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Abstract 1.1. Matching algorithms

We present new algebraic approaches for several well- The literature for non-bipartite matching algorithms is quite
known combinatorial problems, including non-bipartite lengthy. The initial work of Edmonds [10] gives an algo-
matching, matroid intersection, and some of their general- rithm with running timeO(n?m), wheren andm respec-
izations. Our work yields new randomized algorithms that tively are the number of vertices and edges. Several addi-
are the most efficient known. For non-bipartite matching, tional improvements culminated in tli&\/nm) algorithm

we obtain a simple, purely algebraic algorithm with running of Micali and Vazirani in 1980 [25]. There was little sub-
time O(n*) wheren is the number of vertices andis the sequent progress until 2004, when an exciting development
matrix multiplication exponent. This resolves the central of Mucha and Sankowski [27] gave a randomized algorithm
open problem of Mucha and Sankowski (2004). For matroid to construct a maximum matching in tim@(n“) where
intersection, our algorithm has running ting(nr<—1) for w < 2.38 is the exponent indicating the time to multiply
matroids withn elements and rank that satisfy some nat- two n x n matrices [4]. A highly readable exposition of
ural conditions. This algorithm is based on new algebraic their algorithm is in Mucha’s thesis [26].

results characterizing the size of a maximum intersectionin  Unfortunately, all of these algorithm mentioned above
contracted matroids. Furthermore, the running time of this are quite complicated. Edmonds’ algorithm requires much

algorithm is essentially optimal. care in manipulating “blossoms”, and the Micali-Vazirani
algorithm was not formally proven correct for ten years
1. Introduction [38]. The Mucha-Sankowski algorithm relies on a non-

trivial structural decomposition of graphs called the “canon-
ical partition”, and uses sophisticated dynamic connectiv-
ity data structures to maintain this decomposition online.
Mucha writes [2656]:

The non-bipartite matching problem — finding the largest
set of disjoint edges in a graph — is a fundamental problem
that has played a pivotal role in the development of graph
theory, combinatorial optimization, and computer science

[34]. For example, Edmonds’ seminal work on matchings [The non-bipartite] algorithm is quite compli-

[9, 10] inspired the definition of the class P, and launched cated and heavily relies on graph-theoretic results
the field of polyhedral combinatorics. The matching the- and techniques. It would be nice to have a strictly
ory book [24] gives an extensive treatment of this subject, algebraic, and possibly simpler, matching algo-

and uses matchings as a touchstone to develop much of the  rithm for general graphs.

theory of compmatonal qpt|m|zat|on_ . Interestingly, for the special case of bipartite graphs, Mucha
The mgtrmd |ntersect|on problem R f'”d'”g the Iqrgest and Sankowski give a simple algorithm that amounts to per-
common |ndependent's¢t N two given ma'.[rc'nds'—.ls an- forming Gaussian elimination lazily. Unfortunately, this
other fundamental optimization problem, originating in the technique seems to break down for general graphs, lead-
pioneering work of Edmonds [11, 12]. This work led to sig- ing to the conjecture that there is 6%n) matching alg’o-

nificant developments concerning integral polyhedra [33], rithm for non-bipartite graphs that uses only lazy computa-
submodular functions [13] and electrical networks [21]. Al- tion techniques [2653.4]

gorithmically, mgtrmd.mtersectlon is a powerful tpol that In subsequent work, Sankowski [32] developed a par-
has been used in various areas such as approximation al-

gorithms [2, 19], mixed matrix theory [28], and network allel (RNC®) algorithm for constructing perfect matchings
coding [20] ' ' ' that uses only)(n“) processors, yielding another sequen-

tial algorithm that uses onl@(n“) time. However, this
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1.2. Matroid intersection algorithms ing scheme that only updates “nearby” matrix entries will
Polynomial time algorithms for matroid intersection were fail. We overcome this difficulty by traversing the matrix in
developed in the 1970s by various authors [11, 12, 22]. The@ novel manner such that symmetric Iocgtlons are n_earby in
efficiency of these early algorithms was typically measured OUr traversal, even if they are far apart in the matrix. Our
relative to an oracle for testing independence. For example "€W approach has an important consequence: it easily ex-
Edmonds’ algorithm use@(nr?) oracle queries, whereis Fends to various generahza‘uonslof the qon—b|partlte match-
the rank of the matroid and is the size of the ground set. ing Problem such as path-matchings. Itis not clear whether
Cunningham [5] gave a more efficient algorithm, motivated Prévious algorithms [25, 27] also admit such extensions.

by intersection ofinear matroids (those that can be repre- Matroid intersection. We present a randomized algo-
sented as a x n matrix). This algorithm makes no oracle rithm for the matroid intersection problem that uses only
queries and uses onl§(nr?logr) time. Gabow and Xu  O(nr*~!) time. This running time is essentially optimal
[14] obtained an improved bound 6f(nr!:62) through the ~ because computing the rank ofia » matrix reduces to ma-
use of fast matrix multiplication and quite technical argu- troid intersection of the matrix with itself, ar@(nr~ 1) is
ments. However, their bound does not seem to be a naturathe best running time for any rank-computation algorithm
one: for square matrices the running timeCign?%2), al- that we know of. Restated, we show that finding a maxi-
though one would hope for a running time@fn?-3%). mum independent set itwo matroids requires asymptoti-
cally the same time as finding a maximum independent set
in justonematroid.

Several variants and generalizations of matchings and ma- gy algorithm operates with a certain square matrix of
troid intersection have been considered, notably matroidsjzey, + r, and its inverse. (See Section 4 for details.) Since
matching. Matroid matching problems on general graphs the inverse ha$l(n?) entries, it cannot be explicitly com-
require exponential time in the oracle model, although so- puted — our desired running time is linearsn Thus a
phisticated polynomial-time algorithms do exist for linear key aspect of our algorithm involves computing and updat-
matroids [24]. On the other hanblipartite matroid match-  ing the inverse of a matrix, even though it is sparse. These
ing problems are tractable: they are polynomial-time re- techniques may be useful for other similar problems.

ducible to matroid intersection [11, Theorem 81] [13]. Whereas most existing matroid algorithms use augment-
Another generalization of matroid intersections and non- ing path techniques, ours uses an algebraic approach. Sev-
bipartite matchings argasic path-matchingsntroduced by (3| previous matroid algorithms also use algebraic tech-
Cunningham and Geelen [7, 8, 16]. Their work shows inte- piques [1, 23, 29]. This algebraic approach involves two
grality of related polyhedra and shows that one can optimize 5 ssymptions. (1) We assume that the given matroids are lin-
over these polyhedra using the ellipsoid method [8]. Later oar. This is a standard assumption for algorithms that are not
work [6] used algebraic techniques together with a matroid oracje-hased, since linear matroids are the broadest class of
intersection algorithm to compute a basic path-matching.  atroids with efficient representations. (2) We make the
1.4. Our results mild technical assumptiqn that the given pair of matroids
. . are represented as matrices over the same field. Although
In this paper, we present new algebraic approaches for sev- . ! ) . .
eral of the problems mentioned above there exist matroids for which this assumption cannot be
) p i ‘ . satisfied (e.g., the Fano and non-Fano matroids), this as-
Non-bipartite matching. We present a purely algebraic,

; ) i - sumption is valid for the vast majority of matroids arising
randomized algorithm for constructing a maximum match- i, anjications. For example, the regular matroids are those
ing in O(n*) timet. The algorithm is conceptually sim-

that are representable over all fields; this class includes the

ple — it uses lazy updates, and does not require Sophis-aphic cographic and partition matroids. Many classes of

ticated data structures or subroutines other than a blackinargids are representable over all but finitely many fields:
box algorithm for matrix multiplication/inversion. There-

X these include the uniform, matching, and transversal ma-
fore our work resolves the central open question of M“Chatroids, as well as deltoids and gammoids [33]. Our results

and Sankowski [27], and refutes the conjecture [26] that N0 4 16 any two matroids from the union of these classes.

such lazy algorithm exists. Bipartite Matroid Matching. We show a surprising re-

Our algorithm is based on a simple, but subtle, divide- i i S - i
and-conquer approach. The key insight is: adding an eolgesult. the Mucha-Sankowski bipartite graph matching al

T e . ; rithm [27], when run on an ropri matrix Ivi
to the matching involves modifying two symmetric entries gorit [27], en run on an appropriate matrix, solves

of a certain matrix. (See Section 3 for further details.) Thesethe blpart'|te 'mat'r0|d mqtchmg problem 0(n”) 'tlme.
. . . . Our contribution is to derive the appropriate matrix and to
entries may be quite far apart in the matrix, so a lazy updat- : . )
prove some of its properties. Our result improves on the

2,.1.62) _ 3.62 i i i i
Lf w = 2, the running time is actuallp)(n2 logn). Henceforth, we O(n e )= O(”_ ) bound obtained via earlier matm'd
ignorepolylog(n) factors in expressions of the for@(n<). intersection algorithms [14], and the usual reduction from

1.3. Generalizations




bipartite matroid matching to matroid intersection [13]. Another important fact about matrices concerns algorith-
Basic Path-Matching. We present a novel algebraic mic efficiency. For matrices of sizex n, the following op-
structure which characterizes solvable instances of the ba€rations can be performed @(n*) time: multiplication,

sic path-matching problem. This extends Geelen’s algebraicdeterminant computation, rank computation, and inversion
framework for ordinary path-matching problems, which do (if the matrix is non-singular).

not involve matroids [16]. We also define a new notion of . . .

contraction for basic path-matching problems, allowing us 3: Non-Bipartite Matching

to extend our non-bipartite matching algorithm t@&n“) Tutte matrix. Let G = (S,E) be a graph withn =

algorithm for constructing basic path-matchings. |S|. For each edgdi,j} € FE, associate an indetermi-

. . natet; ;1. TheTutte matrix7 for GG is ann x n matrix
2. Notation and Basic Facts whereT; ; = +t(; ;, and the signs are chosen such that
The set of integer$1, ..., n} is denotedn]. If Jis a set, IS skew-symmetric. Tutte [37] showed tHatis formally
J + i denotes/ U {i}. If M is a matrix, a submatrix con- non-singular iffG has a perfect matching (see, e.g., God-
taining rowsS and columng” is denotedV/[S, T]. A sub- sil [18]). However, this does not directly imply an efficient
matrix containing all rows (columns) is denotéd|x, T algorithm to test ifG' has a perfect matching: the determi-

(M]S,*]). A submatrixM[S,T] is sometimes written as nant of1"is a formal polynomial which may have exponen-
Mg, when this enhances legibility. ThHE row (column) tial size, so computing it symbolically is inefficient. Fortu-
of M is denotedM; . (M. ;). An entry of M is denoted nately, Lovasz [23] showed that the rank ®fis preserved
M; ;. The submatrix obtained by deleting rewnd column  With high probability after randomly substituting non-zero
j (row-setl and column-sef) from M is denotedV/gc1; ;) vfalues for thd{i,j}’_s from a_sufﬁciently_ large field, say of
(Mgei(1,5))- A submatrix containing rowga, ...,b} and size©(n?). After this numeric substitution, the determinant

columns{c,...,d} is denotedM, ... When a matrix  Of the resulting matrix can be computedGrn®) time.

has been decomposed into blocks sucli'#sX ), we will A Self-Reducibility Algorithm.  This observation yields
refer to the blocks using compass directions, é1g.is the the following simple algorithm to construct a perfect match-
“north-west” submatrix. ing in O(n¥*2) time. For each edgéi, j}, temporarily

We will use the following basic facts from linear algebra, delete it and test if the resulting graph still has a perfect
proofs of which are in Appendix A. matching. If so, delete the edge permanently; otherwise, re-

store the edge. The test used in this algorithm is performed
Fact 1. Let M be a non'Singular matrix with row-set and by setting—t{i’j} =0 and Checking whether the determinant
column-setC. Then, for any equicardinal sefs J C C, of the resulting matrix is non-zero.
we havedet M1, J] = det M - det M~'[C'\ J,C'\ 1] - Rabin and Vazirani's Improvement. Two definitions
(—1)Zsertises, are needed. Thimverse Tutte matrixs N := 7!, and
an edge: = {i,j} is calledallowedif e is contained in a
perfect matching. Rabin-Vazirani [30] showed that, assum-
ing G has a perfect matching, is allowed iff N; ; # 0.
We observetithe following simple proof of their lemma.
G[S\ {4,7}] has a perfect matching iffet Tqe1({i,53.{i.1)
is non-zero (by Tutte’s theorem). This determinant is

Fact 2. Let M be a square matrix of the ford/ = (} %)
where Z is square. IfZ is non-singular, the matrixy/ —

X Z~1Y is known as the Schur complementah M. The
Schur complement satisfies the following useful property:
det M = det Z - det (W — XZ~'Y'). Additionally, the
rank of the Schur complement equals the rankRbminus
the size of7. det Tdel({@j},{i,j}) = +detT -det N[{Z,]} R {Z,]}]

Fact 3. Let M = (¥ %) have inverseM ~! = <V;/ >Z(> = +detT - (N; ;)%

ThenV is non-singular iffZ is, andW ! = W-X 2~V the first equality follows from Fact 1, and the second fol-
lows since Fact 5 shows that is skew-symmetric. These
observations prove the lemma.

This lemma yields a more efficient self-reducibility al-
gorithm to construct a perfect matching. First compute
N = T—1, thereby identifying all allowed edges. Next,
add one allowed edggi, j} to the matching, then recurse
on the subgraptir[S'\ {i, j}]. This algorithm performs,/2
matrix inversions and therefore ug@gn*1) time in total.

Fact 4. Let u and v be vectors and: a non-zero scalar.
The matrixA/ = M + cuv” is called a rank-1 update o¥/.
Assume thad/ is non-singular and lety = ¢! +v" M 1w,
The inverse of\f exists iffa # 0, and equalsM ! =
M=t — a7 (Mt u) (vT M~1), which is itself a rank-1
update ofp/ 1.

Fact 5. Let M be ann x n skew-symmetric matrix, i.e.,
_ T ; i -1

M = _M . If M is non-singular thenl/ " is also skew- 2\\e are grateful to Jim Geelen for pointing out that this argument is

symmetric. precisely equation (2) of Tutte [37].




Rank-1 Updates. The bottleneck of the Rabin-Vazirani  algorithm 1: The divide-and-conquer approach to construct a
algorithm is recomputingV from scratch in each recursive  perfect matching.

step. Mucha and Sankowski showed that this is unneces-
sary; instead)NV can be updated using rank-1 updates. To FindPerfectMatching(G)

see this, suppose that edgjej} is added to the matching. Constructl” and a?sign random values to the indeterminates
The algorithm recurses on the subgra@}s \ {i,j}], and ComputeN =T _

must compute the inverse Tutte matfiX for this subprob- FindAllowedEdges(S), wherg is the vertex set of-

lem. One might naively expect thal’ is Naei({i,j}1.1i.j})» FindAllowedEdges%)

but this is not the case. Instead; can be determined If |S] > 2then

from Fact 3: takeM = T, W = Tye i },4i}) and Partition S arbitrarily intoo equal-sized partss, . .., S,
7 — N[{i,j},{i,5}]. Then For each unordered pafiS,, S, } of parts

FindAllowedEdges§., U Sy)
1 _1 UpdateN (if necessary)
N = (Taeigigyiigp) =W Else
= W-—XZ1v. This is a base casé! consists of two verticesand j
If T;,; # 0andN; ; # 0 (i.e., edge(i, j} is allowed) then

As observed above, the matriX[{i, j},{i,j}] = Z is Add {7, j} to the matching and updafé

skew-symmetric, and therefore

NP |1 0 e — ] — algorithm performs an update. The total time required sat-
XZ7Y = ) (5e6)- (— vj—) isfies the recurrence
‘ | — ’UT — [e3 w
_ < |> (ZiD) hs) = (3)-h(z35) + O((9) - 5%).  (3.2)
= —CUjU;r-‘rCui‘U;r. (3.1) By standard arguments, the solution of this recurrence
is h(n) = O(n¥) if a is a constant chosen such that
Thus N’ can be computed fronV by two rank-1 updates, log, s (5) < w. Sincelog,; (5) < 2 + 4=y, there
whose parameters are simple submatriced ofThis com- exists an appropriate choice of assuming thazl‘u > 2.
putation requires only(n?) time. Assuming thatv = 2.38, the choicex = 13 is appropriate.

Modifying the Rabin-Vazirani algorithm to use rank-1 We now describe a slight variant of the algorithm which
updates, one obtains a simpl@(n?) time algorithm for is preferable for implementations, and also admits an tighter
constructing perfect matchings. Furthermore, this algo- analysis. The key observation is that Algorithm 1 may re-
rithm uses only naive matrix multiplication. The key ques- curse into the same subproblem multiple times, and this is
tion is: how can fast matrix multiplication be used to im- completely unnecessary. This issue can be avoided via dy-
prove this algorithm? namic programming: simply maintain a bit vector indicat-
Our recursive approach. We now describe an algorithm  ing which subproblems have been solved. (Note that the
that achieves running tim@(n*) via a simple divide-and- gueries and updates to the bit vector do not depend on the
conquer approach. The pseudocode in Algorithm 1 outlinesinput.) Let us analyze this scheme with= 4. At level: of
our algorithm, but for now we postpone the discussion of the recursion, the size ofasubproblemi{‘ and the num-
how to updateV. The constant will be specified later and  ber of subproblems |(s2 ) < 2%+1 The total time to ap-
has value at least ply updates at levelis O (n27)«-2%") = O(nw2~ (=),

A crucial observation is that Algorithm 1 considers each Summing over all levels yields a bound ©@{n®) if w > 2
pair of vertices in at least one base case. The proofis an easgnd O(n? logn) if w = 2. In contrast, the recurrence of
inductive argument: fix a pair of verticds, j}, and note  Eq. (3.2) leads to a bound 6f(n?*¢) for anye > 0, in the
that at each level of the recursion, at least one unordered paicase thaty = 2.
of parts{S,, Sy} has{i, j} € S, U S,. The correctness of  Naive Updates. We now describe the scheme for updat-
Algorithm 1 follows immediately: our algorithm is simply a ing the matrixV in Algorithm 1. To begin, imagine a naive
variant of the Rabin-Vazirani algorithm that considers edges scheme which uses rank-1 updates to updaie the base

in an unusual order. cases, as in Eq. (3.1), and does not updatafter each re-
Analysis. Let us suppose for now that the updating cursive call. Each rank-1 update requi@g.?) time, and
scheme requires onl§(s*) time for a subproblem witls therefore the resulting algorithm uses ti@én?) in total.

vertices; this will be demonstrated later. For a subproblem  Ultimately we will define a more efficient updating
with s vertices, Algorithm 1 recurses c(@) subproblems, scheme. Before doing so, let us modify the naive scheme
each with% vertices. After solving each subproblem, the by defining some additional memory areas which will store



Algorithm 2: The naive scheme to updateduring a base case 1 is requires onlyO(1) time and is sufficient to maintain

of Algorithm 1. the invariant for the moment. The remainder of the update
work will be performed later (by the recursive ancestors).
SetU[, {i, j}] = N[*,{i,j}] After each child subproblem completes, we must per-
SetV[{i,j},*] = N[{i, 5}, %] form additional updates in order to maintain the invariant.
SetC; ; = —1/N;,; andC;; = —1/N; ; For notational convenience, we will assume that the parent
SetN = N + CijUsi Vs + CjiUsj Vis subproblem is in fact the root of the recursion. The matrices
Appendi and; to 7., and append and to m, N, U, andV can be decomposed as:

N= (N ) U= ) V=V V)

the parameters of the updates. Consider a single rank-1 up- . .
date performed by the naive scheme (c.f. Eq. (3.1)) whenWhere the north-west submatrices correspond to the child

edge{i, j} is added to the matching. The parameters of the Subproblem that has just completed. The maffixs de-

update are a scalar= —1/N; ;, a column-vector = N, ; composed analogously. The submatrices shown in bold are
and a row-vectop” = N; .. The algorithm will store the ~ cléan; this follows from our invariant. _
parameters of all updates in three additiomal n matrices We now explain how to update the dirty submatrices.

U, V andC. Algorithm 2 illustrates this procedure. The First, considets . Ideally, one would just copy intdsw
algorithm also maintains two lists, and r, which spec-  the columns fromVsy corresponding to new updates gen-
ify, for eachk, which column ofU and row of V" store the erated during the child subproblem. The difficulty is that
parameters of thet rank-1 update. these new updates have dependencies: columigwfin-
The updates performed by Algorithm 2 have a property Volved in thej™" update should have been modified by ifie
that will be useful later: when vertaxs matched)N, ; and ~ UPdate (ifi < j), but this work was postponed. The follow-

N, , are set to zero. To see this, note that; is set to ing lemma gives the key to resolving these dependencies.
Nii — <Ny ;Nii — 2NNy, Lemma 3.1. Let X andY ben x n matrices where&/” is

’ Nyt B0 Nig=inamiot strictly upper triangular. Define a sequence of matrices by
which is zero sinceV; ; = 0 by skew-symmetry. XO =xandX® =X 4 x"V.y, for1<i<n.

Efficient Updates. We now describe the efficient scheme Let X ® Y denoteX(™. ThenX @ Y = X - (I — V)"
which only updates the portions of the matrix which will
be needed soon. The recursion of Algorithm 1 gives a con-  We use this lemma as follows. Léf = Ngw and let
venient way to decide which portions should be updated.Y = Cnw - Vnw. Next, permute columns of and rows
Roughly speaking, whenever a recursive subproblem fin-0f ¥ usingz. andm, so thatX. ; andY; . correspond to
ishes executing, it fully updates the submatrix’éfcorre-  the ™ new update generated during the child subproblem.
sponding to its parent subproblem. As will be explained The rows ofY” that don’t correspond to new updates are set
shortly, this update requires only a constant number of ma-to zero. Note that” is strictly upper triangular; this fol-
trix multiplications/inversions involving matrices of size at 10ws from our earlier observation thaf, ; is set to zero
mosts, which is the number of vertices in the current sub- When columni participates in an update (i.e., when vertex
problem. This justifies our earlier assumption that the up- ¢ is matched). Therefor& andY satisfy’ the hypotheses
dating scheme requirés(s*) time after each recursive call. of Lemma 3.1. The matriX ® Y is, by definition, the re-
To describe the efficient updating scheme more formally, Sult of sequentially applying all new updatesiX@y. So,
we need some terminology. At any point of the algorithm, t0 makeNsw andUsw clean, we do the following. First,
we say that a submatrix (a¥, U, etc.) iscleanif its en- ~ SetNsw = X ® Y. Next, the columns fromVsw cor-
tries are identical to those that the naive scheme would have€sponding to new updates are copied ibitay and set to
computed at this point of the algorithm. The efficient up- Z€r0.
dating scheme maintains the following invariant. A symmetric argument shows how to maRé& and
VnE clean. It remains to apply the new updatesNgg.
Invariant: When each recursive subproblem begins or com- This is straightforward since the parameters of these up-
pletes, the parent's submatrices 8 U andV are  gates have now been fully computed. [&tC andV de-
clean. The matrix’ is always clean. note the submatrices @fsw, Cxw and Vg correspond-

When a base case performs an update, our efficientnd t0 the new updates. We makésy; clean by setting

scheme behaves similarly to Algorithm 2. The key differ- Vst = Nsg + UCV. All submatrices of the parent sub-
ence is that it need not update large portions of the matricesProblem are now clean, and therefore the invariant has been

Instead, it only updates thzx 2 submatrices correspond- 3actually Ny is only square ifx — 4, but X andY can be made
ing to this base casé/[{i,j},{%,5}], VI{i,j5}, {4}, etc. square by padding them with zeros.




restored. Notice that this update procedure requires only For the special casé = (), this result was stated by

a constant number of matrix multiplications/inversions in-
volving matrices of size, wheres is the number of vertices
in the parent subproblem. ThaXs“) time suffices.

Geelen [17] and follows easily from the connection be-
tween matroid intersection and the Cauchy-Binet formula,
as noted by Tomizawa and Iri [36]. Building on our Theo-

Extensions. The algorithm that we have presented above rem 4.1, we obtain the following result which is crucial to

is a Monte Carlo algorithm for finding a perfect matching.

It can be extended to a Las Vegas algorithm for finding a
maximum cardinality matching using existing techniques

[3, 26, 30]. To find a maximum cardinality matching, sim-
ply find a full-rank principal submatrix of the Tutte matrix,

then apply our perfect matching algorithm. To make the
algorithm Las Vegas, one can efficiently construct an op-
timum dual solution, i.e., the Gallai-Edmonds decomposi-

tion, using Cheriyan’s algorithm [3].

4. Matroid Intersection
4.1. Preliminaries

our algorithm.

Theorem 4.2. Suppose thah() = r, i.e., M; and M,
have a common base. Th&i.J) is non-singular iff.J is an
extensible intersection.

Interestingly, this theorem is false without the assump-
tion that\(0) = r. (There is an example wit[5| = 3.)
Theorem 4.2 can be proven using the following results and
induction.

Fact 6. An independent sef is extensible iffA(()
A(J) + ]|

We assume that the reader is familiar with the basic defini- Fact 7. For any setJ C S, we havei(J) < r —
tions and properties of matroids; introductions can be found max;e 1.9y 7i(J). B B

in standard references [33]. We write a matroid as a tuple

M = (S,Z, B,r) whereS is the ground seff C 2° is the
collection of independent set8, C 7 is the collection of
bases, and is the rank function. Together withi, any one
of Z, B, andr is sufficient to specify the matroid, so we do

not necessarily mention all of them. To emphasize connec-
tion to a specific matroid, we sometimes use the notation

Im, Bm andryr. The rank of the matroidM is defined to
ber(S). ForJ C S, M/J denotes the matroid obtained
from M by contracting/. Recall that its rank function is
vy g(A) = rm(JUA) —rm(J).

LetM; = (S,Z;,7m) andMy = (S,Z2,72) be two ma-
troids with rankr and letn = |S|. A setJ C S is called
anintersectionif J € Z; N Z,. A maximum intersection
is one with maximum size. For convenience, we will as-
sume thafM; andMs have a common base. A subset of
a maximum intersection is called antensibleset. If J is
extensible; ¢ J, andJ + i is also extensible then element
i is calledallowed (relative toJ). Let \(J) denote the size
of a maximum intersection &¥1, /J andM5/J.

Suppose that eadwl; is a linear matroid representable
over a common field. Let )1 be anr x ¢ matrix whose
columns represeriVl; overF and letQ- be at x r ma-
trix whose rows represei¥; overF. For notational con-
venience, we will letQ{ denoteQ [, J] and Qg denote
Q2[J,*]. LetT be a diagonal matrix wherg; ; is an in-
determinate;. For convenience, |ef(J) denoteT e, 7).
For each extensible intersectidnwe define the matrix

Q@
Qs
Q3
Theorem 4.1. For anyJ C S, we haverank Z(J) = n +
r1(J) +r2(J) = [J] + A(J).

Z(J) = 4.1)

T(J)

Fact 8. The function\ is non-increasing, i.eA(I) > A(J)
for all setsI C J.

Lemma 4.3. The functiony(J) := r1(J) +ro(J) — |J| +
A(J) is non-increasing.

The preceding theorems lead to the following lemma
which characterizes allowed elements. Here, we identify
the elements o \ J with the rows and columns of the
submatrix ofT'(J) in Z(J).

Lemma 4.4. Suppose that C S is an extensible inter-
section and that € S\ J. The element is allowed iff

(Z(J) Miq #t77

Proof. By Theorem 4.2, our hypotheses imply that
Z(J) is non-singular. By linearity of the determinant,
det Z(J + 1) det Z(J) — t; - det Z(J)ge1(i,i)- BY
Fact 1,(Z(J)™")ii = det Z(J)qeis,iy/ det Z(J), so we
havedet Z(J +1i) = det Z(J)- (1 —t;-(Z(J)~'); ;). Thus
det Z(J +1i) #0 < Z(J);! #1t;'. By Theorem 4.2,
this holds iff element is allowed. |

The structure ofZ will play a key role in our algo-
rithm for matroid intersection below. For simplicity, let
Z = Z(D). LetY denote the Schur complement Bfin
Z,i.e..Y = —Q; - T~' - Q2. One may verify that

-1 _ y~! -y~ tqQ, 1!
27 = (vt T ) - 82)

4.2. Matroid intersection algorithm

In this section we describe our matroid intersection algo-
rithm, which achieves running tin@(nr~—1!). We start by
constructing the matri¥, which is non-singular by our as-
sumption that\(f) = r. As in Algorithm 1, the first step



is to randomly substitute values for the indeterminateg in  As in Section 3, we conceptually store the update parame-
from the fieldF, or a sufficiently large extension. By stan- tersinU, C andV, but actually only perforn®(1) work:
dard arguments7 remains non-singular whp.

Our algorithm maintains an extensible intersection, ini- Usi = Nii Vii == Nig Cii = —1/(—t;" + Ny ;)
tially empty, and searches for allowed elements using Nii = Nii— (Ni)?/(—=t71 + Ny )
Lemma 4.4. This seemingly requires computing the entire '
matrix Z 1, which would require a prohibitive(n?) time. The remainder of the entries are updated later.
Initially we work under the assumption that! has been Consider now a subproblem at leviebf the recursion
completely computed, and later we will show that this as- tree. The number of elements in this subproblemds:.
sumption can be removed. We also assume that-haitd Say that the entries of its children afg and .S2. Once its

r are powers of two. first child subproblem has completed, we must restore in-
Suppose that an allowed elemeént S has been found  variant (2) by updatind/sw and Vyg. This step is more
and we now wish to construgt({i})~—!. The matrixZ ({i}) involved than in Section 3 because of our relaxed invari-

is identical toZ except that; has been set t0. This can ants. We say that an updateoisl if it was producedefore
be expressed as the rank-1 updigi}) = Z — tiee;]. entering subproblens;. The difficulty is that old updates
Heree; is thei" elementary vector, that ig, is 1 in the might not have been applied M. The easy case is when
i component and zero elsewhere. Using Fact@;i}) ! n2~% < r. In this case, invariant (1) implies that the old up-
may be computed by the following equation: dates have been applied. It remains to apply the pending
. . e . updates that were generated within the first child subprob-
Z7 = (=t; +(Z7)ii)” (Z7)xi (Z27 )ix- (43)  lem. This is done using Lemma 3.1, as in Section 3. The
time required is onlyD ((n2=%)%).
" The more difficult case is whem2~¢ > r. In this case,
there may be old updates which have not yet been applied to
Ngw. In fact, no updates have been appliedMgy what-
soever. However, the portions @fandV’ which contain the
updates relevant t¥sw are clean; this follows from apply-
ing invariant (2) to the parent of the current subproblem.
The only portion ofNgw that is of interest is the submatrix
corresponding to columns that were added to the intersec-
tion. Let us denote this submatrix bBy. Its size is at most
n2~% x r, since any intersection has size at mostThe
number of old updates which must be applied\tds also
at mostr. Therefore the time required to apply the old up-
dates is bounded by the time to multiply a2—* x r matrix
by anr x r matrix, which isO(n2~r“~1) time.

Next, we must makeéVgw clean. That is, we must re-
solve the interdependencies of updates generated within the
first child subproblem. Using Lemma 3.1, this requires
O(n2~r“~1) time. A similar argument applies to updating
Nng andVyg. Finally, we must updat&/sg. To restore the
invariants, we only need update itsx r diagonal blocks.

Invariant 1: When the recursion enters a subproblem with This requires time onlyD(n2~*r~") by the obvious ap-

This is a rank-1 update whose vector parameters are sub
matrices of Z~!. Therefore it seems that updates can be
applied in a similar manner to our non-bipartite matching
algorithm. This is indeed possible, although achieving the
running timeO (nr*~!) involves some intricacy. To harmo-
nize the notation with Section 3, 1&f denote the south-east
submatrix(Z~!)s 5. As before, the update parameters will
be stored in auxiliary matricdg, C andV.

Our matroid intersection algorithm is also recursive, but
the recursion is much simpler than the non-bipartite match-
ing algorithm. The root of the recursion considers the entire
ground setS and the entire submatri%’. The ground set
is split in two: letS; be the firstn/2 elements and, the
remainder. We recurse first on the subproblgmand then
on So.

Although the recursion of this algorithm is simple, it
needs to maintain somewhat complicated invariants in or-
der to obtain the desired level of efficiency. As before, we
will say that a submatrix isleanif all existing updates have
been applied to it. The invariants are:

elementsd, the submatrixV|[A, A is cleanif| 4| < r. proach.
If |A] > r then only ther x r blocks on the diagonal To analyze the time required by this algorithm, recall that
of N[A, A] are clean. there are’ subproblems at level For levelsi < log(n/r),

i . _ the total time required i$\°5"/") 21 . O(n2~ire1) =
Invariant 2: For any subproblem, just before its second O(nr-1Y, ignoring alog r factor. For levels > log(n/r),
child subproblem begins processing, thgy andVyg the time is

submatrices are clean.
logn logr

A base case of the recursion tree considers a single ele- Z 2 . O((ng—i)w) — Z O(nQ(w—l)i) — O(nr“"_l),
ments, and checks itV; ; # t;l. (Invariant 1 ensures that
this entry is clean.) If so, elements added to the intersec-
tion, and we conceptually perform the update of Eq. (4.3). so the total time required 8 (nr<—1).

i=log(n/r) i=0



Figure 1: The matrixZ (M) used for the basic path-matching problem.

HM 01 M
1 1
0o M
2
Z(M) = gzM D, (4.4)
Dy T[01M, 02 M] TO1M,CyU S
T[CLUS ,0.M] T[C;US,CyUS

The preceding discussion assumes tNatvas initially
fully computed. However, it is clear that the only parts of
N that are needed are those in the r diagonal blocks and

the paths. IfM C F is a path-matching, le);M C R;
denote the set of vertices i®; that are covered by/, and
let 9sM C S denote the covered-vertices. Aperfect

those parts that are involved in updates. Itis straightforward path-matchings a path-matching/ such thato;M = R;

to extend the algorithm so that the necessary parig afe

computed on demand. At the beginning of the algorithm,

we compute only the x r diagonal blocks ofV. As shown

by Eq. (4.2), this amounts to computing the r diagonal
blocks of Q1Y ~1Q; plus some negligible additional work,
and henc® (nr~~1) time suffices. Next, consider perform-
ing an update where2~¢ > r. Then we must compute the
initial submatrixV (before any updates are applied). Recall
that N has size at most2~¢ x . Then, referring again to
Eq. (4.2), we see tha¥ can be computed i (n2~irv—1)
time. Thus the preceding analysis applies without change.
Extensions. The algorithm presented above is a Monte
Carlo algorithm for finding a common base. To find a maxi-
mum cardinality intersection instead, start by finding a full-
rank submatrix of the matrix, then apply our common

anddsM = S. A basic path-matchingbpm) is a path-
matching such thad; M € By, and thabsM = S.

A setM C FEis called arextensible sefor G if there
exists a bpmM’ O M. Let M be an extensible set and
note thato, M € Zng,. We will now define a basic path-
matching problen@ (M), which we call thecontractionof
G by M. Let P; be the set of paths if/ with one endpoint
in R; and the other inS. Informally, we contract (in the
graph) each path i®; to a single vertex, and we contract
(in the matroidM;) the element$); M. Formally, the set
C; C S consists of the endpoints ifi of the paths inP;.
Defineo;,M = R; \ 9;M, and note that, M and 9, M
are not necessarily equicardinal. DefiRg := 9,M U C;
and S’ S\ dsM. DefineE’ C E to be the set of
edges with both endpoints Y or with one endpoint iR,

base algorithm. It is possible to find such a submatrix in and the other irt” U R} wherei # j. The matroidM; is
time O(nr*~1), although we omit the details. The algo- (M./d;M)&F(C;), whereF (C;) denotes the free matroid
rithm can be made Las Vegas by constructing an optimumon C; and< denotes direct sum. The contraction@foy
dual solution. Simply construct the auxiliary graph used M is G(M) := (R}, R}, S", E', M}, M}).

by Lawler’s algorithm [33], then find the vertices reachable Fact9. If M’ O M is a bpm forG thenM’\ M is a bpm for

from the sources; these vertices form an opt.lmal dual so_lu—G<M)_ Conversely, ifi/” is a bpm ofG(M) thenM U M’
tion whp. It is possible to construct the auxiliary graph in is a bpm ofG!

time O(nrv—1), although we omit the details.
o We now define an algebraic structure which extending
5. Generalizations for matroid intersection. First, there is a matrix of inde-

Anice feature of our previous algorithms is that they extend terminatesl” which is similar to the Tutte matrix and de-
easily to several generalizations of matching and matroid Scribes the graph underlyir@. The rows ofI" are indexed

intersection. We consider two such generalizations here.

5.1. Path-Matchings

An instance of the a basic path-matching is a tugle=
(R1, R, S, E, M1, M) where(R; UR2US, E) is a graph
and eachM; is a matroid(R;,Z;,r;). The vertex sets,,
Ry andS are disjoint and furthermorB, and R, are stable
sets (no edge has both endpoints in eitRgror R5). As-
sume thatR;| = |Rz|, and thafM; andM, have the same
rank r. A path-matchingis a collection of node-disjoint
paths with one endpoint iR; and the other irR,, together
with a matching on theS-vertices not contained in any of

by R; U S and the columns are indexed B U S. The
entries are defined &5 ; = +t(; ;,, where the signs are
chosen such th&t|[S, S] is skew-symmetric.

Lemma 5.1 (Geelen [16]).7 is non-singular iffG has a
perfect path-matching.

Let D, be a diagonal matrix of sizg,; M| whose non-
zero entries contain distinct indeterminates. Defif{@/)
to be the matrix in Eq. (4.4).

Theorem 5.2. Let M be a set of edges iy such that
hM € Iy, and 9o M € Ing,. ThenG(M) has a bpm



iff Z(M) is non-singular. Equivalently}/ is an extensible
setiff Z(M) is non-singular.

An edgee = {i,j} in G(M) is calledallowed (rela-
tive to M) if M + e is also extensible. An extension of
Lemma 4.4 characterizes whether edges are allowed. Usin
this, the algorithm of Section 3 can be extended to compute
a basic path-matching in tin@(n). Details are postponed
to the full version of the paper.

5.2. Bipartite Matroid Matchings

An instance of the bipartite matroid matching problem is a
tupleG = (Ry, Re, E, My, M5) whereE C R; x R and

M; = (R;,Z;) is a matroid. Arindependent matchirig G

is a matchingVf C E such that, M € Z; andd, M € Zs.
The objective is to find a maximum cardinality independent
matching. Bipartite matroid matching is a special case of
basic path-matching wher® = . Also, matroid intersec-
tion is a special case of bipartite matroid matching where
all vertices have degree Theorem 5.2 extends to show
that the maximum cardinality of an independent matching
in G(M) isrank Z(M) — 2n, foranyM C E.

Additionally, the algorithm for basic path-matchings im-
mediately solves the bipartite matroid matching problem
in O(n¥) time. However, for bipartite matroid matching
problems, the matrixZ (M) contains no skew-symmetric
parts. Therefore the algorithm can be simplified, and one
obtains an algorithm that amounts to executing the Mucha-
Sankowski bipartite matching algorithm on the lower-right
submatrix of Z=!. Thus we have the following surpris-
ing result: when the Mucha-Sankowski algorithm exe-
cutes onT and 7!, it computes a maximum bipartite
matching. However, when it executes @hand Q
Q2(Q1TQ2)~1Q; (which is the lower-right submatrix of
Z~1) it computes a maximum independent matching.

6. Open Questions

Graphical Matroid Intersection. One can obtain a
polynomial-time algorithm for matroid intersection that
works only with the matrixY’, as defined in Section 4.
How efficient can such an algorithm be? Consider the spe-
cific case of graphical matroids — the standard represen-
tation is a matrix with two non-zero entries per column.
In this framework, contracting an element requires only
O(1) changes taY". Using Sankowski's dynamic matrix
inverse operations [31], one obtain®#n?°7) algorithm

for graphical matroid intersection, which is slightly worse
than theO(n?-5 log n) algorithm of Gabow-Xu [14]. Does
aO(nv) algorithm exist?

Skew-Symmetric Matrices. The recursion presented in
Section 3 is a general technique for performing eliminations
in skew-symmetric matrices i?(n“) time. Can it be used

to obtain efficient algorithms for other operations on skew-
symmetric matrices?
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