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Physics imposes fundamental constraints on the ultimate potentialities 
of computing mechanisms. 

The most prominent fundamental constraint coming from physics that is 
felt today is the finiteness of the speed of light. This constraint implies that 
communication paths inside -of a computer should be as short as possible. 
For maximum speed, we-would also like to have massive parallelism. This 
motivates us to consider the computational capabilities of cellular automata: 
uniform arrays of identical processors, each communicating only with nearby 
neighboring processors. 

Another constraint concerns heat dissipation, which limits the maximum 
size and density of computers. Just as reversible engines are ideally the most 
energy efficient engines, logically reversible computations ( which can be im­
plemented in terms of thermodynamically reversible mechanisms) are ideally 
the most energy efficient. This motivates us to consider the computational 
capabilities of reversible logic. 

Before one can contemplate actually building computers based on re­
versible logic and cellular automata, it is necessary to demonstrate that 
computation is possible in such systems. The compatibility of computation 
with cellular automata was first demonstrated by von Neumann; theoretical 
objections concerning the compatibility of computation with reversibility 
were first answered by Bennett. Toffoli dealt with the combination of re­
versibility and cellular automata, but not in a way that could make use 
of Bennett's technique for making reversible computations practicable. The 
first cellular automata models which incorporate reversibility in a way which 
makes computation practicable are given here.

Constraints arising from quantum mechanics will presumably be felt as 
computer elements continue to get smaller. Benioff was the first to address 
the question of whether or not a microscopic quantum Hamiltonian system 
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can perform exact deterministic computation. He pointed out that any com­
puter for which the time development is generated by the Schrodinger equa­
tion must be a reversible computer. Feynman presented the first convincing 
time-independent quantwn Hamiltonian model of computation. Here I use 
one of my reversible cellular automata models of computation as the basis 
of explicit quantum Hamiltonian models, and address for the first time the 
problem of constructing quantum models of parallel computation. I intro­
duce a simple scheme for producing models which simulate a synchronous 
evolution without any global synchronization, and use this as the basis of a 
partially successful parallel model, which points up certain difficulties. 

Another major facet of the research presented here deals with comput­
ers optimized for the simulation of cellular automata. The reversibility and 
quantum mechanical issues are rather far from limiting current computers, 
but even in the context of current technology there are enormous advantages 
in terms of speed, simulation size, and cost that are available to machines 
tailored specifically for cellular automata. Toff oli and I designeJ the first 
general purpose cellular automata machine for use in· investigating some of 
the theoretical models we had constructed. This machine has had a signifi­
cant impact on the advent of new physical models based on cellular automata 
(such as the recent lattice gas models of fluid dynamics), and we have ar­
ranged for a commercial version to be made available to investigators. I 
discuss here the architecture and use of this latest version, as well as give a 
design for the first cellular automata machine that will be able to perform 
massive 3-dimensional simulations (it will have billions of computational de­
grees of freedom, each of which will be updated 100 times per second). 

Finally, a large number of original results are presented here concern­
ing reversible logic, reversible computation, the construction of reversible 
cellular automata, invariants in reversible cellular automata, and the ap­
plicability of various ideas from physics to the analysis ( and synthesis) of 
reversible models of computation. 

Thesis Supervisor: Edward Fredkin 
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Introduction 

The ultimate potentialities and limitations of computing mechanisms 
depend upon the efficiency with which physical interactions can be used 
to perform computations. This in turn depends upon what we call a 
computation, and to what extent our conceptual models of computation 
can be restructured to make them more compatible with the resources 
offered by nature. 

0.1 What is a computation? 

All of the conceptual models of computation that we will deal with will 
be based on the idea of digital computation-computation performed 
in terms of state variables that have a discrete and finite spectrum of 
possible values. While it is true that the dynamical evolution of a non­
digital system such as a wind tunnel can perform a kind of computation 
fo1 us, digital computation has properties which make it so attractive 
that it has become virtually synonymous with the word 'computation.' 

First of all, digital computation is an abstraction of the way that we 
use a finite set of discrete symbols to deal with arbitrary information. 
All possible mechanical manipulations of such symbolic data can be 
performed by a digital computer. 

Secondly, digital computation is exact. We can build computers 
that have an arbitrarily small chance of having ma.de an error in the 
course of billions of billions of operations. This leads to what is perhaps 
the paradox of computation: our ability to predict the details of a 
computer's operation is so great that we entrust to it computations the 
outcomes of which are completely surprising. 

13 
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Finally, all physically reasonable formalizations of the process of me­
chanically manipulating symbols that have been thought of have been 
shown to be equivalent: they permit exactly the same set of computa­
tions to be performed. This is a consequence of the fact that if a model 
system is general purpose enough to be considered a computer, then 
it can manipulate a symbolic description of any other computer, and 
exactly simulate its operation. In this sense all computers are logically 
equivalent. The only difference between the logical capabilities of a 
personal computer and a supercomputer (or any of the ether models of 
comp!itation that we will deal with here) is quantitative: given enough 
time and memory, any computer can perform any computation that 
any other computer can. 

Thus a computation is any sequence of mechanical manipulations of 
symbolic data that a computer can perform---it doesn't matter which 
computer, since they all perform the same set of computations. 

0.2 Compatibility with nature 

Most current conceptual models of computation ignore important gen­
eral properties of physical systems. This research deals with finding 
and studying new conceptual models of computation which are more 
compatible with fundamental physical constraints on computing mech­
arusms. 

The most prominent fundamental constraint coming from physics 
that is felt today is the finiteness of the speed of light. This constraint 
implies that communication paths inside of a computi:!r should be as 

short as possible. For maximum speed, we would also like to have 
massive parallelism. This motivates us to consider the computational 
capabilities of cellular automata: uniform arrays of identical processors, 
each communicating only with nearby neighboring processors. 

Another constraint concerns heat dissipation, which limits the max­
imum size and density of computers. Just as reversible engines are ide­
ally the most energy efficient engines, logically reversible computations 
( which can be implemented in terms of thermodynamically reversible 
mechanisms) are ideally the most energy efficient. This motivates us 
to consider the computational capabilities of reversible logic. 
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Before one can contemplate actually building computers based on 
reversible logic and cellular automata, it is necessary to demonstrate 
that computation is possible in such systems. The compatibility of 
computation with cellular automata was first demonstrated by von 
Neumann; theoretical objections concerning the compatibility of com­
putation with reversibility were first answered by Bennett. Toffoli dealt 
with the combination of reversibility and cellular automata, but not in 
a way that could make use of Bennett's technique for making reversible 
computations practicable. The first cellular automata models which in­
corporate reversibility in a way which makes computation practicable 
are given here. 

Constraints arising from quantum mechanics will presumably be felt 
as computer elements continue to get smaller. Benioff was the first to 
address the question of whether or not a microscopic quantum Hamilto­
nian system can perform exact deterministic computation. He pointed 
out that· any computer for which the time development is generated 
by the Schrodinger equation must be a reversible computer. Feynman 
presented the first convincing time-independent quantum Hamiltonian 
model of computation. Here I use one of my reversible cellular automata 
models of computation as the basis of explicit quantum Hamiltonian 
models, and address for the first time the problem of constructing quan­
tum models of parallel computation. I introduce a simple scheme for 
producing models which simulate a synchronous evolution without any 
global synchronization, and use this as the basis of a partially successful 
parallel model, which points up certain difficulties. 

Another major facet of the research presented here deals with com­
puters optimized for the simulation of cellular automata. The reversibil­
ity and quantum mechanical issues are rather far from limiting current 
computers, but even in the context of current technology there are enor­
mous advantages in terms of speed, simulation size, and cost that are 
available to machines tailored specifically for cellular automata. Toffoli 
and I designed the first general purpose cellular automata machine for 
use in investigating some of the theoretical models we had constructed. 
This machine has had a significant impact on the advent of new physical 
models based on cellular automata (such as the recent lattice gas mod­
els of fluid dynamics), and we have arranged for a commercial version to 
be made available to investigators. I discuss here the architecture and 
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Introduction use of this latest version, as well as give a design for the first cellular 
automata machine that will be able to perform massive 3-d.imensional 
simulations (it will have billions of computational degrees of freedom, 
each of which will be updated 100 times per second). Finally, a large number of original results are presented here con­
cerning reversible logic, reversible computation, the construction of re­
versible cellular automata, invariants in reversible cellular automata, 
and the applicability of various ideas from physics to the analysis ( and 
synthesis) of reversible models of computation. 



Chapter 1 

Reversible logic 

In this chapter, I discuss the need for reversible logic, and describe 
the reversible models of computation due to Bennett, Fredkin, and 
Toffoli. In the course of giving this background, I give a new result in 
Section 1.2.5 about the computational capabilities of conservative logic 
gates. 

I then go on to discuss two original results: the first (Section 1.4) 
has an important bearing on the role of energy in certain models of 
computation; the second (Section 1.5) shows how, in an appropriate 
reversible computational context, a close analogue of the usual thermo­
dynamic argument concerning the maximum efficiency of a heat engine 
can be made. 

17 



18 Chapter 1. Reversible logic 

1 .. 1 Irreversibility and heat generation 

Thermodynamic questions concerning the need for energy dissipation in 

a computation were first convincingly addressed by Rolf Landauer[40] 

in the 1960's. What he realized is that logical irreversibility in a com­

putation must ultimately be translated into physical irreversibility in 

the mechanism which performs the computation. Erasing a bit of infor­

mation in a computation means that some two-state system which is 

part of the computer must be set to its 'cleared' state, without regard 

for which of the two p ossible states it started in. Since the underlying 

microscopic dynamics is presumed to be strictly reversible, the infor­

mation which disappears from the computational degrees of freedom 

when we erase this bit must be transferred to other degrees of free­

dom. In other words, we must- double the number of states available to 

the non-computational degrees of freedom, for example by transferring 

kT ln 2 of work into a heat bath at temperature T. This then is the 

thermodynamic cost of erasing a bit in a computation. 

Landauer went on to point out that the elementary acts of com­

putation, such as AND and OR, are irreversible functions-there isn't 

enough information in the result to reconstruct what the arguments 

were. Both of these operations entail erasing more than a bit of infor­

mation, since they each involve two inputs and a single output. Thus 

he concluded that computations constructed out of such irreversible 

primitives (which were the only kind known at the time) must entail 

an unavoidable minimum energy dissipation of the order of kT per 
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elementary logical operation. 

While this is many orders of magnitude less than the actual dissi­

pation of current devices, technology is advancing rapidly. This seems 

to present a fundamental barrier which will eventually he confronted. 

1.2 Reversible computation 

Independently, Bennett, Fredkin, and Toffoli[7,25,71], for a variety of 

reasons, addressed the question of the necessity of irreversible opera-

tions in a computation. Their results have great relevance to our cur­

rent discussion: a·clear demonstration that reversible computation was 

practicable would eliminate the only known fundamental theoretical 

barrier to dissipationless computation. 

Clearly any computation can be made to run backwards if we simply 

keep a complete history of all past states. Toffoli used essentially this 

approach to give a detailed example[72] of a reversible system which 

can compute--in the process he gave an important counterexample to 

a purported "proof" that cellular automata models of computation (see 

Chapter 2) cannot be both universal and reversible[l]. 1 This issue will 

be very important in our discussion of physics-like models of computa­

tion, but Toffoli's method of proof doesn't help us much in our present 

discussion. All he did was to delay the moment when information is 

1 Although Toffoli's systems were only shown to be universal computers as long 

as the memory space used for recording the history is initially empty, his systems 

obey a dynamics that is invertible when started from any initial state. 
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erased until the time when the computer is cleared in preparation for 

the next computation. He didn't show that the amount of information 

that needs to be erased ( and hence the associated unavoidable min­

imum energy dissipation) could be reduced-this was first shown by 

Charles Bennett. 

Bennett described a reversible Turing machine. A Turing 

machine[82] is a. kind of universal computer traditionally used in theo­

retical proofs about computability. It is a particular abstraction of the 

idea of a mechanical computation invented by Alan Turing-it formal­

izes the idea of what an unintelligent person could compute by mechan­

ically following instructions, and predates the advent of the electronic 

digital computer. A Turing machine has two parts, called a head and 

a tape. The tape is a one-dimensional array of cells, each of which can 

hold a single symbol, chosen from a finite alphabet of symbols. The 

tape is taken to be unbounded ( to eliminate considerations stemming 

from a particular memory size) and is always initially blank, except for 

a finite region. The head is a movable mechanism, and is always posi­

tioned at some particular cell of the tape. It can be in one of a finite 

number of states, and based only on its current state and the symbol 

contained in the cell it is at, it obeys a rule which tells it whether to 

write a new symbol, and whether to move one position either right or 

left. Turing machines are known to be universal computers---they are 

logically equivalent to any other general purpose computer in that they 

can exactly simulate the operation of any other computer ( all univer­

sal computers can perform the same set of computations, given enough 
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time and memory). 

Bennett's Turing machine operated reversibly at every step--it ha.d 

an extra tape used for keeping a history of the computation. 2 Ben­

nett realized, though, that at the end of the computation the answer 

could be copied somewhere, and then the entire computation which pro­

duced this answer could be run backwards, and the history tape would 

be restored to its initial empty state without performing any irreversible 

operations (this important insight will be discussed in more detail in 

Section 1.2.4). Thus the overall computation took about twice as long 

as an irreversible version would have, and resulted in leaving everything 

exactly as it started, except for a copy of the answer-no unmanageable 

accumulation of useless historical garbage occurred. Bennett's mecha­

nism didn't just delay irreversible operations until the moment when 

the history tape was cleared-it avoided the logical need for irreversible 

operations ( and the associated unavoidable dissipation) altogether. 3 By 

putting the const.raint of reversibility (which comes from microscopic 

physics) explicitly into his model, he could reorganize the way the com-

2 Like Toffoli's machines (which, incidentally, were conceived several years after 

Bennett's) this machine operates invertibly started from any initial state, although 

it needs to start with a clean history tape (or at least a history tape started in some 

standard state) to perform a computation. 
3 Except for any irreversibility involved in changing the program in preparation 

for the next computation-the number of irreversible operations needed to do this 

is at worst proportional to the length of the program, but independent of the length 

of the computation. 
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putation was done in order to "erase" historical garbage reversibly. 4 

Turing machines provide a certain abstraction of physical 

computability---if a computation can be done by a Turing machine, 

it can be done by an actual physical machine. Another abstraction 

that is commonly used by electronic engineers is that of logic gates. 

Knowing the rules for composing logic elements, machines can be de­

signed which can be expected to work. The logic gate comes closer 

than the Turing machine to capturing realistic aspects of physics, such 

as the fact that computation can be going on at more than one place 

at a time, and that gates must be close to each other if a signal is to 

travel between them in a very short time. Thus we expect that an anal­

ysis of computation within the context of reversible logic will provide 

a more fundamental insight into issues of computational efficiency. For 

this reason I regard Fredkin and Toffoli's demonstration of the ability 

of reversible logic elements to perform computations to he of particular 

importance. Before we can discuss this in detail, however, we must 

make a brief digression into the subject of logic elements. 

4 In [8], Bennett discusses a version of such a reversible Turing machine which 

operates in a manner analogous to the genetic mechanism for RNA synthesis. Such 

a computer is reversible in the same way that chemical reactions are--the direction 

of operation is determined by the relative concentrations of reactants and products. 

If a very small bias away from equilibrium concentrations is maintained in certain 

reactant and product molecules, his computer would take almost as many backward 

steps as forward steps, and could in principle operate with arbitrarily little dissipa­

tion: the total dissipation for a given computation is proportional to the average 

rate at which the computation drifts forwards. 
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1.2.1 Universal sets of logic gates 

First we need a definition: a set of binary logic gates is said to be 

universal if an arbitrary Boolean (i.e., binary valued) function can be 

implemented as a composition_ of such gates. Some individual gates are 

universal---for example, the NAND gate, which implements the following 

truth table 

This gate returns a 1 unless both inputs are 1's. With one input fixed at 

a constant (unchanging) value of 1, this gate gives the NOT function-a 

1 applied to the free input becomes a 0, and a 0 becomes a 1. If we 

use a NOT to complement the result of a NAND, the function realized 

by this composition is the AND function, and has the following truth 

table 
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If instead we use NOT to complement both inputs to a NAND, the com­

posite function is the OR function, and has this truth table 

Notice that AND gives the same result as ordinary multiplication of 

binary quantities, while OR is the same as addition, except in the 11 

case---it is traditional to adopt the notation used for multiplication and 

addition when writing functions involving AND and OR. 

Given an arbitrary set of Boolean input variables ( a 1, a2 , ... , an), we 

can write a product term that has a value of 1 only if a given pattern of 

1 's and 0's appears in the inputs. For example, su.ppose there are five 

input variables, and we want to distinguish the case (a 1 , a2 , a 3 , a 4 , a 5 ) = 
(I, 1,0, 1,0) from all others. The product 

( where the complement of a binary quantity a is written bar a)would have 

a value of 1 in the desired case, and 0 otherwise. If we take an arbitrary 

truth table and construct a product term corresponding to each 1 in 

the result column, and then add them together, we have constructed 

the desired function. Since each product term picks out a different case, 

no more than one term will give a 1, and so addition can be replaced by 
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OR. Thus any Boolean function of any number of inputs can be written 

as a composition of AND, OR, and NOT, and hence as a composition of 

NAND gates. 

In this discussion we have glossed over a point which will be very 

important when we move on to the discussion of reversible logic: we 

have implicitly assumed that the output of one logic gate can be con­

nected to the inputs of several other gates. This splitting of signals is 

referred to as fanout. Real gates have this property, although only a 

specified amount of fanout is available before additional gates need to 

be used just to get more fanout. In our discussion of invertible logic, 

fanout will have to be considered carefully: if we want to allow fanout 

to occur by having a single wire split into two, then we must also allow 

the inverse operation, where two wires join into one. For this reason, 

we will not allow wires to split. 

The kinds of circuits we have considered in this section, where the 

output is a function of input variables alone (without any feedback) are 

referred to as combinational. To turn combinational logic into the more 

general circuitry needed to implement a universal computer, we need 

to employ a delay element (something for which the output at time 

t + 1 equals its input at time t) and allow outputs to be fed back and 

connected as inputs. If our NAND gate is considered to always have such 

a delay attached to its output, then NAND is sufficient for constructing 

general purpose computers (in fact a line of commercial computers was 

actually built that made use only of NANO gates for its logic). 



26 
Chapter 1. Reversible logic 

1.2.2 Universal sets of reversible gates 
We begin with Landauer's observation that traditional logic elements 
are irreversible. One obvious problem is that they have two inputs and 
one output: no gate which has fewer outputs than inputs can be invert­
ible ( assuming both input and output values are taken from the same 
state set, and there are no constraiuts on allowed input combinations). 
This leads us to consider gates which have equal numbers of inputs and 
outputs. With two inputs, two outputs, and binary variables, there are 
256 possible truth tables. Since a reversible function must map each 
distinct input case onto a distinct output case, each reversible function 
with two inputs is a permutation which maps a set of four elements 

(0,0) (0,1) (1,0) (1,1) 

onto itself. Thus only 24 of the 256 possible truth tables represent 
invertible functions. If you enumerate all invertible 2-input/2-output 
functions of Boolean variables which can be constructed using only a 
composition of XOR gates (gates which return the sum, modulo 2, of 
their two inputs), you find that there are 24-thus these are all of the 
invertible functions we are considering. But any combination of XOR 
gates is a linear function of input variables. For example, a typical 
output of such a function might be given by 

where + denotes addition modulo 2. For any such function, the output 
either doesn't depend on a given input variable at all, or else the out-
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put changes whenever that input is changed while all other inputs are 
held constant. No such function can reproduce the NAND table (which 

requires input cases which differ in a single variable to produce the 

same output) for any pair of its inputs, and so our set of 24 invertible 
2-in/2-out gates fails to be universal. 

We must therefore widen our search for invertible logic gates. We 

can either consider gates with more inputs (and outputs), or gates 

with more states. With three inputs and using Boolean logic, there are 

eight possible input cases; with two inputs and using ternary (3 state) 
logic, there are nine possible input cases. Here we will only look at the 

Boolean case, which is the one that Fredkin and Toffoli considered. 5 

1.2.3 The Toffoli gate 

Once we consider gates with three inputs, there are many gates which 

are universal by themselves, just as the A ND was in the domain of 

irreversible logic. A simple example is Toffoli's AND/NAND gate, which 

5 When considering logic with more than two states, it is sufficient to discuss 
the construction of Boolean functions in order to demonstrate universal computing 
capability---the third state may be used within circuits which use only two of the 
three states for inputs and outputs. Using this idea, very simple circuits based on 
appropriate reversible ternary logic gates with two inputs can be used to simulate 
universal reversible binary gates with three inputs, and hence prove the universality 
of the ternary gates. 
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has this truth table: 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 1 

1 1 1 1 1 0 

In this gate, p and q go through unchanged, while the AND of these 

inputs is XORed (added modulo 2) to r to produce the third output. 

This is invertible, and is in fact its own inverse (if you connect p', q' and 

r' to the corresponding inputs of a second gate, the overall function will 

be the identity function). By holding r fixed at 1 you get the NAND 

function of p and q at r', and by connecting constants of 1 to q and 

0 to r, you find that both p' and r' are copies of p, and so this gate 

can provide fanout. Timing delays can be associated either with the 

gates, the wires, or both---in any case we conclude that Toffoli 's gate 

is a universal logic element. 

1.2.4 Conservative logic 

Fredkin 's approach to the same problem was this: he noted that he had 

many possible choices for a 3-in/3-out invertible logic gate, and so he 
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decided to add another constraint which was intended to make it easier 

to find a physical realization of his gates. He required that in every 

case the number of 1 's in the output must equal the number in the 

input, and called the resulting kind of logic conservative logic. With 

three inputs there are 36 distinct invertible gates of this sort: there is 

no choice for the cases where the input contains three 0's or three 1 's; 

there are 3! = 6 ways to permute the three cases containing a single 1 

and similarly six for the single 0 cases. If, however, we don't distinguish 

between gates that are equivalent up to a relabeling of the input and 

output signals, then there are actually only three distinct gates that 

are possible. With the inputs and outputs named as above, these are: 

• the identity gate, for which p' = p, q' = q and r' = r, 

• the Fredkin gate, for which p' = p, and the other two signals either 

go through unchanged (if p =1) or are interchanged (if p =0). 

• the SMP gate (symmetric majority /parity gate), a gate that 

cyclicly permutes all inputs one way if the input count is even 

(p' = q, q' = r, and r' = p), and the opposite way if it is odd. 

Both the Fredkin gate and the SMP gate are universal logic ele­

ments, but the former is perhaps a little easier to work with, and so 

we will concentrate on it (the SMP gate will be mentioned again in 
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I 

Figure 1.1: The Fredkin Gate. All three inputs go straight through unless p 

is a zero, in which case q -> r' and r -> q'. 

Section 1.4). Here is the truth table for the Fredkin gate: 

0 0 0 0 0 1

0 0 1 0 1 0 

0 1 0 0 0 1 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 0 

1 1 1 1 1 1 

Graphically, this gate is represented as in Figure 1.1. If r is given a 

constant (unchanging) value of O, then r' has a value given by pbar q (i.e., 

p AND q) while q' has a value of pq (i.e., p AND q). If in addition we let 

q =1, then these become r' = not pand q' = p. Thus we have available the 

AND, NOT, and FANOUT functions, as we must for this to be a universal 
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Figure 1.2: Two circuits which both compute the same function. The first 

is an ordinary sequential circuit made of irreversible gates; the second is a 

transcription of this circuit into Fredkin gates. 
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time t + 1 equals input at time t ). 

Since we can, in a similar manner, transcribe any conventional cir­

cuit into a conservative logic circuit, this type of logic is clearly sufficient 

to construct computers; but we haven't really arrived at our objective 

yet. Something must be done with all these garbage signals. If we 

simply erase them, then what we have done is certainly no better than 

conventional irreversible logic. Instead, we will adapt the idea that 

Bennett used in his reversible Turing machine, to eliminate essentially 

all of these extra outputs. 

Bennett's argument made use of the notion of an inverse computa­

tion. Given any conservative logic circuit, such as the one of Figure 1.2, 

we can construct the inverse circuit by reversing the motion of all sig­

nals (i.e., the direction of all arrows), interchanging the roles of inputs 

and outputs, and converting all gates into inverse gates (since a second 

permutation undoes the first, the Fredkin gate is its own inverse, just as 
,, 

the Toffoli gate was). If such a 'mirror image' of the circuit of Figure 1.2 

if connected to the direct circuit ( with appropriate delay elements so 

that all signals arrive at the inverse circuit at the right moments), then 

the net effect of the circuit will be to compute the identity function: 

the input xt will be reproduced, and all of the constant inputs used to 

make the Fredkin gate act like an irreversible gate will be reconstituted, 

and can be fed back to be reused. 

So far we have a rather elaborate scheme for doing nothing. But 

somewhere in the middle of this circuit is the sum modulo 2 of the 

input---if we add a fanout element at that point, then we have the 
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Figure 1.3: 

circuit of Figure 1.3. The overall action of this circuit is to convert the 

input stream z' plus a constant of O and a constant of 1 into a copy 

of the input x t-1  and two copies (one of them complemented) of the 

'answer,' y t-1 = x t-6 + y t-6 We get the answer with only one extra step 

of computation delay compared to the circuit of Figure 1.2-we only 

needed to copy it. The reconstituted input, however, has the delay 

associated with both halves of the circuit. Any computation can be 

treated similarly.7 

As in Bennett's construction, we were able to reorganize the compu­

tation in a way that minimized the production of garbage. Any garbage 

that is not cleaned up during the computation will eventually have to 

be erased irreversibly, with a concomitant unavoidable thermodynamic 

7 Likharev, in [43],  describes the use of reversible gates based on thermodynam­

ically reversible Josephson junction devices. He concludes that these devices have 

sufficiently short relu:ation times that switching speeds of 10 -9 seconds can be 

achieved with a dissipation of 0.01 kT. Ressler[62] gives a logical design for a con­

servative logic computer.
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cost per bit. Thus reversible logic allows us to reduce the amount of 

unavoidable dissipation from one that is proportional to the number of 

logical operations (as it always is in a cicuit composed of irreversible 

logic elements) to one that is independent of the size of the circuit and 

the lengtn of the computation, and at worst proportional to the number 

of non-constant inputs. 

Given the algorithm we were using in Figure 1.2, our reversible 

circuit couldn't have gotten the answer any faster, but none of the 

original constants were reconstituted until we had the answer, and so

we needed a maximum number of constants. If we performed partial 

reversals at intermediate points, the time before we had the answer 

would be longer, but the computation would need fewer constants at 

the input. 

1.2.5 Other conservative logic gates 

With 3 inputs and 3 outputs, we noticed that all (reversible) conser­

vative logic elements which could not be transformed into the identity 

element by a relabeling of outputs are in fact universal. This property 

actually holds for conservative Boolean functions with any number of 

inputs (and outputs), as we will now show. 

Consider a conservative logic gate with n inputs labeled a1, a2, etc. 

Let b1 be the output that is a 1 when only a1 is a 1 ( and all other inputs 

are 0's), and similarly b2, etc. (Since each such input must map onto 

a distinct output case, we can always do this). With this labeling, all 
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gates that are equivalent to the identity gate have b1 = a1, 1 , b2= a2, etc., 
for all possible input cases. We will call all gates that are equivalent 
to the identity gate under such a labeling trivial gates---they could be 
replaced by separate wires. 

If a gate is non-trivial, then for some input there must be a k such 
that ak /= bk. b1c. Consider an input case involving the smallest number of 
1 's for which there is such a k. Because of the conservation of the input 
count, this input caae must have at least two places that differ from 
the output, one of which is a 1; thus we can without loss of generality 
assume that for this input case, a 1 /= b1, and a1 = 1. Our definition 
of the b's implies that no case involving a single 1 has a difference 
between input and output, and so we can assume, again without loss of 
generality, that a2 = l in this case. Thus we can write the truth table 
for a1 and a2 (holding all other inputs constant) 

Since the case a1 = a3 = 1 was one involving the fewest 1 's for which 
input and output differ, the first three entries for b1 must have the values 
show. This is the truth table for a1 a2 (a1 1 AND a2),2 ), which can be used 
to perform NOT ( with a 1 a constant of 1) and AND. To demonstrate 
fanout, we need only note that in the case a1 = a2 = 1, since b1 = 0 

,. 
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there must be some output which we'll call b3, (distinct from b2) which 

is a 1, even though a 3 is a 0. Thus 

1 0 0 1 0 

1 1 0 0 1 

and so if we let a1 = 1 and a3 = 0, then we get b1= a2 and b3= a2

Thus we've proven the universality of all non-trivial Boolean con­

servative logic gates, but we're not quite finished. The construction of 

Section 1.2.4 that we used to erase garbage depends upon the availabil­

ity of an inverse logic gate; we will show that we can always construct 

such an inverse gate. 

Given a reversible logic gate G, we can form a new gate Gn by con­

necting together n gates: the outputs of one gate to the corresponding 

inputs of the next. Since G performs a permutation on the possible 

input cases, for some power m, Gm is the identity function. Thus G m-1

is the inverse of G. 

1.3 The Billiard Ball Model 

In order to be sure that a computational model is consistent and com­

plete, we would like to be able to find a physical system that, in a 

suitable idealization, obeys that model. The model that Fredkin found 

for conservative logic is that of a gas of hard spheres. 

The Billiard Ball Model (BBM) is a Classical Mechanical system, 
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and obeys a continuous dynamics-positions and velocities, masses and 
times arc all real variables. In order to make it perform a digital compu­
tation, we make use of the fact that integers arc also real numbers. By 
suitably restricting the initial conditions we allow the system to have, 
and by only looking at the system at regularly spaced time intervals, 
we can make a continuous dynamics perform a digital process. 

In this case, we begin with a 2-dimensional gas of identical hard 
spheres. If the center of a sphere is present at a given point in space 
at a given point in time, we will say that there is a 1 there, otherwise 
there is a 0 there. The 1 's can move from place to place, but the total 
number of 1 's never changes. 

The key insight behind the BBM is this: every place where a col­
lision of finite-diameter hard spheres might occur can be viewed as a 
logic gate. What path a ball follows depends upon whether or not it 
hits anything---it makes a decision. 

To see how to use this decision to do Boolean logic, consider Fig­
ure 1.4. At points A and B and at time ti, we either put balls at A, 
B, or both, or we put none. Any balls present are moving as indicated 
with a speed s. If balls are present at both A and B, then they will 
collide and follow the outer outgoing paths. Otherwise, only the inner 
outgoing paths will be used. 

At time t = ti, position A is a 1 if a ball is there, and 0 otherwise 
(similarly for position B). At t = tf, the four labeled spots have a ball 
or no ball---which they have is given by the logical function labeling 
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Figure 1.4: 
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Figure 1.5: Interaction gate. When used backwards, the inputs must be 

suitably constrained. 

the spot. For example, if A = 1 and B = 0, then the ball coming from 

A encour1ters no ball coming from B, and ends up at the point labeled 

"A and not B". 

Thus a place where a collision might occur acts as a reversible, 

1-conserving logic-gate, with two inputs and four outputs. Such a col­

lision is shown schematically in Figure 1.5 as a logic gate-called the 

interaction gate. This same schematic symbol can be used with models 

that involve an attractive interaction ( c.f. Section 2. 7. I) if the order of 

the outputs is disregarded. 

A path that may or may not contain balls acts as a signal-carrying 

wire. Mirrors (reflectors) allow bends in the paths. In order to be able 

to use the outputs from a collision "gate" as inputs to other such gates, 

we need to very precisely control the angle and timing of the collisions, 

as well as the relative speeds of the balls. We make this simple to do 

by severely restricting the allowed initial conditions. 
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\ 

Figure 1.6: 

Each ball must start at a grid point of a Cartesian lattice, moving 

along the grid in one of 4 allowed directions. All balls move at the 

same speed (Figure 1.6a). The time it takes a ball to move from one 

grid point to another we call our unit of time. The grid spacing is 

chosen so that balls collide while at grid-points. All collisions are right 

angle collisions, so that one time-step after a collision, balls are still on 

the grid (Figure 1.6b ). Fixed mirrors are positioned so that balls hit 

them while at a grid point, and so stay on the grid ( Figure 1.6c ). By 

using mirrors, signals can be routed and delayed as required to perform 

digital logic. 

The configuration of mirrors shown in Figure 1. 7 solves the problem 

of making two signals cross without affecting each other. (Notice that 

if two balls come in together, the signals cross but the balls don't!) 

Mirrors and collisions determine the possible paths that signals may 

follow ( wires). In order to ensure that all collisions will be right-angle 

collisions ( and not head-on, for example, which would take us off our 
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Figure 1.7: 

grid) we can label all wire, with arrows, and restrict initial conditions 

and interconnections so that a ball found on a given wire always moves 

in the labeled direction. 

Thus our universal gates can be connected as required to build a 

computer. Computations can be pipelined-an efficient assembly-line 

way of doing things, where questions flow in one end and finished prod­

ucts (answers) flow out the other, while all the stages in between are 

kept busy. 

Figure 1.8 shows (schematically) the Fredkin gate built out of six 

interaction gates, three of which are used backwards. Trivial crossovers, 

in which the logic of the situation ensures that the two paths will never 

be simultaneously occupied, are indicated by wires that simply cross­

the bridge symbol at a crossover point indicates that explicit provisions 

for a crossover must be made. 

This then, in brief, is the BBM. Kinetic energy is conserved, since 

all collisions are elastic. Momentum is not conserved, since the mirrors 
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Figure 1.8: Fredkin gate, built out of interaction gates. 
are assumed to be fixed (infinitely massive). Since we have shown that Fredkin gates are directly physically implementable (in this idealiza­tion), circuits built out of Fredkin gates can now be thought of as the schematics for a BBM circuit. 8 

1.4 Bit-conserving functions 
In Section 1.2.4, we gave a proof that reversible logic can be used to perform any computation. This proof was based on the idea that any irreversible combinational circuit can be transcribed into a reversible logic circuit, with extra constant inputs and extra (garbage) outputs. The garbage outputs are then turned into constants by an inverse circuit which undoes everything except for a copy of the answer, which is retained. These reconstituted constants can then be recirculated and 8There are of course other possible physical realiations of conservative logic 

gates. 
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connected as inputs, so that a fresh supply of constants doesn't have 

to be continually provided from outside of the circuit. All of the non­

constant inputs are output along with the answer. 

In this section we will show that any invertible, bit-conserving (i.e., 

sum of inputs conserving) function can be implemented directly in 

terms of Fredkin gates without producing a copy of the non-constant 

inputs as part of the output. This result was first demonstrated by D. 

Silver; the method used here will simultaneously show that only recir­

culating constants of one kind ( all 1 's or all 0's) are needed in such 

circuits. 

An immediate corollary of this new result will be that circuits in 

the billiard-ball model of computation and its various cellular automata 

analogues (Sections 2.4 and 2.7.1), need have no recirculating constant 

streams of balls. In this or any similar "physical" implementation of 

conservative logic wherein 1 's are represented by an energetic signal, 

while 0's are just empty space, the essential role of constants is to 

provide extra space for the computation-the energy in the inputs to 

a bit-conserving function is always sufficient to actually perform the 

computation. 

1.4.1 Outline of the Proof 

It is clear from Figure 1.1 that if we take any circuit constructed from 

Fredkin gates and everywhere interchange the connections to each pair 

q' and r', then the new circuit obtained by this proccess will be logically 
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equivalent to the original circuit, with the role of 1 's and O's in the 

input and output interchanged. Because of this duality between the 

roles played by 1 's and 0's, we can without loss of generality consider 

the case where only constants of Oare to be used. 

Our proof will consist of two parts: 

I. Any invertible bit-conserving function can be built using a general­

ization of the conservative-logic interaction gate. 

II. This generalized interaction gate can always be built from Fredkin 

gates, making use only of 0-constants. 

1.4.2 A generalization of the interaction gate 

The interaction gate (see Section 1.3) acts as a demultiplexer which 

conserves the number of 1 's in the input: Corresponding to each non­

zero input state involving exactly k 1 's, there is a set of k output lines. 

These lines are all 1 's if the corresponding input state occurs, and are 

all 0's otherwise. 

With two inputs, there a.re three possible non-zero input combina­

tions, only one of which involves two 1 's. Thus we require four output 

lines (see Figure 1.9). Beside each output line, I've indicated the in­

put state for which that line will be a 1-the output lines have been 

arranged so that these labels (interpreted as binary numbers) are in 

numeric order. 9 

8Tbis order is different from that of Figure 1.5, but only trivial crossovers are 

needed to go from that figure to this one. 
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Figure 1.9: Interaction Gate. Each output line is labeled by the input case 

that makes it non-zero. 
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Figure 1. 10: A 3 line bit-conserving demultiplexer 

With three inputs there are seven possible non-zero input combina­

tions, and we require 12 output lines (see Figure 1.10). If ABC = 101 

then both the sixth and seventh output lines will be 1 's, all other output 

lines will be 0's. Similarly for all other input combinations. 

In general, we require one output line for each input state containing 

a single 1, two output lines for ea.ch input state containing two 1 's, etc. 
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001 001 
XYZ 010 010 

011 011 
000 011 011 
100 100 100 
001 A 

101 101 
B 110 101 101 

010 C 
110 110 

011 110 110 
101 111 111 
111 111 111 

111 111 

Figure 1.11: SMP gate realized by / 3 gat~s 

Thus for In, the interaction gate with n inputs, we require 

output lines. 

Given an arbitrary bit-conserving invertible function, we can di­

rectly implement its truth table using two interaction gates. For exam­

ple, consider the SMP gate described in Section 1.2.4---its truth table 

and its implementation in terms of two / 3 gates is given in Figure 1.11. 

We have assumed in this construction that the mirror image circuit to 

X 

Y 

z 
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In is a circuit that performs the logical inverse of In, which multiplexes 

its inputs-in the next section we will note that this is indeed the case 

when we build the In's out of Fredkin gates. Since any set of k out­

put lines corresponding to some input state can be connected to the 

lines leading to any other state containing k 1 's, we can construct any 

bit-conserving function in this manner .10 

1.4.3 Building interaction gates out of Fredkin 

gates 

We can consider In to be a conservative logic gate having n 2 n-1  inputs 

and an equal number of outputs: of these inputs, all but n are constant 

0's, and are not shown in the schematic symbol for In. 11 

In acts as a 1-conserving de-multiplexer for n inputs. Corresponding 

to each non-zero input state, there are a set of output lines which are 

all 1 's for that input, and all O's otherwise. 

Given any In, we can construct l n+1 using Fredkin gates. This is 

done by considering the cases where the n + 1st input is a 0 separately 

from those in which it is a 1. Since I 1 is just a wire, establishing this 

induction shows that all In's can be constructed out of Fredkin gates. 

10Since only wires corresponding to distinct input cases need to cross, no special 

provisions are needed at crossovers.
11 We can iake advantage of the fact that we are only interested in specifying 

what happens in the cases where certain input lines are constant O's to find a. 

simple implementation---this is an advantage of such con,trained or underspecified

logic (mathematicians would call this a partial function).
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(1) 

(2) 

(3)

(4) 

Figure 1.12: Constructing In out of I n-1 and Fredkin gates, n = 2. 

We will use the cases n = 2 (Figure 1.12) and n = 3 (Figure 1.13) 

as examples, to illustrate the construction. 

In each case, the circuit is drawn in four sections, numbered from 

1 to 4. The inputs are labeled A1, A2, ••• , An and the outputs have 

boxes drawn around them. 

(1) I n-I demultiplexes all of the inputs A1 to A n-1. The rest of the 

circuitry is used to add in the extra input An. 
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(1) 

(2) 

(3) 

(4) 

Figure 1.13: Constructing In out of In-I and Fredkin gates, n = 3. 
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(2) Input An is used to split each of the outputs of I n-I into·two new 

outputs---the cases where the input is extended with a 0, and the 

cases where it is extended with a 1. If An is 0, then our output 

should have exactly one output corresponding to each output of 

I n-1---these are the bottom row of boxed outputs in this section 

of the circuit. If In is a 1, then each output of In-l that came from 

an input containing k  1 's has been extended to correspond to an 

input containing k + 1 1 's. Thus a representative of each input 

case must be sent down to section (3) of the circuit to be copied. 

All other demultiplexed outputs may be output immediately­

middle row of outputs in this section of the circuit. 

( 3) Since no inputs to any of these gates will be non-zero unless An 

is a 1, we can think of An as being a 1 in analyzing this section 

of the circuit. Since the controlling signals for these conditional 

exchanges correspond to mutually exclusive input conditions, we 

are able to pass our constant of 1 through all of them and at most 

one of these will use it up making a copy. 

( 4) Finally, there is one case that doesn't correspond to any case for 

which ln-l produced a 1 at some output-this is the case where 

all inputs to In-I were O's. In this case An has run through every 

gate in this circuit and now appears as a 1 at the bottom output 

of the last gate. 

This method allows us to construct In from a given I n-I and so, by 

induction, our assertion is proved. 
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1..4.4 Corollary 

This proof allows us to settle an interesting question about circuits in 

the billiard-ball model of computation (Section 1.3), and the cellular 
automata (Sections 2.4 and 2.7.1) modeled after it. 

Fredkin's original proof of the universality of the BBM (given in 

Section 1.3) showed that the BBM could implement any bit-conserving, 

invertible function. The construction used in this proof required some 

number of streams of balls ( constant 1 's) to be supplied as extra inpuis 

to the circuit implementing the function, which were used at some 

intermediate place in the circuit, and finally regenerated and output as 

constant 1 's along with the results of the computation. Thus these extra 

1's could be fed back from the output to the input, and recirculated-no 

extra 1 's needed to be fed into the circuit from the outside. 

As we saw in Section 1.3, one can construct a Fredkin gate from 

billiard-ball collisions (interaction gates) without any recirculating l's. 

Thus a corollary of our result for Fredkin gates above is that recirculated 

1's are never required in the BBM. 

1.4.5 Discussion 

In the BBM, constants of 0 have a special status, since 0's are repre­

sented by empty volume, and so are free of the concerns associated with 
constants of 1 such as arranging appropriate crossings with other sig­

nals and setting up extra mirrors to keep them on some closed path in 

order to recirculate. Thus it is quite convenient to know that constants 
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of 1 are never required. 

The way we have found of a.voiding the need f'or constants of 1 

is to use the constants of 0 to provide places for the signals in the 

input to spread out, until all possible input cases  are represented in 

separate places, at which point the function we wish to implement 

can be constructed as a lookup table---each input case is wired to the 

appropriate output case (Figure 1.11). In practice we can usually get by 

without demultiplexing all cases, but for a random invertible mapping 

this is what we would have to do12 • 

Although we have seen that constants of 1 are not essential in imple­

menting bit conserving functions, they can be very useful. We can often 

decrease the computation-delay (the time from when the inputs go in 

to the time the results come out) by using constants of 1, which allow 

us to make copies of the inputs and of intermediate results, allowing 

portions of the computation to proceed in parallel. 

1.5 Logical heat 

When we introduce constraints into our models of computation, it may 

become possible to make strong global statements that couldn't be 

made before. If these constraints are artificial, then any newfound 

ability to make such statements is spurious. 

Reversible logic adds the important constraint of reversibility that 

12 Of course all forms of logic have a similar problem with random Boolean 

functions. 
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is shared, as far as we know, by the dynamics of all microscopic phys­

ical systems. In a reversible model such as the BBM, we also have an 

additively conserved quantity (the number of balls) which can be iden­

tified with the kinetic energy of the system. We will show that in an 

appropriate context, these two constraints together can play the role of 

the first two laws of thermodynamics. 

The example we discuss is the construction of circuits in the BBM 

which reclaim some of the energy (balls) tied up in representing un­

wanted information (garbage). Although we have shown that garbage 

can eventually be eliminated, and constants restored, by a min-or cir­

cuit technique, we assume for the sake of this discussion that we have 

some signals for which this technique cannot be applied ( we will discuss 

at the end some situations in which this would be the case). We will 

show that there is a maximum efficiency with which any BBM circuit 

(however constructed) can perform this task, which is closely analogous 

to the maximum efficiency of an ordinary heat engine. We will then 

generalize our arguments to show that a similar discussion can be made 

using any computational model based on reversible logic. 

1.5.1 The Impossible Box 

Reversibility imposes a strong constraint upon circuits which must deal 

with random sequences of inputs. Consider for example the schematic 

BBM circuit in Figure 1.14. This hypothetical circuit has inputs con­

sisting of two random sequences of 1 's and 0's. The probability that 
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Figure 1. 14: A BBM circuit with two inputs where 111 arrive at each time­
step with probability p. 

any given element of one of these sequences is a 1 is p, the probability 
of a O is 1 - p. At each time step, the next element in these input 
sequences enters our circuit. 

Given these inputs, our circuit is supposed to produce two output 
sequences1 one of which has ( on the average) a fraction p + d of of 1 's, 
and the other a fraction p - d.  InIn order to accomplish this, we are 
free to put any BBM circuitry whatsoever inside of the black box---it 
can have feedback and recirculating constants; it can even contain all 
the circuitry of a general purpose computer. Our question is, can we 
design a circuit which does what we've described? 

The desired circuit would conserve energy: on the average, just as 
many balls would come out as went in. But the fact that any BBM 
circuit must be invertible imposes an additional constraint that this 
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circuit fails to meet. In a given number N of time steps there is some 

number 

of distinct possible input. sequences that will enter our circuit. With 

unequal output frequencies, there are fewer distinct output sequences 

possible. Since no invertible function can map a large number of input 

possibilities into a smaller number of output sequences, no finite BBM 

circuit can do what the circuit of Figure 1.14 does indefinitely. 

As an extreme case, think of the situation with p = 1/2 and 

p + ~ = 1, p - ~ = 0. Here, no matter what sequence comes in, 

we output constants. None of the information in the inputs is recorded 

in the outputs, and so we will have trouble if we want to run this sup­

posedly reversible system backwards. 13 If we constructed a reversible 

circuit that seemed to be doing this, then we could be sure that the 

missing information must be accumulating inside the black box. If we 

redraw this circuit a bit (Figure 1.15) we see that asking us to construct 

this circuit is much like asking us to construct a Maxwell Demon: the 

two loops are like two one-dimensional boxes of gas, initially at equal 

pressures. The Demon can't create a pressure difference because of 

invertibility. 14 

13 To run it backwards we would of course have to reverse the motions not only 
of the input and output streams, but also of all particles inside of the black box. 

14 It was Edward Fredkin who pointed out to me that such a circuit is impossible, 

and is analogous to a Maxwell Demon. 
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, 

Figure 1.15: A Maxwell demon, creating a 'pressure' difference between two 

vessels initially at equal pressure 

1.5.2 Temperature 

We would like to develop an analogy between possible and impossible 

circuits with probabilistic sequences of input values, and possible and 

impossible heat engines in thermodynamics. For this purpose, we will 

define the quantities which will play the roles of entropy and tempera­

ture in this analogy. 

Given any circuit which has inputs each of which is a random se­

quence with a probability pi for a given element to be 1 and 1 - pi for 

it to be a O, then the average information-theoretic entropy entering 
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each input during each time-step is15 

If some set of outputs of this circuit are all pseudo-random sequences 

with probability p0 for a 1 and 1 - p0 for a O, then the average 

information-theoretic entropy leaving each output during each time­

step is 

with equality only if all correlations are neglected. Since we will be 

considering situations in which as much information as possible is put 

into each output, we can assume that the equality holds, and also that 

all outputs are uncorrelated. 

For input or outp11t wires which carry a signal which is not a con­

stant, we form the intensive ratio 

of the average number of balls (energy) that pass a given point per unit 

of time, divided by the entropy carried past that same point by this 

energy flow in a unit of time. This ratio T is a measure of how effi­

ciently balls which appear in the given wire are being used to represent 

information. (Notice that this temperature is a property of a wire, and 

not of an individual ball.) 

15This is just the limit as N -> oo of the log2 of the number of sequences of length 

N consistent with this probability assignment, divided by N. 
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1.5.3 Reclaiming Balls 

We will consider the problem of designing circuits which take as in­

puts probabilistic sequences of 1 's and 0's, and produce as outputs 

some number of constant streams of 1 's, along with a set of probabilis­

tic output sequences. This is an alternative way of producing some 

constants of 1 in situations when the mirror circuit technique of Sec­

tion 1.2.4 isn't applicable. Given our statistical assumptions, we would 

like to investigate the maximum efficiency with which any BBM circuit 

can produce such constants. 

For the purposes of the analogy we are drawing, we will call a con­

stant stream of 1 's work---such a stream consists of maximally avail­

able energy ( the balls have energy, yet they represent no entropy, since 

their state is always exactly known). Such constants are very useful in 

the BBM---they allow copies of inputs a.nd intermediate results to be 

made, thus permitting parallelism to speed up computation. They also 

simplify logic, and allow it to be more compact, and more similar to 

conventional irreversible logic. 

Suppose for simplicity that we have some number of inputs with 

a high probability pH of being 1 's. We could produce some number 

of outputs with a lower probability pL of 1 's, plus some number of 

outputs which are always 1. (Our circuit would need to allow for sta­

tistical fluctuations, but this is not a problem, as we can easily design 

circuitry that acts like a ball-reservoir). The situation is illustrated in 

Figure 1.16. 



60 Chapter 1. Reversible logic 

Figure 1.16: Hot (ball-rich) inputs come in from the left, cooler (ball-poorer) 

outputs leave to the right, while some number of streams of balls ( constant 

l's) leave from the bottom 

It is apparent that we must always have TH > TL, since the inputs 

and the outputs both represent the same entropy, but the outputs do 

it with fewer balls. It is also dear why we can't convert all of the input 

balls into useful work: we would have no balls left to remember which 

particular pattern of inputs arrived at TH. 

If we let aSL be the average total entropy that comes out at TL 

during each time step, and dSH the total entropy which enters at TH 

during each step, then we must have dS L >=>=dS H because of the re­

versibility of the process. 16 Let ting dQ H and dQ L be the average total 

numbers of balls entering and leaving in each time step, and recalling 

19 Under our assumptions, dSH exactly characterizes the size of the input ensem­

ble for a long sequence of input values. On the other hand, dSL is a coane grained 

entropy which neglects possible correlations: it may overestimate the size of the 

output ensemble. If all correlations were taken into account, we woald of course 

always have an equality. 
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our definition of temperature as the average number of balls per bit in 

a given input or output wire, this entropy constraint implies that 

If we let dW be the number of constant outputs produced by our 

circuit, then on the average we must have 

because of the conservation of billiard balls ( or equivalently the conser­

vation of kinetic energy). If we put these two constraints together we 

have 

Under the statistical assumptions given, no BBM "heat engine" circuit 

can have an efficiency dW W / dQ H that is greater than (I-TL /TH). This 

is the greatest fraction of the balls in the inputs which can be converted 

into constants. 

1.5.4 Generalization 

The constraint that the information at the output cannot be less than 

that at the input of course applies generally to all reversible logic func­

tions. For an unconstrained reversible function, we have also seen that 

the number of inputs must exactly equal the number of outputs. This 

additive constraint can play the role that energy did in the discussion 

above, to give an inequality that applies to any unconstrained (i.e., 

completely specified) reversible function. 
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We begin by giving a new definition for d W. In all reversible logic, 

constants allow reversible gates to simulate irreversible gates, as we 

saw in Sections 1.2.3, 1.2.4 and 1.2.5. If no signal reclamation were 

done, energy would eventually have to be dissipated in order to clean 

up corrupted "constants" that were used in this manner. Thus the 

number of constant outputs that come out of any "heat engine" circuit 

is related to the energy that we are reclaiming, and we will call this 

quantity dW.

It is "number of signalling lines" that is additively conserved, and 

so if we let dQin be the number of inputs that come into our circuit 

at every computational step, and dQout the number of information­

carrying (i.e., non-constant) outputs, then 

Assuming every input has the same set of probabilities p k in  of being in 

each possible state k, and similarly for the information carrying outputs 

and p k outt, we let 

and similarly for Tout.  Thus temperature is defined to be the average 

number of input lines used to represent a bit. Next, we see that the 

entropy in the input is given by 

(and similarly for dS out. Since dS out > dS in, we again have 
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just as before. With our present definitions of temperature and work, 

this inequality holds for all unconstrained reversible logic functions. In 

particular, it will hold for reversible cellular automata. 

1.5.5 Discussion 

We have investigated the extent to which circuits which are designed 

to work for inputs which are random sequences can produce outputs 

which are constants. When might such circuits be useful? 

A simple situation where one might want to "concentrate random­

ness" might arise if some of our reversible circuitry had to perform error 

correction operations which were relatively rare: this would result in 

some output of the correction circuitry being essentially (but not ex­

actly) constant. In compressing these error records into fewer signals, 

we would be limited by the constraints discussed above. 

Probably the most interesting situation where our logical heat en­

gines might come into play would be within reversible cellular automata 

(Chapter 2). These systems can be studied as autonomous digital 

worlds in which complexity and structure can arise. The usefulness 

of heat engines to processes running in these cellular automata worlds 

seems to me to be rather similar to their usefulness in our world. 
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Chapter 2 

Reversible cellular automata 

Cellular Automata (CA) are computer-models that embody discrete 

analogues of the classical-physics notions of space, time, and locality. 

Their physics-like structure maps very naturally onto physical imple­

mentations, making possible extremely efficient hardware realizations 

(see Chapter 7). This same property of being physics-like makes CA a 

natural tool for physical modeling[80]. 

Reversible Cellular Automata (RCA) add the property of micro­

scopic reversibility to the CA paradigm, making possible a still closer 

correspondence between physical systems and computer models. As an 

illustration, in Section 2.4 we present an RCA analogue of the classical­

mechanical Billiard Ball model of Section 1.3. 

The compatibility of computation with CA was first demonstrated 

65 
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by von Neumann[87). Toffoli[72], in 1977, showed that RCA (of which 

the only known examples up until then were extremely trivial} could 

compute, but his models didn't allow Bennett's technique of Section 1.2 

to be used to "clean-up" unwanted garbage produced during the com­

putation. The RCA analogue of the BBM that I present here is the 

first CA model which incorporates reversibility in a way which makes 

computation practicable. All of the results concerning the computing 

capabilities of reversible logic developed in the previous chapter can be 

carried over into this model. If this model is implemented in reversible 

hardware, it can be used to simulate any other 2-dimensional reversible 

cellular automaton in a local manner. 

2.1 Cellular Automata 

In CA, space is a regular lattice of cells, each of which contains one of a 

small allowed set of integers. Only cells that a.re close together interact 

in one time-step---the time evolution is given by a rule that looks at the 

contents of a few neighboring cells, and decides what should change[87). 

At each step, this local rule is applied everywhere simultaneously. 

The best-known example of such a digital-world is Conway's[28) 

"Game of Life." On a sheet of graph-paper, fill each cell with a 1 or a 

0. In each three-by-three neighborhood there is a center cell and eight 

adjacent cells. The new state of each cell is determined by counting the 

number of adjacent 1 's: if exactly two adjacent cells contain a 1, the 

center is left unchanged; if three are 1 's, the center becomes a 1; in all 
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other cases, the center becomes a 0. 

Such a rule gives rise to a set of characteristic patterns that move 

(reappear in a slightly displaced position after some number of steps), 

patterns that are stable ( unchanging with time), patterns that oscillate 

(pass through some cycle of configurations), and many very complicated 

interactions and behaviors. The evolution of a given initial configura­

tion is often very hard to anticipate. 

One way to show that a given rule can exhibit complicated behavior 

is to show ( as has been done for Life[l2]) that in the corresponding 

world it is possible to have computers. If you start such an automaton 

with an appropriate initial state, you will see patterns of digits acting 

as signals moving about and interacting with each other to perform 

all of the logical operations of a digital computer. Such a computer­

automaton is said to be universal. 1 Like other universal computers, a 

universal cellular automaton can exhibit arbitrarily complex behavior. 

We typically show that a CA rule is universal by demonstrating that 

it supports patterns of cell states that can simulate a universal set of 

logic elements, signals, and allows the logic elements to be connected 

together. This implies that we can simulate the cicuitry of any com­

puter, and so the rule is a computer when started from the right initial 

state. Once the universality of a few CA rules has been established, 

1Von Neumann[87] was interested in the problem of evolution: Can life emerge 

from simple rules? Re exhibited a CA rule that permitted computers, and in which 

these computers could reproduce and mutate. In this document, I refer only to the 

existence of computers when I use the term universal. 
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other rules may he shown to be universal by demonstrating their ability 

to simulate one of these universal rules, as we do for example at the 

end of Section 2.4. 

Universal CA rules may be particularly important in connection 

with fully parallel hardware implementations of CA, since machines 

based on appropriate universal rules can be usable as general pur­

pose CA simulators ( see Chapter 7). If an n-dimensional universal 

CA rule allows can simulate logic elements which can be connected in 

n-dimensions, then it can simulate any other CA rule with the same 

dimensionality in a local manner: a group of cells is used to implement 

a circuit which simulates one cell of the other automaton, and such 

groups are interconnected. 

In Sections 1.2.1 and 1.2.2 we discussed universal sets of logic 

gates-if a set of logic gates isn't universal, then no interconnection of 

such gates can be a computer. In particular, a regular structure built 

up out of such gates cannot be a computer. Since a CA rule is just 

some logical function ( which can be regarded as a logic gate), only CA 

for which this function is a universal logic element are candidates for 

universality. Unfortunately this isn't much of a constraint, since most 

logic functions are universal (in fact, as we showed in Section 1.2.5, all 

non-trivial conservative logic gates are universal), but it is occasionally 

helpful. For example, a rule that can he expressed using only XOR ( sum 

modulo 2) isn't universal (see Section 1.2.2). 
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2.2 Approaches to reversibility 

Any rule that determines the time evolution of finite-state cells and 

that has a periodic structure in space and in time 2 defines a cellular 

automaton. 

Such rules ( also called transition functions or local maps) are often 

given by an equation of the form 

(2.1) 

where we have made use of the following notation: ct is the complete 

configuration of cell values at time t, c{x},t is some portion of this con­

figuration surrounding the cell at position i that constitutes the neigh­

borhood of i, and cx,t is the state of the cell at position i at time t. In 

fact, all CA rules can be put in this form,3 although this may not be 

the simplest or most illuminating way to express the rule. 

A typical rule of the form (2.1) gives rise to a non-invertible dy­

namics. For example, the Life rule doesn't produce an invertible time 

evolution: if an area now contains only zeros, did it contain zeros one 

2That is, the evolution law commutes with a discrete set of translations in space 

and in time. 
3 If the rules f1, f2, up to fn are used in succession in a cyclic fashion, this 

periodic time dependence can be removed by using the composition or these n rules 

as the new rule; a periodic space dependence can be eliminated by regrouping state 

variables into new cell■ of the size of the spatial period; and an nth order time 

dependence can be hidden by using new cells that contain all the data from n 

consecutive steps. 
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step ago, or were there perhaps some isolated ones that just changed? 

Its impossible to tell. 

This typical irreversibility stems from the format of equation (2.1): 

it describes an evolution that is built out of functions with more inputs 

than outputs. To make the overall, global evolution invertible requires 

a very careful conspiracy: in constructing the new state from the old, 

the cells that "see" a given cell as a neighbor must, taken together, 

retain complete information about its old value. They must take this 

coordinated action even though each of these cells sees some neighbors 

that none of the others see. 

One way to accomplish this is to use a rule f for which most cells 

never change, with a large enough neighborhood so that each cell can 

examine the pattern formed by many nearby cell values. Cells that find 

themselves in the middle of some particular unchanging pattern can be 

allowed to cycle through their states without spoiling the reversibility. 

Such guarded context rules, in which the pattern that marked the cells 

that could change was itself unchanging, were the earliest reversible 

rules discovered[2].4 

A much more productive approach is to abandon the format of 

equation (2.1), and write our CA rules in a form that makes their in­

vertibility manifest, or at least much more readily apparent. There are 

two techniques known that allow us to do this: the partitioning tech-

4 We can invent non-trivial guarded context rules by using this technique to 

simulate other kinds of reversible roles we will discuss: cells playing different roles 

can be suitably marked with unchanging patterns. 
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nique, which is based on transition rules that are expressed in terms of 

reversible logic gates; and the second order technique, which is closely 

related to reversible second-order finite difference schemes. In this chap­

ter we will show that both of these techniques allow us to construct 

RCA that are universa.15 , thus demonstrating that RCA are capable of 

arbitrarily complex behavior---we will discuss a variety of RCA models 

of physics in Chapter 4. 

2.3 Partitioning cellular automata 

Consider a space of cells of some particular size---we'll think of a space 

consisting of k 2-state cells for definiteness (with periodic boundary 

conditions, to avoid having to worry about providing a special rule 

at the boundary). 6 At each step of operation, all k bits are used to 

construct a new k-bit configuration. The net result of the local CA 

5  A universal RCA is able to simulate any computer (given enough time and 

space) and in a similar manner to irreversible CA, some can simulate any other 

RCA rule of the same climensionality in a local manner. Of course no RCA rule can 

simulate an irreversible CA rule ofthe same dimensionality in a local manner. 
8 Since we can only build finite systems, we are confronted with the practical 

problem of deciding what to do at the boundary of the system. If we choose to 

use a different rule at the boundary, this rule must also be invertible if our overall 

evolution is to be invertible: the simplest invertible rule to use at the boundary is the 

identity rule (values at the boundary remain fixed). Usually we completely avoid 

the problem by using periodic boundary conditions: then there is no boundary. 

Unless otherwise specified, all of our example systems can be assumed to avoid the 

problem in this manner. 
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rule acting simultaneously everywhere is to perform some k-input, k­

output function that transforms a given configuration into its successor 

configuration. 

Thus we have an overall function with equal numbers of inputs 

and outputs---as we noted in Section 1.2.2, such a function can be 

invertible, provided that it performs a permutation on the set of input 

configurations. But a cellular automaton is defined in terms of a local 

rule; how can we ensure that the corresponding global dynamics will be 

such a permutation? The most straightforward way to guarantee that 

such a function will be invertible is to construct it as a composition of 

invertible logic elements. (In fact, all known RCA rules can be written 

as such compositions). 

We refer to CA rules that are based on logic elements with equal 

numbers of inputs and outputs as partitioning cellular automata. The 

essential feature of these automata is that at each step of the updating, 

the state variables are partitioned into disjoint groups, and each group 

is updated as a unit. 

As an illustration of the use of the partitioning technique to con­

struct RCA, consider a 2-dimensional space with 2 states per cell. 

Figure 2.1 shows a Cartesian lattice of cells, divided into 2 x 2 blocks 

of cells. We treat each 2 x 2 block as a conservative-logic gate ( see Sec­

tion 1.2.4), with 4 inputs (its current state) and 4 outputs (its next 

state). These gates are interconnected in an entirely uniform and pre­

dictable manner-in applying the rule to the 2 x 2 blocks, we alternate 

between using the solid blocking in this diagram for one step, and then 
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I 

Figure 2.1: 

using the dotted blocking for the next. 7 

An example of a conservative rule (one that conserves 1's and 0's) 

that is reversible is the following: 

7 1f fs is the global rule that applies to the solid blocking, and fd to the dotted 

blocking, then c t+1= fs((fd(ct)) describes the evolution of a configuration ct using a 

time independent rule. By ■imply regrouping the bits into larger cells, the po■itional 

dependence can similarly be removed from the form of the rule, so that it can be 

written in the form (2.1) if desired. 
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(2.2) 

Here a 0 is shown as an empty cell ( ) and a 1 as a filled-in cell 

(■). In the case of all 0's or all 1 's, there is no choice, they remain 

unchanged. 

A 90°, 180°, or 270° rotation of one of the blocks on the left is 

mapped onto the corresponding rotation of the result to its right-this 

rule is rotationally symmetric, and these are all of the possible cases. 

Since each distinct initial state of a block is mapped onto a distinct 

final state, this rule is reversible. We will find, in the next section, that 

the automaton corresponding to this rule is universal. 

2.4 The BBM cellular automaton 

When viewed only at integer time-steps, the BBM ( see Section 1.3) 

consists of a Cartesian lattice of points, each of which has associated 

with it a value of either 0 or 1, evolving according to a local rule. It 

would therefore seem to be a straightforward matter to find a CA rule 
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that duplicates this digital time evolution. 8 

Unfortunately, the most direct translation of the BBM into a CA 

has several problems. First of all, to have separate· states of a cell to 

represent 4 kinds of balls ( 4 directions) an empty cell and a mirror, and 

to have the balls absolutely conserved (as they are in the original BBM) 

would require a standard "change the center cell" rule (equation 2.1) 

with 6 states per cell, and a 17 cell neighborhood. Such a rule has a 

very large number of possible configurations for its neighborhood, which 

makes it unwieldy. Moreover, many of these configurations involve such 

events as head-on collisions, which were disallowed in the BBM---a CA 

rule, however, should be defined for all configurations. It is not at all 

obvious how to extend the BBM rule to these extra cases, and still have 

it remain reversible. 

At the expense of making collisions cause a slight delay, we can get 

away with the very simple rule (2.2) of Section 2.3 which involves only 

2 states per cell in a 4 cell neighborhood, is reversible, and conserves 

the number of 1 's (and 0's) in all cases. 

The ~ (and rotations) case in rule 2.2 is the one that 

causes an isolated 1 to propagate in a straight line, in one of four 

directions ( depending on which of the four comers of its starting block 

you put it in). See Figure 2.2. The legend "solid" or "dotted" below 

each of these automaton configurations tells you whether the grouping 

of cells into blocks for the next application of the rule is indicated by 

8 A version of the material in this section appears in my paper Physics-lite models 

of computation[45]. 
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➔ ➔ 

dotted solid dotted 

Figure 2.2: 

dotted solid dotted 

Figure 2.3: 

the solid or the dotted lines. 

Since (and rotations), a square of four ones straddling 

the boundary of two adjacent blocks will be stable-we will use such 

squares to construct mirrors, as shown in Figure 2.3. The four 1 's 

straddle two dotted blocks horizontally, then two solid blocks vertically, 

and then two dotted again. 
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➔ 

solid dotted 

.-· 
➔ ➔ 

solid dotted solid 

Figure 2.4: 

Since (and rotations), pairs of travelling ones perform 

a billiard-ball type collision, as shown in Figures 2.4a through 2.4f. In 

all of these figures, the paths the 1 's were originally following have been 

lightly drawn in, to show that the AND case shown results in an outward 

displacement, just as in the BBM. (Unlike the BBM, there is a delay 

in such a collision, which we'll have to worry about in synchronizing 

signals). 

Finally, (and rotations) permits the reflection of dou-
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➔ ➔ 

solid solid 

,•. ➔ ➔ 

i■ 
. 

i 
dotted dotted 

Figure 2.5: 

ble signals such as those used in Figure 2.4 by a mirror, as is shown 

in Figure 2.5. The mirror consists of two adjacent stable squares of 

the sort we introduced in Figure 2.3 (notice that a square is stable no 

matter what you put next to it-it is decoupled from the rest of the 

evolution). Again, the signal path has been lightly drawn in. After 

each reflection such as that shown above, the signal has been delayed 

by a distance of one block along the plane of the mirror (in this picture, 

the signal winds up one block-column behind where it would have been 
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Figure 2.6: 

had it not hit the mirror). 

In the BBM, such a reflection would cause no horizontal delay. We 

can compensate for such extra delays, as well as add any desired hori­

zontal delay of 2 or more blocks, by using mirrors to adjust the timing 

of signals (Figure 2.6). Suppose we want to arrange for two signals to 

collide, with the plane of the collision being horizontal. If we get the 

two signals aligned vertically and they are approaching each other as 

they move forward, they will collide properly. We may have to adjust 

the time it takes one or both signals to reach a given vertical column 

by using delays such as those in Figure 2.6.9 

In order to allow signal-paths to cross without interacting, we use 

signal timing. By leaving a gap long enough for one signal (2 blocks) 

9We can tell how many steps a signal will take to traverse a given path (from 

one position where the signal is moving freely to another) by simply drawing the 

path joining the two points (including all points that may be visited by at least one 

1) and counting how many cells arc on the path. 
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Figure 2.7: 

between all signals, we need only delay one of the paths by 2 blocks 

along the plane of the collision we're avoiding, in order to allow the 

signals to pass each other harmlessly. This gap is also enough to allow us 

to separate parallel output paths from a collision (Figure 2.7). After the 

collision (Figure 2.4) the upper path already has a I-block horizontal 

delay relative to the lower path. The mirror introduces a further 1-

block delay, and so the upper signal passes through the timing-gap left 

in the lower signal path. 

With the addition of some extra synchronization and crossover 

delays, any BBM circuit can now be translated into a BBMCA cir­

cuit. Since the- BBM has been shown to be a universal computer, the 

BBMCA is also. 

Figure 2.8 is taken from the screen of CAM-6, the hardware cellu­

lar automata machine (CAM) that was designed by Tom Toffoli and 

myself (see Chapter 7). It shows a BBMCA realization of the circuit 
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I 

Figure 2.8: BBMCA implementation of a Fredkin gate, with outputs fed 

hack to inputs via signal paths with co-prime lengths, to perform a pseudo­

random permutation. 

of Figure 1.8 ( a Fredkin gate built out of six interaction gates) with 

outputs fed back to inputs via paths that have co-prime lengths. This 

circuit generates a very long permutation cycle, and so acts as a pseudo 

random-number generator. Note that the 1 'sand 0's of the conservative 

logic circuit being simulated correspond to pairs of l's (which simulate 

billiard balls) in the BBMCA, and several steps of the BBMCA. evo­

lution correspond to one step of operation of the Fredkin gate being 

simulated: a pseudo random sequence can bbe read off by looking at any 

cell on one of the feedback paths at regular time intervals. 

There are many rules similar to the BBMC A that are also 

universal---for example, if we take the BBMCA rule of fig.2.4 and mod­

ify it so that for each case shown. the result ( right hand side) is rotated 

clockwise on the dotted steps, and counterclockwise on the solid steps 
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(ie. i---+ on dotted steps, and i---+ on solid steps, 

etc.) then we get another rule that is also computation universal. Its 

universality can be shown in a direct manner by using this rule to 

simulate the BBMCA (this rule can simulate a given BBMCA compu­

tation isomorphically using eight times as much space, and four times 

as much time).10 The possibility of such a simulation depends crucially 

on a scale-invariance property of this and related mode]s, which we will 

discuss in the next chapter. 

2.5 Running backwards 

The BBMCA is a reversih]e system-what is the inverse rule? From 

table (2.2) it is apparent that if the BBMCA rule is applied consecu­

tively to the same blocking twice, the second application will undo the 

first, and the net result will be the identity transformation. In general, 

to undo an entire reversible evolution, we first undo the last step, then 

the step before that, etc. For the BBMCA, once we have undone a step 

by reusing the dotted blocking, we have arrived at a configuration that 

was the result of an updating on the solid blocking. By performing a 

step on this blocking, we undo another step. Thus to run backwards, 

we run the evolution exactly as we did to go forwards; only we start by 

running a step on the opposite blocking to the one that we would use 

to continue running forwards. 

10 The idea for this BBMCA variation arose out of a discussion with Tommaso 
Toffoli. 
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I 

Figure 2.9: Magic-gas experiment: (a) A gas; (b) something happening; and 

(c) order out of disorder. 

What is going on may be more obvious if we consider a single 1, as in 

Figure 2.2. The direction of travel of the 1 in Figure 2.2a. depends upon 

whether we begin with a step using the dotted blocking, or the solid 

blocking: it will travel in one of two opposite directions. By starting to 

run with the wrong blocking, we reverse the motion of all "particles," 

and the system runs backwards. 

In Figure 2.9, we show three stages in the evolution of a BBMCA 

"gas" in a box constructed of mirror-blocks. Initially (Figure 2.9a) we 

have a random-seeming gas of particles. For a truly random distribu­

tion of 1 's and O's we would expect a very dull evolution, since it is a 

maximum entropy state, and this is a reversible rule (see Section 2.8.1 ). 

As we run this experiment on CAM-6, we see the system begin to sim­

plify (Figure 2.9b ), and finally turn into a circuit with a "ball" bouncing 

around outside the box. What we have of course done is started with 
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a fragile circuit inside the box ( see Section 3.1) which uses dynamic 

mirrors which can be destroyed by a mis-timed collision (Figure 2.9c) 

and introduced a particle through a small hole in the box. This particle 

randomized the circuit, turning it into a gas of particles; we stopped the 

system, reversed all the velocities, and saved the configuration-this is 

the configuration of Figure 2.9a. This makes an amusing demonstration 

of the exactness with which we can reverse the motion of particles in 

an RCA evolution to produce atypical random-looking gases; in Chap­

ter 4, we will discuss more serious uses of RCA gases based on rules 

closely related to the BBMCA rule. 

2.6 Relationship of BBMCA to Conser­

vative Logic 

The interaction gate of Figure 1.5 ( a schematic representation of a BBM 

collision) has two inputs and four outputs. If we wish to consider it to 

be a conservative-logic gate ( one that conserves both 0's and 1 's) then 

we must regard it as a gate with four inputs and four outputs, two of 

the inputs being constrained to always be 0's. 

The gate upon which the BBMCA is based also has four inputs 

and four outputs. Is there some connection here? Let us redraw the 

BBMCA rule in a different form: 
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Figure 2.10: Remapping of a BBMCA block. 

becomes 
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Here the mapping of input variables onto output variables of the 

BBMCA rule has been redrawn as if the inputs all arrive and leave in a 

vertical column. If we use this correspondence to draw the four possible 

cases with a = d = 0, drawing for 0, ■ for 1, and showing each 

input/output case, we get the mapping of Figure  2.10, which is logically 

the same as the interaction gate. Thus rule (2.2), the BBMCA rule, 

can be regarded as a completion of the definition of the interaction gate 

for cases that don't correspond to the constraints of a BBM collision.11 

11 Recall that we completed the interaction gate definition in a different way in 

Figure 1.9, and we couldn't complete it at all in terms of the behavior of billiard

balls. This suggests an advantage of using incompletely specified (constrained) logic 

elements: circuits designed in terms of such elements will work regardless of how 

(or even if) the unused cues are defined. Thi, gives a lot of freedom to whoever 

has to find a physical (or even a logical) implementation. 
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2. 7 Second-order cellular automata 

In.the preceding sections we have discussed CA that are based on logic 

gates with equal numbers of inputs and outputs. Properties such as 

reversibility and conservation of 1 's and O's that were given to the 

gates were inherited by the global evolution; however, such partitioning 

schemes can equally well give rise to an irreversible evolution if we base 

them on an irreversible gate ( we give an interesting irreversible example 

in Section 4.4 ). 

It turns out to be very easy to find a class of CA laws that are alway, 

invertible, simply by virtue of the form of their defining equation. 

Consider first the following finite difference equation, with ut a real 

variable: 

(2.3) 

If you want to compute u t+1, you must know ut and u t-1 --- these two 

constitute the complete state of the system. For what functions f will 

the time evolution be invertible? 

(2.4) 

Therefore any f at all will do!12 Knowing u for two consecutive times 

allows you to calculate any preceding or any succeeding value of u (To 

my knowledge Fredkin[24) was the first to study reversibility in finite­

difference equations of this sort). 

12 Assuming integer addition and subtraction is done without error, if such an 

equation is iterated on a digital computer, its time evolution remains exactly re­

versible, despite roundoff and truncation errors in computing f.

■ 
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The generalization to CA is straightforward---let u in (2.3) be re­

placed by cx, the contents of the cell at position x in our automaton: 

(2.5) 

where f( c{x},t) is any function involving the contents of cells near po­

sition x, at time t, and the difference is taken modulo the number of 

allowed cell values.13 If we let the state of a cell correspond to its con­

tents in two successive steps, then (2.5) can be reexpressed in the form 

(2.1), but its reversibility is not manifest. 

To give an example using a two dimensional Cartesian lattice with 

one bit of state in ea.ch cell, let the neighborhood c{x},t consist of the 

at position x and its four nearest neighbors: 

0 if all 5 neighbors a.re zeros, 

1 otherwise 
(2.6) 

Figure 2.11 shows the state of a 256x256 periodic space after several 

thousand steps of dynamical evolution: it started from a configuration 

that was all 0's except for a 16x 16 region in the center that was all 1 's 

in both the past and the present. The block is still visible, because of 

a conservation property of this rule ( such conservations are discussed 

in Section 3.2.1). It was curiosity about the long-time behavior of 

18 Differences mod-k and logical functions can always be re-expressed as ordinary 

polynomial functions. For example, if A and B are binary variables, then (A - B)2 

is the same as A+ B (rnod2), 1 - A is the same as NOT(A), A x B is the same as 

AND(A, B), etc. Thus (2.5) is equivalent to an ordinary real-variable finite difference 

equation with integer initial conditions. 
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Figure 2.11: State after several thousand steps of a reversible second-order 

evolution that started from a block of 1 's in the center. 

this particular rule that started Tommaso Toffoli and I on the road to 

building cellular automata machines. 

How do we run our second-order systems backwards? Since the 

form of the inverse equation to (2.5) is the same as that of the direct 

equation: 

(2.7) 

the evolution governed by such an equation can be inverted by simply 

exchanging the information corresponding to the two configurations 

that make up the state, and continuing to use equation (2.5) to govern 

the evolution. If you think of the two consecutive configurations that 

make up the state of the system as being like two consecutive snap-

shots of some physical system, then it is quite intuitively satisfying 

that we make the system run backwards by exchanging the snapshot 

corresponding to the past with the one corresponding to the present: 
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this time reversal operation is quite analogous to reversal of all particle 

momenta. 

Many second order reversible rules of the form (2.5) can be recast in 

a sort of Hamiltonian form. A conserved "energy" function is derived, 

and the evolution rule becomes: make all changes in the configuration 

that leave the energy unchanged. This is discussed in Section 3.3. 

Second-order reversible rules can also be constructed using opera­

tions other than subtraction in an equation such as (2.5). You can even 

let the decision of which operation to use depend on the neighbors at 

time t. In the most general second-order reversible rule, the neighbor­

lrood at time t is used to select a permutation on the set of allowed cell 

values. The cell applies this permutation to its state at time t - 1 to 

construct its next state. 

2. 7.1. Second-order, reversible, universal au­

tomata 

Here we will give two examples to demonstrate the ability of our second­

order scheme to support universal computation. I constructed the RCA 

model that will be described first long before the BBMCA, but it is 

much less elegant. It is also based on the interaction gate (Figure 1.5), 

hut this time the interaction is attractive ( this is logically still repre­

sented by the same gate). This rule will be incompletely specified: we 

will only specify the cases that are needed to demonstrate its univer­

sality. 
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As a second example, we will present a second-order rule that can 

very directly simulate the BBMCA, and so demonstrates the ability of 

second-order RCA to be universal in a rather simple fashion. 

A 3-state rule 

For our first example, we begin with a 2-dimensional Cartesian lattice, 

this time with 3 states per cell, which we can designate as -1, 0, +1, 

and which we will draw as '\', blank, and'/' respectively in diagrams. 

The time evolution will be given by equation (2.5), with the neigh­

borhood C{x},t chosen to be the nine cells in the 3 x 3 region of the 

configuration centered on C x,t, and '-' is taken modulo 3. 

For each possible configuration of the neighborhood, f will return 

a value of -1, 0, or + 1. Just as head-on collisions never arise in BBM 

computations, many configurations of this RCA need not arise in order 

to build a universal computer. We will leave these cases undefined­

each choice for these cases defines a distinct universal RCA. 

An isolated '/' or '\' will correspond to a travelling billiard ball-­

if only the cases defined here arise, the number of such balls will be 

conserved. An isolated '/' will propagate along a positively sloped 

diagonal-its evolution will be governed by the following cases: 

000 000 /00 000 0/0 000 000 000 

000 0/0 000 000 000 /00 00/ 000 

000 000 000 00/ 000 000 000 0/0 

all return a 0 as the value for f;
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00/ 000 

000 000 

000 /00 

Figure 2.12: 
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both yield a value of f (ie. +1). A sample time evolution (using 

halftones to show a cell's contents at time t - 1 and solid lines for time 

t, with diagonals lightly drawn through all cells) is given in Figure 2.12. 

Intuitively, this rule at time t tries to make the '/' travel both forwards 

and backwards along its diagonal---subtracting away a '/' where it was 

at time t - 1 just leaves a '/' in the forwards direction. 

We will define this rule to be rotationally symmetric. it will be 

helpful to adopt the following convention: the 90° clockwise rotation of 

000 

000 

/00 
IS 

\00 

000 

000 \ 

Inversions are defined analogously. Thus an isolated '\' will follow a 

negatively sloped diagonal path if the propagation of signals is governed 

by the cases: 



92 Chapter 2. Reversible cellular automata 

000 000 /00 0/0 000 

000 0/0 000 000 000 

000 000 000 000 0, /00 
/

( and rotations and inversions). For compactness in writing the com-

plete rule, we adopt the convention that inversions as well as rotations 

of the cases given are mapped onto the corresponding inversions or 

rotations of the result given. 

These cases become zero: 

\\\ \\0 \\0 \\0 \\0 \\/ \\/ \0\ \0\ \0\ 

000 000 I00 /00 IIO 000 IOI 000 100 /00 

Ill //0 000 OOI 00/ II\ I\\ IOI 000 00/ 

\00 \00 \00 \00 \00 \00 \00 \00 \00 \00 

000 /\0 /\/ IO\ IO\ /00 /00 /00 100 /00 

100 000 000 000 00/ \00 \OJ 000 00/ 0/0 

\00 \00 \00 \00 \00 \00 \0/ \0/ \OI 0\\ 

/00 IOI IOI II\ //0 //0 000 /0\ IO\ 000 

OIi 000 OOI 000 000 001 IO\ \OI 000 000 

0\\ 0\0 0\0 0\0 0\0 00\ 00\ 00\ 00\ 00\ 

000 000 000 000 /0/ 0\0 00\ 000 000 00I 

0/I 000 00/ 0/0 0\0 000 OOI 000 OOI 000 

000 000 000 /\\ /\\ IO\ 
-

0\0 000 /0\ 000 IOI 000 

000 000 \0/ \II \\/ \0/ 

These cases become one: 



2. 7. Second-order cellular automata 93 

Figure 2.13: 

\00 \00 \00 \00 \0/ \0/ \0/ \/\ 0\0 O\I 

/\0 /00 100 /00 /0\ /00 /00 /00 /\0 \00 

\IO I\O 100 IOI 001 000 00/ 000 \/0 /00 

0\/ O\I 00\ 000 000 000 000 000 000 

00\ 000 /\0 000 000 I\\ /\0 I\O /\/ 

000 100 \/0 /00 IOI \II \/0 \II \/0 

( plus rotations and inversions). There are 2617 undefined cases. 

Using this rule, a mirror looks like the configuration given in Fig­

ure 2.13.14 We needed to define certain cases just to allow a mirror to 

remain unchanged when no signals are nearby. A signal bouncing on 

a mirror is shown in Figure 2.14. (Notice that there is no horizontal 

delay, as there was in the BBMCA). If this signal had been shifted one 

column to the right, it would have passed the mirror unaffected. 

In Eigure 2.15 we have put some mirrors near a place where sig­

nals might collide, so that (with its small neighborhood) this rule can 

14 These figures were taken from the screen of a Lisp Machine, which was used to 

simulate this rule to verify that it works. 
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Figure 2.14: 

simulate an attractive collision-the signal paths will be displaced in­

ward in a collision, rather than outward as in the BBM. (If a signal 

arrives on just one path, it goes through without any displacement). 

Two such gates, back to back, can be used to make signals cross over 

without affecting each other ( Figure 2.16a and b ). Since all collisions 

occur without any delay along the plane of the collision, considerations 

of synchronization are very similar to those in the BBM. The proof of 

this automaton's universality is essentially the same as for the BBM. 

An embedding of the BBMCA 

To give a simpler derivation of a universal second-order RCA, we can 

begin with the BBMCA rule. If fs is the global rule that applies to 

the solid blocking and changes an entire configuration into the next 

configuration, and similarly fd applies to the dotted blocking, then we 

can describe the BBMCA evolution by 

(2.8) 
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➔ ➔ 

➔ ➔ 

Figure 2.15: 
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Single one case Two ones case 

Figure 2. 16: 
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where c t+1 + c t-1 is taken to be the configuration obtained by performing 

the cell-by-cell sum (modulo 2) of the configurations c t+1 and c t-1 and 

f ( ct) = fs(ct) + fd( ct) is also such a sum. 

In other words, if we add the forward evolution to the backwards 

evolution, we get a second order evolution which is no longer time 

dependent, since we've used both partitions. Each cell is at the inter­

section of two blocks---one from the dotted blocking, and one from the 

solid blocking. By using all seven of the values in the two blocks, we 

can determine what the new value of the cell at the intersection would 

be if it was updated as part of either block, and thence the sum mod­

ulo 2 of these two values which is the value that should be returned 

by f. Thus equation (2.8) can be rewritten in the form (2.5) with a 

3 x 3 neighborhood and a dependence on the parity of the center cell's 

position that is needed for the rule to know which seven of the nine 

cells in the neighborhood to look at. This final rather trivial spatial 

dependence can be eliminated, if we want to use this as a proof of the 

universal computing ability of rules of the form (2.5), by adding one bit 

to the state of every cell, and starting the system out with the values 

of these added bits reflecting the parity of each cell's position. 

We can use this new rule to run any configuration exactly as the 

BHMCA would: we specify one configuration arbitrarily, and then run 

one step of the BBMCA evolution on this configuration to get the sec­

ond configuration needed by our second-order rule. Our second-order 

evolution will now generate ezactly the same sequence of configurations 

that the BBMCA system would. We mustn't forget, however, that 
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Figure 2.17: Second-order simulation of BBMCA, with an anomaly. 

we are only using a carefully constrained subset of the possible initial 

states of our second-order system. Figure 2.17 shows two frames from 

the evolution of such a system which was simulating a BBMCA evo­

lution (a gas which, for the BBMCA, would have been in a maximum 

entropy state) when we changed a single bit in one of the configura­

tions. This resulted in there being a place where there was a particle in 

the present, but no particle it could have come from in the past. The 

first frame shows the situation shortly after the bit was changed; the 

second frame shows the situation a few hundred steps later. We call 

this simulation, "The end of the world." 

2.8 Consequences of reversibility 

Reversibility is a very deep and subtle property for a dynamical sys­

tem to have-it has many consequences. In Section 1.5, we discussed 

the way that reversibility imposes a constraint which is analogous to 
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the second law of themodynamics. In Section 2.8.2 we will discuss the 

striking coincidences that must occur when an RCA is reversible. In 

Chapter 3 we will discuss conservation laws in RCA, which in some 

sense are an expected consequence of reversibility (after all, RCA must 

always retain enough information to reconstruct their initial state). In 

Section 5.1, we will see a particularly striking consequence of reversibil­

ity: the macroscopic arrow of time that is relevant to the evolution of 

processes within a finite RCA may initially agree with the order in 

which the updating produces new configurations, and then later point 

in the opposite direction! This is closely related to the discussion of the 

next section. 

2.8.1 Entropy in RCA 

If we fill the cells of our automaton with randomly chosen binary values 

and then evolve it according to the Life rule, we see a complex ebb and 

flow of structures and activity, with so-called gliders arising here and 

there, moving across clumps of zeros, and then being drawn back into 

a complex boiling soup of activity, or perhaps rekindling complicated 

interactions in an area which had settled down into uncoupled, short 

period oscillating structures. 

If, instead of the Life rule, we follow some invertible time evolution, 

we invariably find that, at each step, the state of the automaton looks 

just as random as when we started. 15 

15 Spatial correlations will not arise if they are initially absent, but time corre-
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This is expected from a simple counting argument: Any given num­

ber of steps of evolution of an RCA rule performs a perrnui;ation on the 

set of configuration states-each distinct initial state is mapped onto 

a distinct final state. Since most of the possible states look "random," 

a typical random-looking state must be mapped by this evolution onto 

another random-looking state-there just aren't enough simple-looking 

states to go around. 

This is not meant to imply that RCA are less interesting than ir­

reversible CA. Starting an RCA from a random state is like starting a 

thermodynamic system in a maximum entropy state-its not allowed 

to get any simpler since its randomness can't decrease, and it can't 

get more complicated, since its already as random as it can he, and so 

nothing much happens. 

If we start an RCA from a very non-random state ( eg. some small 

pattern on a background of zeros, as we did in Figure 2.11) then we can 

have an interesting time evolution. If we choose a rule and an initial 

state that allow information to propagate, then what tends to happen is 

that the state of the RCA becomes more and more complicated. More 

precisely, if each state of the automaton is viewed as a "message," 

with the contents of the cells being the characters of the message, and 

if only local measures of correlation are applied then the amount of 

information 16 in successive messages tends to increase. For example, if 

la.tions are often very evident, and are characteristic of the particular rule being 

employed---conservations are often particularly apparent (see Section 3.2.1 ). 

16 For a discussion of the information content of a message, cf.[67] 
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we let ni be the fraction of all cells that are in state i, then the quantity 

(2.9) 

is the average information content of a cell, 17 usmg the most local 

measure of correlation (none), and for almost any RCA rule and almost 

any initial condition is found empirically to eventually increase to a 

maximum value which persists indefinitely. 18 This suggests that most 

RCA rules, within the constraints of the invariant quantities that they 

preserve (see Chapter 3), perform a sufficiently complicated and non­

linear transformation on neighborhoods that a coarse-grained entropy 

such as this 19 tends towards a maximum equilibrium value, at least for 

systems which don't cycle first. 

Of course the automaton is really only repeatedly encrypting its 

state, and so if all correlations are taken into account the amount of 

information really never changes. What happens is that the automaton 

will introduce some redundancy into the message, and use more cells to 

17The limit as N -> oo of the log2 of the number of cc,nfigurations in an N -cell 

space that are compatible with this set of ni 's, divided by N. 
18 A less local measure would be, for example, to let the p; 's in equation (2. 9) 

be the frequencies of all possible 2x2 blocks (e.g., there are 16 different kinds for 

binary-valued cells}. This would certainly be a more interesting quantity than the 

most local measure for rules based on conservative logic (i.e., binary valued cells, 

and rules that conserve the total numbers of 1 'sand O's). 
18 A coarse-grained entropy that is more like that of classical statistical mechanics 

would involve smearing some of the fine details of configurations. For example, we 

could divide our system into k xx k blocks, and lump together microstates that can 

be transformed into one another by permutations of sites within these blocks. 
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encode the same information. Information that was initially localized 

becomes spread out as correlations between the states of many cells, 

and it becomes very difficult for a locally invertible evolution to put 

the redundant pieces back together. 20 To use an analogy, an invertible 

mapping could change two copies of this chapter into one copy, and 

several sheets of blank paper. Two separate invertible mappings, each 

acting only on one of the copies, could not accomplish this end. 

A less direct argument that points to increasing complexity is just 

a variant on our earlier counting argument: For an RCA to complete 

a cycle, it must "find" its initial state---it can't repeat any other state 

before repeating that state, since each state has a unique predecessor. 

Since there is generally nothing driving an RCA towards its initial state, 

RCA tend to have very long dynamical orbits (think of the recurrence 

time for a BBMCA "gas" of particles, started with most particles in 

a clump). But since there are relatively few states that have a simple 

structure, a long orbit implies that the system must eventually make 

use of more complicated states. 

We have already discussed in Section 1.5.4 a rather general class 

of reversible logical systems in which an interaction characterized by 

a probability distribution can be analyzed in thermodynamical terms. 

The fact that isolated subsystems in an RCA tend towards maximally­

disordered states which then persist for a very long time should make it 

20 Equation (2.5) generates a locally invertible time evolution. If we know the 

values of cells near position x at two successive times, we can tell what the preceding 

1·alue of the center cell was. 
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possible to use similar thermodynamic reasoning to put constraints on 

what processes operating within an RCA between two such equilibrium 

subsystems can do. 

2.8.2 The charming circle 

In this section, I will present a consequence of reversibility which is 

present in RCA, but is more striking when presented in terms of a 

reversible finite-difference scheme. The model I will use has been stud­

ied by Fredkin, and the invariant associated with it was discovered by 

Feynman. This dynamical system was actually first discovered by Mar­

vin Minsky by accident, when he made a mistake in a program to draw 

a circle ( we will not follow his original derivation). 

A simple equation to generate points on a circle would be 

For t = 0, 1, 2, etc., this would generate points (xt, yt) at angular 

separations w around a circle of radius |z0|. Points can of course be 

generated by multiplication of earlier points: 

or (going backwards) 

= 

= 

(2.10) 

Taking the difference of these two equations gives us a second order 

equation 

- = (2.11) 
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We can transform this into an equation that has only real coefficients 

by letting St = itzt, so that 

(2.12) 

Note that we have not made any approximations---this equation is ex­

act. It can be read as two equations, one relating the real parts of the 

s's, and one the imaginary parts. If we consider only the real parts of 

the s's, then 

Thus the real part of st for t = 0, 1, 2, etc., is x0, -y1, -x2, y3, x4, 

-y 5 , etc.; and so equation (2.12), iterated as a real equation, generates 

consecutive x and y values (with signs sometimes reversed) for points 

on a circle. If consecutive pairs of points are plotted, for w small we 

get a rather good circle (plotting consecutive points like this actually 

generates an ellipse, but for small w the eccentricity is very small). 21 

If we want to, we can multiply consecutive st 1s by -1 before plotting 

them whenever t = 1 or 2 modulo 4, to correct the signs of the x's and 

y 's, so that points come out in order as we go around the circle. 

21This evolution has a conserved quantity, which can be derived directly from 

equation (2.12). Note that 

and so, using equation (2.12), we have st(st + s t-2) = s t-1(s t+1 + s t-1). From this, 

with some rearranging, we see that st2- s t-1 s t+1 is conserved. If we are at a time 

step when st = ±xt, then this conserved quantity equals xt2+ y t-1 y t+1, which for 

small w is essentially the radius (squared) of the circle.
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Now equation (2.12) is of the form (2.3), and so it generates an 

invertible dynamics. Furthermore, since each point plotted involves two 

consecutive values of st, each point specifies the complete state of the 

system. Thus the x versus y space is the state space for this dynamics, 

and the dynamical orbits of this system consist of points that all lie 

approximately along circles, for small w. 

If equation (2.12) is iterated on a digital computer using integer 

arithmetic, where the product -2 sin( w) St is truncated and rounded 

off, this equation remains invertible, since the truncation and round­

ing off will give exactly the same integers when we are going backwards 

that it did going forwards. Although this discrete evolution is no longer 

exactly equivalent to the complex exponential we started with, empir­

ically we find that the evolution is still stable, and gives an orbit that 

approximates a circle. 

One is struck by a certain rather strange property of this evolution, 

which seems less troubling in more abstract contexts. As the pixels 

light up on our display screen, moving around this circle over and over 

again, we see a band of a certain thickness develop, until finally the 

iterated evolution lands on the initial point. Since each point on the 

screen corresponds to a complete state of our reversible system, the 

evolution cannot land on any other point twice before it repeats the 

initial point. Until this happens, when drawing points that are far from 

our starting point, this evolution tiptoes around points it has already 

hit, just happening to miss them all. The power of the reversibility 

constraint to make such an odd series of coincidences happen is rather 
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remarkable to witness. 

It is interesting to note that a very similar derivation to the one 

given above for the Charming Circle leads to a finite-difference version 

of the Schrodinger equation. In equation (2.10), replace w by H T, the 

Hamiltonian operator times our unit of time T. Then this equation 

becomes 

(2.13) 

In the whole discussion following equation (2.10), we can treat Zt as the 

wave function. 22 As T -> 0, the exact finite-difference equation which 

corresponds to equation (2.11) 

Zt+1 - Zt-1 = 2i sin(HT) Zt 

turns into the Schrodinger equation, and so the simpler equation m 

terms of the s's (which has only half as many degrees of freedom, if H 

is real) can also be considered an exact finite difference version of the 

Schrodinger equation. 

22Even the derivation of the invariant goes through-this ends up being essentially 

the amplitude of the wave function. This invariant can be used to define an inner 

product which can take the place of the normal inner product in calculations based 

on the s's.
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Conservation Laws in RCA 

In general, an RCA has as many conserved quantities as there are 

cells-it remembers the initial state of each cell, since you can recover 

this information by running the system backwards. Thus it is perhaps 

not surprising that these systems often have invariants which can be 

computed in a local manner from the current state of the system. 

In this chapter, I begin with a survey of invariances in the parti­

tioning rules which are most closely related to the BBMCA. Since this 

partitioning scheme was invented specifically for the BBMCA, these 

invariances hlive not been studied before. This survey will indicate the 

variety of invariances a small class of reversible rules can have. 

I then turn to a. number of invariants in second-order RCA. The 

only previously reported invariants in these RCA were due to myself(45) 
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and Yves Pomeau[59]. I present a number of new invariants which are 

generalizations of Pomeau's invariants, and show that some of these 

invariants can be used as generators of the dynamics. 

3.1 Invariants in Partitioning RCA 

After stressing how reversibility implies conservation, we should of 

course begin with an example in which we have conservation without 

reversibility, just to demonstrate that reversibility may be a sufficient 

condition for conserv-c1.tion, but it isn't a necessary one. 

(3.1) 

This rule isn't rotationally invariant-we've shown all the cases explic­

itly. Since each case preserves the number of 1 's, this rule is conserva­

tive. Since it doesn't always map a distinct initial state of a block onto 

a distinct final state, this rule isn't reversible. As the corresponding 

automaton evolved, it would forget ail sorts of details about the initial 

state, but it would always remember the numbers of 1 's and O's. Thus 

the existence of an interesting local conservation law does not depend 

on the rule being reversible. 

We've already seen the BBMCA, which is a reversible rule which 

conserves 1 's and O's.1 In this section we'll discuss reversible rules 
1 It also has one other conservation that we noted when we discussed this model: 
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which are closely related to this model. We'll consider all rotationally 

invariant reversible rules defined on the 2 x 2 block partition, which 

are also invariant under inversions. There are 64 such rules: the only 

operations that can be performed on a block that are rotation and 

inversion invariant are rotation by 180°, and complementation of all 

cells. For example, for a block which initially contains all O's, we must 

have either 

EB-EB or 

Once we've decided what happens to the all-zero:; case, we have no 

choice about the all-ones case, since these are the only ~wo cases which 

are invariant under 90° rctations. Interestingly enough, if we impose 

both conservation of ones and rotational symmetry, then its no longer 

possible to write down a non-invertible rule. This is why our irreversible 

example in Table 3.1 had to be given in full! 

We can assign a number to each of the 64 possible rules by givint~ 

a one-bit answer to each of the questions below for each of the 6 cases 

indicded. 

-._, ,__. ----~ 

rotate? change? complement? 

The middle group could equally well have had the question rotate? 

or complement'?, since complementation and rotation are the same for 

groups of four 1 's that are placed as mirrors arti decoupled from the rest of the 

evolution, and me permanent. We will not discu!;s such decoupled invariant11 for 

related rules here, but we will mention such situations again in co:nnection with 

second-order rule., in Section 3.2. l. 
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these cases. 2 Each rule therefore corresponds to a 6-bit binary number. 

(The rotations are done first, if selected, before complementation). 

All of the rules that are multiples of 100 (binary) are conservative 

(and vice versa). These 16 rules include the BBMCA, the identity 

rule, various gas-dynamics rules (Section 4.2), dynamical spin models 

(Section 4.3.1), and rules which simulate elastic strings (Section 4.3.2). 

Adding 11 (binary) to the number corresponding to each of the 16 

conservative rules gives another set of 16 rules for which the number of 

1 's in one step is equal to the number of O's in the next step ( all rules 

with numbers of the form xxxxll ). 

The 16 rules that are less than 10,000 (binary) have another very 

interesting conservation property: they preserve the parity on the un­

used blockings. Recall that when we use our block rules, we alternate 

between two partitions; there are two other possible blockings that are 

never used. Each block of these unused partitions straddles two blocks 

horizontally in one of the active partitions, and two vertically in the 

other. If a rule either leaves a block of the active partition unchanged, 

or complements that block, then the sums of the parities of the two 

cell~ along any edge are unchanged-therefore blocks that straddle this 

active block have the sum modulo 2 of their contents left unchanged. 

This is a localized conservation-each unused block has its parity pre­

served for the entire duration cf the RCA evolution. In Sections 4.3.1, 

4.3.2 and 5.2 we discuss interesting rules that have this conservation. 

2Each of these cases has only one allowed rotation that changes them. 
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Note that ther~ are four rules which are both conservative and preserve 

the parity on the inactive blocks (one of these is the identity rule); and 

four complementary to these which are 1/0 conservative, and conserve 

the inactive-block parities. 

There are 16 rules (all those with numbers of the form 01:xxOO, 

lOxx:00, llxx:00, and 11:xxll) which have a scale invariance property: 

we can take any configuration for any of these rules and uniformly 

spread out all of the blocks of this configuration by inserting blocks 

containing either all O's or all 1 's ( wh:ch is needed depends on the 

rule-those of the form llxx:00 or llxxll work with either) between 

all blocks of the original configuration. This new configuration will 

then have an evolution which, at regular intervals, is just a spread out 

version of each step of the original evolution. For example, if we take 

any BBMCA configuration and make it twice as high and twice as wide 

by adding one block-column and one block-row of zeros between every 

block of the original configuration, we get a system that simulates the 

original system at one half the speed, using four times the area. This 

happens because the new system may be thought of as being composed 

of 4x4 blocks: whatever is put in the four corners of these 16-cell 

blocks propagates into a 2x2 area at the center, where it follows the 

BBMCA rule. The four cells where the interaction takes place may now 

be thought of as the corner cells of 4x4 blocks constituting the other 

partition. The "fragile" BBMCA circuit that we used in Figure 2.9 

was constructed by a scaling transformation: scaled mirrors become 

dynamical objects, which can he destroyed if they are hit at the wrong 
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moment. 

Of the conservative rules, there are two rules which conserve lin­
ear momen~um: the rule in which whatever is in one corner goes into 
the other corner ( the non-interacting gas) and the similar gas rule, in 

which the head-on collision case causes scattering ( ~ i-+ ~ ), but 
otherwise e\·erythi11g goes straight through. This rule is equivalent to 
the HPP gas rule[31], which was the precursor to the current interest in 
lattice gas dynamics for simulating the Navier Stokes equation. Both of 
these rules have the property that momentum is separately conserved 
along every 45° diagonal. 

Half of the conservative rules ( all the multiples of 1000-these are 
the rules that are invariant under a 180° rotation) conserve the number 
of 1 's that are on thP positive diagonals of blocks separately from the 
number of 1 's on negative diagonals. This conservation will be the basis 
of our analysis in Section 4.3.2 of a rule that simdates elastic strings. 

Rule 10 conserves the overall parity of the ent.ire lattice. 

In some of these rules, such as rule 10 and those that are conserva­
tive, the invariant is directly a property of the logic gate employed. In 
the .parity-on-unused-blocking conservc1tion, the conservation is a prop­
erty of the format of the updating. Of these 64 rules ( 32 if you factor out 
an equivalence), about a quarter have provided useful physical models, 
some of which will be discussed in Chapter 4. 
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3.1.1 Energy in the BBMCA 

Since the BBMCA is so closely related to the BBM, in which energy is 

readily identified, it is tempting to look for an analogy which may be 
helpful in directing research towards more physics-like models. 

In the BBM, the kinetic energy is proportional to the number of 

moving l's. In the BBMCA, i:f w~ let Pz, 11,t-I/2 = Cz,11,t - Cz,1,1,t-i, then 
Lz, 11(P!,11,t-I/ 2 /2) counts the number of moving 1 's ( each moving one 
disappears from one cell, and appears in another, so Lz,s, pl-which 
counts how many places change-would count each moving one twice). 

The 1 's that aren't moving are at those places that were a 1 at 
t - 1, and still arc 1 at time t. Thus the number of stationary 1 's 
is Lz,s, Cz, 11,tCz,y,t-J. A complicated way of writing the (constant) total 
number of 1 's is 

l 
E ~ Pz, 11,t-1/2 + ~ 

t-1/2 = L., 2 L., CtCt-1 
Z,1/ Z,1,/ 

(3.2) 

During a collision, some of the kinetic-energy changes into potential­

energy, and then it changes back again. 3 

Since (3.2) is a constant for any rule for which Lz,s, c!,s,,t is constant, 
it is not possible to derive the particular rule from this expression. We 
won't pursue the question of using an energy function as the generator 
of dynamics here; we will have more to say about it in Section 3.3 in 

3One can think of mechanical models of the BBMCA for which the two terms 
of (3.2) are proportional to the physical kinetic and potential energy of the systtm 
midway between two steps. 
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terms of second-order RCA. A connection relating this back to parti­

tioning rules will be discussed in Section 4.3. 

3.2 Invariants in 2nd-order RCA 

In this section we will discuss two kinds of invariants that have been 

found in second-order RCA. The first discussed are localized invariants: 

those that you see if you watch the automaton run, even started from 

a random initial state, since some areas are rem&.ining fixed or going 

through some short-period cycle. These are perhaps the most obvious 

invariants. We have already seen an example of Euch an inva...-ia.nt in 

Fi3ure 2.11. The second kind we will discuss are more energy-like-in 

fact the first invariant of this sort was discovered in an RCA model 

which can be used as a dynamical Ising model, and the invariant is the 

Ising energy. 4 

3.2.1 Localized invariants 

In RCA, the simplest locally-computable invariants are of course cells 

whose values never change. Such situations can arise because many 

rules ignore the remainder of the neighbors when part of the neighbor­

hood has some particular configuration. 6 For example, consider any 

4This model, the Q21. model, has been used as the basis of the fastest and largest 

Ising simulation ever done.[34]. 
11Ii'or rules with 2 states per cell, only two rules, "count the parity of the neigh-

borhood" and its complement, have no configuration of part of the neighborhood 
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rule that, in all cases where the center cell of the neighborhood is 1, 

ignores the rest of the neighbors and returns a 2. Such a rule, when 

used in a second-order evolution ( equation 2.5 ), results in a very simple 

conservation law. If we look at the case in one dimension where the 

automaton at two consecutive time-steps looks like this: 

t - 1 

t 

1 . 

... 1 . 

A ' . ' indicates a cell 

whose value is irrelevant 

to the discussion. 

(3.3) 

Any cell which has a value of 1 in two consecutive configurations will 

always be a 1, regardless of what is happening around it. 

For a more interesting I-dimensional example, consider a 2 state per 

cell CA with a rule / that returns a 1 iff each of the two cells adjacent 

to the center is the same as the center: 

{ 
1 if Cz-1,t = Cz,t = Cz+l,t 

/(c{z},t) = 
0 otherwise 

(3.4) 

With this rule, a and b standing for any binary values, and a, b their 

binary complements, the second-order time evolution given by (2.5) 

says that 

.. . aa ... 

.. . bb ... 
... bb... } 
. . . aa ... 

(3.5) 

which is again of the same form, so these two cells are decoupled from 

the rest of the evolution. Any cell which is not initially part of such 

that makes the remaining neighbors irrelevant. 
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a pair will never be ( and never was );6 counting all such cells gives us 

an (invariant) estimate of how many cells are available to represent dy­

namically changing information {but only an estimate-whole regions 

may be decoupled from the rest of the evolution because they are sur­

rounded by a wall of decoupled cells; 1 a local counting wouldn't reveal 

this). 

3.2.2 Energy-like invariants 

In the preceding section, we discussed some examples of invariants 

which occur because for certain initial conditions, certain degrees of 

freedom are decoupled from the rest of the evolution. If we wish to 

develop strong analogies with physics, we would like to find some in­

variants which have more of the flavor of an energy in mechanics­

quantities that are conserved even in dynamical situations. 

We have already seen an example of such an invariant, at the end 

of Section 2. 7 .1. In this case, we used a second-order rule to simulate 

the BBMCA, and for a certain class of initial conditions, this rule has 

all of the invariants of the BBMCA. Such context sensitive invariants 

will not be analyzed further here, except to note that invariants arising 

81n irrev4!rsible CA, a guarantee that a cell will always be part of such a pair 

does ~ot guarantee that it always has been. 
7 An extreme instance of decoupling of entire regions occurs with any rule that 

doesn't depend on the center cell, but depends on its nearest neighbors-this is 

discussed in Section 4.3. The system decouples into two entirely independent (but 

interleaved) space-time sublattices, each evolving without reference to the other. 
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from such embeddings of one rule in the evolution of another are rather 

common (see Section 4.3.2, for example). The most extreme case is of 

course a computation universal rule which can be used to simulate any 

other rule, and hence inherit any set of invariants! 8 

Our discussion of more energy-like invariants in second-order RCA 

will be largely a. generalization of an invariant that was discovered by 

Yves Pomeau(59] for the Q2R rule of Vichniac and Bennett. We will not 

follow his derivation. 

We will base our rules on a slight variant of equation (2.5 ), given by 

(3.6) 

Note that we have a plus sign between the two terms on the right 

hand side. For rules that employ binary valued cells, this change will 

not make any difference (since in modulo 2 arithmetic, there is no 

distinction between plus and minus). 

With reference to equation (3.6), the neighborhood c{z},t consists of 

some group of cells arranged symmetrically about the cell at position Cz, 

and/ depends only on the neighborhood count-the sum of the values 

of all neighbor cells. In fact, if \'{z},t is the neighborhood count for the 

cell at position i, then all of the rules we will initially be considering 

8This is a bit like the case of energy conservation in a computer simuhi.tion 

of celestial mechanics-this conservation is entirely a property of the particular 

simulation, and not an inherent property of the computer. 
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will be of the form 

{ ,' 0 if 11i,1., = k, 

= 0 otherwise 
{3.7) 

where k is some integer. 

For our first example, we will consider a I-dimensional CA, with 

the neighborhood consisting of the two nearest neighbors to the cell at 

position i, and k = 0. By virtue of equation (3.6), we know that the 

quantity 

will equal zero unless f ( C{.i},t) =/:-0, that is, unless \'{z},t = 0. Thus t.he 

product 

(3.8) 

is always equal to zero, and so 

(3.9) 

(since every term is equal). Letting a be our unit vector along the 

lattice, we can write out V{.i},t explicitly, and so 

L Cz-,t-1 'Vcz},t = 1:::Cz,t-1(cz+a,t + C.i-a,t) 
i' .i 

Eve::-y term in this sum involves a product of a cell at time t - 1 and 

a cell to one side or the other of it at time t. If we think of each such 

product term as a bond, we get exactly the same bonds from the sum 

L C.i,t(cz-+a,t-1 + Cz-a,t-d 
.i 
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and so equation ( 3.9) becomes 

(3.10) 

Thus the quantity L:i'Cz,t \.'{z},t-t, which is just a sum over all bonds, is 

invariant under this particular second-order evolution. 

More generally, let n be the number of neighbors in a neighborhood 

consisting of some number of pairs of cells, each pair forming the end­

points of a line segment bisected by the center cell (the neighborhood 

may also include the center cell); and let the evolution be governed 

by any equation of the form (3.7). Now define c~,t = Cz,t - ~' and 

V{z},t = L{i} c~,t (the sum over the neighbor~1ood of these adjusted cell 

values): with this definition, of V', when V{i'},t = k, then V{:>,t = 0. 

Also, when ci',t+l - Cz,t-l = 0, we will also have c~.t+i - c~.t-l = 0. Thus 

we again have 
(3.11) 

Again we'll consider the second sum in this equation. We will consider 

each pair of cells that are arranged symmetrically about the center cell 

separately. Each such pair can be re-summed, exactly as we did in the 

I-dimensional case, to exchange the roles oft and t - 1, and so again 

we find that I; 2 c~.t V{z},t-l is an invariant. 9 

This result can be generalized somewhat. First of all, given any 

rule with a pairwise symmetric neighborhood-not necessarily a rule 

9Notice that this argument goes through if we use any multiple of c' instead of 

c'-in df'tailed calculations it may be convenient to use a multiple of c' in defining 

the invariant, to avoid dealing with fractions. 
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of the type given in equation (3.7)-if we can find a linear function 

V of the neighbors which treats symmetrically opposite neighbors in 

a symmetric manner, and which is zero whenever / is non-zero (it 

may be zero at other times as well) then this function can be used in 

equation (3.8) to make it always be zero, and so our whole derivation 

goes through again. If instead we find a V which treats symmetrically 

opposite neighbors in an antisymmetric manner, then our derivation 

goes through, except that we get a ( -1 )t dependence in our invariant. 

For example, suppose we have the following function for /: 

{ 
1 if all neighbors have the same value 

/(C{z},t) = 
0 otherwise 

(3.12) 

Then for V we could use the difference of any pair of symmetrically 

placed neighbors, and get an invariant with a ( -1 )t dependence. If the 

center cell is included in the neighborhood, we could let V equal the 

sum of any two symmetrically placed neighbors, minus twice the center 

cell-this would give an invariant that has no t dependence. The sum 

of any combination of such invariants, taken with arbitrary weights, is 

of course also an invariant. 

As a further example, consider a two dimensional second order RCA 

governed by the equation (3.6), employing Boolean variables and a 

Cart-esian lattice. The neighborhood will be the four nearest neighbors, 

and / will be a 1 whenever exactly two of the neighbors ate 1 's, but not 

if the two t 's are opposite each other. Without this extra condition, 

this rule would be of the form ( 3. 7 ). However, if V is zero whenever the 
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count is exactly 2, then it is also zero in all cases when f isn't, and so 

it generates an invariant. If we call the four neighbors N, S, W, and E 

(North, South, etc.) then V = N + S - E - W also treats symmetric 

neighbors symmetrically, and is zero in all cases when f isn't-this 

second V generates another invariant. 

Finally, note that if f is a rule which operates on Boolean valued 

cells and is symmetric between t 's and O's, and the successive configu­

rations generated by f starting from configurations a0 and a 1 are called 

a 2 , a3 , etc., then the configurations generated by the rule f (the rule 

that returns a 1 whenever f would return a O, and vice versa) starting 

from a0 and a1, would be a2 , a3 , a4, a5 , a6, a7, etc. Since the config­

urations are the same up to a complementation of all cell values, any 

invariant of f can be transformed into an invariant of f. 

In all of our examples, there has been a clear connection between 

symmetries of the rule and the invariants we have been able to con­

struct, which is quite analogous to the situation in physics. 

3.3 Hamiltonian dynamics 

In the Hamiltonian formulation of mechanics, the variables that are 

used are those for which the state space of the system evolves like an 

incompi:essi ble fl.ow. 

Since our RCA perform a permutation on their set of allowed states, 

any RCA model evolves like an incompressible fluid in the discrete state 

space in which each orthogonal dimension corresponds to the allowed 
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values of one of the cells. If you pick any set of pointi; in this state 

space, there are exactly as many states flowing into this set as out of 

it. 

Thus we are led to try to establish a Hamiltonian analogy for RCA 

using the cell values as our p's and q's. The discussion of invariants in 

second-order systems immediately gives us some example systems for 

which we can generate a dynamics in a local manner from an invariant. 

Take any Boolean valued RCA of the form (3.7). For example, con­

sider the Q2R rule which prompted Pomeau 's discovery of an invariant 

in CA: on a 2-dimensional Cartesian lattice, with a neighborhood con­

sisting of the four nearest cells to the center (but not including the 

center), / is 1 if exactly 2 of the 4 neighbors are 1 's, and O otherwise. 

To derive our invariant, we need to take c' = c - ~ = c - ½-Thus our 

Boolean values become ±½-To avoid dealing with fractions, we can 

use a multiple of c' in defining our invariant, aud so we will use ±1. 

Our invariant is just the sum over all bonds between cells in two suc­

cessive configurations that are one position displaced from one another. 

It becomes clear now why this quantity is conserved: 

When we perform the second-order updating, we look at a neigh­

borhood in one configuration (at time t say), and decide whether or 

not to flip the center cell in a second configuration ( t - 1) in order to 

construct the future (t + 1). Although we normally think of the con­

figuration we are constructing as being distinct from the configuration 

from time t - 1, we could literally flip the cells in the old configura­

tion whenever the rule returned a 1, and convert it into the new one. 
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When we've updated all cells, we simply interchange the roles of the 

two configurations. We can (if we like) do each complete updating step 

by updating cells one at a time, in any order, since the configuration 

upon which all decisions are based is not being changed. 

Now consider all bonds between the cell we are changing and the 

configuration upon which the decision is being based. There are only 

four, to the four neighbors. Our rule is that if exactly two of the 

neighbors are +1, and two are -1 (remember we're using c') then we 

are supposed to make a change, and otherwise not. But this is the same 

as saying that we are allowed to change the cell only if it won't change 

the count of these four bonds (and hence won't change the total count 

of bond~). We're allowed to make a change only if 

both before and after the change to Cz,t-t, which happens only when 

v{z>,t = o. 
Thus in this and in all such Boolean valued rules with a single 

neighborhood count for which / = 1, the invariant we have derived can 

be used to generate the dynamics, using the presctiption: Make any 

change which doesn't change the "energy," and applying it alternately 

to the two configurations, using the other to provide the neighborhoods. 

This prescription can also be applied to other systems for which 

we've found invariants. For example, consider the system which is the 

same as the one discussed above (Q2R) with this change: / = 0 if the 

two l's are exactly opposite from each other. As we pointed out in 
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the previous section, this rule still has the Q2R invariant; it also has 

a second invariant which, again using N, S, W, and E for the four 

neighbors, uses a V of the form Vi = N + S - E - W. This together 

with the first invariant (based on Vi = N + S + E + W) completely 

characterizes the rule-if both Vi and Vi are zero simultaneously, then 

there must be exactly two +l's and two -l's in the neighborhood, and 

there must not be two 1 's opposite from each other. 

We can form a single V from these two separate V's as follows: 

Since it turns out that both Vi and Vi are always powers of 2, multiply­

ing one of them by 3 prevents them from ever cancelling each other-we 

can only get zero if both are zero. By considering either factors or range 

it is always easy to combine Vn 's in such a manner.1° 

The invariant generated by this V again completely characterizes 

our rule: the evolution is generated by making whatever changes pre­

serve this invariant. In a similar manner, we can construct invariants 

which generate the dynamics for a Boolean rule of the form (3.12) 

which includes the center cell in the neighborhood, but not for one 

that doesn't include the center. 

10 Notice that the form of V is a sum over symmetric pairs of neighbors, with 

different weights for each pair, as expected. 
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CA Inodels of physics 

The use of CA to model physical systems has become a large and rapidly 

expanding field of research (see for example [10,17,19,20,26,29,31,34,36, 

37,46,53,54,65,80,85,86,93] and references therein). I will not attempt 

to survey this field, but will only give background material when it is 

necessary for understanding the models or results I am presenting. 

I will also not attempt here to duplicate the discussion of physi­

cal modeling already given in [80]; instead I will only present a few 

systems that are of particular interest from a modeling or a conceptual 

standpoint, based on the partitioning scheme introduced in Sect.ion 2.3. 

Some of these systems are also discussed briefly in Chapter 7, in the 

course of illustrating the use of various features of a cellular automata 

machine. 

125 
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4.1 Constructing CA models 

Ideally, one might seek some set of correspondence rules, whereby one 

could start with a physical Hamiltonian and transform it into a CA 

rule. This is to some extent the inverse problem of the one discussed in 

Section 3.3, where we found rules which have invariants which can he 

used to generate the dynamics-further progress in this direction may 

lead to useful general techniques. 

In the meantime, the most productive technique for constructing 

physical models is to build upon known models (such as the lattice gas 

models[31,26]) by adding extra states that modify the dynamical inter­

action, or by coupling the dynamics of two well-understood systems, 

each of which uses part of each cell's state. To find completely original 

models, it often helps to start with the symmetries and conservations 

that the macroscopic dynamics is to have, and try to put them into a 

simplified microdynamics (i.e., a rule). 

The most straightforward application of these techniques is in the 

context of partitioning models (see Section 2.3): the state variables are 

partitioned into disjoint subsets, ea.ch of which is updated as a group; 

then the partition is changed. 

-The partitioning technique is easy to implement (see Section 7.6.2) 

and allows a dynamical evolution to be specified in a particularly direct 

manner: we give a series of before and after configurations for groups 

of state variables. Since all variables involved in each group see exactly 

the same neighborhood information, its easy to get them to act in a 



4.2. Models based on lattice gases 127 

coordinated fashion. Properties of the local dynamics, such as invari­

ances and symmetries, are inherited by the global dynamics in a rather 

straightforward manner, as we have discussed in Section 3.1. 

Note that. the input partition and output partition for a given up­

date step need not be identical; such a situation will be termed a shifting 

partition. An update step using a shifting partition is equivalent to a 

step using an ordinar)·, /izr!d putition followed by a step in which state 

variables are translated to new positions. 

Except where noted below, our examples in this chapter will all 

involve an alternation between two fixed partitbns: the two 2 x 2 block 

partitions used for the BBMCA rule of Section 2.4. 

4.2 Models based on lattice gases 

One of the conservations that can be put into a partitioning rule "by 

hand" is conservation of momentum. Consider the following rule 

EE~EE IB~EI 
~-~ [.[;-~ ( 4.1) 

~-~ ■~■ 
(where again rotated case 1-+ corresponding rotation). In all cases, 

whatever is in one corner moves to the opposite corner. The global 

evolution that is generated by this rule is rather trivial: all i's and 

O's travel in straight lines, and never interact at all. If we assign some 

momentum to the travelling i's, then this rule clearly conserves mo-
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Figure 4.1: Circular wave produced by a localized disturbance. 

mentum, but is rather unexciting. Suppose we now change the third 

case, so that the rule becomes 

(4.2) 

Now if two l's (or two O's) approach each other head-on, the "particles" 

come out rotated by 90°. This turns our previously non-interacting 

gas into an interacting gas, with momentum conserving collisions. 

Figure 4.1 shows 3 frames from the evolution of this rule, started frcm 

a uniform 50% density of 1 's and O's, except for a 16x 16 area in the 

middle, where the density was 100%. 

This rule, along with other gas rules, was discovered as a natural 

extension of the techniques de•.1eloped for the BBMCA model. It turns 
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Figure 4.2: Higher resolution version of the circular wave; only sites contain­

ing 3 or more particles are colored. 

out to he equivalent to a lattice gas model ( the HPP model) developed 

more than a decade ago by Yves Pomeau[31] and coworkers. His origi­

nal model was given as the alternation of two rules on 4-hit cells using 

only nearest neighbors which happens to be equivalent to a shifting par­

tition. When we implement it this way on CAM-6 ( see Figure 4.2) we 

get more sites into a 256x 256 area (the size of the display screen), but 

this implementation has the disadvantage that the system shown de­

couples into two independent sublattices, a phenomenon we will discuss 

in Section 4.3. 

4.2.1 A gas with a finite impact parameter 

Although the HPP model depicted above spawned later improved lat­

tice gas models (such as the FHP model baEed on a triangular lat-
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tice) which reproduce the N avi 11:r Stokes dynamics in the macroscopic 

limit[26], the original model has significant defects. One defect is the 

fact that this rule conserves momentum separately on ea.ch diagonal; 

this makes it behave in some ways more like a. 1-dirnensional system 

than a 2-dimensional system. In Section 7.4 (and in [46]) we describe 

an experiment where Toff'oli, Vichniac, and I used CAM-6 to measure 

velocity/velocity time-autocorrelations at a given site 

where C is an initial configuration, ct, is the transition rule, a1;( C) has a 

value of 1 or O depending on whether or not there is a particle moving 

in the q direction at the ( ij) site in the configuration C, a is the average 

particle occupancy (per site) for each direction, and there is an implied 

summation over all N sites and all Q allowed directions. The measured 

results for three lattice gas models are given in Figure 7.2. The asymp­

totic slope for the HPP gas is that of a I-dimensional system[58]; the 

expected slope for a 2-dimensional gas is -1, which is clearly exhibited 

by the gas labeled TM on the graph. 

This TM (Toff'oli/Margolus) model can be described in terms of the 

rule of Table 4.2: follow the HPP rule, except that at even time steps, 

rotate the result for each case 90° clockwise, and at odd times rotate 

- - the results 90° counterclockwise. This rule is almost a simple when 

described directly: take the initial state of a block and rotate it 90° 

counterclockwise on even steps, and clockwise on odd steps, unless it 

contains exactly two 1 's on a diagonal, in which case the block is left 
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Figure 4.3: Probability flows in the HPP and TM gases, respectively 

unchanged 

'rhis rule causes particles to travel in straight lines vertically and hor• 

izontally; particles on adjacent rows or columns can collide, moving 

theni from two adjacent rows to two adjacent columns, or vice versa. 

Thu collisions in this rule have a finite impact parameter, unlike the 

HPP coHisions. This allows momentum on different rows and columns 

to interact, avoiding the spurious conservation seen in the HPP model. 

In Figure 4.3 we show the results of a floating point simulation ( con­

ducted by Tom Cloney using a Lisp machine) which shows the average 

response of each of these gases to a (probi\,,hilistically) very small per­

turbation in der,sity at a single site. 

This technique for constructing models with a non•zero impact pa• 

rameter may be useful in other lattice gas models. 
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4.2.2 Reflection and refraction 

All of the models mentioned above support the wave equation (in terms 
of particle densities). We can therefore modify these models in such a 
way as to produce reflection and refraction phenomena in these waves. 

By adding an extra bit to each cell's state ( which doesn't change 
with time), we can mark areas where we wish to follow a different rule. 
If in all blocks in which any cell is so marked we follow the identity 
rule ( nothing changes) then such marked area.s will a.ct as mirrors-any 
particle that hits such an area will bounce back the way it came. In 
Figure 7.5 we show a wave colliding with a concave mirror formed in 
this manner. 

Such reflection phenomena using these gases are of course seen 
whenever these gases are modified to accomodate obstacles. A more 
original modification is to have marked regions follow the original rule 
some portion (say ha.If) of the time, and the identity rule the other half 
of the time. This results in marked regions having a "sound" velocity 
that is half that of unmarked regions. In Figure 7 .6 we show the refrac­
tion of a soliton by such a region-we used these high-density waves 
supported by our rules (TM or HPP) in order to make the refraction 
more evident in this rather low-resolution picture. 

This technique may be a useful one for implementing other kinds of 
potentials as well. 
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4.3 Matched pairs 

In this section I would like to discuss some pairs of closely related 
RCA rules, one of which is a second-order rule, the other of which is a 
partitioning rule. 

In Section 2.7.1, we gave an illustration of how a second-order rule 
can be constructed which simulates a block rule for some subset of its 
allowed initial states; here the connection between a block rule and a 
second-order counterpart will he even closer, and it will be the initial 
states for the block rule which must he constrained to get an equivalent 
evolution. 

For two second-order rules which provide useful models of physical 
systems, we will discuss the effect on the "physics" of the situation of 
relaxing the constraint on the block rule which makes the two rules 
equivalent. 

Let us begin by considering any I-dimensional second-order RCA 
rule that depends on the values of the two .nearest neighbors, but not 
on the center cell. A portion of the evolution might look like this 

t-1 

t 

t+1 

1 . 1 0 1 

1 0 . 0 1 . 1 

? . ? ? ? 

where a dot indicates a cell whose value is irrelevant to the discussion. 
The cell values that are indicated explicitly are sufficient to allow our 
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second-order evolution to compute the states of the cells marked with 

'?'. Note that the system decouples into two entirely independent (but 

interleaved) space-time sublattice•., each evolving without reference to 

the other. 

In such an evolution, we can eliminate one of the sublattices, and 

merge information from pairs of consecutive configurations into single 

configurations-the unused cells from step t can be used to hold the 

information from step t - 1 

t-1,t 

t,t+1 

. . 1 1 0 1 0 0 1 1 1 

1 ? 0 ? 0 ? 1 ? 1 

We alternately update even and odd sites, to get a first-order evolution 

isomorphic to the original. 

Similarly, on a 2-dimensional Cartesian lattice, a rule that doesn't 

depend on the center cell but does depend on the four nearest neigh­

bors has an evolution that decouples into two interleaved spa.ce-time 

check.erboards.1 As before, we can eliminate one of the sublattices by 

merging information from consecutive configurations. If we think of 

space as a red and black checkerboard, then we alternately update red 

cells and black cells. 

In Figure 4.4a we show a 2-dimensional checkerboard, with sites 

11n any number of' dimensions, any rule (first or second order) that doesn't 

depend on the center cell, and only depends on a single pair or symmetrically 

placed neighbors in each orthogonal direction has an evolution that decouples into 

interleaved space-time sublattices. 
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o □ o □ o □ o 

□ o □ o □ o □ 

o □ o □ o □ o 

□ o □ o □ o □ 

o □ o □ o □ o 

□ o □ o □ o □ 

o □ o □ o □ o 
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CD 
Figure 4.4: Checkerboard. Sites updated on even steps are circles, odd step 

sites are squares. 

that are updated on even steps shown as white circles, and sites that 

are updated at odd steps shown as white squares. In Figure 4.4b, we 

show a closeup view of an odd site that is about to be updated as a 

function of its even neighbors. The four dotted lines connecting the 

odd site to its four even neighbors can be thought of as bonds, the 

values written on the bonds indicate whether (1) or not (0) the center 

is the same as that neighbor. The updating will either leave the center 

unchanged, or complement it. If the center is complemented, all four 

bonds are complemented. 

If we just consider the dynamics of the bonds, we see that blocks 

of four bonds are either all complemented, or all left unchanged. As 

we switch from an even step to an odd step, bonds that were updated 

as a group during one step are updated as part of four separate groups 

during the next step. Thus this system corresponds to a 2 x 2 block 

partition at 45° to the orientation of the picture. Any second-order 
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rule ( using binary-valued cells) that treats 1 's and O's symmetrically 

and only involves the four nearest neighbors can be recast a.s a rule 

on the 2 x 2 block partition that, for every case, either complements 

the block or leaves the block unchanged. As we have explained in 

Section 3.1, all s:ich rules conserve the block parities on the unused 

partitions-the significance of this will be discussed in our examples. 

There are 16 rules of this kind that are rotationally symmetric (256 

without this restriction). If we factor out the fact that /and/ generate 

equivalent evolutions, there are only 8 distinct rules of this kind. One 

of these is the identity rule-we will discuss the use of two of the others 

as physical models. 

4.3.1 Dynamical spin models 

It was Michael Creutz[l 7] who first investigated RCA rules suitable for 

use in Ising simulations. His simplest first-order rule was intermediate 

between a partitioning rule and a second-order rule-it was in fact a 

checkerboard updating scheme involving four neighbors, of the sort we 

have discussed above. In this scheme, we think of the two cell-states 

as being +l and -1, or spin-up and spin-down. The bonds a.re the 

negatives of the products of two adjacent spins: -1 if the two spins 

are equal, + 1 if they aren't. The rule for updating is: flip the center 

spin if doing so doesn't change the sum of the four bonds connected to 
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that spin. 2 As a second-order rule, this is the Q2R rule that was later 

discovered by Vichniac and shown to be an Ising system by Pomeau, 

and which has been used for massive Ising simulations by Herrma.nn[34]. 

This rule was discussed in the previous chapter, as one which ha.s an 

evolution which can be generated from an energy function. As a block 

rule, it has the following table ( where positive and negative bonds are 

represented by ■ and □ respectively) 

( 4.3) 

Blocks are complemented if they contain exe.ctly two ■ 's, and left 

unchanged otherwise. 

This rule has two interesting features, which are worth pointing out. 

First of all, it conserves the number of ■ 's; this corresponds exactly to 

the conservation of bond energy. In fa.ct, this rule can be viewed as a 

dynamics for the energy, as opposed to a dynamics for the spins. 

Secondly, this rule is more than simply an Ising system. Notice 

that in our derivation of the correspondence between the checkerboard 

dynamics and this one, we introduced a variable for every bond. But 

bonds -are twice as numerous as the cells in the checkerboard. In the 

2He was mainly concerned with rules that involved a small energy reservoir 

(represented by a few bits) associated with each spin. With a reservoir of 1 or 

more bits, the rule becomes: flip a spin ifit can be done without changing the total 

energy associated with the spin (including energy in the associated reservoir, which 

may be moved to or from the bonds if necessary). 
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checkerboard system, if we take the sum around any block of four ad­

jacent cells of the bond variables connecting them, we must always get 

zero. For our block rule, this is equivalent to requiring that the blocks 

on the unused partitions must all contain an even number of■ 's. Only 

when this condition is satisfied can this block rule correspond to a 

checkerboard Ising dynamics. 3 On a periodic lattice, once half of the 

cells have been assigned values freely,' our constraint tells us how to fill 

in the rest. To t.ransform to a checkerboard system, we must specify 

the state of one spin, and then all other spin values can be determined 

from the bond information. This one-bit ambiguity corresponds to the 

symmetry in the energy between a given configuration of spins and the 

complementary configuration. 

If, in the checkerboard dynamics, we somehow add an extra variable 

on ea.ch bond, specifying whether it is ferromagnetic or antiferromag­

netic, then we have a spin glass model. In this case, there is no con­

straint on the sum of the bonds connecting four adjacent spins. Thus 

the unconstrained 2 x 2 block model of Table 4.3 can be interpreted as 

a dynamical spin glass model, again following a dynamics which "flips 

a spin" (i.e., complements four bond energies) whenever this doesn't 

change the total energy. 

To a given configuration of bond energies, any configuration of spin 

3For a system with periodic boundaries, we would also have the condition that 

any horizontal or vertical path that closes on itself must contain an even number of 

■ 's. 

4 Pick any set of cells that can be filled without being limited by the constraints. 
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values may be associated, by choosing the bond types to be ferromag­
netic or antiferromagnetic, as appropriate. The subsequent dynamics 
of all of these systems ( spins plus associated bond-types) will be iso­
morphic from an energetic point of view. Thus the block rule manages 
to simulate a deterministic spin-glass dynamics in a manner that "fac­
tors out" irrelevant details about spin orientations-such a rule uses 
only 2/3 as many state variables as an equivalent dynamical simulation 
which keeps track of the spin values[ll]. 

4.3.2 Elastic strings 

In Section 3.3 we discussed a rule that is closely related to the Q2R 
"spin" rule discussed above. In terms of the checkerboard realization, 
this rule is the same as the dynamical Ising rule, except that if two 
diagonally opposite neighbors are 1 's, the center spin isn't flipped. If 
we only list the cases which change, the block rule corresponding to 
this is simply 

(4.4) 

(and rotations). Empirically it is found that if we start this rule from 
any configuration involving a single chain of cells that has no slope 
steeper than 45°, and which obeys the parity constraint on the unused 
blocks that is needed to make this rule correspond to its second-order 
counterpart ( as discussed in the previous section) we get wave prop­
agation on the string. For example, after about 60 steps of evolution 
under this rule, the initial configuration of Figure 4.5a goes into the 
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Figure 4.5: Wave propagation. In (a) we have the initial configuration, and 

in (b) the state after about 60 steps. 

configuration shown in Figure 4.5b. 

There is a surprisingly simple proof that waves on this string obey 

the ordinary linear wave equation-this proof is based on an invariant of 

this rule. As mentioned in Section 3.1, this rule separately conserves the 

total number of 1 's on all positive diagonals of blocks, 5 and the number 

of 1 'son negative diagonals (the one case that changes preserves these 

counts). This was already evident in the second-order version of this 

rule, where the quantity 

L Ct-1(N, + s, +Et+ Wt) 
all cell• 

is conserved, where C, stands for the value of the center cell at time t, 

5 A cell \hat is on the positive diagonal of a block in one of the active partitions 

is also on a positive diagonal in the o&her active partition. 
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etc., and also the quantity 

L Ct-1(Nt + St - Et - We) 
.Ucelb 

When we go to the checkerboard version of the rule, we can drop the 

time subscripts. Adding and subtracting these two invariants, we see 

that r:, C(N + S) and r:, C(E + W) are separately conserved, which in 

the block version just becomes the invariant we've already noticed. 

If we draw a 1 that is on the positive diagonal of a block of the 

active partition as IXJ , and similarly with the negative diagonal and IZl , 

then the total number of~ 'sand the total number oflZI 's are conserved 
.... 

separately. The reuon we've used what might seem a contrary choice 

of symbols has to do with our parity constr&int: blocks on the unused 

i;artitions must have a parity of O in order for this rule to be equivalent 

to its second-order counterpart. As a consequence, if we are given a 

sequence such as "\\\I\/ I\/ I," there is only one way in which a chain 

of 1's can be layed down (from left to right) to occupy the diagonals 

required by this sequence-just lay out the~ 's and Ill 's so that you get 

an unbroken line (see Figure 4.6). 

We are now in a position to prove that our dynamics is that of a 

linear wave equation. What we will show is that, given a configuration 

corresponding to a sequence such as "\ \ \/\//\//,"our dynamics car­

ries all of the even numbered elements of the sequence one way, and all 

of the odd numbered elements the other way. Thus the configuration 

that we see a.t any moment is a. superposition of a wave travelling to 

the right, and a wave travelling to the left, and these two waves may 
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Figure 4.6: String corresponding to the sequence "\ \\I\/ I\/ I." 

be of any shape. 

In terms of our ISi 's and IZI 's, our rule is 

( and rotations), all other cases remain unchanged. Now let us follow the 

rightward progress of a ISJ started in the lower left corner of a block. On 

our string, only two cases can arise (because of our parity constraint): 

if the block contains two 1 's side by side (~) then our ISi moves up 

and to the right (~)- If our block contains only a single 1, (ffi) then 

the cell below and to the right must contain a single 1, since this is 

the only way that our string can be continued without violating our 

con:;traints. This 1 is again a ISi , and so we may imagine that these two 

1 's interchange, so that the ISi we are following moves down and to the 

right. In either case, the next updating step (on the other partition) 
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Figure 4.7: In (a) we have a closeup of part of the right-going wave shown 

in (b ). 

will again find the ISi that we are following in the lower left corner of a 

block. 

In a similar manner, we can see tha.t a IZI started in the upper left 

corner of a block-moves one position to the right along our string at each 

step; similarly 1 's started in the right half of a block move left. Thus 

our evolution is equivalent to a 1-dimensional rule acting on strings of 

!SJ 's, IZI 's, and O's, which alternately interchanges the contents of even 

pairs and odd pairs of cells. 

In figure 4. 7a, we show a wave that we have constructed. The 

right-going sequence is 

I\/\IIIIIIII\\\\\\\\I\I 

which yields a wave with a peak. The left-going sequence is 
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\I\I\I\I\I\/\I\I\I\I\I\ 

which yields the flattest possible pattern. When we interleave the ele­

ments of these two sequences, we get 

I\\II\\/I\III\III\III\II\\\I\\\I\\\I\\\II\\II\ 

which was then transcribed into the chain shown in Figure 4. 7a. 

Our analysis so far is sufficient for strings that are periodic in space, 

such as the one used in Figure 4.5. With the block rule we have been 

using, if a string has ends, then these ends remain essentially fixed: 

each end can move vertically between two cells ( a dangling end results 

in blocks on the unused blocking that have odd parity, and so this 

case won't correspond to anything in the second-order rule). When 

our rightward moving wave hits such a fixed end, it is reflected. In 

detail, each element of the right moving sequence will be "stuck" for 

one step when it reaches the right end, and then will begin travelling 

leftward. Since the rightmost element of the arriving sequence becomes 

the leftmost element of the departing sequence, when a sequence such 
/ 

as -

I\I\/IIIII//\\\\\\\\I\I 

( a peak) arrives, this will become the sequence 
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/\l\\\\\\\\lltlll/l\l\l 
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which is a trough. Thus waves reflected from a fixed end are inverted. 

In the course of this discussion, you may have noticed something: 

the constraint of even inactive-block parities means that no active block 

can ever contain exactly two 1 's on a diagonal in any of our strings. This 

means that everything we've discussed so far applies to our spin model 

of the previous section just as much as to our "elastic rule" introduced 

in this section! If the waves depicted in Figures 4.5 and 4. 7 are used as 

initial states for our spin model, then they will run as described here. 

If we want to have ends that are free to move vertically, we can 

modify our rule ( 4.5) so that it becomes 

(4.5) 

( and 180° rotations). All other cases remain unchanged. Since our 

horizontal strings have not made use of the cases involving l3 and El], 
we have let these remain fixed, so that vertical bars remain stationary. 

We've added 2 cases which allow a 1 next to a vertical bar to move freely 

along the bar. Note that these cases break the separate conservation of 

total 1 's along positive and negative diagonals: when a IZI arrives next 

to a bar, it becomes a ~, and vice versa. Thus both the order of 1 's 

and the kind of 1 are changed, and so a peak such as 



146 

/\I\II/IIIII\\\\\\\\I\I 

moving to the right becomes 

\I\III/IIII\\\\\\\\/\I\ 

(another peak) moving to the left. 

Chapter 4. CA models of physics 

These string models have been analyzed entirely in logical terms; 

this analysis has the virtue that it is ezact.6 Unlike the analysis of 
a real macroscopic string, there was no opportunity or need to make 

use of statistical mechanical methods. By combining gas models with 
models related to those discussed here ( which can be used to construct 

elastic membranes) we arrive at models with statistical potentials. 

4.4 Logic 

In this section, we will discuss an irreversible logic model, which was 

designed to show that we can have a partitioning model which can 

perform logic much more compactly than the BBMCA. This model also 
illustrates the rather direct way in which partitioning allows a desired 

dynamics to be transcribed into a CA rule by providing a sequence of 

before/after pictures of a small patch of space. 

There are plans to actually build chips that implement this model in 

parallel hardware, and can have cell configurations which will simulate 

8 For this reason, this model may be of some pedagogic interest. 
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circuits downloaded to them. This hardware may be able, in some cases, 

to simule.te these circuits fast enough to allow this chip to actually be 

used in place of the hardware that is being simulated ( voltage levels 

at some input pins would be converted into cell values, and voltage 

levels at other output pins would reflect certain cell values). Thus 

although this is the furthest of my examples from microscopic physics, 

it is perhaps the closest to being realized as a physical system. 

This model makes use of four-state cells-if you think of each cell 

as containing two bits of data, one of the bits can be thought of as 

containing wire data, and the other signal data. A cell that contains 

neither wires nor signals will be drawn empty; )( will indicate a cell 

containing only a wire; o indicates only a signal; and ~ indicates both 

a signal and a wire. 

The rule for wires is very simple: they never move or change, re­

gardless of what's around them. The rule for signals that aren't on 

wires is also very simple: they never move or change ( they are only 

used to influence the behavior of other signals passing nearby). 

Thus we only need to illustrate what happens in the cases where 

there is at least one signal and one wire. The rule is rotationally in­

variant and inversion symmetric. For cells that contain four "pieces" 

of wire, any signals just go straight through 
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If there are two pieces of wire, signals on the wire follow the wire; 

and signals next to a horizontal or vertical wire cause the signal state 

of the adjacent cell to be complemented before it moves 

( signals next to a diagonal piece of wire have no effect). If there are 

three pieces of wire and no nearby signal, the signal value on each wire 

becomes the logical OR of the signals on the other two wires: 

If there are three pieces of wire and there is a signal on the remaining 

cell, the signal value on each wire becomes the logical AND of the signals 

on the other two wires: 

Finally, if there is only a single wire in the block, there will be a signal 

if there is a signal nearby, but not otherwise: 
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Figure 4.8: Signal propagation, cross-over, and fanout. 

Now we simply draw the wires for a circuit, and put signals on 

them. In Figure 4.8 we illustrate propagation, crossover, and fanout. 

Notice that signals just follow wires, and signal streams simply cross 

without influencing each other wherever two wires cross ( this is due to 

the four-wires case above). To achieve fanout, we just have a wire split 

(being careful to make sure that some block has three wires in it, so 

that we use the OR case described above). 

Figure 4.9 shows configurations tha.t perform NOT and AND opera­

tions, and the last frame shows a binary half-adder consisting of about 

half a dozen gates in an area. of about four 2x2 blocks (illustrating that 

we can achieve quite dense circuitry). 
-

This logic rule could be implemented using unclocked, asynchronous 

logic using the techniques of Section 5.2 in the next chapter. 
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....... 
.. I' I I• I II I ...... : ■ II ■ 

Figure 4.9: A NOT gate, an AND gate, and a half-adder. 



Chapter 5 

Time and Spaceti01e 

This chapter deals with several aspects of the idea of time in cellular 

automata. There is of course the normal synchronous time that is usu­

ally used to define these models (all cells are updated simulianeously). 

We will also talk about asynchronous models, in which each cell runs 

as fast as it can, and only waits whf:n a neighbor gets behind, in order 

to simulate a synchronous updating. We present a simple new scheme 

for achieving such local synchronization that is made possible by the 

block partitioning, and which will be used in Chapter 6. 

O~ discussion of local synchronization will lead us to "relativistic" 

cellular automata models, in which our RCA can run its evolution on 

different spacelike slices. But first we will talk about the statistica.1-

mP.chanical notion of the macroscopic arrow of time in RCA models, 

151 
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which is quite distinct from the time used by the simulator to perform 
the updating. 

5.1 The arrow of time 

In microscopic physics, the laws seem to be perfectly reversible, and 
there is no important difference between past and future; yet macro­
scopically a difference exists. RCA provide a context of a dynamical 
system in which the law is known perfectly, in which this same di­
chotomy can be examined. 

5.1.1 Coming full circle 

Let us think about a large but finite RCA ( with periodic boundaries, 
say). Being a finite and deterministic digital syste:;.n, it has only a finite 
number of possible states, and so it must eventually get into a state that 
it has been in before. Since it is deterministic, it must then do exactly 
what it did the first time it went through tbat state, and so it must cy­
cle. Since it is a reversible system, each state has a unique predecessor, 
and so given some initial configuration, our automaton cannot repeat 
any successor to this configuration without passing through the given 
initial configuration. This behavior should be contrasted with that ex­
hibited by irreversible CA. Such CA may enter a cycle at any point in 
time-they do not obey a constraint comparable to that which exists 
for RCA. This explains the empirical observation that RCA typically 
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have much longer periods than non-reversible CA. 

Now suppose our rule for our RCA happen& to be a computation­

universal one, which allows a rich evolution incl~ding the evolution of 

intelligent beings (computers if you prefer). 1 We can imagine the low­

entropy 2 initial state gradually becoming increasingly complex, and 

eventually beings arise and perhaps write books. As entropy contin­

ues to increase, the last surviving work of the noted author A falls 

to dust. The universe eventually becomes random looking, and all 

traces of structure a.nd purpose vanish. This randomness persists for 

an unimaginably long time, but not forever. Since our RCA is finite, it 

must eventually cycle. 

How does it cycle? Does it just suddenly fluctuate back into its 

initial configuration? 

There is a very simple way to see exactly what happens: starting 

from our given initial state, run our reversible rule backwards. Of 

course this is also an RCA rule[80]. For initial conditions which aren't 

time symmetric (very few are) we get a completely different evolution, 

but again from a low entropy start. A~ain we expect to get complex 

structures, and even beings, but completely different individuals and 

1 van· Neumann first proposed Cellular Automata as models in which, in princi­

ple, lif'e could arise through the operation of simple mechanical laws. He f'ound CA 

which supported patterm of states that could act as general-purpose computers, 

and which could make copies of themselves. 
21n this section, by entropy we mean some coarse-grained entropy such as those 

discussed in Scdion 2.8.1. 
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situations from what we got going the other way. Finally the last 
survivin~--work of the great author B falls to dust, and we eventually 
arrive at our high entropy state from this direction in time. So we see 
that the way that the RCA gets back to its initial configuration from 
the high-entropy state is by following in reverse an evolution that is 
just as rich as the initial evolution! 

To try to appreciate how st.range this is, let us continue to trace this 
second evolution through the high-entropy phase. For endless ages, the 
randomness persh:ts, but eventually we see the last surviving work of 
A emerge out of the chaos! This is quite surprising, since A has not 
yet lived, following the evolution from the given initial state in this 
direction in time. We have created a book written by A in a very 
indirect manner-by evolving a different universe, and then tracing 
randomness for a very long time! As we continue, we see A unwrite his 
books, and his whole universe unevolve, and finally we get back to our 
initial state. 

5.1.2 The order of events 

Has the entropy of the universe decreased in this second phase of the 
computation? Clearly it hasn't as seen from A's point of view-the set 
of states that constitute A's evolution is the same when computed in 
either direction in time. We just saw the states in the reverse order 
the second time. A's perception of events cannot depend upon the 
order in which we see these states-nothing in the states themselves 
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contains any information about which order we, on the outside, see 

them in. From A's point of view, the arrow of time goes from the 

simple initial state to the high-e:::itropy middle phase. There is a very 

sharp di&tinction between the direction in which we compute the states, 

and the direction in which time flows for beings living in the RCA. 

I would refer to the arrow of time relevant to the experience of be­

ings living in the RCA as the arrow of macro-causality. In order to 

make predictions about the future behavior of the world based only 

upon the observable macroscopic parameters, one would like to treat 

the unobservable microscopic variables as uncorrelated, so that the be­

havior of an average member of the ensemble consistent with the macro­

constraints may be assumed. This statistical assumption only has pre­

dictive power when going from low to higher entropy-in order to go 

the other way, non-neglectable correlations must be assumed. Thus it is 

entropy itself which defines the arrow of time for macroscopic phenom­

ena, and so entropy is always observed (by those inside the automaton) 

to increase, by definition. 3 

3This assumes that the direction of entropy increase is the same everywhere in 

the automaton at once. For certain initial conditions and certain types of rules, this 

is not the case. It seems, though, that all such discrepancies are unobservable Crom 

a given location within the automaton. 
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5.2 Synchronous causality 

Thus far all of our CA models have been based on the Newtonian no­

tion of a synchronous moment of time during which all cells everywhere 

are updated simultaneously. In this section we will discuss the problem 

of having systems which don't have any global clock simulate ordinary 

synchronous cellular automata. What such systems must do is preserve 

the causal structure of a synchronous evolution: the functional depen­

dence of a cell on the past states of other cells must be preserved, even 

if the relative timing of updating is changed. If a cell is temporarily 

ahead of the others, it must have the state that it would have had if 

all other cells had kept step with it. Though timing will not be deter­

ministic, at each place we want the right events to happen in the right 

sequence. 

5.2.1 CA which are effectively synchronous 

Implicit in the usual definition of cellular automata is the requirement 

that each step of updating should be equivalent to a simultaneous ap­

plication of the transition rule to all sites. 

Since we are unable to build machines which achieve perfect syn­

chronization of activity, we discretize time in order to achieve effectively 

perfect synchronization. The usual approach is this: all cells are up­

dated once, in a manner that doesn't depend on the order of updating, 

and then we repeat this process. 

For example, we might use two copies of our system, the old system 
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and the new system. We look at the neighborhoods in the old system, 

and construct the results in the new system. When we have completely 

constructed the new system, we no longer need the data contained in 

the old system, and so we can interchange the roles of the two systems, 

and begin a new updating step. 

Each complete updating is a unit of CA time: the actual physical 

time interval between consecutive steps is irrelevant-whether it is a 

picosecond or a year, one unit of time has passed in our automaton. 

The progression of such CA time-steps is analogous to the progression 

of months-it is January for everyone before it is February for anyone. 

This updating scheme makes use of the idea of a global moment of time: 

each cell must wa.it until a certain time before it can assume that all 

cells have finished the current step, and it is free to begin the next step. 

Just as the notion of a global moment of time is inessential in 

physics, it is also inessential in cellular automata. An effectively syn­

chronous updating can be achieved without it. 

5.2.2 Local synchronization 

Consider the example of a partitioning cellular automaton ( see Sec­

tion 2.3) with 2x 2 block partitions. Since each block is updated as a 

unit, we don't need to keep a copy of the old state while constructing 

the new. We can perform a complete step of updating by process­

ing each block of one partition separately; once all blocks have been 
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updated, we switch to the other partition. 4 

Once four adjacent blocks on the first partition have been updated, 
the data for the block on the second partition that is made up of the 
four corners of these blocks is ready for the next step. Let us call the 
partition that is used during even numbered time steps the even par­
tition, and the one used during odd numbered steps the odd partition. 
In general, if all four cells of a block on the even partition have been 
updated the same number of times, and this number is even, then the 
data in this block is ready to be updated again, and similarly for blocks 
on the odd partition. 

Thus if we kept track of how many times each cell has been updated, 
we could forget about the global state of our automaton and s1mply 
follow the local rule: Update any block in which the data is ready to 
be updated. Depending on how often and in what order blocks are 
processed using this rule, we would get an enormous variety of global 
states for our automaton. However, any cell which is marked as having 
been updated n times will have exactly the same value it would have 
had if the whole automaton had been updated synchronously n times, 
and so once again we have an effectively synchronous evoluti:>n. 

By only requiring that the data within a given block be ready, rather 
than the data for the whole space, we have eliminated the need for a 
global dock. If we call the number of times that a given cell has been 

4This is exactly the strategy that CAM-7 (see Chapter 7) uses to perform an 
effectively synchronous updating without needing to buffer old cell values; it is also 
used in Section 6.4.1 in our discussion of Serial Quantum Compnters. 
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updated the time at that cell, then our locally synchronized updating 

scheme may result in configurations in which rlifferent parts of the CA 

space correspond to different moments of time. Because of causality, 

there are constraints on the possible patterns of times that we can find 

in our automaton. For example, two adjacent cells can never differ by 

more than a single unit of time, since they can only be updated once 

as parts of two different blocks before they must again be updated as 

parts of the same block. If we look at the pattern of times in our CA 

space, we may see hills and valleys, but no discontinuities. 

5.2.3 Sychronization semaphores 

Our scheme of the previous section invdved blocks comparing cell times 

to see if they were equal, and also checking to see if they were odd or 

even. In fa.ct, since adjacent cells can differ in time by no more tha.n 

a single step, it is enough to compare whether adjacent cell times are 

both odd or both even, to tell if they are the same. Thus we need only 

store the parity of the time along with every cell, in order to make our 

local-synchronization scheme work. 

To use an analogy, an ordinary synchronous cellular automaton is 

like ·a tine of soldiers marching in step: all cells take a step forwards 

together. Our local synchronization scheme acts like a line of people 

walking forward hand-in-hand: no cell can can move forwards (i.e., 

be updated) until its neighbors have caught up. In this way they are 

basing their change on data from neighbors that have been updated the 
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same number of times as they themselves have. 

A piece of state information that is used to synchronize the opera­

tion of otherwise unsynchronized processes is called a semaphore. The 

general problem of making asynchronous logic simulate a synchronous 

cellular automaton using local synchronization semaphoret> is discussed 

in [80] and [71}; the somewhat simpler scheme based on time parity 

bits and partitioning that is described here will be sufficient for our 

purposes in this chapter. 5 

5.2.4 Asynchronous cellular automata 

We will use the term Asynchronous Cellular Automata (ACA) to re­

fer to systems in which the causal structure of a synchronous cellular 

automaton is simulated by an asynchronous system by means of local 

semaphores. One advantage of using such an unclocked logic scheme 

is that each cell is permitted to go as fast as it can: In a globally 

clocked scheme you must clock it more slowly than the time taken by 

the slowest ezpected cell, with some extra margin added for safety. A 

local scheme is held back only by the slowest actual cell. 

In detail, the ACA synchronization scheme that we have developed 

above for the 2 x 2 partitioning automata might operate as follows: If 

the time for a given cell is even, then its next update (assuming we're 

Sif we add a time parity bit to each cell of a second-order automaton, a scheme 

that is analogous to the one we have discussed here allows loc&l synchronization to 

replace a global clock. 
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Figure 5.1: Time parity bits form a topographical map showing the 

isochrones. 

only allowing forward steps, for the moment) must be as part of an 

even block. When all four cells of an even block have even times, then 

the updating should first make whatever changes to the cell values are 

mandated by the synchronous block rule we're simulating, and only 

then complement the time bits to record that these cells have been 

updated one additional time. Note that the cell data in all four cells 

doesn't have to change simultaneously; we only require that the new 

values must depend only on the state that held before the changes 

started. Once all cell data within the block has been updated, each 

cell's time-parity bit can be complemented. As soon as a cell's time­

parity becomes odd, it is available to be updated as part of an odd block, 

using this same proceedure. 

In Figure 5.1, we show a configuration of a two dimensional evolu­

tion that follows this scheme. Black indicates a. time-parity of 1, white 

indicates 0. Connected regions of a single color all have values cor-
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responding to the same moment of synchronous time. Thus the time 

parity bits trace out a sort of topographical map, in which isochrones 

take the place of level areas. 

The relative time between any two cells can be reconstructed by 

following any path between the two cells. If we call an odd row one that 

passes through the upper left corner of an odd block, and similarly for 

odd columns, then whenever we cross from an even row to an odd row 

in phase with a change from an even time parity to an odd parity, then 

this is a step backwards in time. A step that is out of phase with the 

positional parity change is a step forwards in time. 

In reversible partitioning schemes, such as the BBMCA model, we 

can imagine performing not only updating steps which take a block for­

wards, but backwards steps as well. As long as we only take steps when­

ever the cell data is ready for that step ( either forwards or backwards) 

and change the time parity whenever we take a step, the evolution will 

never lose track of the correct relative times at all cells.6 

Notice that the interpretation of our synchronization semaphores 

as time parity bits depends upon starting our system with a configura­

tion of these bits that is compatible with a synchronous evolution; we 

will find that other possibilities are sometimes useful. For this reason, 

we will adopt the more neutral term of guard bits to refer to this syn-

8H we contemplate a reversible physical implementation of our RCA system, we 

would have to worry about implementing the synchronization scheme reversibly as 

well. A thermodvnamically reversible version should certainly cause no difficulties 

( cf. [8]). 



5.3. Relativity 163 

chronization information-these bits protect the causal structure of our 

computation from disruption. Synchronization based on guard bits will 

be used in Section 6.4.2, when we discuss a parallel model of quantum 

computation, as well as in the next section. 

5.3 Relativity 

In the previous section, we discussed ways of simulating the causal 

structure of a synchronous cellular automaton without recourse to non-

local mechanisms. This led us to consider models which have different 

simultaneity properties than the synchronous systems that we began 

with. In this section we will discuss the relationship between these 

ACA models and Lorentz transformations. 

5.3.1 Simultaneity 

In Figure 5.2 we exhibit the causal structure of a I-dimensional par­

titioning cellular automaton. 7 As usual, time increases going up the 

page, while space is spread across the page. The nodes correspond to 

the transition rule of this automaton; the arcs correspond to the cell 

valu~s._ A horizontal line ( such as the dotted line marked a) through a 

set of arcs corresponds to the set of cell values that would be seen at a 

particular moment of synchronous time. 

Any line which passes only through arcs and which never has a slope 

7 A similar diagram appears in [71]. 
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Figure 5.2: Spacetime diagram showing the causal structure of a one dimen­

sional partitioning cellular automaton. 
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Figure 5.3: The circuit of Figure 2.8, updated on a diff'erent spacelike surface. 

steeper than 45° ( such as the dotted line marked b) represents a space­

like cut through our CA spacetime. Since all of these cu~s have exactly 

the same number of cells on them, and since no cell value is ever more 

than one step ahead or behind its neighbor, we can actually represent 

the configuration represented by this cut in a cellular automaton using 

guard bits, as discussed in the preceding section. 

Since the guard-bit synchro_nization scheme works in general, it 

works in particular in conjunction with a synchronous updating-we 

can add guard bits to our synchronous simulations of 2 x 2 block par­

titioning automata, and watch evolutions run on various spacelike sur­

faces. In Figure 5.3 we show a version of the BBMCA evolution of 

Figure 2.8, where the cells at the right edge correspond to times that 
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are 128 steps later than those on the left. Because of periodic boundary 

conditions, this configuration has the property that points at the right, 

which correspond to the most advanced moment of time, are adjacent 

to points on the left, which correspond to the most retarded moment. 

There is, however, no discontinuity, since the guard-bits only record the 

fact that the slope (in time) is always positive to the right. The rule 

for the updating is that every block is updated during the first step in 

which its guard hits permit updating. 8 

In Figure 5.4, we show the same system, with the lower right corner 

128 steps later than the upper left. In both figures, the particles travel 

more slowly going "downhill" than ·'uphill/ since the fact that a par­

ticle is seen earlier as it moves "downhill" partially undoes its forward 

progress. 

5.3.2 A Lorentz boost 

The situations illustrated in these figures are closely related to Lorentz 

transformations-for illustrative purposes we will go through the cor­

respondence in detail for the second figure, with the 45° "boost" (the 

8Since each block of guard bits is either complemented or not, the parity of 

bloc.ks on the unused partitions is conserved (see Section 3.1). Since all such guard­

bit blocks would have zero parity in a normal synchronous updating, we can use 

the parity on th6e inactive blocks to tell us whether or not the evolution we're 

watching is equivalent to a synchronous updating, at least locally. A topologically 

preserved uniform slope, such as is present in Figuie 5.3, is counted as synchronous 

by this accounting. 
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Figure 5.4: Same as previous figure, but with "boost" at a 45° angle. 

rule supports particles that move at the maximum velocity-the "light 

speed"-parallel and perpendicular to this boost, and so the discussion 

is simpler). In order to underst&:.1d what a normal Lorentz transforma­

tion might look like for these systems, it may help to imagine that the 

original system has somehow been physically built in such a way that 

the particles are actually realized by photons. 9 

Let us call the orginal system S, and the system in which a different 

simqltaneity is being simulated s•. In s• we see as simultaneous events 

that were separated in S by an amount- of time that increases linearly 

with distance. We can calculate the relative velocity that two inertial 

9 We could, for example, use short flashes of light for particles, and have appro­

priate photomultipliers, etc., inside all of the stationary "mirrors." 
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frames would have to have in order to produce the observed change in 

simultaneity. 

In the original system S, the maximum speed that any particle 

could travel at was one diagonal position per time step-individual 

particles do this. For the p~uposes of this discussion, we will call such 

particles photons, and take their velocity, the speed of light, as our unit 

of velocity. Now consider two events that are simultaneous in s•, and 

occuring in the upper left and lower right comers of Figure 5.4. The 

distance dz in the original system S between these two events is 256 

(in units of "light-travel-time"). The time difference dt between these 

two events, for the synchronous evolution S, is 128 steps. Ins•, the two 

corners are simultaneous, as they would be in any frame that shares 

the simultaneity properties of s•; therefore ~t' = 0 in our proposed 

moving frame, ar.d 

~t' = 0 = -y(~t - v~x) ( 5.1) 

and so v = ~t/ ~z = ~-Thus this is a boost of 1/2 the speed of light. 

We will let S' denote S as seen from a "rocket" frame moving at this 

speed. 

If we watch the particles in s•, we find that photons travel at a 

speed of 1/2 perpendicular to th~ boost, at speed 1/3 "downhill," and 

at speed 1 "uphill." 10 This anisotropy arises because we have changed 

10 Since the diagonal lines, which represent steps in time, move at the speed of 

light down and to the right, and since a photon must lose two steps of (orwa.rd 

travel each time it crosses one of these lines, these speeds are easy to predid Crom 

the change in simultaneity we are imposing. 
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the definition of simultaneity without adjusting distances or giving the 

system a net drift velocity. Furthermore~ there is ~n overhead in per­

forming the synchronization simulation which has nothing to do with 

relativity, and this must be factored out. 

As we have noted, events that are happening simultaneously ins• at 

two opposite corners will have Az = 256 and At = 128 in the original 

system S. Noting that At = ½Az, we can calculate what Az' (the 

distance between these two events in S') should be: 

Since the distance Az• we would measure in s• in this direction would 

be just Az, we must use 

A I 3 A • 
L.lX = -1 X 

4 
(5.2) 

Similarly, if we made a mirror-clock such as the one depicted in 

Figure 5.5, in the original system S the time taken for one round­

trip by the photon might be some time At. In the transformed system 

s•, since photons only travel at speed 1/2 in this direction, the mea­

sured round-trip time At• = 2At. Relativistically we would expect 

ll.t' = -yAt, and so we must use 

I 1 • At = --yAt 
2 

(5.3) 

Finally, in the "rocket'' system S' we would expect to see the parts of 

our original system that were stationary drifting past at a velocity v up 

and to the left. Since the distances and times in S'" must be adjusted 
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Figure 5.5: Two mirrors with a photon bouncing between them. 

to get what we would see in S', the drift velocity that we must add in 
s• to complete the correspondence is not simply v. If an object that is 
stationary in S is observed in S' to drift a distance Ax' in a time tit', 
then the relative velocity seen in S' will be 

Az' ~-yfix• 3 
V = -- = 4 - -v• At' }-yAt• :-- 2 

Thus for v = ½, we must add a drift of v• = ½ up and to the left to our 
systems•. Ifwe imagine such a drift, and use equations (5.2) and (5.3) 
to convert from s• distances to S' distances, then we can interpret s• 
as being a Lorentz boosted system (for example, with this correction, 
photons will travel at unit speed in all four directions). Of course this 
drift could have been calculated directly from the observed speeds of 
photons in s•, and the requirement that photons travel at the same 
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speed "uphill" and "downhill." 

Thus if we just watch the evolution of our transformed system s•, 

we see qualitatively what we would in a true Lorentz transformation. 

The system will be stretched somewhat along the direction of the boost, 

but otherwise all of the instantaneous features of each configuration will 

be correct. 

5.3.3 Lorentz invariance 

Lorentz transformations are important in physics because Lorentz in­

vasiance seems to be a property of physical law. For the BBMCA sys­

tem that we discussed above, there doesn't seem to be any important 

sense in which the law is form-invariant under a Lorentz transformation. 

Let us consider other candidates. 

In RCA gas models such as those discussed in Section 4.2, there is 

only one particle velocity-everything moves with this one velocity, and 

all collisions conserve momentum. We could imagine classical particles 

that move at the speed of light, and which we could, in a gedanken 

experiment, start off on a grid so that at integer moments, all particles 

are found back on the grid, much as we did for the Billiard Ball Model 

of Section 1.3. 

Now it is known that some of these lattice gas-systems, in the limit 

of slow flows, reproduce the isotropic Navier Stokes equation in terms of 

the behavior of particle densities[26]. It has been suggested 11 that such 

11Tommaso Toft"oli is the first to have suggested this, to my knowledge. 
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systems may actually be, in some statistical sense, Lorentz invariant. 

We have not reached a conclusion in this matter. 



Chapter 6 

Quantum Computation 

When we describe the operation of a computer, we are of course describ­

ing the dynamical evolution of a physical system. What distinguishes 

a computer from other physical systems is its ability to simulate many 

aspects of other physical processes (including, in particular, the logical 

operation of any other computer, given enough time and memory[52]). 

As we have seen, for several recent models of computation the mapping 

between the computer and the underlying physics is quite direct. This 

has lead us to ask· the question: How similar can the models used to 

describe computers be made to microscopic physics? This has an im­

portant bearing on the ultimate limitations of computing mechanisms, 

as we have seea. 

We have presented a number of deterministic models of computa-

173 



174 Chapter 6. Quantum Computation 

tion, including Fredkin's classical mechanical Billiard Ball model. But 

of course the world is quantum-mechanical, and so what we would re­

ally like is tG understand the computational capabilities of microscopic 

quantum systems. 

It may well be that to take best advantage of the computational ca­

pabilities of such systems we must reformulate our notion of a computa­

tion. However, in this chapter I will restrict my attention to the more 

straightforward problem of asking whether or not a.n ordinary deter­

ministic computation can be described within the quantum formalism 

by a plausible Hamiltonia.n.1 This discussion will be an extension of 

work by Benioft"[4,5] wh<t first raised this issue, and Feynman[23) who 

first exhibited a plausible Hamiltonian which could compute. I will 

use the BBMCA model of Section 2.4 as the basis of simple, uniform 

and explicit Hamiltonian models that embody the ideas of Benioff and 

Feynman, and then address for the first time the problem of construct­

ing "quantum" models of parallel computation[47]. The synchroniza-

1 We will not conlider here the very interesting issue of a computer which is a 

Universal Quantum Simalator [22]. Such a computer would be a QM system which, 

started from an appropriate initial state conesponding to a state of any given QM 

system, would nolve in time C proportional to that taken by the given system into 

&.QM-state corresponding to the t-evolved state of the given system. Measurements 

performed on the.simulator would correctly reproduce the QM statistics. one would 

have obtained bJ performing an experiment on the original system. Such a simulator 

would provide an alternative to the present computational methods used to predict 

the consequences of QM models. Deutsch[18) discusses this problem, but doesn't 

address the important issue of the spatial locality of the Hamiltonian. 
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tion scheme discussed in Section 5.2 was invented specifically for this 

purpose, and the BBMCA makes it possible to consider simple and uni­

form models which only involve the interaction of nearby neighboring 

subsystems. 2 

6.1 Approaches to Quantum Computa­

tion 

I will discuss two approaches that have been taken to the question of 

the possibility, in principle, of Quantum Computation (QC). Since the 

time-evolution operator in QM is always'a unitary (and hence invert­

ible) operator, both approaches are based on the notion of a reversible 

computer. 3 The two approaches are distinguished by whether the time­

evolution operator or the Hamiltonian operator is taken as the starting 

point for the discussion. 

6.1.1 Time-evolution operator approach 

The first discussion indicating that QC was not necessarily inconsistent 

with the formalism of QM was that of Paul Benioff [4,5]. It depends 

upon Uie observation that the Schrodinger evolution of the wave func-

2 A version or the material in this chapter appears in my paper • Quantum 

Computation[47]. 
3The "irreversibility" of the measurement process will not bother us here, since 

we will be concerned with a dynamical evolution governed by the Schrodinger 

equation-there will be no measurements while the computation is proceeding. 
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tion is perfectly deterministic. If one associates a basis vector with 

each possible logical state of a reversible computer, then the one-step 

time-evolution which carries each state into the appropriate next state 

is a permutation on the set of basis states, and so is given by a unitary 

operator. Formally, it is always possible to write down a.n hermitian op­

erator whose complex exponential equals this unitary operator. Given 

an initial logical-basis state, the Schrodinger evolution generated by 

this Hamiltonian will give the appropriate successor logic,J states at 

consecutive integer times. 4 

For example, if we let the possible configurations of the three state 

"computer" described in Figure 6.1 be represented by 

1 

A= 0 

0 

B= 

0 

1 

0 

0 

C= 0 

1 

then the time evolution given in Figure 6.1 can be represented by the 

unitary single-time-step operator 

U= 

0 1 0 

1 0 0 

0 0 1 

4 Although the Schrodinger equation is a linear differential equation, in QM we 
allow a large enough set of basis vectors (one per configuration) so that a unitary 
operator can take a computer through an arbitrary invertible sequence of configu­
rations. In particular, there is no difficulty in having the computer compute such 
"non-linear" functions as logical AND and OR. 
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Figure 6.1: A simple 3-state machine. H the "computer" is in state A, it 

will go into state B. State B goes into A, and C doesn't change. 

and from U we can find an hermitian matrix such that U = e-iH. In 

this case, 
:!!: _:!!: 0 2 2 

H= _:!!: :!!: 0 
2 2 

0 0 0 

6.1.2 Hamiltonian operator approach 

One would like the Hamiltonian operator H to be given as a sum of 

pieces, each of which only involves the interaction of a few parts of 

the computer which are near to each other. The most direct way of 

ensuring that H is of this form is to write H down ab initio, rather 

than derive it from U. 

Rkhard Feynman was the first to discuss this approach[23,6). He 

realized that if the unitary operator F which describes one step of the 

desired forward evolution can be written as a sum of local pieces, then 
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if we let H = F + F 1 be the Hamiltonian operator, H will also be a 
;.:., 

sum of local (i.e., nearby-neighbor) interactions. The time-evolution 

operator U(t) = e-iHt is then a sum of powers of F and F 1, taken with 

various weights. Thus if In) corresponds to the logical state of a com­

puter at step n (i.e., F In)= In+ l}) then U(t) In} is a superposition 

of configurations of the computer at various steps in the original com­

putation. This superposition contains no configurations which aren't 

legitimate logical successors or predecessors to In): if you make a mea­

surement of the configuration of the computer, you will find it at some 

step of the desired computation. If instead you simply measure some 

piece of the configuration which tells you whether the computation is 

done or not, then when you see that it is done, you can immediately 

look elsewhere in the configuration to find the answer, and be assured 

that it is correct. Alternatively, one may construct a superposition of 

configuration states that acts as a sort of wave-packet state in which 

the computation moves forward at a uniform rate. 

In order to write F = L Fi with F a unitary operator, Feynman 

described a computer in which only one spot is active at a time. If 

in.stead of taking I: F'; to be unitary we only require the Fi 's to be 

local, it turns out that we can describe a computer where all sites are 

active at once, but there is no longer a global time---synchronization 

becomes a matter of local intercommunication. 
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6.2 A reversible model of computation 

We will illustrate the two approaches in terms of the BBMCA model of 

Section 2.4. This model is an obvious candidate for us to try to describe 

in terms of a lattice of QM spins. Here QM may even be superior to 

classical mechanics, since it is more natural to have identical two-state 

systems in QM (cf. [95,41]). In such an RCA model, during one logical 

step information has only to be communicated to nearby neighboring 

spins-data-paths are very short and so the impact of the finite light­

speed restriction on computation speed is minimized. 5 

-

6.3 Time-evolution operator approach 

In order to implement the BBMCA rule as a QM model, we will consider 

a two-dimensional lattice of spins, each of which is in a spin-component 

eigenstate with respect to the z-direction, which is taken to be perpen­

dicular to the plane of the lattice. At each site, spin-up represents a 

logical 1, and spin-down a logical 0. 

At a given lattice site with coordinates (i,j), the projection operator 

l'i,; = (1 + ut,;)/2 projects states which have a logical 1 at site (i,j), 

and the operator Pi,j = (1 - ut)/2 = 1 - Pi,i projects states with 0 

at (i,j). The operator ai,; = (uf,; - iuY,J/2 lowers a 1 at (i,j) to--a O, 

while aL = (uf,; + iur,;)/2 raises a Oat (i,j) to a 1. 

5For computations which can take advantage of this architecture. See Chapters 

4 and 7. 
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We can now construct a unitary operator which will implement the 
BBMCA rule (Table 2.2) applied to a block of four sites, with upper­
left-corner at position (i,j): 

t t - -Ai,j = (ai,jai+t,;+ 1 + ai,;ai+1,;+1)P;+1,,Pi,;+1 
t t - -+(ai+1,;a;,;+1 + a;+ 1,,ai,;+i)Pi,;Pi+1,;+1 

( t t t t ) + a;,;ai+1,;ai,;+1ai+1,i+1 + ai,;ai+1,;a;,;+14;+ 1,,+ 1 
+l - (P,,;Pi+lJ+l + P,+1,;Pi,i+l - 2P;,;Pi+1,;P;,;+1Pi+1,;+1) 

If A;,, is applied to a configuration of 1 's and O's, all of the lattice 
sites except those in the block at (i,j) will remain unchanged-this 
h!ock will change according to the BBMCA rule. If we let 

Uo = II A;,; , U1 = IT Ai,j 
i,jnen i,jodd 

then U = U1 U0 is a unitary operator which exactly implements the 
BBMCA rule. 6 U(t) = U'l2 (tan even integer) will exactly correspond 
to a BBMCA evolution a.t even integral times. 

Now we will try to write U(t) = e-iHt, with Ha sum of local pieces. 
We begin by noting that Af,j = l (follows from the BBMCA rule). 
Therefore ((1- A· ·)/2}2 = (l -A· ·)/2 and exp(-i'.'!.(l -A··))= A·· 

1,J 1,J ' 'J. 1,J l,J (expand the exponential). If we let H,,; = i(l - A;,;), then 

Uo = II Ai,j = e-i E., .... 8 'J 
ij e,ren 

-i~ H U1 = e L.,,,odd ,,, 

61t has been suggested[4,56] that in order to construct a time independent H for a U such as this, it is necessary to know explicitly the configuration of 1 's and O's at each step of every possible computation in advance. 
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and U(t) = e-iHt, where H = Lijne1& Hi,; when the integer part oft is 

even, and H = Li; odd Hi,; at odd times. 

This U will reproduce the BBMCA evolution at all integer times. 

Intuitively, the reason we had to introduce a time dependence into H 

is because the H1,; 's at a single time step all refer to non-overlapping 

blocks of spins, and so they all commute, a.llowing the product U0 or 

U1 of exponentials to be turned into an exponential of a sum. The 

even-block and odd-block Hi,; 's don't all commute-since the blocks 

overlap it makes a difference in which order the Hi,; 's are applied. 

6.4 Hamiltonian operator approach 

6.4.1 Serial computer 

We can use Feynman's method to arrive at a time-independent version 

of the BBMCA. 

We will use a 6x6 lattice (Figure 6.2) to illustrate the technique. 

The boundaries are periodic-we can imagine the lattice as being phys­

ically wrapped around into a torus, so that opposite edges touch. Now 

we divide a complete updating of the lattice into 18 independent steps, 

as shown in Figurt~ 6.2. The step during which each 2 x 2 block is up­

dated is indicated neo.r its center, and ( i1,, j1,) are the coordinates of the 

upper-left-hand comer of the kth block. We introduce an extra "clock" 

spin at the center of each block, and let c,, = u; - iur be the lowering 

operator acting on this clock spin. 
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0 1 2 
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. . . . . . . . . :11 :10 

First 9 steps. Next 9 steps. 

Figure 6.2: A 6 x 6 lattice with periodic boundaries. All 2 x 2 blocks in the 

solid partition are updated, and then all blocks in the dotted partition. 

Because of periodicity, 9 through 17 mark the centers of dotted blocks. 

We can now write the unitary operator F which in 18 steps accom­

plishes one complete updating of all the even and then all of the odd 

blocks on the lattice, as a sum of operators which each act on one block 

only: 

17 

F = L F1c , where F1c = Ai.,i• cl+i c1c 
/r:O 

and we start the lattice off with the clock-spin in block #0 up, and all 

of the rest of the clock-spins down. 

If IO} is the initial state, then F 10} = II}, the state where block 

#,0 has been updated, and block #1 is waiting to be updated, F II) = 

12), ... , F I 17) = 118}, the state where one complete updating of all the 

blocks has been accomplished and the "up'' clock-spin is in block #0, 

etc. 
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We have thus been able to write the forward time-step operator as 

a sum of local pieces by serializing the computation-only one block of 

the automaton is active during any given step. 

Now we may write down a Hamiltonian operator H = F + Ft 

E1c H1c (where H,. = F1c + Fl) which is a sum of local interactions. If 

In} is evolved for a time t, it becomes e-iHt In} which is a. superposi­

tion of configurations of the serialized automaton which are legitimate 

successors and predecessors of In). 

We would like to make our automaton evolve forwards at a uniform 

rate--we can do this by constructing a wave-packet state. If we let N 

be the step-number 7 operator (N In} = n In)) then 

where 

V = [N, HJ _ F - pt 
i i 

[V,H] = 0 

Thus the eigenstates of V have (N) which changes uniformly with 

time, and they can be chosen to be simultan~ous eigenstates of H also. 

This allows us to make a superposition state from V's eigenstates which 

., 10) is distin~uished from 118) by looking at the computation part (as opposed to 

the clock spins part) of the state. To define N, we must choose some configuration 

-
of 1 's and O's on each dynamical 01bit of the BBMCA rule and call it the first 

configuration. For our "quantum" system we will only make use of states that have 

11 single clock-spin up: step number zero corresponds to the up clock-spin being in 

block #0 of \he first configuration. 
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has a fairly sharply-peaked step-number, and for which the computation 

proceeds at a uniform rate. 

This corresponds closely to Feynman's original construction. Peres 

[ 56] noticed that we have the freedom to introduce coefficients w1c mul­

tiplying each H1c, and that with au appropriate choice (neglecting for a 

moment the Ai,j's) H becomes essentially the angular momentum op­

erator Jz. This technique would allow us to start the system in state 

10) and be assured of finding the system in state I 17) after some pre­

scribed time T that sets the scale for the w, 's. However, the system 

would then undo its evolution, and be back in state IO} at time 2T. 

Thus this technique is not useful for making our system run through a 

repeating computation cycle. If we want V to commute with H, then 

we are forced to set the w1r 's to a constant, as Feynman did. 

This seems to be the best we can do with a serial computer that 

runs in a cycle. A Hamiltonian with a clock which gives exactly F when 

exponentiated ( which is what we would ideally want) is necessarily non­

local[57). 

6.4.2 Parallel computer 

In order to be able to write F = E Fi,j with Fa unitary operator, we 

described a computer in which only one spot was active at a time. We 

will now drop the restriction that E Fi,i be unitary. 

Let H = E Fi,j + Fi~j• U(t) = e-iHt will now be a sum of terms 

involving all possible combinations of powers of the various Fi,/s and 
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Fi~/s. If U(t) 10) is to he a superposition of configurations which cor­

respond to legitimate classical evolutions from IO), then states where 

part of the automaton has been updated, while other parts haven't, 

must be allowed. This sort of cellular automaton where there is no 

global clock (as there has been in all of our preceeding discussion) is an 

asynchronous cellular automaton-such systems have been discussed in 

Section 5.2. 

For an ACA to simulate an ordinary (synchronous) CA it uses a 

little extra state information, to tell the places that get ahead to wait 

for their neighbors to catch up. For a block rule such as the BBMCA, 

the additional information consists of a single guar:J bit added to every 

cell. The rule applied to a block will be the same &S before, except that 

(for a forward step) an even block can only be updated if all four guard 

bits are O's, and odd blocks only if they are all one's. When a block is 

updated, its guard bits are all complemented. As we have seen! this is 

sufficient to ensure that all four values in a block will always correspond 

to the same (synchronous) moment of time when they are updated. The 

guard bits will record the hills and valleys in time (relative numbers of 

cell updates) as a sort of topographical map, drawn using only 1 's and 

O's. 

If_ we 1magme that the guard bits are spms m a lattice that 

sits directly below our original BBMCA lattice, and let 9i,j he 

the lowering operator for a spin at the site (i,j) on the guard­

bit lattice, then our forward-step operator for the site (i,j) is 
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given by F:,; = Ai,; gf,; gf+1,; gf,j+i gf+1,j+1 for ( i, j) even, Fi,j = 

Ai,; 9i,; 9i+1,; 9i,j+t 9i+1,;+1 for (i,j) odd, and F = E Fi,; acting on a 

given configuration will produce a superposition of configurations, each 

of which has advanced one step at some location. 

Fi~; has the g's and g1's interchanged, relative to the definition of 

~.;, and so it implements a possible step backwards rather than for­

wards. 

For both even and odd blocks, H·· 1,J = 
A(t t t t ) i,j 9i,j 9i+l,j 9i,j+l 9i+l,j+l + 9i,j 9i+l,j 9i,j+l 9i+l,j+l , 

Fi,; + Fi~; 

and H 

Lnen or odd blocb Hi,j 

= 

This model can be made to perform a computation by occasionally 

checking for a "computation done" flag-some particular group of cells 

which the computation will set to certain values when it is done. The 

appearance of such a flag ensures that there is an unbroken chain of sites 

that connect the flag to the place that signaled it to appear, none of 

which can correspond to moments of time in the equivalent synchronous 

evolution that precede the moment the signal passed that site. Thus 

if the flag signal was produced by a process that first put the answer 

somewhere, the answer must still be available there when the "done 

flag" is seen .. 

_ Of course what we would really like to do is to show that we can 

make this sort of computer run at a uniform rate. The difficulty here is 

that if we let N be an operator which, when applied to a configuration 

state, returns the average synchronous-step in that configuration, and 
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V = [N, H] /i, we find that V doesn't commute with H, and so the 

situation is more complicated than it was in the serial-computer case. 

I don't know if this computer can be made to "run" in a reason­

able fashion. Pe!haps it would be worthwhile to study ways in which 

such a model could be driven by an external field-turning it into a 

thermodynamically reversible model, a la Bennett. 

6.5 Discussion 

As it is quantum mechanics which today embodies our most funda­

mental understanding of microscopic physical phenomena., in our quest 

for faster and more efficient computation we are naturally led to the 

problem of trying to describe computing mechanisms which operate in 

an essentially quantum-mechanical manner. 

In this chapter I have attempted to extend F,_~·~1man's method for 

constructing a "quantum" Hamiltonian model of computation in order 

to arrive at a model in which the parallelism inherent in the operation 

of physical law simultaneously everywhere is put to use. The com­

bination of parallelism and locality of interadion makes such models 

asynchronous: I introduced a local synchronization scheme to allow 

such a model to simulate a synchronous causality. I arrived at a model 

which, started from any state on a given (asynchronous) computatienal 

orbit, will only visit other states on this same orbit, or superpositions of 

such states. It is not clear how to make such a model run at a uniform 

rate. 
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Chapter 7 

Cellular Auto01ata Machines 

The charter of the Information Mechanics Group at the MIT Labo­
ratory for Computer Science has been to study the physical bases of 
computation, and the computational modeling of physics-like systems. 
This has led us to study areas such as reversible computation and cel­
lular automata. 

In 1981, our frustration with the capabilities of conventional com­
puters for simulating cellular automata became acute when we tried to 
study the large-scale, long-term behavior of some remarkable reversible 
rulesr We were.also excited by the prospect that with more appropri­
ate hardware one would be able to run cellular automata at the speed 
of a movie rather than that of a slide show, and actually watch their 
time-averaged macroscopic evolution. 

189 
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Tom Toffoli built the first prototype at home, using a few TTL 

chips-a sequential machine that scanned a two-dimension3.l array of 

cells, producing new states for the cells fast enough and in the right 

order so that it could keep up with the beam of an ordinary raster-scan 

television monitor. After a few years of experimentation and refine­

ment, we arranged for a version of our machine, namely CAM-6, to be 

produced commercially, so that others could get in on the fun[l4,80]. 

The architedure of this machine is discussed in Section 7.3, and my 

design for a much larger machine is discussed in Section 7 .6. 

The existence of CAM's (Cellular Automata Machines) has already 

ha.d a. direct impact on the subject of CA simulations of fluid mechanics. 

In playing with gas-like models, we found one that Yves Pomeau had 

previously investigated-the HPP gas[31 J.1 As Pomeau tells us, seeing 

his CA running on our machine made him realize that what had been 

conceived primarily as a conceptual model could indeed be turned, by 

using suitable hardware, into a computationally accessible model, and 

stimulated his interest in finding CA rules which would provide better 

models of fluids[26]. 

In fact ( as we shall see below) the ad vantages of an architecture 

optimized for CA simulations are so great that, for sufficiently large 

experiments, it becomes absurd to use any other kind of computer. 

1 Pomeau 's result was brought to our aUention by Gerard Vichniac, then working 
with our group. 
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7.1 Truly massive computation 

Cellular automata constitute a general paradigm for massively parallel 

computation. In CA, size and speed are decoupled-the speed of an 

individual cell is not constrained by the total size of the CAM. Maximum 

size of a CAM is limited not by any essential feature of the architecture, 

but by economic considerations alone. Cost goes up essentially linearly 

with the size of the machine, which is indefinitely extendible. 

These properties of CAM's arise principally from two factors. First, 

in conventional computers, the cycle time of the machine is constrained 

by the finite propagation speed of light-the universal speed limit. The 

length of signal paths in the computer determines the minimum cycle 

time, and so there is a conflict between speed and size. In CA, cells 

only communicate with spatially adjacent neighbors, and so the length 

of signal paths is inherently independent of the number of cells in the 

machine. Size and speed are decoupled. 

Second, this locality permits a modular architecture: there are no 

addressing or speed difficulties associated with simply adding on more 

cells. As you add cells, you also add processors. Whether your module 

of space contains a separate processor for each cell or time-shares a 

few processors over many cells is just a technological detail. What is 

essential is that adding more cells doesn't increase the time needed to 

update the entire space-since you always add associated processors at 

a commensurate rate. For the forseeable future, there are no practical 

technological limits on the maximum size of a simulation achievable 
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with a fixed CAM architecture. 

The reason that CA can be realized so efficiently in hardware can 

ultimately be traced back to the fact that they incorporate certain 

fundamental aspects of physical law, such as locality and parallelism. 

Thus the structure of these computations maps naturally onto physical 

implementations. It is of course exactly this same property of being 

physics-like that makes CA a natural tool for physical modeling ( e.g., 

fluid behavior). Von Neumann-architecture machines emulate the way 

we consciously think: a single processor that pays attention to one 

thing at a time. CA emulate the way nature works: local operations 

happening everywhere at once. For certain physical simulations this 

latter approach seems very attractive. 

7.2 A processor in every cell? 

In order to maintaill: the advantages of locality and parallelism, CAM's 

should be constructed out of modules, each representing a "chunk" of 

space. The optimal ratio of processors to cells within each module is a 

compromise dictated by factors such as 

• technological and economic constraints, 

• the relative importance of speed versus simulation size, 

• the complexity and variability of processing at each ce!l, 

• the importance of three-dimensional simulations, 

• 1/0 and inter-module communications needs, and 
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• a need for analysis capabilities of a less local nature than 

the updating itself. 
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Just to give an idea of one extreme at the fine-grained end of the 

spectrum, consider a machine having a separate processor for each cell, 

and some simple two-dimensional cellular-automaton rule built in. 2 We 

estimate that, with integrated-circuit technology, a. machine consisting 

of 10n cells and having an update cycle of 100 pico-seconds for the 

entire space will be technologically feasible within 10 years. If the same 

order of magnitude of ha.rdware resources contemplated for this CAM 

( using the same technology) were assembled as a serial computer with 

a single processor, the machine might require seconds rather than pico­

seconds to complete a single updating of all the cells. 

There are serious technological problems which must be overcome 

before three-dimensional machines of this maximally-parallel kind will 

be feasible. The immediate difficulty is that our present electronic tech­

noiogies are essentially two-dimensional, and massive interconnection 

of planar arrays ( or "sheets") of cells in a third dimension is difficult. 

In the short term, this problem can be addressed by time-sharing rel­

atively few processors over rather large groups of cells on each sheet; 

this allows interconnections between sheets to also be time-shared. The 

archi~ectures of the CAM's built by our group make use of this idea. 

2This approach does not necessarily restrict one to a single specific application. 

There are simple universal rules (cf. LDCIC in Sectbn 4.4) which can be used &o 

simuiate any other 2-dimensional rule in a local manner. 
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A more fundamental problem which will eventually limit the size of 

CAM's is heat dissipation: heat generation in a truly three-dimensional 

CAM will be proportional to the number of cells, and thus to the volume 

of the array, while heat removed must all pass through the surface of 

this volume. As we have discussed in Chapter 1, this problem can in 

princip&.l be reduced dramatically by employing reversible logic, and a 

universal RCA rule such as the BBMCA rule of Section 2.4. 

7.3 An existing CAM 

CAM-6 is a cellular automata machine based on the idea that each 

space-module should have few processors and many cells. In addition 

to drastically redacing the number of wires needed for interconnecting 

modules ( even in two dimensions) this allows a great deal of flexibility in 

each processor while still maintaining a good balance between hardware 

resources devoted to processing and those devoted to the storage of 

state-variables (i.e., cell states). 

Each CAM-6 module contains 256K bits of cell-state information 

and eight 4K-bit lookup tables which are used a.s processors. Both cell­

state memory and the processors are ordinary memory chips, similar 

to those found in any per;onal computer. The rest of the machine 

consists of a few dozen garden-variety TTL chips, and one other small 

memory chip used for buffering cell data as it is accessed. All of this fits 

on a card that plugs into a personal computer (we used an IBM-PC, 

because of its ubiquity) and gives a performance, in many interesting 
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CA experiments, comparable to that of a CRAY-1.3 

The architecture which accomplishes this is very simple. 

Cell-state memory is organized as 65536 cells in a 256 x 256 array, 

with 4 hits of state in each cell. The cell states are mapped as pixels on 

a CRT monitor. To achieve this effect, all 4 bits of a cell are retrieved 

in parallel ( with the array being scanned sequentially in a left-to-right, 

top-to-bottom order). The timing of this scan is arranged to coincide 

with the framing format of a normal raster-scan color monitor-cell 

values are displayed as the electron beam scans across the CRT. Thus 

a complete display of the space occurs 60 times per second. 

Such a memory-mapped display is very common in personal com­

puters. What we add (see Figure 7.1) is the following: as the data 

streams out of the memory in a cyclic fashion, we do some buffering 

(with a pipeline that stretches over a little more than two scan lines) 

so that all the values in a 3 x 3 window ( rather than a single cell at a 

time) are available simultaneously. We send the center cell of this win­

dow to the color monitor, to produce the displav as discussed above. 

Subsets of the 36 bits of data contained in this window ( and certain 

other relevant signals) are applied to the address lines of lookup tables: 

3 For I.he simulation of extremely simple CA rules, without any simultaneous 

analysis or display processing, any computer equipped with raster-op hardware will 

be able to perform almost as fast as CAM-6, since this CAM is really just a specialized 

raster-op processor. These computers will not be able to compete as the processing 

becomes more sophisticated, or as we add more modules to simulate a bigger. space 

without any slowdown. 
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the resulting 4 output bits are inserted back in memory as the new 
state of the center cell. In essence, the set of neighbor values is used 
as an index into a table, which contains the appropriate responses for 
each possible neighborhood c<l!e. Even when a new cell state has been 
computed, the above-mentioned buffering scheme preserves the cell's 
current state as long as it is needecl as a neighbor of some other cell 
still to be updated, so that every 60-th of a. second an updating of the 
entire space is completed exactly a.s jf the transition function had been 
applied to all cells in parallel. 

Four of the eight available lookup-table processors are us~d simul­
taneously within each module, each taking care of updating 64K bits 

+ 
251x2Y 
4-bil ulla 

+ 

( 

) 

tK • 4 
lookup &&ole 

Pi"'°liJI• bulra 

Figure 7.1: As the 4 planes are. scanned, a stream of 4-bit cell values flow 
through a pipeline-buffer .. From this buffer, 9 cell values at a time are avail­
able for use as neighbors. Of these 36 bits, up to 12 are sent to the lookup 
table, which }>roduces a new 4-bit cell value. 
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of cell-state. The other four auxiliary iookup tables can be used, in 

conjunction with a color-map table and an event-counter, for on-the­

fly data analysis and for display transformations. They can also be 

used directly in cell updating. A variety of neighborhoods are avail­

able, each corresponding to a particular set of neighbor bits and other 

useful signals that can be applied as inputs to the lookup tables. These 

neighborhoods are achieved by hardware-multiplexing the appropriate 

signals under software control of the personal-computer host. 

Most of CAM-6's power derives from this use of fast RAM tables 

(which C"n accomplish a great deal in a single operation) as processors. 

Connectors are provided to allow external transition-function hard­

ware ( such as larger lookup tables or combinational logic) to be sub­

stituted for that provided on the CAM-6 module. Such hardware only 

needs to compute a function of neighborhood values supplied by CAM-

6, and settle on a result within 160 nanoseconds. The CAM-6 module 

takes care of ~pplying this function to the neighborhood of each cell 

in turn and storing the result in the appropriate place. If the external 

source for a new cell-value is a video camera ( with appropriate synchro­

nization and A/D conversion), then CAM-6 can be used for real-time 

video processing. 

Th, connectors also allow external signals to be brought into the 

module as neighbors, allowing the output of an external random num­

ber generator, or signals from other CAM-6 modules, to be used as 

arguments to the transition function. When several modules are used 
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together they all run in lockstep, updating correspond~ng cell positions 

simultaneously. Three-dimensional simulations can be achieved by hav­

ing each module handle a two-dimensional slice, and stacking the slices 

by connecting neighbor signals between adjacent slices. 

The hardware resources and usage of CAM-6 are discussed in more 

detail in the book Cellular Automata Machines: a new environment for 

modeling[BO]. For illustrative purposes a iew of the physical modeling 

examples discussed in this book will be surveyed in the next section 

(some of these are discussed in more detail in Chapter 4). 

7.4 Physical modeling with CAM-6 

CAM-6 (simply 'CAM' in this section) is a general-purpose cellular au­

tomata machine. It is intended as a laboratory for experimentation, 

a vehicle for communication of results, and a medium for real-time 

demonstration. 

The experiments illustrated in this section were performed with a 

single CAM module, with no external hardware attached. 

Time correlations. Figure 7.2 shows the results of some time-

correlation experiments that made u!le of CAM's event counter. In these 

simulations, two copies of the same system were run simultaneously, 

each using half of the machine. Corresponding cells of the two systems 

were updated at the same moment. Each run was begun by initializing 

both systems with identical cell values, and then holding one of the 
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Figure 7.2: Time-correlation function v(t) for HP.P-G.lS (a), TM-G.&S (b), and 

FBP-C.lS (c). 



200 Chapter 7. Cellular Automata Machines 

systems fixed while updating the other a few times. The systems were 
then updated in parallel for several thousand steps, with a constant 

time-delay between the two versions of the same system. Velocity­

velocity autocorrelations were accumulated by comparing the values of 
corresponding cells as they were being updat~d, and sending the results 

of U:.e comparisons to a counter that was read by the host computer 
between steps. In addition to time-correlations, space and space-time 

correlations could similarly be accumulated simply by introducing a 
spatial shift between the two systems before beginning to accumulate 
correlations. The three time-correlation plots refer to three different 

iattice gasesj each data point represents the.accumulation of over a bil­
lion comparisons. The whole experiment entailed accumulating about 
3/4 of a trillion comparisons, and took about two-and-a-half days to 

run. 

Self diffusion. Figure 7.3 is a histogram showing the probability 

that a particle of the TM-GAS lattice gas (see Section 4.2.1) started at the 
origin of coordinates will be found at a. position (z, y) after some fixed 

number of steps (1024 steps in this case). 4 The data was accumulated 
by "marking" one of the particles ( using a different cell value for it 
than for the rest, but not changing its dynamics) and then using the 

auxilliary lookup tables in combination with the event counter to track 
it.s collisions, and hence its movements. For each ( z, y) value the height 
of the plot indicates the number of runs in which the rarticle ended up 

4This experiment was conducted by Andrea Califano. 
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Figure 7 .3: Histogram of P( z, y; t )-the probability that a particle of TM-G.lS 

will be found at z, y at time t-as determined by a long series of simulation 

runs on CAM. 
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Figure i.4: Expansion of a TH-GAS cloud in a vacuum. Repeated collisions 

between particles and with container's walls eventually lead to thorough 

t hermalization. 

at that point. 

Though such an experiment requires a massive amount of computa­

tion, the essential results of each run can be saved in a condensed form 

( as a string of collision data for a single particle) for post-analysis. In 

this way, a single experiment can be used for studying various kinds of 

correlations. 

Thermalization. Figure 7.4 shows the expansion of a clump of 

particles of TM-GAS. In this experiment one bit of state within each 

cell is devoted to indicating whether or not that cell contains a piece 
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Figure 7.5: A plane pulse traveling towards a concave mirror (a) is shown 

right after the reflection (b) and approaching the focal point ( c). 

of the wall; this bit represents a boundary-condition parameter of the 

simulation, and doesn't change with time. Other state information in 

each cell is used to simulate the moving gas. Cells which don't border 

on a wall follow the TM-GAS rule. Near a wall, the rule is modified so 

that particles are reflected. An arbitrary bou,1dary can be simulated 

simply by drawing it-here we've drawn a jug. Initially it is evident 

that there are only four directions of travel available to the particles, 

but as the gas equilibrates this microscopic detail becomes invisible. 

Reflection and refraction. Figure i .5 shows exactly the same kind 

of simulation as Figure 7 .4, but with a different initial condition. Here 

we'vP. drawn a wall shaped as a concave mirror, and illustrate reflection 

of a density enhancement which is initially travelling to the right. For 

compactness, we use here a special kind of high-density nondissipative 

wave (a "soliton,,) that this rule supports (on a slightly larger sea.le, 

such phenomena can of course be demonstrat.ed with ordinary near-
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Figure i.6: Refraction and reflection patterns produced by a spherical lens. 

equilibrium "acoustic" waves). 

In a similar experiment, Figure 7 .6 sho-Ns the refraction of a wave 

by a lens. As before, we draw our obstacle by reserving one bit of each 

cell's state as a spatial parameter denoting whether the cell is insidt'.' 

or outside the lens. Particles outside the lens follow a lattice-gas rule. 

Inside the lens, this rule is modified so that particles travel only half 

as fast as outside (this is accomplished simply by having the particles 

move only during half of the steps). Rules that depend on time in such 

a manner are provided for in CAM's hardware by supplying "pseudo­

neighbor" signals that can be seen simultaneously by every cell as part 

of its neighborhood, and can be changed between steps under software 

control. 

- Tracing a flow. Figure 7. i illustrates an experiment in which 

smoke is used to trace the flow of a lattice gas. Frame (a) shows a lattice 

gas with a net drift to the right-this is not. evident if we don't color 

the particles to indicate their velocit.ies. Frame (b) shows the diffusion 
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Figure 7.7: (a) The direction of drift is invisible if the fluid has uniform 

density. (b) Markers ejected by a smokestack diffuse in the fluid. ( c) On a 

larger-scale simulation, the streamlines start becoming visible. 

of particles released from a single point. This source is implemented in 

the same manner as the mirrors and lenses discussed previously-we 

mark the cells that are to be sources, and follow a different rule there. 

The "smoke" particles released from this source are colored differently 

from the other particles; however, the dynamics is "color-blind," and 

treats them just as ordinary gas particles. By looking only at these 

diffusing smoke particles, one can immediately see their collective net 

drift. Frame (c) shows the same phenomenon as (b), but using a space 

16 times larger ( 1024 x 1024 rather than 256 x 256 ). Since the width of 

the diffusion pattern is proportional to Jt, whereas the net distauce 

a particle drifts is proportional to t, the drift be-::omes more and more 

evident as the scale is increased. 

The larger cellular automaton shown in that last frame was simu­

lated by a single CAM module,5 using a technique called scooping. The 

5This experiment was conducted by Tom Cloney. 

':'­,· 
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Figure 7.8: Dendritic growth by diffusion-limited aggregation. The process· 

was started from a one-cell seed in the middle, and with a 10% density of 

diffusing particles. 

1024x 1024 array of cells resides in the host computer's memory, and 

CAM's internal 256 x 256 array is used as a cache: this is loaded with 

a portion of the larger array, updated for a couple of dozen steps, and 

then stored back; the process is repeated on the next portion, until all 

of the larger array has been updated. Since scooping entails some over­

head ( data must be transfered bP.tween main memory and cache, and 

data at the edges of the cache-where some of the neighbors are not 

vi:;ibk-must be recomputed in a later scoop~' the effective cell-update 

rate drops somewhat, but to no worse than about half of CAM's n ... ,_ ·11d 

rate. A similar technique can be used for three-dimensional simula­

tions with a single CAM (this works particularly well with partitioning 

rules-see Section 2.3). 
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Diffusion-limited aggregation. Figure 7 .8 shows two stages in 

the growth of a dendritic structure by a process of diffusion-limited 

aggregation[66,88]. There are three coupled systems here, each using 

one bit of each cell's state. The first system is a lattice gas with a 50% 

density of particles. This gas is used only as a "thermal bath" to drive 

the diffusion of particles in a second system. The contents of the cells 

in this second system are randomly permuted in a local manner that 

depends on the thermal bath. The third system is a growing cluster 

started from a seed consisting of a single particle: whenever a particle of 

the diffusing system wanders next to a piece of the cluster, the particle 

is transferred to the cluster system, where it remains frozen in place. 

Owing to this capture process, there will be fewer diffusing particles 

near the growing cluster than away from it, and the net diffusion fl.ow 

is directed toward the cluster. Most of the new arrivals get caught on 

the periphery of the cluster, giving rise to a dendritic pattern. 

Ising spin systems. Figure 7.9 contains two views of a determin-

istic Ising dynamics[l 7,85,59,34]: both frames correspond to a single 

configuration of spins. The one on the left shows the spins themselves, 

the one on the right illustrates the use of CAM's auxiliary tables to dis­

play in real-time a function of the system's state rather than the state 

itself=-in this case, the bond energy. One can watch the motion of 

this energy ( which is a conserved quantity and thus obeys a continuity 

equation) while the evolution is taking place; one can run space-time 

correlation experiments on either magnetization or energy, etc. By us-
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Figure 7.9: (a) A typical spin configuration; (b) the same configuration, but 

displaying the energy rather than the spins. 

ing a heat bath ( as in the preceding aggregation model) one can also 

implement canonical Ising models. Figure 7.10 plots the magnetiza­

tion in such a model versus the Monte Carlo acceptance prohability. 6 

Techniques which allow CAM itself to generate (in real-time) the finely­

tunable random numbers needed to implement the wide range of ac­

ceptance probabilities used in this experiment are discussed in !SO]. 

The actual method used in the experiment plotted here involved using 

a second CAM machine for this purpose and taking advantage of an 

instant-shift hardware feature that happens to be present in CAM-6; 

this feature is central to the design of CAM- 7. 

Other phenomena. Other physical phenomena for which CAM-6 

models are provided in [80j include nucleation, annealing, erosion, ge-

8This experiment was conducted by Charles Bennett. 
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Figure 7. lG: Magnetization µ. in the canonical-ensemllle model,) versus the 

Monte Carlo acceptance probability. Note the sharp transition at the critical 

temperature T.,rit· 

netic drift, fractality, and spatial reactions analogous to the Zhabotin­

sky reaction. A number of models which are interesting for the study 

of the physics of computation are also given, including the BBMCA 

model of Section 2.4 and some models of asynchronous computation. 

The examples in our book were developed to illustrate a variety of tech­

niques for using CAM-6; they may also serve to clarify what we mean 

when we call this device a general-purpose cellular automata. machine. 

7.5- CAM-7 

If we scale CAM-6 up sixteen-thou3andfold we arrive at a machine with 

hardware resources comparable to those of a large mainframe computer, 
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but arranged in a manner suitable for extensive scientific investigations 

using cellular automata. In this and subsequent sections we will de­

scribe our plan for this CAM· 7 machine; this design is still undergoing 

development. 

The principal hardware specifications of CAM-7 will be: 

• 2 gigabits of cell-state memory (120ns dynamic RAM) 

• 1/2 gigabit of lookup-table memory (35ns static RAM) 

• 8192 plane-modules (each 512x 512) operating in parallel 

• 200 billion c~ll-bit updates per second (8192 every 40ns) 

• 1/0 bus 8192 bits wide, with a 40ns synchronous word rate 

( all data appears on this flywheel bus once each step) 

• 2-dimensional simulations on a 16384 x 8192 x 16 region 

• 3-dimensional simulations on a 512x512x512x 16 :-egion 

• any 512x512 region can act as its own TV frame buffer 

• any 16 bits in a 1025x 1025 region can be used as a nei~hborhood 

As few as 16 of the plane-modules that constitute a complete CAM-

7 machine could be assembled into a 512x512x16 fractional machine 

capable of performing 400 million cell-bit updates per second. Such a. 

machine could be integrated into a personal computer much as CAM-

6 ..was, at a similar cost. As many as 100 or more complete CAM-7 

machines could be connected together, to perform much larger two 

or three dimensional simulations-the constraints are really economic 

rather than technological. 
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7.6- CAM-7 Architecture 

This machine's speed comes from its parallelism: the machine is made 

out of ordinary commodity RAM chips, driven at full memory band­

width, plus some rather simple "glue" logic which will almost all go 

into a semi-custom controller-chip associated with each plane-module. 

We feel that this restriction to inexpensive memory is important, since 

it should make it economically feasible to build several CAM-7 machines 

and connect them together to perform CA experiments which involve 

many trillions of updates per second. 

7.6.1 Basic structural elements 

The design really consists of two separate parts: a "data flywheel" 

which sequentially runs through all the cell data once each step, and 

lookup tables which transform the cell data as it passes through them. 

The data flywheel is made up of 8192 plane-modules, each of which 

is a 512 x 512 x l array of bits. The scanning of a module proceeds as 

for a memory-mapped displa.y (just as it did for CAM-6). Each module 

puts out one bit every 40 nanoseconds, and takes in one bit at the same 

time. 

T~e lookup tables are each connected to 16 plane-module outputs. 

Every 40 nanoseconds they return a set of 16 new cell values which are 

injected back into the modules (see Figure 7.11). 

This selection of modnle size and update rate 1s such that the 
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Figure 7.11: A layer of CAM- 7, consisting of 16 plane-modules. As the planes 

are scanned, a stream of 16-bit cell values are sent as addresses to a 64K x 16 

lookup table-the 16-bit results are put back into the planes, as the new cell 

values. 
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scanning of the modules can be locked to the framing format of a 

high-resolution monitor, so as to display 512x512-pixel images at 60 

frames/sec with no interlacing. When so locked, CAM-7 will update its 

two-gigabits of cell memory 60 times per second. If we decouple the up­

dating from the TV frame rate, CAM-7 will be able to update this entire 

two-gigabits 100 times per second. When decoupled, we can have each 

plane module scan only a fraction of its cells, permitting many more 

updates per second of this smaller array. For example, if each module 

scans a region that is only 64 x 64, then CAM-7 will be able to update a 

space of size 2048x 1024x 16 about 4000 times per second. 

7.6.2 Neighborhoods 

The most signific::>.nt architectural difference between CAM-6 and CAM- 7 

lies in the way that neighbors are assembled for simultaneous applica­

tion to a lookup table. 

CAM-6 was designed primarily for running CA which employ tradi­

tional neighborhood formats, such as the "Moore" and "von Neumann" 

- neighborhoods, in which one cell is updated a.s a function of more than 

one cell. Since this machine has many more cells than processors, cells 

within each module are processed sequentially. Thus new cell values 

cannot simply replace old values if the updating is to result in the same 

state that a simultaneous updating would produce-the old values must 

be retained as long as they may be needed in computing the new state 

of some cell. Because of this CAM-6 requires some buffering of cell 
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values-neighborhood values sent to the lookup table are taken from 

this buffer (see Figure 7.1). For a 3x3 neighborhood, CAM-6 requires 

a 515-bit long buffer (2 lines plus 3 bits). 

CAM- 7 takes as its primary neighborhood format partitioning cellu­

lar automata (see Section 2.3). In this format, space is subdivided into 

disjoint subsets of cell hits. Lattice gas models are naturally described 

using this format: each site is updated independently of all the others, 

and then dat&. is transferred between sites. Since each bit appears as 

part of only one site, the new values can immediately replace the old 

ones-no buffering such as was done in CAM-6 is needed. This format 

has a simpler hardware realization than traditional formats, and allows 

an enormous range of neighbor choices (as will be explained below). 

Thus .... CAM-7 step actually consists of two parts: an updating of all 

elements of the current partition, and a regrouping of data bits to form 

a new partition. The elements of the partition are just the 16-bit cells, 

each of which is updated by applying its value to a lookup table and 

storing the 16-bit result back into the cell. The partition is changed by 

shuffling bits between cells-how this is done is at the heart of CAM- 7's 

design. 

We take advantage of the fact that the plane-module-the elemen­

tary "chunk" of CAM-7's space-is much larger than a single cell. The 

data within one module can be shifted relative to the data in a second 

module by simply changing the place where we start scanning the data. 

in the first module. Bits are shuffled between cells by shifting entire 

bit-planes, and this is accomplished by writing to registers that control 
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where the next scan should begin within each plane-module. Since no 

time is stolen from the updating to accomplish these shifts, we refer to 

them as "instant shifts." In CAM-7, neighbors are gathered together by 

instant shifts. 

To avoid complications associated with inter-module communica­

tion, consider first how these instant shifts work in a space of size 

512x512x 16. Each of the 16 modules consists of one 64Kx4 DRAM 

chip plus a semi-custom controller chip. Given a horizontal and a ver­

tical offset, the controller chip will take care of all of the details: it just 

has to read the nybbles of the memory chip in an order corresponding 

to a version of the plane that is shifted (with wraparound) by the given 

horizontal and vertical offsets. A four-bit pipeline inside the controller 

chip permits horizontal shifts that aren't a multiple of four. Thus the 

16 bit-planes can be arbitrarily shifted relative to each other between 

one scan of the space and the next. As each cell is scanned, the 16 

bits that come out at a given instant are applied as inputs to a lookup 

table, and the result is written back to the planes. 7 

The only point remaining to be explained is how the instant-shift 

process works when the machine is configured so that each bit-plane 

consists of many plane-modules "glued" together edge-to-edge. What 

7To save address setup time on the DRAM chips, the controller reads a 4-bit 

nybble from memory and then immediately writes a new value (computed from cells 

accessed slightly earlier) to that same location. This results in a shift in the physical 

location of the cells in memory, which is also compensated for by a scan-origin shift 

within the controller chips. 
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happens is that each module separately performs a shift as described 

above. The wraparound occurs within each module: cells that should 

have shifted out the side of one module and into the opposite side of 

the adjacent module have instead been reinjected into the opposite side 

of the same module. The positions of these cells relative to the edges of 

a module are exactly as they should be for a true shift: they are just in 

the wrong module. However, since all modules output corresponding 

cells at the same moment, each module can produce a truly shifted 

output by simply replacing its own output with that of a neighboring 

module when appropriate. 

For example, consider CAM-7 running in its 16384 x 8192 x 16 config­

uration. Each of the 16 bit-planes in this configuration consists of 512 

plane modules, each of which scans an area 512x 512. Now suppose we 

want to shift one of the bit planes 50 positions to the left. Each of the 

rows within each of the plane modules is rotated ( circularly shifted) 

50 positions to the left by appropriately changing the order of access­

ing the cell memory. Each module's controller chip will produce as 

an overall output a 512x512 window onto its portion of the complete 

shifted plane in the following way: the first 462 cell values of each row 

will come from the plane module's own rotated data, while the la.st 50 

values will be "borrowed" from the rotated data of the module to its 

right. 

Vertical gluing of bit-planes is achieved in a similar fashion. That 

is, the controller chip first glues plane-modules together horizontally; 

the output of this gluing process is further multiplexed across vertically 
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adjacent modules, yielding the final output. In this way, each module 

only needs to be connected ( by a single bidirectional line) to each of 

its four nearest-neighbor modules, and any shift of up to 512 positions 

horizontally, 512 vertically, or any combination of these can be accorno­

dated. Thus any 16 bits ( one from each plane) in a 1025 x 1025 region 

can be brought together and used as the neighbors to be jointly sent 

to the lookup tables. 8 

Of course, if we construct rules where the same table-output value is 

sent to, say, all 16 planes, then by shifting the planes as described above 

we can implement not only the traditional neighborhoods but also any 

other neighborhood entailing up to 16 bits chosen in a 1025x 1025 region 

around each cell. Thus, conventional (i.e., nonpartitioning) cellular 

automata with very wide neighborhoods can also he simulated on CAM-

7, albeit at the cost of using planes and tables rather redundantly. 

7.6.3 Input and output 

The basic bus on CAM- 7 is the flywheel bus, consisting of the final glued 

. outputs of the plane-modules together with inputs to these same mod­

ules. The input and output buses are each 8192 bits wide on a full 

CAM-7 machine: when the machine is operating at its maximum clock 

rate-, a new 8192-bit output word is produced every 40 nanoseconds, 

and new input words can be accepted at the same rate. Every bit of 

8Such large neighborhoods are, for example, particularly useful in image 

processrng. 
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cell memory in the machine is available to be examined and modified 

once during every step. External logic ( even, if desired, floating-point 
,.; 

processors) can be attached here. Depending on how CAM- 7 is config-

ured, input bits can be ignored (in favor of internally-generated new 

cell values), routed as inputs to the lookup tables, or sent directly to 

the planes. 

Besides the two data lines (one for input and one for output) that 

it contributes to the flywheel bus, each plane-module also has a small 

number of control lines. Some of these control lines are bussed in bulk 

to all the modules; the others are merged together into a control bus of 

moderate width. Areas that can be accessed via the control bus include 

• the lookup table ( with auto increment after each read or write) 

• the bit-plane ( with auto increment after each read or write) 

• various registers (located within the controller chip) 

the horizontal-offset register 

the vertical-offset register 

the horizontal-size register 

the vertical-size register 

the table-address source select register 

the plane-data source select register 

• various counters (located within the controller chip) 

the address counter 
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the table-correlation counter 

the table-output counter 

Each plane-module is connected both to one data line and to one 

address line of a lookup table. During normal updating, the address line 

is fed sequentially with the glued output of the bit-plane, and the values 

appearing on the data line are written sequentially into the bit-plane 

as its new contents. This is, however, just one possible combination of 

table-address and plane-data sources-by writing to a. module's "source 

select" registers, any of the following may be sent either as an address 

bit to the lookup table, or as a data bit to be written directly into the 

plane: 

• the glued output for this plane 

• the output for the plane lying 8 positions above or below this one 

• the output from corresponding plane in the other half of the ma­

chine 

• the flywheel-bus input for this plane-module 

• one bit from the address counter 

• a constant of zero 

• the complement of any of the above 

Notice that the table output doesn't appear in this list-it can only 

be sent to the plane. 
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By appropriately controlling the sources both for table addresses 

and for plane data we can, for example, run a step in which a constant 

value of O or 1 is sent to the table address while the plane data is not 

affected-the plane can even be shifted during this step, since the table 

is not needed for this. Thus one can run steps during which one or 

more address bits of the table are host-selected constants, analogous to 

the "phase" bits[80] used by CAM-6. This allows one to split a lookup 

table into several subtables, to be used during consecutive steps without 

having to download new tables. Of course downloading new tables isn't 

a great problem as long as all the tables are identiccJ. ( or there are only 

a few different kinds), since all tables that a.re the same can be written 

simultaneously. 9 

Data is read from or written to either planes or tables by the host 

in a similar manner: a stream of bits is sent to or from the module 

associated with the data. For planes, the horizontal- and vertical-offset 

registers are used not only during steps, but also to control where the 

data-bits sent by the host to the plane should go. For tables, each 

plane-module controls one bit of the address of a table, and is told by 

the host which bit of its internal address counter should be shown to 

its table, to control where data-bits go. 

Note that these internal address counters are not provided solely 

9If more flexibility in rewriting tables is needed, a number of microprocessors 
(say one for every 64 plane modules) could be added to the design. They could 
each store a selection of tables, and download them under the command of the 

host. They could also be useful in generating initial values for the cell states. 
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for loading tables; they can also be used during cell-updating, clocked 

by the 40ns system clock. By addressing a table with some counter 

bits c::i.e can, for instance, provide spatial parameters to CA rules ( cf. 

the rotation algorithm in Section 7.6.8) or perform on-the-fly testing of 

tables. 

7.6.4 Data analysis 

Each plane module contains a number of counters that are used for 

real-time data analysis, error detection/corr~ction, or both. 

Table outputs are always counted (number of ones in each output). 

An analysis step can be performed by having some planes remain un­

changed ( or just shift) while the corresponding table outputf: are being 

counted. For example, if a plane is being used to store a spatial pa­

rameter ( such as an obstacle in a fluid-flow experiment) the associated 

table output is not needed for updating, and may be programmed for 

data analysis and counted. If there aren't enough such "free" tables, 

or if the analysis requires a different neighborhood than the updating, 

- separate analysis steps may be interleaved between updating steps by 

rewriting tables. 

CAM-7 can be operated as two half-machines-table outputs are 

continuously compared between corresponding parts of the two halves 

and the number of differences is counted by tht. table correlation coun­

ters. Space and time autocorrelations can be accumulated by running 

two versicns of the same system simultaneously, with a constant space 
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or time shift between them. Since both the number of differences be­

tween two corresponding table outputs and the number of ones output 

by each table separately are counted, the number of occurences of each 

of the four possible pairs of binary outputs can be computed. The 

fact that the sum of the two separate counts plus the correlated count 

should be even acts as a consistency check for detecting counter errors. 

If exactly the same system is run in both halves of the machine, the 

correlation counters detect updating errors. 

Note that all counters are double-buffered, and can be read at any 

time by the host without affecting a step that is in progress. 

7.6.5 Error handling 

Like CAM-6, each CAM-i machine will constitute a '·building block'j 

from which one can build much larger machines. For example, eight 

such blocks used together will have two giga-bytes of cell-state memory 

and will perform one-and-a-half trillion rather powerful cell-bit updates 

every second. While there are no inherent architectural limits on how 

many CAM- 7's can be hooked together, there is a practical problem 

which grows as more and more CAM "blocks" are ~.dded, namely, error 

handling. Because of the built-in analysis capabilities described in the 

pr_evious section, and additional hardware consistency checks, it will be 

possible to discover and recover from hardware errors. 

Since tables are not supposed to evolve in time, it is relatively 

straightforward to test whether or not a table contains an error. We 
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can usually detect table errors by performing an analysis step during 

which all tables are addressed by counter bits-we simply count the 

number of ones in all table outputs. As long as correlated pairs of 

tables contain the same rule we can simultaneously perform a more 

detailed check by comparing table outputs. Alternatively, we can have 

the host pP-rform a verify-write of all tables, in which the old contents 

is read and compared with what the host is writing. 

Cell-memory is tested by each plane-module during every step. 

About 22 checksum bits, reflecting the number of ones last written and 

their positions, are compared to corresponding checksums performed 

on the data subsequently read. Changing any bit of the configuration 

will, on the average, change about half of the checksum bits. By di­

viding all possible 512 x 512 configurations evenly into more than 106 

different classes, these checksums make the chance of an undetected 

plane-memory error very small. 

Hard errors, caused by bad components, can be tested for whenever 

any error is detected. If we run an occasional analysis step during which 

we test tables, bad chips should always be noticed quickly. 

Soft errors, in which memory bits are typically changed, are prin­

cipally caused by alpha particles. Modem commercial memory chips, 

which constitute most of CAM-7 1 are inherently quite reliable: even 

with-..a.bsolutely no provision for error correction it should be possible 

to run this machine with 16384 memory chips for several days at a 

time without any errors. Thus for a single CAM-7 it may be perfectly 

practical in most cases to simply detect errors, and rerun an experi-
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ment if any occur. In fact for many statistical mechanical experiments, 

such as fluid flow past obstacles, a rare error in which a. bit is dropped 

doesn't matter at all, and so we only need to rewrite incorrect tables 

and obstacles, and watch out for hard errors. 

For longer runs, or for large machines built out of many CAM- 7's, if 

we want to guarantee exactly conect operation it is probably most prac­

tical to use each machine as two correlated half-machines, both running 

the same experiment. Since the chance of two different plane-modules 

both experiencing a soft error during the same step is extraordinarily 

small ( expected perhaps once in 1016 steps for a single CAM- 7 machine) 

we can assume that one out of every correlated pair of plane-modules 

will always be correct. Planes that were updated incorrectly are fixed 

by using data from the correct twin, and incorrect tables are simply 

rewritten. Notice that to correct a plane-module, data doesn't even 

have to be physically moved from one module to its twin-we can sim­

ply run the next step with tht: correct module providing the input for 

the tables in both halves of the machine. 

Given an error, there remains the problem of decidin~ which of the 

pair of correlated plane-modules is incorrect. For plane errnrs, "Ne rely 

on the internal checksums maintained by the plane-modules to tell us 

which module to fix. Otherwise we make use of one further facility 

provided by the hardware in order to quickly and reliably find the 

error-even if it's a transient one that didn't change the contents of a 

table. Whenever table comparisons disagree, both the original contents 

of the cell where the error occured and the updated value are latched 
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by the controller chips. By examining this information, the host can 

tell which of the planes was updated incorrectly. 

7.6.6 Three-dimensional opera.don 

When a single CAM-7 is operating in its 512x512x512x16 configura­

tion, it is of course the fact that all plane-modules are updating the 

same position at the .same time that allows information from one layer 

to be directly available for use by adjacent layers. In terms of plane­

modules, one can think of this configuration as being 512x512x8192, 

i.e., 8192 deep in the third dimension. We prefer, however, to think of 

512 "layers" each consisting 16 consecutive planes, since the outputs 

from each stack of 16 planes go to common lookup tables. 10 

Each plane-module in this 8K stack is connected to the module 

8 positions above it, and to the one 8 positions below it-a total of 

four wires (input and output above and below) time-shared between all 

256K of the cell-bits on each module. Each module has several choices 

for what it sends as an address to its associated lookup table. It can of 

course send its own glued output. It can also send the glued output of 

10External logic connected to the ftywheel bus inputs and outputs can of course 

group thes~ planes arbitrarily.. For example, floating point processors might use 

them_ as multi-hundred-bit cells, each containing several floating point numbers 

that can be separately shifted to change the neighborhood. Since CAM processes 

each plane-module serially, these floating-point calculations could be pipelined-the 

delay between starting and finishing processing a cell could be lengthy, as long as a 

new cell value is completed every 40ns. 
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the plane 8 positions above or below itself. TheFe three choices make 

three-dimensional operation straightforward. 

For example, each 16-bit cell could be thought of as encoding the 

contents of a 2x2x2 cube having 2 bits at each site. The top eight 

bits in the cell (i.e., those belonging to the top eight planes in this 

16-plane layer) would correspond to the top of the cube, the other 

eight to the bottom of the cube. After updating the cube according to 

some rule, let's say that we want to switch to a partition in which the 

corners of four adjacent cubes become the new cubes. To accomplish 

this, we will select for each lookup table input the output of the plane 

module 8 positions above-this is equivalent to shifting all of the plane 

data 8 positions down. Data from the bottoms of one layer of cubes 

now appear as inputs to the same tables as the tops of the next layer. 

We must now shift the planes corresponding to the various corners of 

the old cubes so that the data from four adjacent corners are shifted 

together. If we've been careful about what order within the cell the ... 
results of the first step were placed, we can even use the same rule 

on these new blocks. lf we want different rules on the two partitions, 

we can of course rewrite the tables before ead. step. As we alternate 

between these two partitions, we can avoid a net motion of the cubes 

by alternately shifting the plane data up and down while moving the 

blocking back and forth in the other two directions as well. 

Just as we could simulate the Moore and von Neumann neighbor­

hoods in two dimensions, we can simulate nearby-neighbor interactions 



7.6. CAM-7 Architecture 227 

in three dimensions. For example, let's consider a rule that calls for 

the center cell, its 6 nearest neighbors, and the center cell in the "past" 

(i.e., the value the center cell had one step before), with two bits of 

state for -each neighbor, We simply get two bits from the layer above, 

two from below, and the rest from the current layer (for a total of 16 

bits). Our tables should each produc~ seven 2-bit copies of the new 

value for the center-cell, plus one copy of the present value (which will 

be used as the past by the next step). Four of the copies of the center 

cell will be shifted one position (north, south, east, and west). One 

will be visible only to the layer above, one only to the layer below, 

and the last to the current layer. The lookup tables can now calculate 

the updated values, and the process can be repeated. Other neighbor­

hoods (for instance, the twelve second-nearest neighbors, or the eight 

third-nearest neighbors) can all be similarly implemented. 

Notice that bits coming from above and below mask the correspond­

ing bits from the current layer-the bit from the current layer no longer 

appears as an input to this layer's lookup table. You might worry that 

some bits could become completely hidden and not available as part of 

· the neighborhood of any table, but this is never the case. The masked 

bit ca.n simply be made visible 8 positions down within the current 

layer, masking another bit which is already visible as part of the neigh­

borhood for the next layer. 

What about rules that need more than 16 bits oi input? By using 

some of the bit planes to store intermediate values, rules that need 

more bits of input can be synthesized as a composition of completely 
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arbitrary 16-input/16-output logi..:al functions. Taking advantage of 
the strong coupling between the two halves of each CAM- 7 machine 11 

one can readily synthesize rather large neighborhoods ( up to 32 bits or 
more) by rule-composition. Note, however, that such compositions can 
entail, in the worst case, an exponential slow-down as the number of 
neighbors increases. 

7 .8. 'I Display 

Being able to display the state of our system in real time provides 
important feedback as to whether or not everything is working as ex­
pected, and what parts of th.- system are doing something interesting 
that should be investigated more closely. 

Two dimensional display is not much of a problem for CAM-7, since 
this machine can provide its data in the correct format for a color mon­
itor. This machine can even, if desired, scan its data in the correct 
format for an interlaced display-since each cell is updated indepen­
dently of all others the rows can be scanned in whatever order you 
choose. 

For a complete 16384 x 8192 display, we could cover an enormous 
wall with 512 color monitors (more if several CAM's are connected), 
each of.which would show a 512x512 patch using 64K different colors. 

11 Recall that any bits from the 16-bit cell in one half can be substituted as table 
address sources for the corresponding bits in the other half. Machines connected 
via inputs on the flywheel bus are similarly strongly coupled. 
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Of course it might be more practical to use only one monitor ( or just a 

few), and shift the data to move the window around. Using interlaced 

displays and a one-line buffer, 1024 x 1024 or even 2048 x 2048 regions 

could be viewed on a single monitor. 

Since all of the neighbors that would be used for a cell-update are 

available simultaneously, it is a simple matter to display a function of 

the neighborhood, rather than the neighborhood itself. For example, in 

a fluid-mechanics experiment you might want to show only the smoke 

particles that trace the flow. Going a step further, part of the machine's 

resources could be devoted specifically to constructing the image to be 

displayed. For example, one half of the machine could do the exper­

iment while the other half could monitor the first half, accumulating 

time-average data for the display. 

CAM- 7 realizes a three-dimensional system as a stack of two­

dimensional layers, each of which can be viewed exactly as discussed 

above. In its 512x512x512x16 configuration, it would take 512 color 

monitors to see all layers at once; on the other hand, a single monitor 

. would be enough to see any part of the cube, by shifting the data ap­

propriately (now in three dimensions). Outputs from groups c,f layers 

could be combined (e.g., summed, OR'ed, etc.) and shown in a simi­

lar m~nner (still without any external frame buffer). You could even 

display a sum down through the entire machine-a sort of X-ray. 

Suppose we would like to see slices through the cu be perpendicular 

to the plane of our two-dimensional slices. This, and any other 90 de-
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gree rotation of the cube about its z, y, or :: axis is easily accomplished 

by CAM using a simple split-and-shift algorithm. 12 Because of the in­

stant shifts available alo.ng the bit-planes, rotations about one of the 

axes can be accomplished in a fraction of a second; rotations about the 

other two axes would take several seconds. 

Such rotations would be particularly useful in conjuction with a 

display that provides a more natural format for CAM's 3-D ouput. 

7 .6.8 A true three-dimensional display 

A true three-dimensional display (imagine a translucent cube hanging 

in mid-air and observable from within a wide angle) is achievable in 

a relatively straightforward manner. To illustrate the considerations 

involved, we will describe one particular technique. 

Let us first construct a one-bit output for each of CAM-7's 512 lay­

ers; in this way, we obtain the equivalent of 512 TV-signal sources, all 

broadcasting in parallel. We would like to make up a cube out of these 

512 TV frames, by literally stacking them in a third dimension like a 

deck of cards; as it turns out, it will be expedient to view the resulting 

"deck" from the top edge rather than from the front side. 

Now, construct an array of 512x512 light emitting diodes; each row 

_ 12To rotate a square image, you can first split it into quarters, then shift the four 

quarters horizontally or vertically until they have each been shifted to a position 

90 degrees clockwise of where they started. Each quarter is similarly rotated, and 

then each eighth, etc., until you reach the level of a single cell. Cells don't look any 

different when rotatf:d, so you're done. 
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of LED's is driven by the outputs of a ,:>12-bit, serial-in, parallel-out 

shift register with latched outputs (the equivalent of 32 74F673 chips). 

In turn, the shift registers a.re fed with the above TV sources, and their 

outputs latched at the end of every scan line. Thus the collection of 

512 lines produced in parallel by CAM-i's 512 layers will have been 

captured as an two-dimensional LED picture; this picture, which lies 

orthogonally to the "cards of the deck," will last about 30usec before 

being replaced by the next picture, corresponding to the next scan line. 

Every time a new LED picture is ready we want to display it some­

what below the previous one, so that starting from the top edge of the 

deck for the first line of the TV frame we will end up at the bottom edge 

with the frame's last line. This sweeping movement of the LED array 

is easily achieved by optical means-in a way similar to that demon­

strated with success at BBN[68]. That is, the array will be viewed 

reflected on a thin-membrane mirror stretch~d over a loudspeaker. The 

speaker itself will be driven with a 60-Hz sawtooth wave, in sync with 

CAM- 7's internal scan; the resulting slight changes in curvature of the 

mirror will make the LED-array's image sweep through a sequence of 

focal planes .13 

Finally, to avoid filling the three-dimensional display with too much 

13 Note that in the BBN setup. the performance of the system is limited by the 

available data rate (since the images to be optically multiplexed are generated by 

drawing vectors on a CR'I') rather than by the optical arrangement. CAM- 7, on the 

other hand, has a real-time data rate of 120 gigabits per second, which is more than 

sufficient to take full advantage of this arrnngement. 
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data, some selective staining techniques may be appropriate, much as 

in microscopy. For instance, surfaces can be made visible by simulating 

"light" within the system: this would consist of particles that travel 

invisibly in a given direction and light up when they cross a surface 

( defined by an appropriate local condition). 

7.7 Applications 

In addition to statistical mechanical applications that are becoming 

known (fluid dynamics, Ising spin systems, optics, sei.smic waves, etc.) 

CAM-7 should be valuable for a number of less obvious applications. 

For example, the structure of CA.M-7 seems ideal for certain types of 

image processing; in particular, for certain "retina-like" tasks where the 

information contained in detailed two-dimensional images arriving in 

rapid succession is analyzed and preprocessed in real-time by algorithms 

that are in the main local and uniform, in order to supply a more "brain­

like" post-processor with a much smaller amount of pre-digested data. 

Each layer could run a different rule, each involving-if desired­

rather widely scattered neighbors. Using the 3-D connections, with 

camera input going to the first layer, we could do some consecutive 

steps of image-processing in a pipelined manner-the output of one 

rayer supplying the input for the nu:t. 14 By custom wire-wrapping the 

flywheel-bus outputs and inputs, a much more complicated pipeline 

14Since each layer can have a diff'erent rule stored in its look-up table, CAM· 7 as 

a whole is a true multiple-program, multiple-data machine. 
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could be achjeved. For example, the output of one layer could become 

the input to several other layers, which could then lead to other layers; 

there could be further splits and merges, data following a shorter path 

could be time-correlated with data following a longer path, etc. 

CAM· 7 could be used for digital logic simulations in two or three 

dimensions. Since bit-planes can be made to shift by large amounts 

between steps, signal speeds would not necessarily be limited to one 

cell per step. CAM-7 could also be used as a testbed for ideas about 

using cellular automata VLSI chips as "soft circuitry." For example, 

given a chip that runs a simple 2-D rule such as LOGIC (Section 4.4), 

one could download a pattern of wires and gates to a chip, and have 

it simulate the circuit fast enough to actually he used in placed of the 

target circuit i'i.self. 

In general, this machine should he useful in a range of simulation 

and modeling tasks involving systems which have an appropriate local 

structure. 
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