
Algebraic Algorithms for
Matching and Matroid Problems

Nicholas J. A. Harvey
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract

We present new algebraic approaches for several well-known combinatorial prob-
lems, including non-bipartite matching, matroid intersection, and some of their
generalizations. Our work yields new randomized algorithms that are the most
efficient known. For non-bipartite matching, we obtain a simple, purely algebraic
algorithm with running time O(nω) where n is the number of vertices and ω is the
matrix multiplication exponent. This resolves the central open problem of Mucha
and Sankowski (2004). For matroid intersection, our algorithm has running time
O(nrω−1) for matroids with n elements and rank r that satisfy some natural con-
ditions.

1 Introduction
The non-bipartite matching problem — finding a largest set of disjoint edges in a graph
— is a fundamental problem that has played a pivotal role in the development of
graph theory, combinatorial optimization, and computer science [49]. For example,
Edmonds’ seminal work on matchings [15, 16] inspired the definition of the class P,
and launched the field of polyhedral combinatorics. The matching theory book [38]
gives an extensive treatment of this subject, and uses matchings as a touchstone to
develop much of the theory of combinatorial optimization.

The matroid intersection problem — finding a largest common independent set in
two given matroids — is another fundamental optimization problem, originating in the
pioneering work of Edmonds [18, 20]. This work led to significant developments con-
cerning integral polyhedra [48], submodular functions [22], and convex analysis [43].
Algorithmically, matroid intersection is a powerful tool that has been used in various
areas such as approximation algorithms [6, 32, 29], mixed matrix theory [42], and net-
work coding [31].

1.1 Matching algorithms

The literature for non-bipartite matching algorithms is quite lengthy. Table 1 provides
a brief summary; further discussion can be found in [48, §24.4]. As one can see, there
was little progress from 1975 until 2004, when an exciting development of Mucha and
Sankowski [41] gave a randomized algorithm to construct a maximum matching in
time O(nω), where ω < 2.38 is the exponent indicating the time to multiply two n×n

1

Authors Year Running Time

Edmonds [16] 1965 O(n2m)
Even and Kariv [21] 1975 O(min

{
n2.5,

√
nm log n

}
)

Micali and Vazirani [39] 1980 O(
√

nm)
Rabin and Vazirani [46] 1989 O(nω+1)
Goldberg and Karzanov [30] 2004 O(

√
nm log(n2/m)/ log n)

Mucha and Sankowski [41] 2004 O(nω)
Sankowski [47] 2005 O(nω)

This paper O(nω)

Table 1: A summary of algorithms for the non-bipartite matching problem. The quan-
tities n and m respectively denote the number of vertices and edges in the graph.

matrices [10]. A highly readable exposition of their algorithm is in Mucha’s thesis
[40].

Unfortunately, most of the algorithms mentioned above are quite complicated; the
algorithms of Edmonds and Rabin-Vazirani are perhaps the only exceptions. For ex-
ample, the Micali-Vazirani algorithm was not formally proven correct until much later
[53]. The Mucha-Sankowski algorithm relies on a non-trivial structural decomposition
of graphs called the “canonical partition”, and uses sophisticated dynamic connectivity
data structures to maintain this decomposition online. Mucha writes [40, §6]:

[The non-bipartite] algorithm is quite complicated and heavily relies on
graph-theoretic results and techniques. It would be nice to have a strictly
algebraic, and possibly simpler, matching algorithm for general graphs.

Interestingly, for the special case of bipartite graphs, Mucha and Sankowski give a sim-
ple algorithm that amounts to performing Gaussian elimination lazily. Unfortunately,
this technique seems to break down for general graphs, leading to the conjecture that
there is no O(nω) matching algorithm for non-bipartite graphs that uses only lazy com-
putation techniques [40, §3.4].

1.2 Matroid intersection algorithms

The discussion of matroids in this section is necessarily informal since we defer the
formal definition of matroids until Section 4. Generally speaking, algorithms involving
matroids fall into two classes.

Oracle algorithms. These algorithms access the matroid via an oracle which answers
queries about its structure.

Linear matroid algorithms. These algorithms assume that a matroid is given as input
to the algorithm as an explicit matrix which represents the matroid.

Linear matroid algorithms only apply to a subclass of matroids known as linear ma-
troids, but most useful matroids indeed lie in this class.

Authors Year Running Time

Cunningham [11] 1986 O(nr2 log r)
Gabow and Xu [23, 24] 1989 O(nr1.62)

This paper O(nrω−1)

Table 2: A summary of linear matroid algorithms for the matroid intersection problem.
The quantities n and r respectively denote the number of columns and rows of the given
matrix.

Authors Year Number of Oracle Queries

Edmonds [17]1 1968 not stated
Aigner and Dowling [2] 1971 O(nr2)
Tomizawa and Iri [51] 1974 not stated
Lawler [35] 1975 O(nr2)
Edmonds [20] 1979 not stated
Cunningham [11] 1986 O(nr1.5)

Table 3: A summary of oracle algorithms for the matroid intersection problem. The
quantities n and r respectively denote the number of elements and rank of the matroid;
they are analogous to the quantities n and r mentioned in Table 2.

Table 2 and Table 3 provide a brief summary of the existing algorithms for matroid
intersection. It should be noted that the Gabow-Xu algorithm achieves the running time
of O(nr1.62) via use of the O(n2.38) matrix multiplication algorithm of Coppersmith
and Winograd [10]. However, this bound seems somewhat unnatural: for square ma-
trices their running time is O(n2.62), although one would hope for a running time of
O(n2.38).

1.3 Generalizations

Several variants and generalizations of matchings and matroid intersection have been
considered, notably matroid matching [36, 38, 48]. Matroid matching problems on
general graphs require exponential time in the oracle model, although sophisticated
polynomial-time algorithms do exist for linear matroids. On the other hand, bipar-
tite matroid matching problems are tractable: they are polynomial-time reducible to
matroid intersection [18, Theorem 81] [22].

Another generalization of matroid intersections and non-bipartite matchings are ba-
sic path-matchings, introduced by Cunningham and Geelen [13, 14, 26]. Their work
shows integrality of related polyhedra and shows that one can optimize over these poly-
hedra using the ellipsoid method [14]. Later work [12] used algebraic techniques to-
gether with a matroid intersection algorithm to compute a basic path-matching.

1Edmonds [17] gives an efficient algorithm for the matroid partition problem. As was shown by Edmonds
[18] [19], this implies an efficient algorithm for the matroid intersection problem.

1.4 Our results

In this paper, we present new algebraic approaches for several of the problems men-
tioned above.
Non-bipartite matching. We present a purely algebraic, randomized algorithm for
constructing a maximum matching in O(nω) time. The algorithm is conceptually sim-
ple — it uses lazy updates, and does not require sophisticated data structures or subrou-
tines other than a black-box algorithm for matrix multiplication/inversion. Therefore
our work resolves the central open question of Mucha and Sankowski [41], and refutes
the conjecture [40] that no such lazy algorithm exists.

Our algorithm is based on a simple, but subtle, divide-and-conquer approach. The
key insight is: adding an edge to the matching involves modifying two symmetric en-
tries of a certain matrix. (See Section 3 for further details.) These entries may be quite
far apart in the matrix, so a lazy updating scheme that only updates “nearby” matrix
entries will fail. We overcome this difficulty by traversing the matrix in a novel manner
such that symmetric locations are nearby in our traversal, even if they are far apart in
the matrix. Our new approach has an important consequence: it easily extends to var-
ious generalizations of the non-bipartite matching problem such as path-matchings. It
is not clear whether previous algorithms [39, 41] also admit such extensions.
Matroid intersection. We present a linear matroid algorithm for the matroid inter-
section problem that uses only O(nrω−1) time. This running time is essentially optimal
because computing the rank of a n × r matrix reduces to matroid intersection of the
matrix with itself, and O(nrω−1) is the best running time for any rank-computation
algorithm that we know of. In other words, we show that finding a maximum indepen-
dent set in two matroids requires asymptotically the same time as finding a maximum
independent set in just one matroid.

Whereas most existing matroid algorithms use augmenting path techniques, ours
uses an algebraic approach. Several previous matroid algorithms also use algebraic
techniques [4, 37, 44]. This approach requires that the given matroids are linear, and
additionally requires that the two matroids can be represented as matrices over the same
field. These assumption will be discussed further in Section 4.
Bipartite Matroid Matching. We show a surprising result: the Mucha-Sankowski
bipartite graph matching algorithm [41], with minor modification, can actually solve a
much more general problem, namely bipartite matroid matching. The runtime of the
resulting algorithm remains only O(nω) time. Our contribution is to construct a new
matrix to give as input to that algorithm, and to prove some important properties of that
matrix. Our algorithm improves on the O(n2r1.62)=O(n3.62) time bound which one
can obtain by existing matroid intersection algorithms [24], and the standard reduction
from bipartite matroid matching to matroid intersection [22].
Basic Path-Matching. We present a matrix which characterizes solvable instances
of the basic path-matching problem. This extends Geelen’s algebraic framework for
ordinary path-matching problems, which do not involve matroids [26]. This allows us
to extend our non-bipartite matching algorithm to a O(nω) algorithm for constructing
basic path-matchings.

2 Preliminaries
2.1 Notation

The set of integers {1, . . . , n} is denoted [n]. If J is a set, J + i denotes J ∪ {i}. If
M is a matrix, a submatrix containing rows S and columns T is denoted M [S, T]. A
submatrix containing all rows (columns) is denoted M [∗, T] (M [S, ∗]). A submatrix
M [S, T] is sometimes written as MS,T when this enhances legibility. The ith row
(column) of M is denoted Mi,∗ (M∗,i). An entry of M is denoted Mi,j . The submatrix
obtained by deleting row i and column j (row-set I and column-set J) from M is
denoted Mdel(i,j) (Mdel(I,J)). A submatrix containing rows {a, . . . , b} and columns
{c, . . . , d} is denoted Ma:b, c:d. When a matrix has been decomposed into blocks such
as (W X

Y Z), we will refer to the blocks using compass directions, e.g., W is the “north-
west” submatrix.

2.2 Assumptions and Conventions

We assume a randomized computational model, in which algorithms have access to a
stream of independent, unbiased coin flips. All algorithms presented in this paper are
all randomized, even if this is not stated explicitly. Furthermore, our computational
model assumes that arithmetic operations all require a single time step.

The value ω is a real number defined as the infimum of all values c such that multi-
plying two n× n matrices requires O(nc) time. Thus, strictly speaking, it is not accu-
rate to say that matrix multiplication requires O(nω) time. This justifies the following
notational convention: we will implicitly ignore polylog(n) factors in expressions of
the form O(nω).

2.3 Facts from Linear Algebra

We will use the following basic facts from linear algebra. Proofs are given in Ap-
pendix A.

Let F be a field, let F[x1, . . . , xm] be the ring of polynomials over F in indeter-
minates {x1, . . . , xm}, and let F(x1, . . . , xm) be the field of rational functions over
F in these indeterminates. A matrix with entries in F[x1, . . . , xm] or F(x1, . . . , xm)
will be called a matrix of indeterminates. A matrix M of indeterminates is said to be
non-singular if its determinant is not the zero function. In this case, M−1 exists and it
is a matrix whose entries are in F(x1, . . . , xm). The entries of M−1 are given by:

(M−1)i,j = (−1)i+j · detMdel(j,i) / det M,

which is a special case of Fact 1 below. Given a matrix of indeterminates, our algo-
rithms will typically substitute values in F for the indeterminates. So for much of the
discussion below, it suffices to consider ordinary numeric matrices over F.

Fact 1 (Jacobi’s Determinant Identity). Let M be a non-singular matrix with row-set
and column-set C. Then, for any equicardinal sets I, J ⊆ C, we have

detM [I, J] = det M · detM−1[C \ J,C \ I] · (−1)
∑

i∈I i+
∑

j∈J j .

Fact 2 (Schur Complement). Let M be a square matrix of the form M = (W X
Y Z)

where Z is square. If Z is non-singular, the matrix W − XZ−1Y is known as the
Schur complement of Z in M . The Schur complement satisfies the following useful
property:

det M = det Z · det
(
W −XZ−1Y

)
.

Additionally, the rank of the Schur complement equals the rank of M minus the size of
Z.

Fact 3. Let M = (W X
Y Z) have inverse M−1 =

(
Ŵ X̂
Ŷ Ẑ

)
. Then W is non-singular iff Ẑ

is, and W−1 = Ŵ − X̂Ẑ−1Ŷ .

Fact 4 (Sherman-Morrison Formula). Let u and v be vectors and c a non-zero scalar.
The matrix M̃ = M + cuvT is called a rank-1 update of M . Assume that M is non-
singular and let α = c−1 + vTM−1u. The inverse of M̃ exists iff α 6= 0, and equals

M̃−1 = M−1 − α−1
(
M−1 u

) (
vT M−1

)
,

which is itself a rank-1 update of M−1.

A matrix M is called skew-symmetric if M = −MT. Note that the diagonal entries
of a skew-symmetric matrix are necessarily zero.

Fact 5. Let M be an n× n skew-symmetric matrix. If M is non-singular then M−1 is
also skew-symmetric.

Algorithms. Lastly, let us consider the algorithmic efficiency of operations on matri-
ces with entries in a field F. As mentioned above, we assume that two n× n matrices
can be multiplied in O(nω) time. This same time bound suffices for determinant com-
putation, rank computation, and inversion (if the matrix is non-singular) [1].

Consider now the problem of rectangular matrix multiplication. For example, one
could multiply an r × n matrix A by a n × r matrix B, where r < n. This can be
accomplished by dividing A and B into blocks of size r × r, multiplying the ith block
of A by the ith block of B via an O(rω) time algorithm, then finally adding these
results together. Since dn/re multiplications are performed, the total time required is
O(nrω−1). This basic technique will frequently be used in the subsequent sections.
More sophisticated rectangular matrix multiplication algorithms do exist [9], but they
will not be considered herein.

3 Non-Bipartite Matching
Tutte matrix. Let G = (S, E) be a graph with n = |S|. For each edge {i, j} ∈ E,
associate an indeterminate t{i,j}. The Tutte matrix T for G is an n × n matrix of
indeterminates where Ti,j = ±t{i,j} and the signs are chosen such that T is skew-
symmetric. Tutte [52] showed that T is non-singular iff G has a perfect matching (see,
e.g., Godsil [28]). However, this does not directly imply an efficient algorithm to test
if G has a perfect matching: the determinant of T is a polynomial which may have
exponential size, so computing it symbolically is inefficient.

Fortunately, Lovász [37] showed that the rank of T is preserved with high prob-
ability after randomly substituting non-zero values for the t{i,j}’s from a sufficiently
large field, say of size Θ(n2). After this numeric substitution, the determinant of the
resulting matrix can be computed in O(nω) time. This immediately implies an effi-
cient algorithm to test if a graph has a perfect matching. The remainder of this section
considers the problem of constructing a perfect matching, if one exists.
A Self-Reducibility Algorithm. Lovász’s observation yields the following simple
algorithm to construct a perfect matching in O(nω+2) time. For each edge {i, j},
temporarily delete it and test if the resulting graph still has a perfect matching. If
so, delete the edge permanently; otherwise, restore the edge. The test used in this
algorithm is performed by setting t{i,j} = 0 and checking whether the determinant of
the resulting matrix is non-zero.
Rabin and Vazirani’s Improvement. Two definitions are needed. The inverse Tutte
matrix is N := T−1, and an edge e = {i, j} is called allowed if e is contained in a
perfect matching. Rabin and Vazirani [46] showed the following useful lemma.

Lemma 3.1. Assuming that G has a perfect matching, edge e is allowed iff Ni,j 6= 0.

We observed the following simple proof of their lemma. Actually, this argument is
precisely equation (2) of Tutte [52], as was pointed out to us by J. F. Geelen.

Proof. Edge e is allowed iff G[S \ {i, j}] has a perfect matching. (Note that the two
vertices i and j are deleted here, not just the edge {i, j}.) G[S \ {i, j}] has a perfect
matching iff det Tdel({i,j},{i,j}) is non-zero (by Tutte’s theorem). This determinant is

detTdel({i,j},{i,j}) = ±det T · det N [{i, j} , {i, j}]
= ±det T · (Ni,j)2.

The first equality follows from Fact 1. The second follows since Fact 5 shows that N is
skew-symmetric, so its diagonal entries are zero. These observations prove the lemma.
¥

This lemma yields a more efficient self-reducibility algorithm to construct a perfect
matching. First compute N = T−1, thereby identifying all allowed edges. Next, add
one allowed edge {i, j} to the matching, then recurse on the subgraph G[S \ {i, j}].
This algorithm performs a matrix inversion in each recursive step, and therefore uses
O(nω+1) time in total.
Rank-1 Updates. The bottleneck of the Rabin-Vazirani algorithm is recomputing
N from scratch in each recursive step. Mucha and Sankowski showed that this is
unnecessary; instead, N can be updated using rank-1 updates. To see this, suppose that
edge {i, j} is added to the matching. The algorithm recurses on the subgraph G[S \
{i, j}], and must compute the inverse Tutte matrix N ′ for this subproblem. One might
naively expect that N ′ is Ndel({i,j},{i,j}), but this is not the case. Instead, N ′ can be
determined from Fact 3: take M = T , W = Tdel({i,j},{i,j}) and Ẑ = N [{i, j} , {i, j}].
Then

N ′ = (Tdel({i,j},{i,j}))−1 = W−1 = Ŵ − X̂Ẑ−1Ŷ .

Algorithm 1: The divide-and-conquer approach to construct a perfect matching.

FindPerfectMatching(G)
Construct T and assign random values to the indeterminates
Compute N = T−1

FindAllowedEdges(S), where S is the vertex set of G

FindAllowedEdges(S)
If |S| > 2 then

Partition S arbitrarily into α equal-sized parts S1, . . . , Sα

For each unordered pair {Sa, Sb} of parts
FindAllowedEdges(Sa ∪ Sb)
Update N (if necessary)

Else
This is a base case: S consists of two vertices i and j
If Ti,j 6= 0 and Ni,j 6= 0 (i.e., edge {i, j} is allowed) then

Add {i, j} to the matching and update N

As observed above, the matrix N [{i, j} , {i, j}] = Ẑ is skew-symmetric. Therefore,
for some scalar c and column vectors ui, uj , vi, vj , we have

X̂Ẑ−1Ŷ =
(| |

ui uj

| |

)
· (0 c
−c 0

) ·
(

vT
i

vT
j

)

=
(| |
−c·uj c·ui

| |

)
·
(

vT
i

vT
j

)

= −cujv
T
i + cuiv

T
j . (3.1)

Thus N ′ can be computed from N by two rank-1 updates, whose parameters are simple
submatrices of N . This computation requires only O(n2) time.

Modifying the Rabin-Vazirani algorithm to use rank-1 updates, one obtains a sim-
ple, O(n3) time algorithm for constructing perfect matchings. Furthermore, this algo-
rithm uses only naive matrix multiplication. The key question is: how can fast matrix
multiplication be used to improve this algorithm?
Our recursive approach. We now describe an algorithm that achieves running time
O(nω) via a simple divide-and-conquer approach. The pseudocode in Algorithm 1
outlines our algorithm, but for now we postpone the discussion of how to update N .
The constant α will be specified later and has value at least 3. By standard arguments,
one may assume that |S| is a multiple of α.

A crucial observation is that Algorithm 1 considers each pair of vertices in at least
one base case. The proof is an easy inductive argument: fix a pair of vertices {i, j}, and
note that at each level of the recursion, at least one unordered pair of parts {Sa, Sb}
has {i, j} ⊆ Sa ∪ Sb. The correctness of Algorithm 1 follows from correctness of
the Rabin-Vazirani algorithm: both algorithms simply search for allowed edges, then
update the matrix N after one is found. The only difference is that our algorithm
considers edges in an unusual order.

Algorithm 2: The naive scheme to update N during a base case of Algorithm 1.

Set U [∗, {i, j}] = N [∗, {i, j}]
Set V [{i, j} , ∗] = N [{i, j} , ∗]
Set Ci,j = −1/Nj,i and Cj,i = −1/Ni,j

Set N = N + Ci,j U∗,i Vj,∗ + Cj,i U∗,j Vi,∗
Append i and j to πc, and append j and i to πr

Analysis. Let us suppose for now that the updating scheme requires only O(sω) time
for a subproblem with s vertices; this will be demonstrated later. For a subproblem
with s vertices, Algorithm 1 recurses on

(
α
2

)
subproblems, each with 2s

α vertices. After
solving each subproblem, the algorithm performs an update. The total time required
satisfies the recurrence

h(s) =
(
α
2

) · h
(

s
α/2

)
+ O

((
α
2

) · sω
)
. (3.2)

By standard arguments, the solution of this recurrence is h(n) = O(nω) if α is a
constant chosen such that logα/2

(
α
2

)
< ω. Since logα/2

(
α
2

)
< 2 + 1

log2 α−1 , there
exists an appropriate choice of α, assuming that ω > 2. Assuming that ω = 2.38, the
choice α = 13 is appropriate.

We now describe a slight variant of the algorithm which is preferable for implemen-
tations, and also admits an tighter analysis. The key observation is that Algorithm 1
may recurse into the same subproblem multiple times, and this is completely unnec-
essary. This issue can be avoided via dynamic programming: simply maintain a bit
vector indicating which subproblems have already been solved. (Note that the queries
and updates to the bit vector do not depend on the actual input, only on n.) Let us
analyze this scheme with α = 4. At level i of the recursion, the size of a subproblem
is n2−i and the number of subproblems is

(
2i+1

2

) ≤ 22i+1. The total time to apply up-
dates at level i is O

(
(n2−i)ω · 22i

)
= O(nω2−(ω−2)i). Summing over all levels yields

a bound of O(nω) if ω > 2 and O(n2 log n) if ω = 2. In contrast, the recurrence of
Eq. (3.2) leads to a bound of O(n2+ε) for any ε > 0, in the case that ω = 2.
Naive Updates. We now describe the scheme for updating the matrix N in Algo-
rithm 1. To begin, imagine a naive scheme which uses rank-1 updates to completely
update N in the base cases, as in Eq. (3.1), and does not update N after each recursive
call. There are O(n) updates, each requiring O(n2) time, and therefore the resulting
algorithm uses time O(n3) in total.

Ultimately we will define a more efficient updating scheme. Before doing so, let us
modify the naive scheme by defining some additional memory areas which will store
the parameters of the updates. Consider a single rank-1 update performed by the naive
scheme (cf. Eq. (3.1)) when edge {i, j} is added to the matching. The parameters of
the update are a scalar c = −1/Nj,i, a column-vector u = N∗,i and a row-vector
vT = Nj,∗. As indicated in Algorithm 2, the parameters of all updates are stored in
three additional n × n matrices U , V and C, which are initially zero. The algorithm
also maintains two lists πc and πr which specify, for each k, which column of U and

13

-165

-6561

-3-52

-67

-5-1-2-7

N =

S

S

(a)

2

41

47

3

-25

-3

-2

-9-6

U =

πc = [3, 5]

(b)

244239

-1-7-3-526

V =

πr
=

5
3

[
[

(c)

1/3

��� �
C =

(d)

13

-16

-65

-3-5
N =

S

S

(e)

2

415

4761

3

-252

-3

-27

-9-6-7

U =

πc = [3, 5, 1, 2]

(f)

244239

-1-7-3-526

-67

-5-1-2-7

V =

πr
=

5
3
2
1

[
[

(g)

1/3

��� �1/7

��� �
C =

(h)

Figure 1: An illustration of the matrices used in the algorithm. (a)-(d) The algorithm has
already added the edge {3, 5} to the matching. This means that there has been a rank-1 update
involving column 3 and row 5, and another one involving column 5 and row 3. Thus columns 3
and 5 of U are non-zero, as are rows 3 and 5 of V . The vectors πc and πr indicate the order in
which the updates were generated. The algorithm has recursed into the set S = {1, 2}. Since
N1,2 6= 0, the edge {1, 2} is allowed and therefore added to the matching. (e)-(h) The matrices
after applying the updating scheme of Algorithm 2.

row of V store the parameters of the kth rank-1 update. Figure 1 illustrates the updating
procedure.

The updates performed by Algorithm 2 have a property that will be useful later:
when vertex i is matched, N∗,i and Ni,∗ are set to zero. To see this, note that for any
k, the entry Nk,i is set to

Nk,i − 1
Nj,i

Nk,iNj,i − 1
Ni,j

Nk,jNi,i = 0; (3.3)

the equality holds since Ni,i = 0 by skew-symmetry.
The reader may have noted that V = −UT throughout the algorithm, so storing

both matrices seems unnecessary. We include both matrices in the discussion here since
later sections will discuss algorithms in which the matrices U and V are unrelated.
Efficient Updates. We now describe the efficient scheme which only updates the
portions of the matrix which will be needed soon. The recursion of Algorithm 1 gives
a convenient way to decide which portions should be updated. The idea is simple:
whenever a recursive subproblem finishes executing, it fully updates the submatrix of
N corresponding to its parent subproblem. As will be explained shortly, this update
requires only a constant number of matrix multiplications/inversions involving matrices
of size at most s, which is the number of vertices in the current subproblem. This
justifies our earlier assumption that the updating scheme requires O(sω) time after
each recursive call.

To describe the efficient updating scheme more formally, we need some terminol-
ogy. At any point of the algorithm, we say that a submatrix (of N , U , etc.) is clean if its
entries are identical to those that the naive scheme would have computed at this point
of the algorithm. The efficient updating scheme maintains the following invariant.

Invariant: When each recursive subproblem begins or completes, the parent’s subma-
trices of N , U and V are clean. The matrix C is always clean.

When a base case performs an update, our efficient scheme behaves similarly to
Algorithm 2. The key difference is that it need not update large portions of the ma-
trices. Instead, it only updates the 2 × 2 submatrices corresponding to this base case:
U [{i, j} , {i, j}], V [{i, j} , {i, j}], etc. This requires only O(1) time and is sufficient
to maintain the invariant for the moment. The remainder of the update work will be
performed later (by the recursive ancestors).

After each child subproblem completes, we must perform additional updates in
order to maintain the invariant. For notational convenience, we will assume that the
parent subproblem is in fact the root of the recursion. The matrices N , U , and V can
be decomposed as:

N =
(

NNW NNE

NSW NSE

)
U =

(
UNW UNE

USW USE

)
V =

(
V NW VNE

V SW V SE

)

where the north-west submatrices correspond to the child subproblem that has just
completed. The matrix C is decomposed analogously. The submatrices shown in bold
are clean. For NNW, UNW and VNW, this follows from our invariant: the child sub-
problem that just completed has updated them. For UNE, USE, VSW and VSE, this

follows because the invariant ensures that they were clean before executing the child
subproblem, and they are not modified during the child subproblem.

We now explain how to update the dirty submatrices. First, consider USW. Ideally,
one would just copy into USW the columns from NSW corresponding to new updates
generated during the child subproblem. The difficulty is that these new updates have
dependencies: columns of NSW involved in the jth update should have been modified
by the ith update (if i < j), but this work was postponed. The following lemma gives
the key to resolving these dependencies.

Lemma 3.2. Let X and Y be n × n matrices where Y is strictly upper triangular.
Define a sequence of matrices by X(0) = X and X(i) = X(i−1) +X

(i−1)
∗,i ·Yi,∗ for

1≤ i≤n. Let X ~ Y denote X(n). Then X ~ Y = X · (I − Y)−1.

We use this lemma as follows. Let X = NSW and let Y = CNW · VNW. Next,
permute columns of X and rows of Y using πc and πr so that X∗,i and Yi,∗ correspond
to the ith new update generated during the child subproblem. The rows of Y that don’t
correspond to new updates are set to zero. Note that Y is strictly upper triangular since
Eq. (3.3) shows N∗,i is set to zero when column i participates in an update (i.e., when
vertex i is matched). Therefore X and Y satisfy1 the hypotheses of Lemma 3.2. The
matrix X ~ Y is, by definition, the result of sequentially applying all new updates to
NSW. So, to make NSW and USW clean, we do the following. First, set NSW = X~Y .
Next, the columns from NSW corresponding to new updates are copied into USW and
set to zero.

A symmetric argument shows how to make NNE and VNE clean. It remains to
apply the new updates to NSE. This is straightforward since the parameters of these
updates have now been fully computed. Let Ũ , C̃ and Ṽ denote the submatrices of
USW, CNW and VNE corresponding to the new updates. We make NSE clean by set-
ting NSE = NSE + Ũ C̃Ṽ . All submatrices of the parent subproblem are now clean,
and therefore the invariant has been restored. Notice that this update procedure re-
quires only a constant number of matrix multiplications/inversions involving matrices
of size s, where s is the number of vertices in the parent subproblem. Thus O(sω) time
suffices.

3.1 Extensions

The algorithm presented above is a Monte Carlo algorithm for finding a perfect match-
ing. By existing techniques [40, 46], the algorithm can extended to construct a maxi-
mum cardinality matching, without increasing the asymptotic running time. The first
step is to find a full-rank principal submatrix of the Tutte matrix. Next, our perfect
matching algorithm is applied to this submatrix.

Another possible improvement to the algorithm is to make it Las Vegas instead of
Monte Carlo. The key idea is to efficiently construct an optimum dual solution, i.e., the
Gallai-Edmonds decomposition. Karloff [33] showed that this can be done by algebraic
techniques, and Cheriyan [7] showed that O(nω) time suffices.

1Actually NSW is only square if α = 4, but X and Y can be made square by padding them with zeros.

4 Matroid Intersection
Matroids are combinatorial objects first introduced by Whitney [55] and others in the
1930s. Many excellent texts contain an introduction to the subject [8, 36, 45, 54].
Schrijver [48] and Murota [42] contain more technical material relating to the use of
matroids in combinatorial optimization.

4.1 General Definitions

A matroid is a combinatorial object defined on a finite ground set S. There are several
important ancillary objects relating to matroids, any one of which can be used to define
matroids. Below we list those objects that play a role in this paper, and we use “base
families” as the central definition.

Base family. This non-empty family B ⊆ 2S satisfies the axiom:

Let B1, B2 ∈ B. For each x ∈ B1 \ B2, there exists y ∈ B2 \ B1

such that B1 − x + y ∈ B.

A matroid can be defined as a pair M = (S,B), where B is a base family over S.
A member of B is called a base. It follows from the axiom above that all bases
are equicardinal. This cardinality is called the rank of the matroid M.

Independent set family. This family I ⊆ 2S is defined as

I = { I : I ⊆ B for some B ∈ B } .

A member of I is called an independent set. Any subset of an independent set is
clearly also independent, and a maximum-cardinality independent set is clearly
a base.

Rank function. This function, r : 2S → N, is defined as

r(T) = max
I∈I, I⊆T

|I|.

A maximizer of this expression is called a base for T in M. A set I is indepen-
dent iff r(I) = |I|.

Since all of the objects listed above can be used to characterize matroids, we some-
times write M = (S, I), or M = (S, I,B), etc. To emphasize the matroid associated
to one of these objects, we often write BM, rM, etc.

A linear representation over F of a matroid M = (S, I) is a matrix Q over F with
columns indexed by S, satisfying the condition that Q[∗, I] has full column-rank iff
I ∈ I. There do exist matroids which do not have a linear representation over any
field. However, many interesting matroids can be represented over some field; such
matroids are called linear matroids.

Let M1 = (S1,B1) and M2 = (S2,B2) be two matroids where S1∩S2 = ∅. Their
direct sum, denoted M1 ⊕M2, has ground set S1 ∪ S2 and base family

B = { B1 ∪B2 : B1 ∈ B1 and B2 ∈ B2 } .

The free matroid on a set S, denoted F(S), is defined to be (S,B) where B = {S}.
Let M = (S,B) be a matroid. Given a set T ⊆ S, we may define the contraction

of M by T . The contracted matroid, denoted M/T , has ground set S \ T . To define
this matroid, first fix a base BT for T in M. (So BT ⊆ T and rM(T) = rM(BT).)
The base family of M/T is defined as:

B ∈ BM/T ⇐⇒ B ∪BT ∈ BM.

The rank function of M/T satisfies: rM/T (X) = rM(X ∪ T)− rM(T).

4.2 Assumptions

To specify a matroid requires space that is exponential in the size of the ground set [34]
[54, §16.6]. In this case, many matroid problems trivially have an algorithm whose
running time is polynomial in the input length. This observation motivates the use of
the oracle model for matroid algorithms. However, most of the matroids arising in
practice actually can be stored in space that is polynomial in the size of the ground set.
The broadest such class is the class of linear matroids, mentioned above.

The algebraic approach used in this paper works only for linear matroids, as do
some existing algorithms [4, 5, 37, 44]. One additional assumption is needed, as in this
previous work. We assume that the given pair of matroids are represented as matrices
over the same field. Although there exist matroids for which this assumption cannot
be satisfied (e.g., the Fano and non-Fano matroids), this assumption is valid for the
vast majority of matroids arising in applications. For example, the regular matroids are
those that are representable over all fields; this class includes the graphic, cographic
and partition matroids. Many classes of matroids are representable over all but finitely
many fields; these include the uniform, matching, and transversal matroids, as well as
deltoids and gammoids [48]. Our results apply to any two matroids from the union of
these classes.

4.3 Matroid intersection.

Let two matroids M1 = (S,BM1) and M2 = (S,BM2) be given. A set B ⊆ S
is called a common base if B ∈ BM1 ∩ BM2 . A common independent set (or an
intersection) is a set I ∈ IM1 ∩ IM2 . The matroid intersection problem is to find a
common base. Alternatively, one can define matroid intersection to be the problem of
finding a maximum cardinality intersection. In the context of the matroid intersection
problem, it is convenient to use the shorthand B1 instead of BM1 , and r1 instead of
rM1 , etc.

Any subset of a maximum cardinality intersection is called an extensible set. If
J is extensible, i 6∈ J , and J + i is also extensible then element i is called allowed
(relative to J). Let λ(J) denote the maximum cardinality of an intersection in M1/J
and M2/J .

The general idea of our algorithm is similar to the matching algorithm in Section 3.
High-level pseudocode is presented in Algorithm 3. The crucial step is to decide if
element i is allowed. The following section explains how this is done.

Algorithm 3: A general overview of our algorithm for constructing a common base of two
matroids M1 = (S,B1) and M2 = (S,B2).

MatroidIntersection(M1, M2)
Set J = ∅.
For each i ∈ S, do

Invariant: J is extensible.
Test if i is allowed (relative to J).
If so, set J := J + i.

4.4 Formulation using Linear Algebra

Suppose that each Mi is a linear matroid representable over a common field F. Let
Q1 be an r × n matrix whose columns represent M1 over F and let Q2 be a n × r
matrix whose rows represent M2 over F. For notational convenience, we will let QJ

1

denote Q1[∗, J] and QJ
2 denote Q2[J, ∗]. Let T be a diagonal matrix where Ti,i is an

indeterminate ti. For convenience, let T (J) denote Tdel(J,J). For each J ⊆ S, we
define the matrix

Z(J) :=




QJ
1 QJ̄

1

QJ
2

QJ̄
2 T (J)


 . (4.1)

Theorem 4.1. For any J ⊆ S, we have rankZ(J) = n+r1(J)+r2(J)−|J |+λ(J).

For the special case J = ∅, this result was stated by Geelen [27] and follows easily
from the connection between matroid intersection and the Cauchy-Binet formula, as
noted by Tomizawa and Iri [51]. Building on Theorem 4.1, we obtain the following
result which is crucial to our algorithm. Let us now assume that both M1 and M2 have
rank r. That is, r := r1(S) = r2(S).

Theorem 4.2. Suppose that λ(∅) = r, i.e., M1 and M2 have a common base. Then
Z(J) is non-singular iff J is an extensible intersection.

The preceding theorems lead to the following lemma which characterizes allowed
elements. Here, we identify the elements of S \ J with the rows and columns of the
submatrix of T (J) in Z(J).

Lemma 4.3. Suppose that J ⊆ S is an extensible intersection and that i ∈ S \ J . The
element i is allowed iff (Z(J)−1)i,i 6= t−1

i .

Proof. By Theorem 4.2, our hypotheses imply that Z(J) is non-singular. By linear-
ity of the determinant, detZ(J + i) = det Z(J) − ti · detZ(J)del(i,i). By Fact 1,
(Z(J)−1)i,i = det Z(J)del(i,i)/ detZ(J), so we have detZ(J + i) = det Z(J) · (1−
ti · (Z(J)−1)i,i). Thus detZ(J + i) 6= 0 ⇐⇒ Z(J)−1

i,i 6= t−1
i . By Theorem 4.2, this

holds iff element i is allowed. ¥
For simplicity, let Z = Z(∅). The structure of Z will play a key role in our algo-

rithm for matroid intersection below. Let Y denote the Schur complement of T in Z,

Algorithm 4: The naive algorithm to compute a common base of two matroids M1 = (S,B1)
and M2 = (S,B2). An inefficient scheme is used to compute and update Z−1.

MatroidIntersection(M1,M2)
Construct Z and assign random values to the indeterminates t1, . . . , tn

Compute Z−1 and let N be its south-east submatrix
Set J := ∅
FindAllowedElements(S), where S is the ground set of M1 and M2

FindAllowedElements(S = {a, . . . , b})
Invariant 1: J is an extensible intersection
Invariant 2: Na:n, a:n is the south-west submatrix of Z(J)−1

If |S| ≥ 2 then
Partition S into two equal-sized parts S1 and S2

FindAllowedElements(S1)
FindAllowedElements(S2)

Else
This is a base case: S consists of a single element i
If Ni,i 6= t−1

i (i.e., element i is allowed) then
Set J := J + i
Set Ui+1:n, i := Ni+1:n, i

Set Vi, i+1:n := Ni, i+1:n

Set Ci,i :=
(
t−1
i −Ni,i

)−1

Set Ni+1:n, i+1:n := Ni+:n, i+1:n + Ci,i Ui+1:n, i Vi, i+1:n

i.e., Y = −Q1 · T−1 ·Q2. One may verify that

Z−1 =
(

Y −1 −Y −1 ·Q1 · T−1

−T−1 ·Q2 · Y −1 T−1 + T−1 ·Q2 · Y −1 ·Q1 · T−1

)
. (4.2)

4.5 Matroid intersection algorithm

In this section we describe our matroid intersection algorithm, which achieves running
time O(nrω−1). The algorithm uses Z and Z−1 to implement the key test of Algo-
rithm 3. One difficulty is that Z−1 potentially has Ω(n2) non-zero entries, so it cannot
be explicitly computed — our desired running time is linear in n. To begin, we describe
Algorithm 4, which ignores the computational cost of computing and updating Z−1.
Later, we describe a more intricate algorithm which computes and updates Z−1 while
storing it implicitly as suggested by Eq. (4.2).
Naive algorithm. We assume that Z is non-singular, i.e., λ(∅) = r. We also assume
for convenience that both n and r are powers of two. As in Algorithm 1, the first step is
to randomly substitute values for the indeterminates from the field F, or a sufficiently
large extension. By standard arguments, Z remains non-singular with high probability.
Next, we compute Z−1 and let N be its south-west submatrix. As shown in Eq. (4.2),
we have

N = T−1 − T−1 Q2

(
Q1T

−1Q2

)−1
Q1 T−1. (4.3)

The algorithm uses a trivial divide-and-conquer approach to examine every element
exactly once. When an element i is examined, Invariants 1 & 2 and Lemma 4.3 allow

the algorithm to decide if i is allowed. Since only allowed elements are added to J ,
this ensures that Invariant 1 is maintained throughout the algorithm.

It remains to ensure that Invariant 2 is restored after adding an allowed element.
That is, given Z(J)−1, we wish to construct the matrix Z(J + i)−1. By definition,
Z(J + i) is identical to Z(J) except that ti has been set to 0. This can be expressed as
the rank-1 update

Z(J + i) = Z(J) − tieie
T
i .

Here, ei is the ith elementary vector, i.e., ei is 1 in the ith component and zero elsewhere.
Using Fact 4, Z(J + i)−1 may be computed as follows:

Z(J)−1 − (− t−1
i + (Z(J)−1)i,i

)−1 (Z(J)−1)∗,i (Z(J)−1)i,∗. (4.4)

Algorithm 4 stores the parameters of each update in the auxiliary matrices U , C and V ,
as was done in Algorithm 2. Note that the algorithm does not need to update N in any
row or column j with j ≤ i, since these entries of N will never again be examined by
the algorithm. Hence, U is strictly lower-triangular and V is strictly upper triangular.

At the termination of the algorithm, J is an extensible intersection, but there are no
more allowed elements, so J must be a common base.
Efficient updates. As in Section 3, the key to obtaining an efficient algorithm is to
perform the updates in batches. The recursive structure of the algorithm dictates when
updates should be performed. As before, we will say that a submatrix is clean if its
entries are identical to those that the naive scheme would have computed at this point
of the algorithm. Pseudocode for the efficient algorithm is shown in Algorithm 5.

As with the naive algorithm, the base of the recursion must decide if an element i
is allowed. Invariant 2 ensures that the entry Ni,i is clean, so the correct decision is
made, as in Algorithm 4. When element i is added to the intersection, the matrices N ,
U and V are not fully updated. Instead, only O(1) work is performed to update C, and
further update work is postponed to the recursive ancestors.

Consider now a subproblem S = {a, . . . , b} at level i of the recursion tree. The
number of elements in this subproblem is n2−i. Let its children have entries S1 and S2.
After subproblem S1 completes, we must perform some work to restore the invariants.
The scenario is illustrated in Figure 2.

The key issue is to ensure that invariant 3 will hold in subproblem S2 by updating
U [S2, S1] and V [S1, S2]. Let A be the set of elements that were added to J before start-
ing subproblem S. Let B be the new elements that were added to J during subproblem
S1. We would like to update U [S2, S1] by simply copying N [S2, B] into U [S2, B]. Un-
fortunately, N [S2, B] is dirty so it must also be updated. First, let us consider whether
the updates corresponding to elements A have been applied to N [S2, B].

Case 1: |S| ≤ r. In this case, invariant 2 ensures that those updates have been applied.

Case 2: |S| > r. In this case, no updates have been applied to N [S2, B]. However,
invariant 3 implies that U [S,A] and V [A,S] are clean. Therefore the updates
corresponding to A may be applied as follows

N [S2, B] := N [S2, B] + U [S2, A] · C[A,A] · V [A,B].

S2

S1

S2

S

S1

N =

S2

S1

U =

old updates A

new updates B

clean S2S1

dirty

dirty

S2

S1

V =

clean

S2S1

dirty

S2

S1

C =

S2S1

dirty

Figure 2: An illustration of the updates in Algorithm 5.

Algorithm 5: The algorithm to compute a common base of two matroids M1 = (S,B1) and
M2 = (S,B2). A more intricate scheme is used to compute and update Z−1.

MatroidIntersection(M1,M2)
Construct Z and assign random values to the indeterminates t1, . . . , tn

Compute N as in Eq. (4.3)
Set J := ∅
FindAllowedElements(S), where S is the ground set of M1 and M2

FindAllowedElements(S = {a, . . . , b})
Invariant 1: J is an extensible intersection
Invariant 2: If |S| ≤ r then N [S, S] is clean.

Otherwise, the r × r blocks on the diagonal of N [S, S] are clean.
Invariant 3: U [S, {1, . . . , a−1}] and V [{1, . . . , a−1} , S] are clean.
If |S| ≥ 2 then

Partition S into two equal-sized parts S1 and S2

FindAllowedElements(S1)
Perform updates, as described below
FindAllowedElements(S2)

Else
This is a base case: S consists of a single element i
If Ni,i 6= t−1

i (i.e., element i is allowed) then
Set J := J + i
Set Ci,i := −1/(−t−1

i + Ni,i)
Invariant 4: U [S, S] is clean and V [S, S] is clean.

Recall that |S2| < n2−i and note that |A| and |B| are both at most r, the
rank of the given matroids. Hence, the time required for this update is at most
O(n2−irω−1).

At this stage, N [S2, B] is now clean with respect to the time at which subproblem
S started. However, further updates are still required: updates for entries in B must be
applied to other columns within N [S2, S2]. If |S| ≤ r then invariant 2 requires that
each update be applied to all columns to the right within N [S2, S2]. If |S| > r then
actually it suffices to update the columns in N [S2, B]. The two cases are similar so we
consider only the latter. The update amounts to setting N [S2, B] = X ~Y where X =
N [S2, B] and Y = C[B,B]V [B, B] (cf. Lemma 3.2). (Note that V [B, B] is clean
by invariant 4 and strictly upper triangular by construction.) Thus N [S2, B] is now
clean. The time required for this computation is O(|S|ω) if |S| ≤ r and O(n2−irω−1)
otherwise.

Copying N [S2, B] into U [S2, B] now makes the latter submatrix clean. A sym-
metric argument explains how to make V [B,S2] clean. Thus invariants 1 and 3 will
be satisfied at the start of subproblem S2. To ensure that invariant 2 also holds in
subproblem S2, we set

N [S2, S2] = N [S2, S2] + U [S2, B] C[B, B] V [B, S2].

This computation requires time at most O(|S|ω). However, if |S2| > r then it suffices

to update the r × r blocks on the diagonal of N [S2, S2], which requires time only
O(n2−irω−1) by the obvious approach.
Analysis. To analyze the time required by this algorithm, recall that there are 2i sub-
problems at level i. For levels i < log(n/r), the total time required is

∑log(n/r)
i=1 2i ·

O(n2−irω−1) = O(nrω−1), ignoring a log n factor. For levels i ≥ log(n/r) (i.e.,
subproblems on at most r elements), the time is

log n∑

i=log(n/r)

2i ·O((n2−i)ω) =
log n∑

i=log n−log r

O(nω2−(ω−1)i)

=
log r∑

i=0

O(n2(ω−1)i)

= O(nrω−1).

Thus the total time required is O(nrω−1).
Computing N . The preceding description of the algorithm assumes that N was fully
computed at the beginning. However, it is clear that the only parts of N that are needed
are those in the r× r diagonal blocks and those parts that are involved in updates. It is
straightforward to extend the algorithm so that the necessary parts of N are computed
on demand.

At the beginning of the algorithm, we compute only the r × r diagonal blocks of
N . As shown by Eq. (4.3), this amounts to computing

• Q1T
−1Q2. This requires O(nrω−1) time.

• (
Q1T

−1Q2

)−1. This requires O(rω) time.

• Q̃1 :=
(
Q1T

−1Q2

)−1
Q1T

−1. This requires O(nrω−1) time.

• Q̃2 := T−1Q2. This requires O(nr) time.
• The r × r diagonal blocks of Q̃2Q̃1. This requires O(nrω−1) time.

The additional work is negligible, so the total amount of initial work is only O(nrω−1).
During the algorithm, the only time at which entries of N must be computed is

during the updating process at any level i where n2−i > r. In this case, the entries of
N [S2, B] are needed to make U [S2, B] clean, and similarly for V [B, S2]. Referring
again to Eq. (4.3), we see that

N [S2, B] = T−1[S2, B]︸ ︷︷ ︸
= 0

− Q̃2[S2, ∗] · Q̃1[∗, B].

The time required for this computation is only O(n2−irω−1), since Q̃2 has r columns,
Q̃1 has r rows, |B| ≤ r, and |S2| < n2−i. Thus computing entries of N on demand
does not asymptotically increase the work required for the update process. Thus the
preceding analysis applies without change.

4.6 Maximum Cardinality Intersection

The algorithm presented is the previous sections constructs a common base of two
matroids, if one exists. If the matroids do not have a common base, one would typically

like to find a maximum cardinality intersection. The algorithm can be easily adapted
for this purpose, without affecting the running time.

As in Section 3.1, the key idea is to restrict the focus to a full-rank submatrix
of the form Z[Ar, Ac] such that Ar and Ac both contain S, i.e., Z[Ar, Ac] contains
the entire submatrix T . Such a submatrix may be found in O(nrω−1) time by the
following scheme. First compute Y = −Q1 · T−1 · Q2, which requires O(nrω−1)
time as discussed above. Since Y is the Schur complement of T , Fact 2 shows that the
submatrices of Y of rank k correspond to submatrices of Z with the desired form and
rank k + n. A maximum rank submatrix of Y can be found in O(rω) time by standard
techniques. Redefining Z := Z[Ar, Ac] and r := |Ar| −n, the assumption λ(∅) = r
becomes satisfied.

The algorithm can be made Las Vegas instead of Monte Carlo by constructing an
optimum dual solution. Simply construct the usual auxiliary graph used by Lawler’s
algorithm [8, 36], then find the vertices reachable from the sources; these vertices form
an optimal dual solution whp. It is possible to construct the auxiliary graph in time
O(nrω−1), although we omit the details.

5 Generalizations
A nice feature of our previous algorithms is that they extend easily to several general-
izations of matching and matroid intersection. We consider two such generalizations
here.

5.1 Path-Matchings

An instance of the a basic path-matching is a tuple G = (R1, R2, S, E,M1,M2)
where (R1 ∪ R2 ∪ S, E) is a graph and each Mi is a matroid (Ri, Ii, ri). The vertex
sets R1, R2 and S are disjoint and furthermore R1 and R2 are stable sets (no edge has
both endpoints in either R1 or R2). Assume that |R1| = |R2|, and that M1 and M2

have the same rank r. A path-matching is a collection of node-disjoint paths with one
endpoint in R1 and the other in R2, together with a matching on the S-vertices not
contained in any of the paths. If M ⊆ E is a path-matching, let ∂iM ⊆ Ri denote
the set of vertices in Ri that are covered by M , and let ∂SM ⊆ S denote the covered
S-vertices. A perfect path-matching is a path-matching M such that ∂iM = Ri and
∂SM = S. A basic path-matching (bpm) is a path-matching such that ∂iM ∈ BMi

and that ∂SM = S.
Contracted Instances. A set M ⊆ E is called an extensible set for G if there exists
a bpm M ′ ⊇ M . Let M be an extensible set and note that ∂iM ∈ IMi . We will now
define a basic path-matching problem G(M), which we call the contraction of G by
M .

Let Pi be the set of paths in M with one endpoint in Ri and the other in S. Let P12

be the set of paths with one endpoint in R2 and the other in R2. Informally, we delete
the paths in P12, we contract (in the graph) each path in Pi to a single vertex, and we
contract (in the matroid Mi) the elements ∂iM . Formally, the set Ci ⊆ S consists of
the endpoints in S of the paths in Pi. Define ∂iM = Ri \∂iM , and note that ∂1M and
∂2M are not necessarily equicardinal. Define R′i := ∂iM ∪ Ci and S′ := S \ ∂SM .
Define E′ ⊆ E to be the set of edges with both endpoints in S′ or with one endpoint

R1 R2S

29

82

41

-5-8

58

03

M1 M2

Figure 3: An illustration of a basic path-matching instance. The rows of the matrix on the left
represent a matroid on R1, and the rows of the matrix on the right represent a matroid on R2.
The edges in bold constitute a basic path-matching.

in R′i and the other in S′ ∪ R′j where i 6= j. The matroid M′
i is (Mi/∂iM)⊕ F(Ci),

where F(Ci) denotes the free matroid on Ci and⊕ denotes direct sum. The contraction
of G by M is G(M) := (R′1, R

′
2, S

′, E′,M′
1,M

′
2). Clearly G(∅) = G.

Claim 5.1. If M ′ ⊇ M is a bpm for G then M ′′ := M ′ \ M is a bpm for G(M).
Conversely, if M ′′ is a bpm of G(M) then M ∪M ′′ is a bpm of G.

Proof. ⇒: As above, let P12 be the paths from R1 to R2 in M . The R1-R2 paths in
M ′, excluding the paths in P12, clearly form a path-matching when restricted to the
vertex set of G(M). These paths intersect R′i at Ci ∪ (∂iM

′ \ ∂iM). This is clearly a
base of M′

i since ∂iM
′ is a base for Mi.

⇐: The key point is that every base of Mi must contain Ci, so any basic path-
matching in G(M) must cover Ci. ¥

Formulation using Linear Algebra. We now define a matrix which captures the
basic path-matching problem by generalizing the Tutte matrix and the matrix presented
in Eq. (4.1) for matroid intersection.

First, there is a matrix of indeterminates T which is similar to the Tutte matrix
and describes the graph underlying G. The rows of T are indexed by R1 ∪ S and the
columns are indexed by R2 ∪ S. The entries are defined as Ti,j = ±t{i,j}, where the
signs are chosen such that T [S, S] is skew-symmetric.

Lemma 5.2 (Geelen [26]). T is non-singular iff G has a perfect path-matching.

Let Q1 and Q2 be matrices as in Section 4. Let I denote an identity matrix of the
appropriate size. Define Z(M) to be the following matrix.

Z(M) =




Q∂1M
1 Q∂1M

1

Q∂2M
2

Q∂2M
2 I

I T [∂1M, ∂2M] T [∂1M,C2 ∪ S′]
T [C1 ∪ S′, ∂2M] T [C1 ∪ S′, C2 ∪ S′]




R1 R2S

29

82

41

-5-8

58

03

M1 M2

∂1M

∂2M

C1 C2

S'

(a)

R1'
R2'

10

00

00

01

M1'
M2'

S'

(b)

Figure 4: (a) The bold edges form an extensible set M since they are a subset of the basic
path-matching shown in Figure 3. (b) The contracted instance.

Theorem 5.3. Let M be a set of edges in G such that ∂1M ∈ IM1 and ∂2M ∈ IM2 .
Then G(M) has a bpm iff Z(M) is non-singular.

By Claim 5.1, an equivalent statement of Theorem 5.3 is as follows.

Corollary 5.4. M is an extensible set iff Z(M) is non-singular.

Allowed Edges. Suppose that M is an extensible set. We say that an edge e = {i, j}
in G(M) is allowed (relative to M) if M + e is also extensible. This section explains
how to test efficiently whether e is allowed by deriving an analogue of Lemma 4.3.
It will be convenient to identify the vertices R′1 ∪ S′ (vertices R′2 ∪ S′) with rows
(columns) of the submatrix of T in Z(M), and let N = Z(M)−1. There are two cases
to consider.

Update A: In this case, either i or j is in R′1 ∪ R′2, say i ∈ R′1 and j ∈ R′2 ∪
S′. Observe that Z(M + e) = Z(M)del(i,j), modulo a permutation of the rows and
columns. Therefore, e is allowed iff Nj,i 6= 0, since

det Z(M + e) = ± detZ(M)del(i,j) = ± detZ(M) ·Nj,i.

Furthermore, the matrix Z(M + e)−1 may be computed from N by a rank-1 update.
From Fact 4, it follows that

Z(M + e)−1 =
(
N − N∗,i · (Nj,i)−1 ·Nj,∗

)
del(j,i)

. (5.1)

Update B: In this case, {i, j} ⊆ S′. Note that Z(M + e) = Z(M)del({i,j},{i,j}).
By Fact 1,

detZ(M)del({i,j},{i,j}) = ± detZ(M) · det N [{i, j} , {i, j}].

Therefore, e is allowed iff2 det N [{i, j} , {i, j}] 6= 0. It follows from Fact 3 that

Z(M + e)−1 =
(
N − N∗,{i,j} · (N{i,j},{i,j})−1 ·N{i,j},∗

)
del({i,j},{i,j})

. (5.2)

Algorithm. Given the preceding discussion, the algorithm of Section 3 generalizes
straightforwardly to solve the basic path-matching problem. One simply computes
the matrix N := Z(∅)−1 in O(nω) time, then searches for allowed edges using the
recursive scheme of Algorithm 1. To decide whether an edge is allowed, it suffices to
examine the entries of N , as described above. Once an allowed edge is found, it is
added to the extensible set, and updates are stored in the auxiliary matrices U , V and
C as before. For the sake of brevity, we leave the details to the reader.

2Although the present discussion is similar to Section 3, it does not in general hold that N [{i, j} , {i, j}]
is skew-symmetric.

5.2 Bipartite Matroid Matchings

The bipartite matroid matching problem is simply the special case of the basic path-
matching problem in which S = ∅. Furthermore, matroid intersection is the special
case of bipartite matroid matching where all vertices have degree 1. The preceding
discussion immediately yields an algorithm for solving the bipartite matroid matching
problem in O(nω) time. However, the algorithm can be simplified since the matrix
Z(M) contains no skew-symmetric parts. We discuss this simplification below.

First, note that Z := Z(∅) has the following form.

Z =




Q1

Q2 I
I T




Clearly Z−1 can be computed in O(nω) time. However, the algorithm only makes use
of the south-east submatrix of Z−1 (the submatrix whose rows and columns correspond
to the submatrix T in Z). This submatrix actually has a simple closed form, as the
following lemma shows.

Lemma 5.5. The south-east submatrix of Z−1 is −Q2

(
Q1TQ2

)−1
Q1.

Now consider how the algorithm described in Section 5.1 operates on this matrix.
Since each indeterminate appears only once in T (i.e., T is not skew-symmetric), the
problem is more similar to bipartite matching than non-bipartite matching. Thus the
recursive structure can be modified as follows. Partition R1 into R1,1 ∪R1,2, partition
R2 into R2,1 ∪R2,2. Next recurse on the four subproblems

R1,1 ∪R2,1, R1,1 ∪R2,2, R1,2 ∪R2,1, and R2,2 ∪R2,2.

Each update performed by the algorithm is of type Update A. Thus the resulting algo-
rithm is essentially identical to the bipartite matching algorithm of Mucha and Sankowski
[41, 40].

Thus we have the following surprising result. When the Mucha-Sankowski algo-
rithm executes on T and T−1, it computes a maximum bipartite matching. However,
when it executes on T and Q2(Q1TQ2)−1Q1 it computes a bipartite matroid matching.

Acknowledgements
The author thanks Michel Goemans, Satoru Iwata, and David Karger for helpful dis-
cussions on this topic. Additionally, the author thanks the anonymous referees for
suggesting numerous improvements to the text of the paper. This work was supported
by a Natural Sciences and Engineering Research Council of Canada PGS Scholarship,
by NSF contract CCF-0515221 and by ONR grant N00014-05-1-0148.

References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[2] M. Aigner and T. A. Dowling. Matching theory for combinatorial geometries. Transactions of the
American Mathematical Society, 158(1):231–245, July 1971.

[3] A. C. Aitken. Determinants and Matrices. Interscience Publishers, New York, ninth edition, 1956.

[4] A. I. Barvinok. New algorithms for linear k-matroid intersection and matroid k-parity problems. Math-
ematical Programming, 69:449–470, 1995.

[5] P. M. Camerini, G. Galbiati, and F. Maffioli. Random pseudo-polynomial algorithms for exact matroid
problems. Journal of Algorithms, 13(2):258–273, 1992.

[6] P. Chalasani and R. Motwani. Approximating capacitated routing and delivery problems. SIAM Journal
on Computing, 26(6):2133–2149, 1999.

[7] J. Cheriyan. Randomized Õ(M(|V |)) algorithms for problems in matching theory. SIAM Journal on
Computing, 26(6):1635–1669, 1997.

[8] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial Optimization.
Wiley, 1997.

[9] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity, 13(1):42–49,
1997.

[10] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Sym-
bolic Computation, 9(3):251–280, 1990.

[11] W. H. Cunningham. Improved bounds for matroid partition and intersection algorithms. SIAM Journal
on Computing, 15(4):948–957, Nov. 1986.

[12] W. H. Cunningham and J. F. Geelen. Vertex-disjoint directed paths and even circuits. Manuscript.

[13] W. H. Cunningham and J. F. Geelen. The optimal path-matching problem. In Proceedings of the 37th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 78–85, 1996.

[14] W. H. Cunningham and J. F. Geelen. The optimal path-matching problem. Combinatorica, 17(3):315–
337, 1997.

[15] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the
National Bureau of Standards, 69B:125–130, 1965.

[16] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

[17] J. Edmonds. Matroid partition. In G. B. Dantzig and A. F. Veinott Jr., editors, Mathematics of the
Decision Sciences Part 1, volume 11 of Lectures in Applied Mathematics, pages 335–345. American
Mathematical Society, 1968.

[18] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani, N. Sauer,
and J. Schönheim, editors, Combinatorial Structures and Their Applications, pages 69–87. Gordon and
Breach, 1970. Republished in M. Jünger, G. Reinelt, G. Rinaldi, editors, Combinatorial Optimization
– Eureka, You Shrink!, Lecture Notes in Computer Science 2570, pages 11–26. Springer-Verlag, 2003.

[19] J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1:127–136, 1971.

[20] J. Edmonds. Matroid intersection. In P. L. Hammer, E. L. Johnson, and B. H. Korte, editors, Discrete
Optimization I, volume 4 of Annals of Discrete Mathematics, pages 39–49. North-Holland, 1979.

[21] S. Even and O. Kariv. An O(n2.5) algorithm for maximum matching in general graphs. In Proceedings
of the 16th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 100–112,
1975.

[22] S. Fujishige. Submodular Functions and Optimization, volume 58 of Annals of Discrete Mathematics.
Elsevier, second edition, 2005.

[23] H. N. Gabow and Y. Xu. Efficient algorithms for independent assignments on graphic and linear
matroids. In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 106–111, 1989.

[24] H. N. Gabow and Y. Xu. Efficient theoretic and practical algorithms for linear matroid intersection
problems. Journal of Computer and System Sciences, 53(1):129–147, 1996.

[25] F. R. Gantmakher. The Theory of Matrices, volume 1. Chelsea, New York, 1960. Translation by K.A.
Kirsch.

[26] J. F. Geelen. Matroids, Matchings, and Unimodular Matrices. PhD thesis, University of Waterloo,
Canada, 1995.

[27] J. F. Geelen. Matching theory. Lecture notes from the Euler Institute for Discrete Mathematics and its
Applications, 2001.

[28] C. D. Godsil. Algebraic Combinatorics. Chapman & Hall, 1993.

[29] M. X. Goemans. Bounded degree minimum spanning trees. In Proceedings of the 21st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2006.

[30] A. V. Goldberg and A. V. Karzanov. Maximum skew-symmetric flows and matchings. Mathematical
Programming, 100(3):537–568, July 2004.

[31] N. J. A. Harvey, D. R. Karger, and K. Murota. Deterministic network coding by matrix completion.
In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 05),
pages 489–498, 2005.

[32] R. Hassin and A. Levin. An efficient polynomial time approximation scheme for the constrained
minimum spanning tree problem using matroid intersection. SIAM Journal on Computing, 33(2):261–
268, 2004.

[33] H. J. Karloff. A Las Vegas RNC algorithm for maximum matching. Combinatorica, 6(4):387–391,
1986.

[34] D. E. Knuth. The asymptotic number of geometrices. Journal of Combinatorial Theory, Series A,
16:398–400, 1974.

[35] E. L. Lawler. Matroid intersection algorithms. Mathematical Programming, 9:31–56, 1975.

[36] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Dover, 2001.

[37] L. Lovász. On determinants, matchings and random algorithms. In L. Budach, editor, Fundamentals
of Computation Theory, FCT ’79, pages 565–574. Akademie-Verlag, Berlin, 1979.

[38] L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó – North Holland, Budapest, 1986.

[39] S. Micali and V. V. Vazirani. An O(
√

V E) algorithm for finding maximum matching in general
graphs. In Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 17–27, 1980.

[40] M. Mucha. Finding Maximum Matchings via Gaussian Elimination. PhD thesis, Warsaw University,
2005.

[41] M. Mucha and P. Sankowski. Maximum matchings via Gaussian elimination. In Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 248–255, 2004.

[42] K. Murota. Matrices and Matroids for Systems Analysis. Springer-Verlag, 2000.

[43] K. Murota. Discrete Convex Analysis. SIAM, 2003.

[44] H. Narayanan, H. Saran, and V. V. Vazirani. Randomized parallel algorithms for matroid union and
intersection, with applications to arboresences and edge-disjoint spanning trees. SIAM Journal on
Computing, 23(2):387–397, 1994.

[45] J. G. Oxley. Matroid Theory. Oxford University Press, 1992.

[46] M. O. Rabin and V. V. Vazirani. Maximum matchings in general graphs through randomization. Jour-
nal of Algorithms, 10(4):557–567, 1989.

[47] P. Sankowski. Processor efficient parallel matching. In Proceedings of the 17th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 165–170, 2005.

[48] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, 2003.

[49] A. Schrijver. On the history of combinatorial optimization (till 1960). In K. Aardal, G. L. Nemhauser,
and R. Weismantel, editors, Discrete Optimization, volume 12 of Handbooks in Operations Research
and Management Science, pages 1–68. North Holland, 2005.

[50] G. Strang. Linear Algebra and its Applications. Thomson Learning, 1988.

[51] N. Tomizawa and M. Iri. An algorithm for determining the rank of a triple matrix product AXB with
application to the problem of discerning the existence of the unique solution in a network. Electronics
and Communications in Japan (Scripta Electronica Japonica II), 57(11):50–57, Nov. 1974.

[52] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society, 22:107–
111, 1947.

[53] V. V. Vazirani. A theory of alternating paths and blossoms for proving correctness of the O(
√

V E)
general graph matching algorithm. In Proceedings of the 1st Integer Programming and Combinatorial
Optimization Conference (IPCO), pages 509–530, 1990.

[54] D. J. A. Welsh. Matroid Theory, volume 8 of London Mathematical Society Monographs. Academic
Press, 1976.

[55] H. Whitney. On the abstract properties of linear dependence. American Journal of Mathematics,
57:509–533, 1935.

A Additional Proofs
A.1 Facts from Linear Algebra

This section proves the basic facts that are given in Section 2.

Proof (of Fact 1). The following proof is folklore; see also Gantmakher [25, §1.4].
Let M be of the form M = (W X

Y Z) and let M−1 =
(

Ŵ X̂
Ŷ Ẑ

)
. Note that

(
W X
Y Z

)
·
(

Ŵ 0
Ŷ I

)
=

(
I X
0 Z

)
.

Taking the determinant of both sides shows that detM · det Ŵ = det Z. This proves
the result when M [I, J] is the south-east submatrix Z. The general result follows via
row/column permutations. ¥
Proof (of Fact 2). See Murota [42]. Note that:

(
W −XZ−1Y 0

Z−1Y I

)
=

(
I −X
0 I

)
·

(
I 0
0 Z−1

)
·

(
W X
Y Z

)
. (A.1)

Taking the determinant of both sides proves the fact. ¥
Proof (of Fact 3). The condition for non-singularity of W follows from Fact 1. To
prove the equation for W−1, we reverse the roles of M and M−1, i.e., we consider
Ŵ−1 instead. Take inverses in Eq. (A.1):

(
(W −XZ−1Y)−1 0

Z−1Y (W −XZ−1Y)−1 I

)
=

(
Ŵ X̂

Ŷ Ẑ

)
·
(

I 0
0 Z

)
·
(

I X
0 I

)

=
(

Ŵ ŴX + X̂Z

Ŷ Ŷ X + ẐZ

)
.

The equality of the north-west submatrices shows that Ŵ−1 = W − XZ−1Y , as
desired. ¥
Proof (of Fact 4). First we prove the condition for existence of M̃−1. Consider the
matrix A =

(
−c−1 vT

u M

)
. Use Fact 2 first on the south-east submatrix M , and then on

the north-west submatrix −c−1, obtaining:

detM · det
(− c−1 − vTM−1u

)

= det A = (−c−1) · det
(
M − u(−c)vT)

.

This shows that M̃ is non-singular iff α 6= 0. To verify the equation for M̃−1, note that
(
M + cuvT) · (M−1 − α−1M−1uvTM−1

)
= I. ¥

Proof (of Fact 5). Suppose that M−1 exists. Then

(M−1)i,j =
(
(M−1)T)j,i =

(
(MT)−1)j,i

=
(
(−M)−1)j,i = −(M−1)j,i. ¥

A.2 Proofs from Section 3

Proof (of Lemma 3.2). First, note that X
(j)
∗,i = X

(k)
∗,i if i ≤ j ≤ k since Y is strictly

upper triangular. Define A =
(

I−Y 0
X I

)
, and consider performing Gaussian elimination

on A. Let S(i) denote the south-west submatrix of A just before the ith elimination. An
easy inductive argument shows that S

(i)
∗, i:n = X

(i)
∗, i:n. The (lower half of the) column

vector involved in the ith elimination is therefore S
(i)
∗, i = X

(n)
∗, i . Now consider the

LU-decomposition of A:
(

I − Y 0
X I

)
=

(
I 0
B I

)
·
(

I − Y 0
0 I

)
.

It is well-known that B∗,i is precisely the (lower half of the) column involved in the ith

elimination (see, e.g., Strang [50]). Thus B = X(n) = X ⊗ Y . The lemma follows by
observing that X = B · (I − Y). ¥

A.3 Proof of Theorem 4.1

The following result is useful for analyzing matrices of indeterminates.

Lemma A.1 (Murota [42, p139]). Let Q and X be matrices with row-set and column-
set S . Suppose that the entries of Q are numbers in some field, and the entries of X
are distinct indeterminates. Then

rank(Q + X) = max
Ar⊆S, Ac⊆S

(
rankQ[Ar, Ac] + rank X[S \Ar, S \Ac]

)
. (A.2)

We now wish to show that Z(J) is non-singular iff J is an extensible intersection.

Proof (of Theorem 4.1). The approach is to apply Lemma A.1 to the matrix Z. Let-
ting Z = Q + X , the matrix Q contains the two matrices Q1 and Q2 representing
the matroids and zeros elsewhere. The matrix X contains the submatrix T and zeros
elsewhere. The set S , which indexes the rows and columns of Z, can be regarded as
the set [r] ∪ S, where S is the ground set of the matroids.

Our proof successively adds constraints to the sets Ar and Ac in Eq. (A.2) without
changing the maximum value. First, we add the constraint [r] ∪ J ⊆ Ar because those
rows cannot contribute to rankX[S \ Ar,S \ Ac]. A similar argument holds for Ac.

Next, if i ∈ Ar \Ac then column i cannot contribute to rank X[S \Ar,S \Ac], since
T (and hence X) are diagonal. The same argument applies to Ac \ Ar, so we may
assume without loss of generality that Ar = Ac. For notational simplicity, we drop the
subscripts and simply write A = [r] ∪A′, where A′ ⊆ S.

Consider the rankQ[A,A] term of Eq. (A.2). Observe that Q1 and Q2 occupy
disjoint rows and columns of Z, so rankQ[A,A] = r1(A′) + r2(A′). The rankX[S \
A,S \A] term equals |S \A| = |S \A′| = n− |A′|. Thus we have

rankZ(J) = max
A′⊆S

(
r1(A′) + r2(A′) + n− |A′|).

Recall that J ⊆ A′. Thus may write A′ = J ∪ A′′, where A′′ ∩ J = ∅. Using the
definition of rM1/J , we obtain

rankZ(J) =

max
A′′⊆S\J

(
rM1/J(A′′) + rM2/J (A′′)− |A′′|) + n + r1(J) + r2(J)− |J |. (A.3)

Let A be a maximum intersection of M1/J and M2/J , so that λ(J) = |A| =
rMi/J(A) for each i. Then rankZ(J) ≥ λ(J) + n + r1(J) + r2(J) − |J |. To show
the reverse inequality, let A be a maximizer of Eq. (A.3) that additionally minimizes
2|A| − rM1/J (A) − rM2/J (A). Suppose that this latter quantity is not zero. Then
for some i we have rMi/J(A) < |A|, so there exists a ∈ A with rMi/J(A − a) =
rMi/J(A). It follows that the set A− a is also a maximizer of Eq. (A.3), contradicting
our choice of A. Hence rMi/J(A) = |A| for both i. Thus A is an intersection of M1/J
and M2/J satisfying rankZ(J) = |A|+n+ r1(J)+ r2(J)− |J |. Since |A| ≤ λ(J),
the desired inequality follows. ¥

A.4 Proof of Theorem 4.2

Claim A.2. The function λ is non-increasing, i.e., λ(I) ≥ λ(J) for all sets I ⊆ J .

Proof. Let U ⊆ W . Let Bi,U be a base for U in Mi, and extend it to a base Bi,W for
W in Mi. Now suppose that I ∈ IM1/W ∩ IM2/W . Then I ∪ Bi,W ∈ IMi ∀i =⇒
I ∪Bi,U ∈ IMi ∀i =⇒ I ∈ IM1/U ∩ IM2/U . Thus λ(W) ≤ λ(U). ¥

Claim A.3. Let J be an intersection. Then J is extensible iff λ(∅) = λ(J) + |J |.
Proof. Suppose that J is an extensible intersection. This means that there exists an
intersection I with J ⊆ I and |I| = λ(∅). Then I \ J is an intersection of M1/J and
M2/J , implying that λ(J) ≥ λ(∅)−|J |. Conversely, let I be an intersection of M1/J
and M2/J with |I| = λ(J). Then I ∪ J is an intersection of M1 and M2, showing
that λ(∅) ≥ λ(J) + |J |. This establishes the forward direction.

Now suppose that λ(J) = λ(∅)− |J |. Then there exists an intersection I of M1/J
and M2/J with |I| = λ(∅) − |J |. Then I ∪ J is an intersection of M1 and M2, of
cardinality λ(∅). This shows that J is extensible. ¥

Define the function ψ(J) := r1(J) + r2(J)− |J |+ λ(J).

Claim A.4. The function ψ is non-increasing.

Proof. Suppose that ψ(J + j) > ψ(J) for some set J and j 6∈ J . Clearly ri(J) ≤
ri(J + j) ≤ ri(J) + 1. By Claim A.2, λ(J + j) ≤ λ(J). Thus ψ(J + j) > ψ(J)
implies that, for both i, ri(J + j) = ri(J) + 1. Thus, if Bi,J is a base for J in Mi,
then Bi,J + j is a base for J + j. Now suppose that I ∈ IM1/J+j ∩ IM2/J+j . This
implies that I ∪ (Bi,J + j) ∈ IMi ∀i. Rewriting, (I + j) ∪ Bi,J ∈ IMi ∀i. Thus
I + j ∈ IM1/J ∩ IM2/J , implying that λ(J) ≥ λ(J + j) + 1. This contradicts our
assumption that ψ(J + j) > ψ(J). ¥

Claim A.5. Assume that M1 and M2 have the same rank r. For any set J ⊆ S, we
have λ(J) ≤ r −maxi∈{1,2} ri(J).

Proof. Note that λ(J) is at most the rank of Mi/J , which is at most r − ri(J). ¥

Proof (of Theorem 4.2). We assume that λ(∅) = r. By Theorem 4.1, we wish to show
that ψ(J) = r iff J is an extensible intersection.

If J is an intersection then r1(J) + r2(J)− |J | = |J |. If J is also extensible then
λ(J) + |J | = λ(∅) = r, by Claim A.3. This establishes the reverse direction of the
theorem.

Now let ψ(J) = r. Suppose we can show that J is an intersection. Then |J | +
λ(J) = ψ(J) = r = λ(∅), so Claim A.3 shows that J is also extensible as required. It
remains to show: ψ(J) = r implies that J is an intersection.

Clearly ψ(∅) = λ(∅) = r. Furthermore, ψ is non-increasing by Claim A.4, so
we can argue by induction on |J |. The induction hypothesis is that J is an extensible
intersection; this holds trivially for J = ∅. Consider a set J + j with ψ(J + j) = r.
Since ψ is non-decreasing, we have ψ(J + j) = ψ(J), or

(
r1(J + j)− r1(J)

)
+

(
r2(J + j)− r2(J)

)− 1 = λ(J)− λ(J + j). (A.4)

We now consider several cases. If ri(J + j) − ri(J) = 1 for both i then the proof is
complete: J + j is an intersection since J is. Furthermore, our previous remarks show
that J + j is also extensible.

We now show that the other cases lead to contradictions. If ri(J + j)− ri(J) = 0
for both i then the left-hand side of Eq. (A.4) is negative, but the right-hand side is
non-negative by Claim A.2. The remaining two cases are symmetric. Suppose without
loss of generality that r1(J + j) − r1(J) = 1 and r2(J + j) − r2(J) = 0, i.e., the
left-hand side of Eq. (A.4) has value 0. Since J is an extensible intersection, we have
λ(J) + |J | = r by Claim A.3 and r1(J + j) = |J + j|. By Claim A.5, λ(J + j) ≤
r − |J + j|. Combining these observations shows that the right-hand side of Eq. (A.4)
is strictly positive, which is again a contradiction. ¥

A.5 Proof of Theorem 5.3

The following determinant expansion is frequently useful.

Fact 6 (Generalized Laplace expansion). Let M be an n× n matrix. Fix a set of rows
I such that ∅ 6= I ⊂ {1, . . . , n}. Then

det M =
∑

J⊂{1,...,n}, |J|=|I|
det M [I, J] · detM [Ī , J̄] · (−1)

∑
i∈I i+

∑
j∈J j . (A.5)

An analogous statement holds for a set of rows I by taking the transpose of A.

Proof. See Aitken [3] or Murota [42]. ¥
For convenience let T ′ be the south-west submatrix of Z(M), namely

T ′ =




I

I T [∂1M, ∂2M] T [∂1M,C2 ∪ S′]
T [C1 ∪ S′, ∂2M] T [C1 ∪ S′, C2 ∪ S′]


 .

Proof (of Theorem 5.3). We apply the generalized Laplace expansion (Fact 6) to
Z(M) with the set of rows I = [r], obtaining

detZ(M) =
∑

A⊂[k], |A|=r

± detZ(M)[I, A] · detZ(M)[I, A] (A.6)

Clearly A must be a subset of the columns of Q1 and also A ⊇ ∂1M , otherwise either
Z(M)[I, A] or Z(M)[I, A] will contain a zero column. So Eq. (A.6) may be rewritten

detZ(M) =
∑

A⊆∂1M
|A|=r−|∂1M |

± detQ1[∗, A ∪ ∂1M] · detZ(M)[I, A ∪ ∂1M].

We now apply the Laplace expansion to Z(M)[I, A ∪ ∂1M] with the set of columns
I ′ = [r]. A similar argument yields that detZ(M) equals

∑

A⊆∂1M
|A|=r−|∂1M |

±det Q1[∗, A ∪ ∂1M] ·
∑

B⊆∂2M
|B|=r−|∂2M |

±det Q2[B ∪ ∂2M, ∗] · detT ′[B, A] (A.7)

Consider now the matrix T ′[B, A]. We may use the remaining entries of the identity
submatrices to clear their rows and columns, without affecting the determinant. The
resulting matrix has the form

T ′′ =




I
I

T [A,B] T [A,C2 ∪ S′]
T [C1 ∪ S′, B] T [C1 ∪ S′, C2 ∪ S′]




where the rows/columns corresponding to set A have been deleted from the bottom-left
identity submatrix, and the rows/columns corresponding to set B have been deleted

from the other one. To simplify our notation, let T̃ (A,B) denote T [A ∪C1 ∪ S′, B ∪
C2 ∪ S′]. Thus

T ′′ =




I
I

T̃ (A,B)


 ,

implying that
detT ′[B, A] = det T ′′ = det T̃ (A,B).

The crucial observation is that any monomial in det T̃ (A,B) cannot appear in
det T̃ (A′, B′) for any sets with A′ 6= A or B′ 6= B. Therefore there can be no cancela-
tion among the terms of Eq. (A.7), so it follows that Z(M) is non-singular iff there exist
A ⊆ ∂1M and B ⊆ ∂2M such that Q1[∗, A ∪ ∂1M], Q2[B ∪ ∂2M, ∗], and T̃ (A,B)
are all non-singular. Equivalently, we must have A ∪ C1 ∈ BM′

1
, B ∪ C2 ∈ BM′

2
, and

T̃ (A,B) non-singular. By Lemma 5.2, this is precisely the condition that G(M) has a
bpm. ¥

A.6 Proof of Lemma 5.5

The following fact is useful for computing inverses of block matrices.

Fact 7. Let a non-singular matrix M be given, where

M =
(

A B
C D

)
.

Suppose that D is non-singular. Let the Schur complement of D be S = A−BD−1C.
Then

M−1 =
(

S−1 −S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

)
.

Proof (of Lemma 5.5). We will apply Fact 7 with M = Z and

A =
(

0
)

B =
(
Q1 0

)

C =
(

Q2

0

)
D =

(
0 I
I T

)

Note that

D−1 =
(−T I

I 0

)
.

It follows that

S = −Q1TQ2

D−1C =
(−TQ2

Q2

)

BD−1 =
(−Q1T Q1

)
.

By Fact 7, the south-east submatrix of M−1 is

D−1 + D−1CS−1BD−1.

However, we are only interested in its south-east submatrix, which is

Q2S
−1Q1,

as required. ¥

