, all of the I/O pins run at a multiple
of the FPGA core clock rate: internal data paths are
wider and slower. For power and pin-count reasons,
we’ll assume here that we’re interfacing to a RAMBUS
DRAM, but similar considerations would apply if we
used synchronous DRAM. At the edge of the chip,
the byte-wide 600 MByte/sec (1 Volt swing) RAM-
BUS channel widens to a 64-bit wide 75MHz channel.
Its natural then to have the buffer memories each be
64×64 arrays. The data path from the buffer mem-
ories to the FPGA core is twice as wide again (64
bits in and 64 bits out at each core clock), so that the
core only needs to run at 37.5MHz, processing a 64-bit
wide data stream. Meanwhile, the data path to each
of the non-DRAM I/O pins is 4-bits wide, and these
pins are time-multiplexed to run at 4 times the core
clock (150MHz). This is fast enough, for example, to
interface with fast pipelined SRAM’s.
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Figure 1: A proposed synchronous-burst FPGA chip architecture. (a) Block diagram of the proposed chip. Data enters (or
leaves) at 600 MBytes/sec via an 8-bit RAMBUS data channel, and is immediately converted into 64-bit words at 75MHz.
A DRAM-I/O controller moves bursts of data into (or out of) one of two DRAM buffers. The data path then splits into
two slower paths (one incoming and one outgoing) for interfacing with a conventional reprogrammable FPGA logic-array
core clocked at 37.5MHz. FPGA I/O pins (on the right) are each time-multiplexed at 150MHz between 4 internal signals.
A small data cache, managed directly by the FPGA core, is also included on the chip. (b) A 64×64 corner-turner array.
The two DRAM buffers are both corner-turner memories, in which a word of data can be read or written as either a row
or a column. This enables graphical applications to access data both as pixels and as bit-planes.

Architecture Summary

We propose a chip architecture with a conventional
FPGA core clocked at 37.5MHz and a 300 MHz RAM-
BUS DRAM interface (600 MBytes/sec data channel).
All I/O pins other than the RAMBUS channel run
at 150MHz at 3.3Volts, and are 4-way multiplexed
in time. The DRAM interface consists of a DRAM
I/O controller and two 64×64 bit corner-turner buffer
memories. The FPGA core communicates with the
DRAM controller, which supervises all I/O transfers,
including selection of which buffer to use for I/O (the
burst buffer). Data transfers into the burst buffer may
be rotated as a single string of bits as part of the
I/O transfer. Data from the other DRAM buffer (the
active buffer) may be streamed—using either turned
or unturned data—through a pipelined circuit in the
FPGA core. The pipeline delay through the core can
be compensated for by a delay between the start of the
active-buffer-read pipeline, and the start of the active-
buffer-write pipeline. The cache buffer is a block of
conventional SRAM that can be both read and writ-
ten at every core clock by the FPGA core array.

As we see in Figure 1a, the DRAM controller and all
buffers are directly controlled by the FPGA core—the
main control parameters are listed in the tables below.
When a DRAM I/O transfer is initiated, all relevant
parameters are latched by the DRAM controller—they
may be freely changed during the transfer. Reconfigu-
ration is initiated by selecting the configuration buffer
as the destination for a memory transfer. Notice that

there is a refresh-control parameter: refresh must be
carefully controlled if we want to ensure that arrays of
these chips can operate in perfect lock-step synchro-
nization for systolic applications.

DRAM I/O control parameters
DRAM start address
DRAM address stride
burst-buffer start address
burst-buffer address stride
transfer length
bit-rotate amount
refresh control
initiate transfer?
read or write?
buffer 0 or buffer 1?
use configuration buffer?

Active-buffer control parameters
active-buffer read address
active-buffer write address
enable read?
enable write?
access row or column?

Cache-buffer control parameters
cache-buffer read address
cache-buffer write address
enable read?
enable write?
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Figure 2: A single CA machine processing node implemented using a synchronous-burst FPGA and two memory chips.
Our CA machine processes a uniform spatially organized array of small data objects called cells. This global space of cells
is divided up evenly among an array of processing nodes: each node keeps the data for its sector of the space in DRAM,
and updates it one cell at a time. The SRAM is optional, but greatly enhances the node’s capabilities for processing small
cells: for a 16-bit cell, an arbitrary cell-update rule can be implemented by a single table lookup operation. Since DRAM
needs to be read and written for each update, the memory bandwidths of the DRAM and SRAM shown here are perfectly
matched for a 16-bit cell size. An array of such nodes can emulate the operation of CAM-8, running about 80 times faster
per DRAM chip, and with greatly increased flexibility.

3 A virtual processor CA machine

In this section, we will discuss the implementa-
tion of a kind of systolic computer—a virtual pro-
cessor CA machine—based on the synchronous-burst
FPGA described above. The functional architecture of
this CA machine is similar to that of our CAM-8 CA
machine[17], but with simplifications and added capa-
bilities that arise from the use of reprogrammable logic
and DRAM’s that are faster than SRAM’s. The way
that DRAM buffers are used here was influenced by
Fung Fung Lee’s ALGE implementation of the CAM-8
data movement scheme[16, 10].

The function of a CA machine is to simulate the
operation of an array of simple logic elements[22]. In
our simulation, these elements are arranged and inter-
connected in a regular repeating spatial pattern, and
are all clocked synchronously. The repeated structural
unit of this logic array is called a cell, the repeated
interconnection pattern of all cells is called the neigh-
borhood, and the repeated logic function that applies
to the state of all cells is called the rule. In our CA
machine, both the rule and the neighborhood may be
changed at each synchronous clock of the simulation—
making this machine a kind of SIMD computer[24].

Current CA hardware is largely directed towards
discrete lattice simulations of physical systems, and
towards image processing[17, 10]. The algorithms used
on this kind of hardware are in many ways similar
to traditional mesh algorithms (e.g., finite-difference),
but with much more emphasis given to non-numerical

logical operations—the kind of processing that is most
appropriate for FPGA/table-lookup implementation
(see Section 4).

Both for physical simulation and for volume image
processing, its important to be able to simulate large
three-dimensional systems. To do this economically,
the information about the current state of the system
should be kept in DRAM. Thus we are lead naturally
to a virtual processor scheme: we divide the array of
cells to be simulated evenly among a smaller array of
physical processors. Each physical processor simulates
a sector of the total space of cells, storing the state
of its sector in DRAM and updating it sequentially
(see Figure 2). Since each processor only simulates
a small part of a sector at a time, it only needs to
simulate a correspondingly small fraction of the inter-
cell communication resources at a time—again helping
to make large 3D simulations practical.

A virtual processing scheme also adds great flexi-
bility to our simulations. Parameters such as dimen-
sionality, sector size and shape, number of bits per
cell, and neighborhood would all be fixed if we actu-
ally built a physical cell array, but can be freely pro-
grammed when our space is virtual. Since the hard-
ware which operates on each cell is shared over many
cells, we can also afford to implement complex up-
dating rules. In a virtual processor CA machine, we
trade speed for size and scope—a tradeoff that could
be made in FPGA architectures as well[4, 18].



Figure 3: The basic data movement operation of a processing node in our CA machine (2D example). In this example,
one sector of a larger 2D space is shown, before and after a simple data movement operation. Each sector is a 2D array
of data cells, and corresponding bits from each cell constitute bit-planes. A typical cell (shown cutting across all the bit
planes) is highlighted. Data is moved between cells by shifting bit-planes. Once all bit-planes have been shifted as desired,
each processing node updates all of the data in its sector one cell at a time, each cell being processed independently of
all the others to give the equivalent of a parallel updating. Then this whole process repeats. Bit-planes shift smoothly
between sectors: data that is shifted past the right edge of the sector shown above must be communicated to the processor
handling the adjacent sector. Since each processor only updates one cell at a time, it needs to send (and receive) at most
one bit per bit-plane per cell-update, no matter how the various bit planes are simultaneously shifted.

3.1 Updating without data movement

In describing the operation of our virtual processor
CA machine, we will begin by considering the simplest
possible case: a cellular automaton in which the cells
are not interconnected at all! We will use this case
to illustrate the essence of our cell-updating process
without the complicating details of how to move data
around between the cells. As a further simplification,
we will first consider the case of a 64-bit cell where the
updating operation performed on each cell is simple
enough to fit into the FPGA core of our sync-burst
chip, along with the rest of the circuitry needed to
control the cell-updating process. The rule might be,
for example, that cells which contain equal numbers
of ones and zeros are complemented.

Since there is no communication, we might as well
talk about a single processing node. Each cycle of op-
eration begins by reading cell data from DRAM into
the burst-buffer. When this buffer is full, it becomes
accessible to the FPGA core. Cells in this active buffer
are then sent, one after another, through a circuit
which implements the given rule in some number of
pipelined stages. 64-bit results are accumulated one
at a time in the active-buffer, which then becomes the
burst-buffer, and data goes back into DRAM. This
whole process then repeats. If there is little latency in
the rule-pipeline, then cells are transformed essentially
as fast as the DRAM can be read and written.

Smaller cells

Suppose we have a 16-bit cell, with a very complicated
rule. Then we let each 64-bit word constitute 4 cells.
If we have a 64K×16 pipelined SRAM attached to our
node, as is shown in Figure 2, we can still update
at full rate. Our pipelined circuit just sends four 16-
bit cells simultaneously to the 16 address pins of the
SRAM (which are multiplexed 4 to 1). The results of
four table-lookups are available one core-clock later on
other pins, to be used as new cell contents.

Larger cells

Now suppose we have an arbitrarily large cell, with
an arbitrarily complicated rule. This can still be im-
plemented with a fixed size FPGA core, and a fixed
size lookup table, but each application of the rule
will require a sequence of processing steps, each of
which will operate on only a portion of every cell. We
reconfigure—or partially reconfigure—the FPGA core
and/or the lookup table between these steps.

To implement this idea, we begin by organizing our
data in DRAM as bit-fields—corresponding bits from
every cell in the sector are stored together (see Fig-
ure 3). Since there is no communication between cells,
we might as well imagine in this discussion that our
cells all line up in a 1-dimensional array: we’ll pack
corresponding bits from consecutive cells into consec-
utive bits of DRAM.



Now suppose we want to operate on some set of
bit-fields taken from each cell in turn. We focus on
one chunk of our sector at a time, reading in the cor-
responding chunk of each of the desired bit-fields into
the rows of our DRAM buffer. The columns of this
buffer will then be the desired cell data for each cell
in this chunk—each column can be processed identi-
cally. We process all of the sector in this manner, be-
fore switching to a new subset of bit-fields and a new
updating operation. Exactly this kind of function-
composition scheme (but with lookup tables alone) is
currently used in CAM-8.

3.2 Data movement

Our general scheme, in which cells are intercon-
nected in a rather arbitrary (but spatially uniform!)
fashion, will be very close to the non-moving case
considered above. In essence, we will just alternate
between moving data around in our CA space, and
performing a non-moving updating, in which the data
that has landed at each cell is processed independently,
as discussed above.

The data movement mechanism that we use is
called data advection, in analogy to advection in
fluids[16]. It consists of uniformly shifting various data
fields—each composed of corresponding bits from each
cell—in various directions across our space. For exam-
ple, if we think of a 2-dimensional CA space on a rect-
angular grid, we can think of the cells as being pixels,
and data advection consists of simultaneously shifting
the various bit-planes by different amounts in different
directions (see Figure 3). As part of its communication
pattern, each cell might, in this 2D example, need to
send a bit of data to the cell that is 2 positions “north”
of it and 1 position “east” of it. To accomplish this,
we simply designate a bit within each cell to hold this
data, and shift the entire bit-plane consisting of these
“north-east” bits.

3.3 Updating with data movement

Data advection is a very simple mechanism to im-
plement in a virtual processor CA machine: in the
serial updating going on within each processing node,
most of the data movement can be accomplished by
simply always reading in the right bits from DRAM
to form the cell to be updated next! The only real
complication comes from compensating for the 64-bit
grain-size of our data access. This is done by a combi-
nation of data storage conventions and bit-string ro-
tations.

Let us defer for a moment issues of interprocessor
communication, and so consider a machine consisting

of a single processing node. Let’s also begin with a
particularly simple case: a 1 dimensional space con-
sisting of 64 cells, each with 64-bits. As in Section 3.1,
we will store our bit-fields packed into DRAM words—
a format that allows us to handle arbitrary-sized cells.
In this simple case, each bit-field is a separate word
of DRAM. As each bit field is read into the DRAM-
buffer, it can be rotated by any desired amount, using
the “bit-rotate” capability of the DRAM controller.
But if we assume our space is wrapped around at the
ends, a bit-rotate is the same as a bit-shift! Thus the
columns of this buffer are the cells of our space, with
all of the data appropriately shifted and ready to be
updated.

Wider sectors

To handle a sector that is wider than will fit into
the active buffer, we glue together active-buffer-sized
chunks of the sector as part of our processing pipeline.
To make this efficient, we use the cache-buffer to hold
parts of data words that, when shifted, overlap be-
tween chunks. Thus this buffer needs to be at least
as large as the active buffer. The details of how bit-
rotations within chunks can be simply combined to
give bit-rotations across the whole sector are essen-
tially the same as for CAM-8[16, 17], and won’t be
discussed here. We just note that wider sectors can
be implemented without adding latency to the updat-
ing pipeline.

More dimensions

To implement an n-dimensional sector, we simply or-
ganize our DRAM into a collection of n-dimensional
arrays, one per bit-field—for simplicity, we’ll make all
of the dimensions powers of two. When shifting these
bit-fields, only the component of the shift along one of
the dimensions has to deal with the special problems
that come from the 64-bit granularity of our address-
ing. For example, shifting a 64×128 bit-field (stored as
128 64-bit words) 20 positions along the short dimen-
sion involves rotating each word by 20 positions. Shift-
ing this bit-field 20 positions “down” along the long
dimension simply means that we should start with the
21st word of this bit-field when we begin processing at
the “top” of the sector.

Interprocessor communication

Our CA machine consists of an array of processing
nodes operating and communicating in lockstep—a
systolic array of processors. Communication in such
an array can be completely predicted and planned[8],



and a piplined updating can incorporate all of the com-
munication into the updating process, so that commu-
nication between processors only entails a few clocks
of added latency; each node still completes one 64-bit
update per FPGA-core clock[17, 16].

Since each processor only handles one 64-bit word
of cell-data at a time, it only needs the inter-processor
communication resources for one word. Thus for each
bit-field, each processor at most needs to send one bit
off in some direction to some other processor, and get
one bit from the opposite direction to replace it (see
Figure 3). Of course only three of our dimensions can
be extended indefinitely by constructing a 3D mesh of
processors. Since I/O pins on our FPGA are multi-
plexed 4 to 1, we need 16 signal wires for every spatial
direction: 96 signal pins for a 3D mesh, 32 pins for a
1D array.

The circuitry for controlling interprocessor commu-
nication is very simple: at any given moment, any pro-
cessor that needs a bit from an adjacent sector simply
accesses the corresponding bit that should shift out of
its own sector, and sends that off. Since processors run
in lockstep, another processor is doing the same thing
for it! Accessing the appropriate bit in its own sector
turns out to mean just letting bit-fields wrap-around
within its sector, which we’ve already discussed how
to do.

3.4 Initialization and control

Issues of system initialization and control could be
handled as they are in CAM-8: we let a workstation
“front-end” control the operation of the CA machine,
and control I/O to initialize the machine. The fast
I/O pins on the FPGA’s allow us to implement a
high speed daisy-chained I/O channel, and so copies of
shared data (such as FPGA configurations and lookup
tables) could be stored centrally, and broadcast to all
processors.

3.5 CAM-8 emulation

CAM-8 is a CA machine with 16-bit cells, data
movement by data advection, and cell-updating by
table-lookup. We can emulate this machine by pro-
cessing four 16-bit cells at a time in each FPGA node.
If the 16 bit-fields are distributed evenly among the
RAMBUS memory banks, we never need to lose more
than one 75MHz clock each time we change DRAM
rows—16 times while filling the burst-buffer, and 16
times while emptying it. Thus as long as the total
latency in the cell-update pipeline is no more than 16
core-clocks, the overall memory-bandwidth efficiency

will be 80%—240 MBytes of updated (read and writ-
ten) cell data per DRAM per second. Since RAM-
BUS DRAM’s have 100 times the memory bandwidth
of the DRAM’s used in CAM-8, this emulation will be
80 times as fast as CAM-8, per DRAM.

3.6 Enhanced functionality

There are a number of capabilities that our FPGA-
based design has which were not present in CAM-
8. For example, the nodes in this FPGA machine
have the ability to bring together bit-fields in an arbi-
trarily chosen order, and the ability to read in the
same bit-field multiple times, with different shifts.
These are both capabilities that are used extensively
in simulations with large cell-sizes; both of these
kinds of operations require extra updating steps on
CAM-8. The combination of lookup tables and re-
programmable circuitry will also be very useful in
updating large cells efficiently[15, 10, 19], particu-
larly for algorithms that combine logic and small-
integer arithmetic[3]. Reprogrammability also al-
lows specialized analysis functionality to be added
to simulations without significantly impacting cell-
updating performance—for example, one could accu-
mulate block-averaged simulation-statistics in DRAM.

4 Some sample CAM-8 applications

All of the simulations discussed in this section were
performed on a “state-of-the-art” CAM-8 machine
with 128 DRAM chips. Exactly the same simulations
could be run 80 times faster on an FPGA-based ma-
chine with the same number of DRAM’s.

4.1 CA molecular dynamics

On traditional computers, in situations where we
need to simulate a physical system but no adequate
macroscopic equations governing it are known, we typ-
ically resort to molecular dynamics calculations: float-
ing point simulations that track the small-scale behav-
ior of particles (or groups of particles) of the system.
An attractive alternative on a large array of cellular
logic is to simulate a discretized version of the parti-
cle dynamics directly with tokens that move around
on the computational lattice[7, 13]. Such discrete-
particle simulations are beginning to make it possible
to extend the reach of traditional molecular dynamics
simulations of complex fluids into the hydrodynamic
regime[19, 21, 20, 25].

Figure 4 shows two lattice-gas simulations of physi-
cal systems. On the left is a flow simulation involving



Figure 4: CAM-8 used for simulating fluids. (a) Flow past a cylinder, simulated using a fully discrete CA molecular
dynamics: discrete particles flow in discrete directions at discrete speeds, on a spatial grid. We visualize the system using a
second discrete fluid, a simulated tracer-gas (the visible “smoke”) which “floats along” with the first fluid. (b) Crystalization
of a lattice-gas liquid into a momentum-conserving elastic solid. Particles of this discrete CA fluid feel discrete forces in
discrete directions. This simulation involved about a billion particle-tokens.

a few million particle-tokens, visualized using a dis-
crete “tracer” gas[3]. On the right is a simulation of
a momentum-conserving three-dimensional lattice gas
crystallizing into an elastic solid[25]. This simulation
involves about a billion particle-tokens.

These kinds of discrete-particle simulations map
very directly onto our CA-machine data-advection
model: a separate bit-field is used to carry particles
in each possible flow direction, and for each possible
flow speed. Particles that land at the same spot (cell)
collide and interact according to a specified rule. Mul-
tiple materials, fluids, and interactions can easily be
accommodated by simply adding more kinds of parti-
cles and discrete forces between them[6, 9]. Since we
are essentially animating a bit-map, arbitrarily com-
plex boundaries are just as easy to simulate as sim-
ple boundaries—which is one of the reasons that an
early success of this method has been the simulation
of oil and water flowing through porous rock[1, 20].
These methods are being used to simulate a wide range
of systems, including polymers[19], chemically react-
ing systems[12], and are even competing commercially
with traditional methods in computational fluid dy-
namics.

The CA machine simulation illustrated in Figure 4a
was actually adapted from a code developed on an
IBM-SP2[3], and so it allows a direct comparison be-
tween the performance of a “supercomputer” and the
personal-computer-scale CAM-8 hardware designed
by us in 1988[14, 16, 17]. Our CAM-8 machine with
128 DRAM chips updated by table lookup runs this
simulation about 25% faster than a 128 node SP2.

4.2 Temporal pipelining

In order to visualize our 3D simulations, we added
discrete particles of light to our discrete matter sim-
ulations. Efforts to speed up this visualization led us
to rediscover a technique called temporal pipelining[5,
17, 4] which is rather generally useful on a virtual-
processor machine.

The technique is described in Figure 5a. Here we
see a combinational logic circuit without feedback,
running from left to right. The figure illustrates how
four processors could follow one set of signals all the
way through the circuit, simulating different parts of
the circuit at different times. If we only need the result
of a single function evaluation, this proceedure avoids
devoting processors to stages of the computation that
are irrelevant. This idea has been used, for example,
in CAM-8 logic simulations. We take a logic circuit
and lay it out in our CA space as a combinational
pipeline, with each stage on a different “slice” through
our space. Then we have our processing nodes update
just the relevant stage (slice) of the pipeline at each
step, rather than all stages. A microprocessor simu-
lation using this technique ran at 200Hz. This is fast
enough to play tic-tac-toe against the CA machine—
proving that it really is a universal computer!

This same idea is used in the rendering shown in
Figure 5b. Here, we have MRI data for a human brain,
which can be segmented and rotated in realtime on
CAM-8 using CA rules[23]. To visualize the result,
we simulate a wavefront of light sweeping through the
system at some angle, depositing bundles of light along
the way as it encounters matter. A return wavefront



A
A

A
A

A
A

A
A

AA
AA

A
A

AA
AA
AA

AA A

AA
AA

A
A

AA

AA
AA

A
A

Processor

#3

Processor

#2

Processor

#1

Processor

#0

t=0 t=1 t=2 t=3

Figure 5: Temporal pipelining. (a) This technique is useful in situations which would not ordinarily benefit from
pipelining—for example, when we’re only interested in evaluating a function once before the function changes. We still
cast the circuit as a spatial pipeline, but only process one stage of this pipeline at a time. The processors are reconfigured
to handle each stage in turn—they “follow” the computational wavefront. While one stage is processed, the rest of the
pipeline—which doesn’t have anything useful to do—is not simulated. (b) This MRI density data for a human brain
was segmented using CA techniques and visualized using temporal pipelining: our physical processing nodes followed the
wavefront of simulated light across our virtual CA space.

then sweeps back at some other angle, picking up the
reflected bundles of light and bringing them to the
front. By always simulating only the slice containing
the wavefront, we greatly speed up the rendering.

4.3 Other applications

While most of our collaborators working with
CAM-8 machines are involved in physical simulation,
we have groups working on image processing, and on
simulations of ecology, evolution, biology, combina-
torics and neural-networks. For a more extensive dis-
cussion of the range of applications of a CA machine,
see [22] and references in [17].

4.4 Beyond CAM-8

With almost two orders of magnitude of raw speed
increase per DRAM, and much more efficient handling
of large cell sizes, FPGA-based CA hardware should
make a wide range of new large-scale 3D simulations
practical—simulations that are currently well beyond
the reach of CAM-8. Such hardware will also make
possible new kinds of image analysis and processing.
For example, instead of producing a single rendered
view of our 3D systems at several frames per second, as
we do now, we could generate realtime high-resolution
holographic views of our 3D bitmaps[11].

The CA machine implementation discussed here
should also provide a good starting point for other
kinds of systolic and DSP-like applications. In gen-
eral, modifying an existing design is easier and faster

than starting from scratch, and putting a little bit of
custom logic at the place where all the data goes by
is a very powerful thing.

5 Conclusions

In this paper, we have described an FPGA chip-
architecture with fast I/O and a DRAM interface,
suitable for large-scale systolic computations. As a
design example, we’ve outlined how a CA virtual pro-
cessor machine based on this chip could emulate our
CAM-8 CA machine 80 times faster per DRAM chip
than our existing (1988) ASIC-based design. Our cur-
rent software and application base would immediately
be useable on such a machine, even before we begin to
explore its greatly enhanced functionality.

For definiteness, we have used current DRAM and
SRAM speeds in our discussion, but we assume that if
FPGA’s with fast memory interfaces become commer-
cial devices, then they will keep pace with continuing
rapid advances in memory technology (e.g., next gen-
eration wider and faster RAMBUS chips). This factor
alone would make such an FPGA chip more desirable
than a custom ASIC for use as the processor in an
experimental systolic computer.

Finally, we’d like to point out that this discussion
also illustrates how relatively slow FPGA circuitry,
included directly on an advanced microprocessor chip,
could make use of its high-speed memory interface and
caches to implement efficient systolic functionality. In-
cluding FPGA circuitry on-chip would also provide



insurance against bugs in complex processor designs,
and would allow experimentation with ideas for new
processor features[4].
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