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ABSTRACT
Spatial-lattice computations with finite-range interactions
are an important class of easily parallelized computations.
This class includes many simple and direct algorithms for
physical simulation, virtual-reality simulation, agent-based
modeling, logic simulation, 2D and 3D image processing and
rendering, and other volumetric data processing tasks. The
range of applicability of such algorithms is completely de-
pendant upon the lattice-sizes and processing speeds that
are computationally feasible. Using embedded DRAM and
a new technique for organizing SIMD memory and commu-
nications we can efficiently utilize 1Tbit/sec of sustained
memory bandwidth in each chip in an indefinitely scalable
array of chips. This allows a 10,000-fold speedup per mem-
ory chip for these algorithms compared to the CAM-8 lat-
tice gas computer, and is about one million times faster per
memory chip for these calculations than a CM-2.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiprocessors—ar-
ray and vector processors, SIMD ; C.1.4 [Processor Ar-
chitectures]: Parallel Architectures—distributed architec-
tures; C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems

Keywords
Virtual Processor, PIM, lattice gas, cellular automata

1. INTRODUCTION
Beginning in 1986, a new class of physical simulation meth-
ods were developed based on discrete particles which hop
around and collide on a spatial lattice[11, 20]. These meth-
ods provide a simplified molecular dynamics that makes
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direct large-scale simulation of complex fluids and materi-
als computationally feasible[2]. Stimulated by the promise
of these new and “embarassingly parallel” lattice gas tech-
niques, special purpose SIMD machines were developed that
were optimized for these kinds of calculations, including the
CAM-8 machine, completed in 1992[17]. Although CAM-8’s
mesh architecture is indefinitely scalable, only small-scale
prototypes were actually built. With an aggregate memory
bandwidth a factor of 100 less than a contemporary CM-2
and just 8 lookup-table processors, CAM-8 prototypes ran
lattice-gas simulations at about the same speed as the CM-
2[7, 17]. This demonstrated the usefulness of optimizing a
SIMD architecture for discrete spatial lattice simulations.

With its simple high-level lattice-gas programming model,
CAM-8 was used to develop a variety of algorithms for physi-
cal simulation, bit-mapped virtual-reality, image processing,
and logic simulation[17, 19]. Although CAM-8 applications
have focused on novel non-numerical computations, there
are also of course many well-known numerical techniques
(such as finite-difference and lattice-Boltzmann) that are
based on local lattice processing. Moreover, hybrid tech-
niques that combine numerical and symbolic processing are
becoming increasingly attractive[3].

The limiting factor in CAM-8 was DRAM memory band-
width. The lattice-update rate was limited by how quickly
the entire simulation state could be read out of an array
of memory chips, passed through a set of pipelined proces-
sors, and returned to memory. Using embedded DRAM, it
is currently possible to sustain about 1Tbit/sec of memory
bandwidth per chip using 20 4Mbit blocks of DRAM (fill-
ing about half of a 256 mm2 die with memory). This rep-
resents a 20,000-fold increase in memory bandwidth, com-
pared to the memory chips that were used in CAM-8. Mesh-
connected arrays of such chips, each handling an equal-sized
sector of a large spatial simulation (an approach pioneered
in the DAP[23]) could make very large and fast lattice ap-
plications possible (Figure 1). At such data rates, however,
it becomes challenging to arrange for the processing, com-
munications and control to all keep up with the memory.
We would also like to do this while retaining a simple and
powerful high level programming model.

In this paper we discuss a new memory and communica-
tions organization optimized for lattice-oriented computa-
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Figure 1: A virtual lattice SIMD computer. (a) An n-dimensional volume of data is divided up evenly among
a 1D, 2D or 3D mesh array of processor chips. (b) Each processor chip contains a set of 20 DRAM modules
that are accessed in parallel. All 20 I/O words are applied to a set of SIMD processing elements in parallel.

tions that achieves these ends. By taking advantage of
translational and rescaling symmetries in mapping the spa-
tial lattice into the granular structure of the memory (words,
rows, etc.), essentially perfect use can be made of both mem-
ory and communications bandwidth to spatially shift data
within the emulated lattice. This scheme is very different
from earlier memory optimization schemes used on SIMD
machines[27, 13], which took no account of the granular
structure of memories. While earlier SIMD schemes have
used virtual processors[25], none have taken advantage of
the possibility of skewing the locations where the various
processors are operating in the emulated lattice, to even out
offchip communications needs.

In our lattice hardware, we handle data movement and data
processing separately. Data movement is handled by or-
ganizing the memory and communication resources of an
array of DRAM chips into an n-dimensional lattice mem-
ory, allowing the processors on each chip to directly access
blocks of uniformly shifted data. Spatial shifts incorporated
into each memory access can be large, and move lattice data
in an arbitrary direction. Many processor architectures are
compatible with such a lattice data movement scheme. Us-
ing simple few-bit SIMD operations would give a PIM-like
array[12], but with lattice data movement added. Alterna-
tively, reconfigurable logic could be added to the DRAM,
following (for example) the Active Pages model[22]). We
could even use rather conventional vector processors, as the
IRAM project does[14], operating the processors in lockstep
when performing SIMD operations.

Although simple few-bit SIMD operations are adequate for
some applications, the use of moderately sized lookup ta-
bles as symbolic processors can speed up the kinds of lattice
calculations we’re interested in by two to three orders of
magnitude, based on our CAM-8/CM-2 comparisons. This
approach is as flexible in symbolic lattice computations as
using more complex processors, and can take good advan-
tage of the uniformity of our lattice applications. For nu-
merical computations, our scheme for dealing with memory
granularity also lets us take advantage of depth-first virtu-
alization: we completely apply a numerical operation to one
subset of the lattice data before moving on to another, thus

avoiding the need for large numbers of hardware registers to
make arithmetic operations efficient[9].

In the next Section, we discuss some novel non-numerical
and semi-numerical lattice-based computations developed
on CAM-8, as examples of some of the kinds of applica-
tions we are targeting. We then describe a novel memory
organization technique which allows such computations to
map efficiently onto mesh arrays of embedded DRAM chips
with SIMD processors. We discuss this technique first in a
pure software context, as an algorithm which could be imple-
mented on a conventional microprocessor. We then discuss
a hardware realization using embedded DRAM, including a
brief discussion of numerical SIMD hardware.

2. LATTICE COMPUTATIONS
A lattice system can be thought of as a kind of n-dimensional
bit-map. Computing using such bit-maps permits models
to have enormous resolution and detail, but requires con-
commitant processing and storage. For physical simulation,
simple algorithms with a small number of bits at each lattice
site are particularly attractive, since they reduce both the
storage and processing requirements, making large simula-
tion sizes practical.

In this section we illustrate some simple physical simula-
tions that were implemented on a CAM-8 machine with 128
DRAMs. A single embedded DRAM chip of the sort pic-
tured in Figure 1 would run these algorithms about 100
times faster than this machine—the speedup factor comes
entirely from increased memory bandwidth. As pictured in
the figure, large arrays of these chips can be used together,
to give an additional speedup factor that is proportional to
the size of the array.

Figure 2 shows two hydrodynamic simulations using lattice
gases. The first is a semi-numerical lattice gas, which uses
two-bit integer particle-counts moving on a hexagonal lat-
tice, and interacting at lattice sites[4]. Particles are intro-
duced on the left with a rightward momentum, flow past
the half-cylinder, and exit on the right. A second tracer gas
(also introduced on the left) follows the flow, and is used to
produce the streamlines shown. The simulation illustrates



Figure 2: Discrete lattice molecular dynamics. (a) Hydrodynamic flow past a half-cylinder. Discrete particles
flow in discrete directions at discrete speeds, on a spatial grid. We visualize the system using a second
discrete fluid, a simulated tracer-gas (the visible “smoke”) which “floats along” with the first fluid. This
2K×1K simulation runs at about 25 lattice-updates/sec on CAM-8. (b) Flow through a porous medium. The
medium is a 3D bit-map derived by MRI from a real rock. This 2563 simulation runs at about one complete
(22-step) lattice-update per second on CAM-8.

vortex shedding from the obstacle. Figure 2b shows a lattice
gas fluid flowing through porous sandstone. The boundary
data for the simulation came from MRI of an actual piece
of sandstone—the lattice gas interacts directly with the bit-
mapped MRI data. Pressure and flow measurements us-
ing lattice gas algorithms have been compared with exper-
imental data using the actual rock, and the results agree
closely[24, 1].

Figure 3a shows measurements from a semi-numerical lat-
tice gas simulation of an electromagnetic field scattering off a
rectangular cylinder[6]. The graph compares a gas of 4-bit
integers moving and interacting on a lattice with a stan-
dard finite difference calculation done on a lattice with four
times as many lattice sites[8]. Figure 3b illustrates a phase
change in a 3D dynamical Ising simulation of a magnetic
material. Some of the bits at each lattice site in this simu-
lation correspond to heat-bath variables. By controlling the
average value of these variables, we control the temperature
of the simulation[26, 19]. In a similar manner, CAM-8 has
also been used extensively for 3D chemical reaction simula-
tions[16], to study 3D crystallization of a gas into an elastic
solid[28], and for the development and study of many other
kinds of physical simulations[19].

Local lattice calculations have also been used extensively in
image processing[25, 5]. With 1Tbit per second of mem-
ory/processing bandwidth available per embedded DRAM
chip, ordinary video data rates are slow. Long and com-
plicated SIMD programs could be run on each image in
realtime. The physical simulation of Figure 3b was ren-
dered as it ran by simulating digital light within the sim-
ulated material—much more elaborate rendering and volu-
metric image processing are made possible with faster pro-
cessing. A technique closely related to rendering allows the
lattice processors to compute only the wavefront of chang-
ing logic values in order to perform efficient large-scale logic
simulations[18, 10]. Physically realistic “animation” of vol-
umetic bit-map data, coupled with fast and sophisticated
volume rendering, leads to many possibilities for complex

3D virtual-reality simulations, and agent based models.

3. DEALINGWITH GRANULARITY
In this Section, we discuss how lattice computations such
as those discussed above can be efficiently mapped onto the
granular structure of memories. This issue will be addressed
here in the context of writing a lattice algorithm for an ordi-
nary computer, since the granularity constraints are similar
to those that we must deal with using blocks of embedded
DRAM.

By granular structure, we mean that the memory is orga-
nized into bytes, words and other bit-aggregates which are
most efficiently accessed and used as units. For example, on
an ordinary computer it is normally not possible to read just
one bit of a memory word—at least one byte must be read.
Consecutive bytes within a single memory word can typi-
cally be read more quickly than an equal number of bytes
spread between several words. Words within a single cache-
line can often be read more quickly than an equal number
of words spread between several cache lines. Thus there
may be a significant advantage in mapping our lattice data
into memory in a manner that takes account of granularity
constraints.

In Figure 4a, we present a very simple 1D example of a lat-
tice computation. In this example, we have 16 lattice sites,
with two bits of data at each site. The lattice sites are in-
dicated by vertically oriented ovals, the data bits by black
squares (top image). The bit-field consisting of the top bit
from each lattice site is labeled A, while the bottom bit-field
is labeled B. Now suppose we want to shift the A bit-field
by two positions to the left, and the B bit-field by one posi-
tion to the right. This is indicated in the middle image. In
our example, the bits that shift past the ends of the lattice
wrap around, and appear at the opposite ends. Once the
data have all been moved, each lattice site is updated inde-
pendently of all of the others, as is indicated in the bottom
image. The two bits at each lattice site are used as inputs
to some function, which produces new data for that lattice



Figure 3: (a) Lattice-gas EM simulation. A simulation using a 4-bit Integer Lattice Gas Automaton (ILGA)
of the TEz scattered field from a PEC rectangular cylinder is compared with the standard TLM technique
using floating-point variables. This 2563 simulation also runs at about 1 lattice update per second. (b) Heat
bath simulation of a phase change in a 3D magnetic substance. This 512×512×64 simulation runs at about 6
lattice-updates per second on CAM-8, including the volumetric processing to produce rendered images.
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Figure 4: Data movement and processing example. (a) Top: 1D lattice with 2 bits at each of 16 lattice sites.
All of the top bits form a bit-field (labeled A), and similarly with B. Middle: The A bit-field has been shifted
two positions left, while the B bit-field has been shifted one position right. Data wraps around at the edges.
Bottom: After all data has been moved, the data at each lattice site is independently processed. (b) Mapping
the lattice data into memory words. Top: The lattice data is split up into 4-bit words. Middle: Shifting
spoils the alignment of the edges of the 4-bit words, complicating assembling bit-field data for word-wide
site-updating (bottom).



site—two new bits, in this example.

Now we would like to discuss implementing this algorithm
as a program on an ordinary computer. To do this, we
need to map the lattice data into the computer’s memory.
Let’s suppose that the function we want to perform on each
lattice site is some simple logic function that combines the
pair of bits at that site. If pairs of bits are stored in pairs of
DRAM words (at corresponding bit positions), then several
sites can be processed in parallel by using word-wide logic
operations. This suggests that we should put groups of A
bit-field bits into one set of memory words, and put the
corresponding groups of B bits into another set of memory
words, with the bits in the same order. One way of doing this
is shown in Figure 4b, top image. For illustrative purposes,
we’re assuming here that our memory word is only 4 bits
long, and so in the Figure we’ve tied together groups of
4 bits. Unfortunately, when we shift the bit-fields (middle
image), the groupings don’t generally match, and so we have
to do quite a bit of work to regroup bits before processing
(bottom).

In Figure 5a, we indicate how we’ve divided the unshifted
data in each bit-field into four memory words. In Figure 5b,
we suggest a different grouping of bit-field bits into mem-
ory words that has nicer properties under shifts. Figure 6a
shows the 16 lattice sites with the data unshifted, with each
bit-field split up in this uniform manner into memory words.
If we wanted to update the lattice data without shifting it,
we would simply bring together the memory word A[0] and
the memory word B[0] and perform word-wide logic on cor-
responding bits. Then we would operate on A[1] and B[1],
etc. If, however, we want to update the shifted data, we can
still process exactly the same four groups of lattice sites (i.e.,
the same site-groups) in exactly the same order (Figure 6b).
The word A[2] contains exactly the A bits that we need for
processing the first site-group, and the word B[3] has the
B bits that we need. The rightmost B[3] bit needs to wrap
around, but this just means that we have to rotate the B[3]
word by one position before we use it. Similarly, all of the
other site-groups can be processed by addressing the right
words, rotating some of these words before using them.

Even though in this example we only process 2 bit-fields at
a time, we can provide as many bits at each lattice site as we
wish by simply allocating more bit-fields in memory. A suc-
cession of operations on pairs of bit-fields will implement any
larger operation desired at every lattice site (though this is
an inefficient way to perform complicated operations). Fur-
thermore, when dealing with a single processor, it is easy
to extend this 1D example to incorporate additional dimen-
sions. The lattice can simply be split up into a set of 1D
rows. Shifts along the rows are handled as described above;
shifts in the additional dimensions only involve reordering
the addresses of these 1D rows. Thus once again, all shifts
of any size and in any direction can be accomplished by a
combination of addressing plus word rotations.

Since our units of processing are groups of lattice sites that
are spread evenly across the entire lattice, it is easy to
perform multigrid and multiresolution computations. In a
multigrid computation step, we only process a set of site-
groups that comprise a power-of-two sublattice, and only

use shifts that cause data belonging to those lattice sites to
interact. In a multiresolution computation step, we cause
two different power-of-two sublattices to interact. This is
easily accomplished, since each higher resolution lattice is
composed of several lower resolution lattices which turn into
each other under shifts. Finally, we note that complicated
crystalline lattices can be simulated using a collection of
Cartesian lattices. As a simple example, the black squares
on a checkerboard form a useful lattice. This lattice consists
of two Cartesian sublattices: the black squares belonging to
the even rows, and those belonging to the odd rows.

3.0.1 A hierarchy of constraints
Suppose that we have more than one level of granularity in
our memory system. For example, suppose that our 4-bit
words are most efficiently accessed as pairs of consecutive
memory locations (doublewords). We can deal with this by
adding a corresponding additional level of aggregation of bit-
field bits. Referring to Figure 5b, we now group together the
first and third sets of bits into a doubleword, still keeping
each of the two 4-bit sets in separate words; and similarly for
the second and fourth sets in another doubleword. Now all
of the bits for each bit-field that belong to even-numbered
lattice sites are in one doubleword, and all of the odd-site
bits are in another. If we process all of the even lattice sites
first, then depending on the shift amounts we will need one
of these doublewords or the other for each bit-field. Within
the even numbered lattice sites, we perform shifts as before
using word-ordering and word rotations, and then similarly
process the odd-numbered lattice sites.

In a similar manner, with a hierarchy of power-of-two lattice
partitions we can match the bit-fields of a power-of-two sized
lattice to a corresponding hierarchy of power-of-two granu-
larity constraints. Since the data at each level is spread
evenly across the entire lattice, shifts never regroup data at
any level. Ultimately, all data movement is performed by a
combination of memory addressing and rotation of the bits
within the word addressed.

4. SIMD REVISITED
We have seen how to bring together sets of bits that all be-
long to the same site-group of lattice sites, to be processed
simultaneously by word-wide operations. Since all lattice
sites are processed identically, this is an ideal situation for
SIMD processing. Since each bit-field needs to be addressed
independently, bit-fields that are processed simultaneously
should reside in separate blocks of memory. By processing
many bit-fields at a time, we can make use of the full band-
width of many blocks of memory. Alternatively, bit-fields
can be accumulated sequentially, allowing them all to reside
in a small number of blocks of memory. In this case, we can
make use of many blocks of memory by putting multiple
processing nodes on a single chip.

The addressing technique described above avoids any need
to buffer words of memory data as they are accessed, and so
it is particularly well suited to an embedded DRAM context,
where bits of buffer memory may be enormously larger than
DRAM cells. As we will see, we can also avoid most buffering
associated with communications. By streaming lattice data
past a set of SIMD processing elements, we can keep them
busy at full data rate, and keep all memories operating at full
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Figure 5: Two ways to map lattice data into memory. (a) The direct partition used in the previous Figure.
Bit-field bits belonging to consecutive lattice sites are stored together in words of memory. (b) Bits spread
evenly across the space are stored together in memory words. Each 4-bit memory word holds a uniform
skip-sample of an entire bit-field.
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Figure 6: Data movement and processing using skip-samples. (a) For unshifted data, we could process 4
lattice sites at a time by bringing together pairs of memory words, and operating on pairs of corresponding
lattice-site bits. (b) To bring shifted data together, we only need to change which memory words are accessed
together. Notice that there is still some data that wraps around, but now in all cases wraparound happens
within single memory words, and so each data word need only be rotated (if necessary) as it is read.



bandwidth. Thus we can use the full 1Tbit/sec bandwidth
per chip that we discussed in the introduction. We will now
describe how to connect together large arrays of such chips,
all processing at full memory bandwidth.

4.1 Gluing sectors together
We will explain the systolic communication technique[15]
used for interconnecting processors first in 1D. Then we will
discuss processing in 2D and 3D before revisiting the topic
of interprocessor communication.

As shown in Figure 1a, an emulated space is divided up
evenly among a mesh array of processing nodes, with each
node handling an equal sized sector of the space. In Figure 7,
we show the sectors in three adjacent processors of a 1D
mesh array. In a single-processor system, bit-field bits that
spill past the edge of the sector (for example, A in the Fig-
ure) wrap around to the other edge, as shown. In a uniform
bit-field shift across multiple processors, these same bits A
should instead shift into the B position. Note, however, that
the wrapped A and B bits are in the same position: a peri-
odic shift within a sector puts all bits in the correct relative
position within the sector; they are just in the wrong sec-
tor. Thus to construct a uniform shift across sector bound-
aries, we need only take bits that wrapped around within
each sector, and substitute them for the corresponding bits
in an adjacent sector. As long as all processors operate in
lockstep, this means that any bit that wraps around should
be communicated to the next processor, and substituted for
the corresponding bit there, which that processor meanwhile
sends to the processor next in line.

Thus it is wrapped bits that must be communicated, and
there is never any delay (and associated buffering) needed
before communication, since once all wrapped bits are sub-
stituted, the adjacent processor will have all of the bit-field
data that it needs for the site-group that it is currently work-
ing on. The only issue that remains is balancing communica-
tions demand. In the 1D case, this has already been done,
since each word of data is spread evenly across the entire
sector handled by a given processor. For a given bit-field
shift, the same fraction of each word will “stick out” past
the end of the sector, and so need to be substituted for the
corresponding bits that stick out in the adjacent sector.

4.2 2D and 3D
In 2D and 3D, balancing communications is not quite so
automatic. If, for example, we simply constructed our 2D
space out of a collection of horizontal 1D rows of data, then
a given shift “down” would require communicating every
bit belonging to a row at the bottom edge of the sector;
whereas when processing a row that doesn’t spill past the
bottom edge, we would require no communication—thus the
communication demand in the vertical direction would not
be very even in time.

In Figure 8a, we show a way of partitioning a square 2D lat-
tice (and hence all of the bit fields) so that communications
demand is even in time. Recall that a site-group is a set of
lattice sites that are processed together. In this example, we
stretch one site-group evenly along the main diagonal of the
sector. The other site-groups are then periodic shifts of this
pattern. Clearly any periodic shift within the sector turns

one site group into another. If a bit-field is partitioned into
memory words that correspond to these site-groups, then
shifted bit-field data needed for processing any site-group
also all belongs to a single word of memory. In fact, if the
bits within all memory words are ordered starting from the
top of the sector, for example, then periodic horizontal shifts
don’t require any reordering of bits within words, while peri-
odic vertical shifts can only rotate the bit order. Thus again
all memory access just involves addressing plus rotating in-
dividual memory words as they are accessed.

The motivation for using a diagonal partition is that it treats
horizontal and vertical shifts the same. For a given vertical
or horizontal shift, the fraction of each memory word that
shifts past the edge of the sector (and hence has to be com-
municated) is constant. Figure 8b shows the corresponding
situation for a non-square sector, which is exactly analo-
gous. Notice that for a pure horizontal shift, we can think
of the picture in Figure 7 as being an edge-on view, and
corresponding bits are simply substituted as usual. If we
substitute horizontally before performing the vertical shift,
then this again works exactly as before. Thus by pipelin-
ing the two substitution steps, we can shift in an arbitrary
direction in 2D, using only nearest neighbor mesh connec-
tions. The situation in 3D is analogous, using site-groups
that extend along the main diagonal of the cube and peri-
odic shifts of this pattern. Gluing in 3D adds one level to
our pipeline of bit substitutions. Bit-field shifting still only
involves addressing plus rotation of individual words.

Note that adding dimensions makes little difference to our
earlier discussion of how to deal with a memory granularity
hierarchy. If we have a doubleword constraint, for example,
we could group together the cases that are drawn above
each other in Figure 8. This lattice partition remains shift-
invariant: the constituent double site-groups turn into each
other under shifts.

4.3 Hardware
The shifting and communication technique described above
is suitable for a variety of spatial lattice architectures, with
various kinds of SIMD processing elements and various num-
bers of simultaneously shifting bit-fields coupled to each PE.
Here we describe hardware that is well suited for the kinds
of non-numerical and semi-numerical simulations discussed
in Section 2. We will also discuss in Section 4.4 how to
modify this hardware, in order to adapt it to hybrid lattice
computations that mix numerical and non-numerical data.

Figure 9a shows the major components and datapaths of a
proposed chip, called SPACERAM, that uses the hardware
resources illustrated in Figure 1b. About half of the chip
area is taken up by 20 4Mb blocks of DRAM. A DRAM
block, together with associated interface and mesh-I/O cir-
cuitry, constitutes a DRAM module. Each DRAM module
has 64 I/O lines, all of which are used in the same direc-
tion at a given time to read or write a 64-bit data word.
As is shown in Figure 9b, the nth I/O line from each of
the 20 modules is connected to the nth PE. The PE’s are
all connected to a 2K-bit LUT-data bus. Each PE also has
2 bits of unbussed I/O associated with it. In addition to
48 differential-pair mesh interconnect signals, the chip has
both master and slave RDRAM interfaces. This allows slave
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PE’s share 2K bits of bussed data, and each PE has 2 I/O lines that are controlled separately. Both master
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connect across DRAM module I/O words.



RDRAM’s to be attached to each chip, in order to increase
the size of simulations that can be run, and also allows the
chip to be directly connected to a microprocessor that has
an RDRAM master interface.

4.3.1 The DRAM module
Figure 10a shows the DRAM module in more detail. We are
assuming here that the individual DRAM blocks are actually
2K×2K, with 256 data I/O lines running at 200MHz. The
64×4:64 MUX is used to narrow the datapath to 64 bits,
and increase the clock rate to 800MHz. This reduces the
area needed for wiring and multiplexes the 64 PE’s across
the wider raw data word, matching DRAM speed to logic
speed. Since (for efficiency) all of each raw 256-bit data
word must be used before moving on to another, this MUX
simply adds an extra level to the memory granularity hier-
archy of DRAM words and DRAM rows that our memory
and communication organization is designed to deal with.
Notice that if 800MHz is too aggressive, we simply change
to a 128×2:128 MUX with twice as many PE’s running at
400MHz. We can always adjust our virtualization ratio to
match logic and DRAM speeds.

Each DRAM block can simultaneously access data from a
different bit-field, each addressing periodically shifted data
that all belong to the same 64-element site-group that is
about to be processed by the 64 PE’s. To complete the
periodic shift within the sector, we may need to rotate the
64-bit word—this is done by the barrel rotator. Next we
want to glue together the periodic shifts performed by the
various mesh-connected SPACERAM chips. All bits that
spill past the edge of the sector are put onto mesh-I/O wires,
and are substituted for corresponding bits in an adjacent
chip. The mesh I/O wires in each direction are a pooled
resource that is shared by all DRAM modules. To shift a
bit in the +x-direction, for example, the bit is put on an
available +x wire, and the bit coming in from the opposite
direction on the corresponding −x wire is substituted for it.
Since all SPACERAM chips run in lockstep, they all make
the same choice of which wire to use at a given time.

In this design, we provide the chip with 48 differential-pair
mesh-I/O signals. This is enough to shift 8 bits at a time to
or from each of 6 neighboring processors (3D mesh), 12 bits
at a time with 4 neighbors (2D), or 24 bits at a time with 2
neighbors (1D). As is indicated in Figure 10a, the mesh-I/O
unit puts a bit onto one of the 24 available output wires, and
substitutes the corresponding bit from the corresponding
input wire.

4.3.2 The processing element
Figure 10b shows the PE. As in our software example, the
processing hardware is presented with aligned words of lat-
tice data, with corresponding bits all belonging to the same
lattice site. Thus each PE acts on data from a single site,
and produces new bits that also belong to that site. In our
software example, the processing involved only 2 simultane-
ously shifted bit-fields at a time, and was performed using
word-wide logical operations. Here, we will instead operate
on many more bit-fields at a time, and the processing will
be based on lookup tables. Just as in our software example,
however, all lattice sites in each site-group will be processed
identically.

Figure 10b shows a single PE. The 20 I/O lines, one from
each DRAM module, are attached to a permuting network.
This network can attach any DRAM line to any of 20 dif-
ferent internal lines, so that any DRAM line can play any
role. The permuters in all PE’s are configured identically,
so that all I/O bits of a given DRAM module are assigned
to play the same role.

The basic element of each PE is an 8-input/8-output LUT.
This size is based on our experience with symbolic calcula-
tions on CAM-8: this size speeds up our typical symbolic
applications by about a factor of 100, compared to using a
sequence of 2-input/1-output LUTs, as is common in simple
SIMD machines.

Thus of the 20 DRAM I/O’s, 16 are assigned as either a
LUT input or output. Of the remaining 4 I/O’s, 1 is used
as a conditional bit: it determines whether the LUT is used,
or the 8 bits belonging to that lattice site are instead left un-
changed. This allows us to perform operations conditionally
at different lattice sites, without using up half of our lookup
table just for the case “do nothing.” Of the remaining 3 bits,
one is used for DRAM I/O (to or from external memory, for
example), and two are used for control purposes.

4.3.3 The LUT
The box labeled “LUT” in Figure 10b is shown in more
detail in Figure 10c. Since all PE’s perform the same oper-
ation at the same time, they all need the same LUT data
at the same time. An 8-in/8-out LUT has 2K bits of state,
and so there are 2K bits of lut data that are bussed across
all 64 PE’s (as shown in Figure 9a). The actual lookup is
performed by a 256×8:8 MUX that operates on this bussed
data. The same data can also be used as an 11-in/1-out
LUT, using some extra multiplexing (not shown).

By bussing the LUT data, we make it easy to change it
quickly for all PE’s simultaneously. Since (for efficiency’s
sake) all of a row must be processed once it is started, the
row period is really an atomic unit of time in this architec-
ture. We can allow the 2K bits of LUT data to be changed
at the end of every row period (if desired) by devoting all of
the bandwidth of just one DRAM module to this purpose
during each row period. This involves the control signal
labeled “next LUT data” in Figures 10b and 10c.

During each row period, 32 64-bit words are read or written
from or to the 2K-bit row of each DRAM block. Thus each
PE sees 32 bits per DRAM module. The bits coming in
to the “next LUT data” input in each PE are stored in a
32-bit LUT data memory. This memory is double-buffered:
while new LUT data is being loaded, each PE shows 32 bits
of old LUT data on the 2K-bit LUT bus. When new LUT
data is driven onto the LUT bus at the end of some 32-clock
row period, processing waits for the data to settle before
resuming.

Notice that it is possible to load bit-field data into the LUT
instead of a precomputed table. This means that bits of
spatial data can be randomly accessed by address, based
on some of the bit-fields at each lattice site. This provides
a powerful communications primitive for doing pointer fol-
lowing operations within each sector—something that would
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otherwise be difficult in a SIMD architecture.

4.3.4 Control
During each row period, one DRAM row of one DRAM
module provides 2K bits of control information that will be
used during the next row period, including a specification of
which DRAM module and row will provide the next 2K-bit
control word. The control data includes a data direction,
row address, starting column offset and rotation amount for
each DRAM module, as well as a common setting for all
permuters, mesh control data, and data for controlling the
RDRAM I/O. All of this data is precomputed and loaded
into the DRAM memory before processing begins. Linked
lists of control words form a kind of microprogram, and a
separate microprocessor can talk to all SPACERAM chips in
order to specify which microprogram will be executed next.
Some mesh I/O bandwidth can be stolen for this purpose,
or the RDRAM slave interface can be used. A micropro-
cessor can be included on each SPACERAM chip if more
sophisticated microprogram control is desired.

4.3.5 External memory
As long as our SPACERAM chips are significantly more ex-
pensive, hold less data and consume more power than ordi-
nary DRAM chips, there is a strong incentive to allow each
SPACERAM chip to be augmented by a set of ordinary
DRAM chips. This provision makes large 3D bit-mapped
computations feasible. The external memory can also be
used to hold extra program and LUT data, so that we can
use very long and complicated programs, if necessary. If
only program data is being obtained from external memory,
this need not slow down the on-chip processing.

For very large lattice computations, we can treat on-chip
memory as an additional level of memory hierarchy. By ar-
ranging to completely process a set of bit-fields for all lattice
sites that are on-chip before moving on to another chip-scale
site-group, we can often hide the enormous difference be-
tween on-chip and off-chip memory bandwidth. In general,
if the processing at each lattice site is very complicated, as it
often is in 3D physics simulations for example, then by com-

pleting a multi-step algorithm using a set of on-chip bit-field
data corresponding to a chip-scale site-group, we may not
waste any time at all waiting to swap data between the chip
and external memory.

4.4 Numeric processing
An important application of lattice computation is numeric
processing. It may also be very attractive to construct hy-
brid models where, for example, traditional numerical tech-
niques are used to simulate the bulk of a material while a
LUT-based lattice-gas molecular dynamics algorithm is used
at the difficult-to-simulate interfaces.

Integer addition and subtraction can be performed efficiently
using LUT’s, but more complicated operations such as mul-
tiplication and division are rather slow. To multiply two k-
bit integers using only the PE of Figure 10b, we need to pass
each bit of each number in and out of DRAM about k times.
With the addition of simple bit-serial arithmetic hardware,
which includes data registers within the PE’s, multiplica-
tion and division can be performed with only a single pass
through DRAM, using the full memory bandwidth.

Bit-serial hardware receives its input bits sequentially. For
example, to multiply two unsigned integers, we might first
send the bits of the multiplicand into the serial multiplica-
tion unit one bit at a time. Then we would send the bits of
the multiplier in one at a time, starting with the least signifi-
cant bit (lsb). As the multiplier bits enter the multiplication
unit, bits of the product leave the multiplication unit. The
hardware inside the multiplication unit is very simple. It
includes a register large enough to hold the multiplicand,
an accumulator register of the same size that can shift by
one position at a time, and an adder that can conditionally
add the multiplicand into the accumulator, depending on
the value of the current multiplier bit. When no additional
multiplier bits remain, a new multiplicand can be loaded in
while the final bits of the product are leaving. Division uses
essentially the same hardware, and CORDIC algorithms for
common transcendental functions are known which use sim-
ilar hardware[21].
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Figure 11: The structure of a DRAM row. (a) Format for symbolic calculations. (b) Format for numeric
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In the processing hardware described above, we’ve seen that
in one row-period each PE receives a sequence of 32 bits from
each DRAM module. This is illustrated in Figure 11a, where
we show an example of data coming into bit #0 of each PE.
These 32 bits all belong to the same bit-field, and to 32
different lattice sites. In fact, each DRAM word belongs to
a different 64-bit site-group of lattice sites.

If we could arrange for these bits to all come from the same
lattice site, instead of from 32 different lattice sites, then
our hardware would be perfectly organized for serial arith-
metic. These 32-bits at each lattice site would constitute
an integer stored there, and the PE need only incorporate
a couple of registers and an adder/subtractor for each in-
put bit-stream in order to efficiently perform multiplication
and division. In Figure 11b, we show such a grouping of
lattice data into a DRAM row. Here all words belong to the
same 64-bit site group, each holding data from a different
bit-field. This serial-arithmetic format is perfectly compati-
ble with our bit-field shifting hardware of Figure 10a. Since
all bit-fields within the row shift identically, we can perform
shifts using row addressing in place of word addresssing. We
complete the shift for each word within the row by rotating
it if necessary, as usual. Since the grouping of bits into
words hasn’t changed, the rotation and substitution of bits
within each word also hasn’t changed. Using the LUT-based
PE, data can be quickly converted between the two formats
shown in Figure 11.

5. CONCLUSIONS
Spatially organized computation maps naturally onto spatial
arrays of processing elements. For greatest density of infor-
mation storage, it is natural today to use blocks of DRAM
memory to hold the state of the computation. Granularity
constraints in such memory do not hinder the efficiency of
regular spatial algorithms. As our logic elements continue to
become ever more microscopic, we expect that the attrac-
tiveness of massively parallel “crystalline” algorithms and
architectures will only increase.
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