
Family Trees
An ordered dictionary with optimal congestion, locality, degree, and search time

Kevin C. Zatloukal ∗ Nicholas J. A. Harvey ∗

Abstract

We consider the problem of storing an ordered dictio-
nary data structure over a distributed set of nodes. In
contrast to traditional sequential data structures, dis-
tributed data structures should ideally have low con-
gestion. We present a novel randomized data structure,
called a family tree, to solve this problem. A family tree
has optimal expected congestion, uses only a constant
amount of state per node, and supports searches and
node insertion/deletion in expected O(log n) time on a
system with n nodes. Furthermore, a family tree sup-
ports keys from any ordered domain. Because the keys
are not hashed, searches have good locality in the sense
that intermediate nodes on the search path have keys
that are not far outside of the range between the source
and destination.

1 Introduction

While data structures have long been used to orga-
nize data on an individual computer system, the past
decade has seen significant work on distributed data
structures for organizing nodes and data in a distributed
system. This work has proceeded chiefly in three di-
rections: peer-to-peer overlay networks, Scalable Dis-
tributed Data Structures, and compact routing struc-
tures. This paper describes family trees, which are dis-
tributed data structures suitable for use as a peer-to-
peer overlay and are an advancement on the existing
work in this area.

Peer-to-peer overlay networks are structures for
organizing nodes, routing traffic, and searching for data
in a distributed system. A primary objective of peer-
to-peer overlays is that no node bear a disproportionate
amount of work, implying that the overlay’s structure
should have low congestion. Overlay networks have
numerous practical applications, such such as multicast
communication schemes [17] and distributed caching
mechanisms [8, 19].

Overlays such as CAN [16], Chord [18], Viceroy

∗MIT Computer Science and Artificial Intelligence Laboratory.
Email: {kevinz,nickh}@mit.edu. This permutation of the au-
thors’ names was chosen uniformly at random in order to ensure
fair treatment of the alphabetically challenged.

[15], and Koorde [9] use hashing to distribute nodes
and data uniformly in a numeric space. Thus, using
the consistent hashing approach [10], they can support
a distributed hash table. Each overlay node maintains
“pointers” to a set of other nodes, where each pointer
is typically just a physical network address. Any node
may route a message to any target node by using the
appropriate pointers to forward the message along a
sequence of intermediate nodes. These overlays differ
primarily in their scheme for selecting routing pointers.
The schemes used by all of these overlays [16, 18, 15, 9]
achieve routing in O(log n) time, assuming each pointer
can be traversed in unit time.1

Most existing peer-to-peer overlays require Θ(log n)
routing pointers per node in order to achieve this rout-
ing performance. Viceroy [15] and Koorde [9] are the no-
table exceptions — they achieve O(log n) hops with only
O(1) pointers per node. Having few routing pointers of-
fers a significant practical benefit since correspondingly
less maintenance traffic is required to check integrity
of the overlay structure. Alternatively, an overlay with
fewer routing pointers may check those pointers more
frequently while using the same overall bandwidth.

Skip Graphs [1], SkipNet [6], and their variants
[7, 2] are peer-to-peer overlays, based on skip lists,
that support ordered keys. Ordered overlays have
significant practical advantages over distributed hash
tables. First, they can take advantage of locality in
search requests. For example, a search from a.mit.edu
for p.mit.edu will not require contacting any nodes
outside of mit.edu. This property does not necessarily
hold for distributed hash tables. Second, Skip Graphs
[1] and SkipNet [6] support range query operations. For
example, they could be used to broadcast a message
to all nodes in mit.edu. However, these ordered
overlays all require Θ(log n) pointers per node. Prior to
this paper, no existing overlay has used O(1) pointers
without requiring that the keys be hashed.

Scalable Distributed Data Structures (SDDSs) were
first proposed by Litwin et al. [13] as a means to dynam-
ically distribute buckets of data among the nodes of a

1We will use n to denote the number of nodes throughout this
paper.

distributed system and to perform efficient search oper-
ations across those nodes. Numerous SDDS structures
have been proposed including distributed hash tables
[13] and ordered, distributed dictionaries [14, 11, 3]. Un-
like peer-to-peer overlays, SDDSs are not intended for
use as a routing structure; accordingly, SDDSs do not
focus on congestion. Family trees could conceivably be
used as the basis for an SDDS, but we do not consider
such an extension in this paper.

Compact routing structures [4, 5] have signifi-
cant differences from SDDSs and peer-to-peer overlays.
First, the latter two assume connectivity between any
pair of nodes (typically via some underlying routing
scheme), whereas compact routing structures do not.
Second, compact routing structures typically do not al-
low updates (i.e., node insertions or deletions). Lastly,
compact routing structures typically must assign new
identifiers to the nodes for routing purposes. Due to
these differences, compact routing structures typically
can not be used for implementing ordered dictionaries,
so we do not discuss them further.

In this paper we address the previously unsolved
problem of designing an ordered, distributed dictio-
nary with constant degree, O(log n/n) congestion, and
O(log n) performance for search and update operations.
We present a randomized solution to this problem,
family trees, which achieve the update, search, and con-
gestion bounds in expectation and use only nine point-
ers per node. This work is an improvement over existing
distributed data structures which are either not ordered
(and hence have poor locality) [15, 9], do not support
low-congestion routing [14, 3], or require Θ(log n) rout-
ing pointers per node [1, 6, 7, 2].

The remainder of this paper is organized as follows.
Section 2 describes family trees and proves some of their
important properties. Section 3 presents the algorithms
for searching in a family tree and proves bounds on
performance. Section 4 gives algorithms for inserting
and removing nodes from a family tree. Section 5
concludes the paper.

2 Family Trees

A family tree is a data structure for organizing machines
or resources in a distributed system. Family trees
combine the techniques of Viceroy [15] and SkipNet
[6] in a novel manner. Like Viceroy, and the butterfly
network [12] on which it is based, nodes are separated
into approximately lg n levels; nodes at level i will have
pointers to nodes approximately 2i lg n positions away
in the ordered list of keys. We generate these pointers
by separating the nodes at level i randomly into 2i

separate ordered lists, in a manner similar to SkipNet.
The resulting data structure has a natural analogy to a

genealogical family tree, as will be made clear shortly.
Figure 1 shows an example instance of a family tree.

2.1 Definitions. We will now formally define the
properties of each node in the data structure. Each node
has a name ID, which is an arbitrary element from some
ordered domain. This is the normal key for looking
up a node in the dictionary. If X is a node, we will
denote its name ID by X.NameID. Each node also has
a numeric ID, denoted X.NumID, which is an infinite
sequence of random bits, each bit chosen uniformly at
random. Equivalently, the numeric ID is a random real
number in [0, 1). As explained in Section 3.2, nodes
can also be looked up by their numeric IDs. Thus,
by using consistent hashing [10], family trees support
a distributed hash table.

Obviously, each node does not generate an infinite
sequence of random bits. Each node only needs to
generate as many bits as necessary to distinguish its
numeric ID from the others. The following proposition
bounds the number of numeric ID bits that will need to
be generated.

Proposition 2.1. Every node only generates O(lg n)
numeric ID bits with high probability.2

Proof. Let X and Y be nodes. The probability that
X and Y choose the first (c + 2) lg n bits the same is
1/2(c+2) lg n = 1/nc+2. Thus, the probability that any
node chooses the first (c + 2) lg n bits the same as X
is (n − 1)/nc+2 < 1/nc+1, and the probability that
any node needs more than (c + 2) lg n bits is less than
n/nc+1 = 1/nc.

Next, each node X has a level, denoted X.Level,
which determines the approximate distance, within the
ordering by name ID, advanced by the node’s level list
pointers. The level number is chosen at random from
{0, . . . , blg n0c−1}, where n0 is an estimate of n. We use
an estimate for two reasons. First, it is not clear that n
can be precisely computed in a manner that is efficient
in both time and congestion. Second, it is helpful that
different nodes produce different estimates of n so that
nodes are not all updated to the presence of a new level
simultaneously: if we computed n exactly, then every
node would need to update its level when n reached the
next power of 2.

We will discuss the method of estimating n in
Section 2.2. In the remainder of this subsection, we will
define all of the pointers on a node. These pointers are

2Throughout this paper, we say that X is “O(f(n)) with
high probability” to mean that there exists an α > 0 such that
Pr(X > cαf(n)) < 1/nc for any c ≥ 1 and for sufficiently large n.

�
���������
�

�
���������
�

�
�	���
���
�

�
���	�
���
�

���������
�

�
���������
�

�
�������	�
�

�
�������	�
�

�
���������
�

�
���������
�

�
�	�������
�

�
���	�����
�

�
���������
�

�
���������
�

�
���������
�

�
���������
�

�
���������
�

�
���������
�

�
�	���
���
�

���	�
���
�

!
���������
�

"
���������
�

#
�������$�
�

%
�������$�
�

&�')(�'+*�,-&/. 0�1

&�')(�'+*�23&/. 0�140

&�')(�'+*
56&/. 0�140

798/:;'=<>. ?A@CBD&). 0�1

7FE=:;'G@HBD&/. 0�1
�

���������
�

�
���������
�

�
�������$�
�

�
�������	�
�

�
�����I���
�

�
���������
�

�
���������
�

�
���������
�

�
���������
�

�
���������
�

�
�����
�	�
�

"
���������
�

�
���������
�

�
���������
�

Figure 1: An example family tree with 24 nodes. Each node, denoted by a square, has a name ID (i.e., key),
numeric ID, and level. Level 0 nodes are connected into a single list. The level 1 nodes are divided into two
disjoint, interleaved lists: nodes whose numeric IDs start with a 0, and nodes whose numeric IDs start with a 1.
At level 2, there are four lists: nodes join the list given by the first two bits of their numeric ID. All of these level
lists are sorted by the name IDs of the nodes. Nodes also maintain pointers to their parents, one level higher:
white pointers denote a mother, and black pointers denote a father. Nodes also point to their first child, one level
lower. Lastly, all nodes belong to a list sorted by name IDs and a list sorted by numeric IDs.

the only other data associated with each node beyond
its name ID, numeric ID, and level.

In a family tree, each node has nine pointers. The
first six pointers link each node into three circularly
linked lists. The NamePrev and NameNext pointers
link all nodes into a list sorted by name ID. The
NumPrev and NumNext pointers link all nodes into a
list sorted by numeric ID. As mentioned above, the data
structure separates the nodes into levels and, within
level i, into 2i separate lists. Each node chooses its
list according to the first i bits of its numeric ID. The
LevelPrev and LevelNext pointers link the nodes
that have the same level i and have the same first i bits
in their numeric IDs into a list sorted by name ID.

Additionally, there are pointers between levels. If
X is a node, then X.Mother points into the list of
nodes with level equal to X.Level+1, with numeric ID
matching the first X.Level bits of X.NumID, and with
(X.Level + 1)-th numeric ID bit equal to 0. Of these
nodes, X.Mother points to the node whose name ID
is closest but less than X.NameID, or it points to nil
if no such node exists. X.Father is defined identically
except its (X.Level + 1)-th bit must be 1.

Lastly, X.FirstChild points into the list of nodes
in level X.Level − 1 whose numeric IDs match the
first X.Level − 1 bits of X.NumID. Of these nodes,
X.FirstChild points to the node whose name ID is

closest but greater than X.NameID, or it points to nil
if no such node exists.

For example, consider the node with name ID “N”
in Figure 1, which we will denote N. Node N is linked
into the list sorted by name ID and the list sorted by
numeric ID. Since N has chosen level 1, it belongs to
one of the two level 1 lists, according to the first bit
of its numeric ID. This bit is 0, so N belongs to the
same level 1 list as “B”, “H”, and “T”. The first child
of N is “O” because this is the next name after “N”
in the sole level 0 list. Node “R” is also a child of N.
Node “M” is the closest node to “N” in the level 2 list
corresponding to numeric ID prefix 00, so node “M” is
N.Mother. Similarly, node “G” is N.Father as it is
the closest node to “N” in the level 2 list with prefix 01.

2.2 Estimating n. Each node must estimate n in
order to choose an appropriate level. This estimation
process is identical to that of Viceroy. Let X be a node
and Y be its successor in numeric ID space. (The last
node in the list will take the first as its successor.) Then,
regarding the numeric IDs as real numbers in [0, 1),
we estimate n as n0 = 1/d(X.NumID,Y.NumID),
where d(x, y) = y − x mod 1. This estimate may be
substantially incorrect. However, since we only need
the log of the estimate, we can show that every node
estimates lg n0 = Θ(lg n) with high probability.

Proposition 2.2. Every node estimates n0 such that
blg(n/(c + 2) lnn)c ≤ blg n0c ≤ b(c + 2) lg nc, for any
constant c, with high probability.

Proof. First, we will argue the lower bound. Let d =
1/(n/(c + 2) ln n) = (c + 2) ln n/n. For a node X to
estimate n smaller than 1/d, every other node must
have chosen a numeric ID outside of the range of length
d after X.NumID. (If X.NumID is near to 1, then this
range will be in two pieces: one at the end of [0, 1) and
one at the beginning.) The probability that X estimates
n this small is (1−d)n−1 = (1−d)n/(1−d) < n(1−d)n <
n exp(−dn) = n exp(−n(c + 2) ln n/n) < n exp(−(c +
2) ln n) = 1/nc+1. Thus, the probability that any node
estimates n this small is less than n/nc+1 = 1/nc.

Now, we argue the upper bound. Let d = 1/nc+2.
Fix a node X. The probability that some other node
Y has a numeric ID within the range of length d after
X.NumID is d. Thus, the probability that X estimated
n > 1/d is at most (n − 1)d = (n − 1)/nc+2 < 1/nc+1.
Thus, the probability that any node estimated n > 1/d
is less than n/nc+1 = 1/nc.

We have shown that the desired bounds hold with-
out the floors. Taking the floor of the estimate and
both bounds can only increase the probability that the
bounds hold, so the proof is complete.

An advantage of this method for estimating n is
that each node’s estimate is only dependent on the
distance to its successor in the numeric ID list. Thus,
each node needs to change its estimate only when
its successor changes, which will make insertions and
deletions efficient. We will discuss this aspect further in
Section 4.

A notable disadvantage of this method is that
it makes the levels dependent on the numeric IDs.
Furthermore, the levels themselves are not independent.
If X has a level of i, then we know that there is no other
node within a range of 1/2i after it. This means that
some other node estimated n0 < (n− 1)/(1− 1/2i) and
thus has a level at most blg((n− 1)/(1− 1/2i))c − 1.
Clearly, this is a small amount of dependence: we have
only shown that some other node has a level slightly
less than E[blg n0c − 1]. However, even this small
amount of dependence complicates analysis. The issue
of dependence also exists for Viceroy, although the issue
appears to be somewhat more involved for the analysis
of family trees.

To handle this difficulty, we use the following ap-
proach. Proposition 2.2 shows that all estimates of n are
reasonable with high probability. Thus Pr(X.Level =
i | X estimated n reasonably) is within a constant fac-
tor of 1/ lg n. This yields a bound on Pr(X.Level = i)
as follows. In general, if E is some event that holds

with high probability and F is any other event, we can
bound Pr(F) using Pr(F |E) and an additional error
term. Specifically, we have |Pr(F) − Pr(F |E)| ≤ 1/nc.
As long our probability and expectation bounds intro-
duce no more than nα such error terms, for some fixed
α, we can use Pr(F) and Pr(F |E) interchangeably while
only introducing an error term of 1/nc−α−1. By choos-
ing suitably large c, this error term disappears in the O-
notation. In the analysis below, we can assume that all
nodes estimate n within the bounds of Proposition 2.2
whenever convenient because we will not need to intro-
duce more than O(n) error terms. Thus, we will ignore
error terms in the proofs below in order to keep the
explanations clear.

To simplify notation, we will let the c in Proposi-
tion 2.2 be fixed and define the following notation for
the upper and lower bounds.

Definition 2.1. The minimum level estimate is
Lmin = blg(n/(c + 2) ln n)c and the maximum level
estimate is Lmax = b(c + 2) lg nc.

2.3 Global Properties. Now that all data belong-
ing to a node has been defined, we examine the global
properties of family trees.

Proposition 2.3. If all name IDs, numeric IDs, and
levels are given, then the family tree has only one
possible shape.

Proof. Since we do not allow duplicates, the name
ID list has only one possible shape. Similarly, the
numeric ID list has only one possible shape. Each node
belongs to exactly one level list according to its level
and the relevant bits of its numeric ID. Each such list
is sorted, so they can have only one shape. Lastly,
the Mother, Father, and FirstChild pointers are
completely determined by the shape of the level lists.

Corollary 2.1. The probability that a family tree has
a given shape is independent of history.

Proof. By Proposition 2.3, the current shape of the
data structure depends only on the name IDs, numeric
IDs, and levels of the items currently in the dictionary.
The name IDs and numeric IDs themselves are clearly
independent of history. As long as each node chose its
level by estimating n using its current successor (not a
past successor), then the probability distribution of the
levels is independent of history. We will ensure that this
is true by having a node choose a new level whenever
its successor changes.

Next, we turn to properties of family trees that will
be useful in analyzing the performance of search and

update operations. For all operations, it is necessary to
bound the number of levels in the data structure since
it may be necessary to visit all of them. We can bound
this very tightly.

Theorem 2.1. The data structure has no more than
(c + 2) lg n levels with high probability.

Proof. By Proposition 2.2, no node estimated lg n0

larger than this. Hence, no node could have chosen a
level larger than this.

Since the nodes at level L are separated randomly
into 2L lists, the expected length of these lists is less
than n/2LLmin. (As mentioned above, we are ignoring
the error term of size 1/nc−1 caused by dependence
of levels and numeric IDs.) Straightforward Chernoff
bounds show that the length of these lists does not
deviate much from its expectation, except at very high
levels. We now consider the probability of encountering
empty lists at all levels slightly less than Lmin.

Theorem 2.2. Let L = lg n − 2 lg lg n − 2 lg(c + 2).
Every list in the family tree with level at most L is non-
empty with high probability.

Proof. The probability that a list at level k is empty is at
most (1−1/(2k(c+2) lg n))n. For lists at level at most L,
this bound is at most (1−(c+2) lg n/n)n < e−(c+2) lg n =
1/nc+2. Next, observe that the total number of lists in
levels 0 to L is at most 2L+1 < 2n. Thus, applying a
union bound over all lists yields the desired result.

The preceding discussions focused on properties of
the levels and their lists. Next, we will look at properties
that hold for arbitrary individual nodes in a family tree.
Let X be a node in a family tree. Both X.FirstChild
and X.LevelNext.FirstChild point to nodes in the
same list (at level X.Level− 1). Consider the number
of nodes in this list whose name IDs fall between
X.NameID and X.LevelNext.NameID. This is an
important concept, so we give it a name.

Definition 2.2. Let X be a node. Let L be the
level list containing X.FirstChild. We denote by
Children(X) the sublist of L containing all nodes Y
such that X.NameID < Y.NameID and Y.NameID <
X.LevelNext.NameID.

Intuitively, we would expect every node to have
about two children since the lower level list is about
twice as long. The following theorem shows that the
expected length is indeed a constant.

Theorem 2.3. For any node X, |Children(X)| is
O(1) in expectation and O(lg n) with high probability.

Proof. Consider the process of traversing the name ID
list, starting at X, and choosing a numeric ID and level
for each of the nodes. Let C denote the list at level
X.Level − 1 containing X’s children. Our goal is to
count the number of nodes that are chosen to belong
to C before choosing X’s successor in its level list. This
process is a sequence of trials with three outcomes: on a
“success”, we have chosen X’s successor; on a “failure”,
we have added a new node to C; otherwise, we have
a “retry”, indicating an unrelated node. Equivalently,
we can eliminate the “retry” outcome by thinking of
each trial as continuing until the first success or failure.
Since there are now only two possible outcomes, it is
a Bernoulli trial. Call a success in the Bernoulli trial
a “heads” and a failure in the Bernoulli trial a “tails”.
The remainder of the proof bounds the number of tails
before the first heads.

First, we must bound the probabilities of suc-
cess and failure in the three-outcome trial. Let k =
X.Level − 1. For the probability of success (finding
X’s successor in its level list), we have

Pr(success) ≥ 1/2k+1Lmax = 1/2k+1(c + 2) lg n

Pr(success) ≤ 1/2k+1Lmin = 1/2k+1 lg(n/(c + 2) lnn)

For the probability of failure (finding another node in
C), we have

Pr(failure) ≥ 1/2kLmax = 1/2k(c + 2) lg n

Pr(failure) ≤ 1/2kLmin = 1/2k lg(n/(c + 2) ln n)

Using these, we can bound the probability of a tails.
Let Pr(failure) = α/2k lg n. Then we have

Pr(tails) = Pr(failure)/(Pr(failure) + Pr(success))
< (α/2k lg n)/(α/2k lg n + 1/2k+1(c + 2) lg n)
= α/(α + 1/2(c + 2))
= 1/(1 + 1/2(c + 2)α)

To get an upper bound for Pr(tails), we apply an
upper bound for α. By definition of α, we have α <
lg n/ lg(n/(c + 2) ln n). For sufficiently large n, we can
bound α < 2. Thus, for sufficiently large n, we can
bound Pr(tails) by some constant p < 1. Then, the
expected number of tails before the first heads is less
than p/(1 − p) = O(1), one less than the expected
value of a geometric distribution. This shows that the
expected number of children is O(1).

To complete the proof, we compute a high probabil-
ity bound on the number of children. The probability
that we see at least k tails before a heads is pk. If we
let β = 1/p, then picking k = c logβ 2 lg n gives a prob-
ability of 1/βc logβ 2 lg n = 1/nc.

Definition 2.3. For any node X, let Parents(X) =
{Y | X ∈ Children(Y)}.

A slight variation on the proof of Theorem 2.3 yields
the following result.

Theorem 2.4. For any node X, |Parents(X)| is O(1)
in expectation and O(lg n) with high probability.

The previous theorems examined the level lists. We
now focus on the name ID list and the numeric ID list,
both of which contain every node. The next theorem
shows that no matter where we are in the name ID or
numeric ID list, there is always a nearby node that is at
a given level (provided that level is not too large).

Theorem 2.5. The distance in the name ID list (or
numeric ID list) from a node X to the nearest node at
level L ∈ {0, . . . , Lmin−1} is O(lg n) in expectation and
is O(lg2 n) with high probability.

Proof. Imagine traversing through the name ID list (or
numeric ID list) and choosing the level of each node as
we encounter it. The expected distance to a node at
level L is

E[distance] <
∑∞

i=1 i(1− 1/Lmax)i−1(1/Lmin)
= (1/Lmin)

∑∞
i=1 i(1− 1/Lmax)i−1

= (1/Lmin)/(1− (1− 1/Lmax))2

= L2
max/Lmin

= O(lg n)

The probability that there are no level i nodes
within a distance of kLmax is less than (1 −
1/Lmax)kLmax < e−k. If we choose k = c ln n, then
there are no level i nodes within a distance of c(c +
2) lg n ln n = O(lg2 n) with probability less than 1/nc.

Another variation on the proofs of Theorem 2.3
yields the following result.

Theorem 2.6. Let X be a node at level L. The number
of nodes whose name ID is between X.NameID and
X.LevelNext.NameID is O(2L lg n) in expectation
and O(2L lg2 n) with high probability.

3 Search Operations

In this section, we will describe the search operations
and analyze their performance. In the next section, we
will consider update operations.

3.1 Search by Name ID. The Search-By-Name-
ID operation searches from a start node to find the node
whose NameID is closest but less than or equal to a

Search-By-Name-ID(start , dest)
1 X ← Linear-Search-For-Level-0(start , dest)
2 X ← Find-Closest-At-Level-0(X , dest)
3 X ← Linear-Search-For-Destination(X , dest)
4 return X

Linear-Search-For-Level-0(X , dest)
5 while X.NameNext 6= nil and
6 X.NameNext.NameID < dest and
7 X.Level > 0
8 do X ← X.NameNext
9 return X

Find-Closest-At-Level-0(X , dest)
10 left ← X.NameID
11 while true
12 do if X.LevelNext = nil or
13 dest < X.LevelNext.NameID
14 then break
15 P ← X.Mother or X.Father at random
16 if P 6= nil
17 then X ← P
18 else break
19 X ← Level-Search-By-Name-ID (X , left)
20 while true
21 do if X.Level > 0
22 then X ← X.FirstChild
23 else break
24 X ← Level-Search-By-Name-ID (X , dest)
25 return X

Level-Search-By-Name-ID(X , name)
26 while X.LevelNext 6= nil and
27 X.LevelNext.NameID < name
28 do X ← X.LevelNext
29 while X.LevelPrev 6= nil and
30 name < X.NameID
31 do X ← X.LevelPrev
32 return X

Linear-Search-For-Destination(X , dest)
33 while X.NameNext 6= nil and
34 X.NameNext.NameID < dest
35 do X ← X.NameNext
36 return X

Figure 2: Search-By-Name-ID finds the node whose
name ID is closest to the given destination.

given destination name. Figure 2 contains the pseu-
docode for this operation. For the sake of simplicity, we
have assumed that the destination name is greater than
the start node’s name. The other case is similar.

The algorithm works in four phases. It is important
for search locality that the second phase begin at a level
0 node. The purpose of the first phase is to find a
level 0 node near the start node. This is accomplished
in Linear-Search-For-Level-0 by a linear search in
the name ID list. The second and third phases are
implemented in the helper function Find-Closest-At-

Level-0. In the second phase, lines 10–19, we move
upward until we reach a node X, to the left of where we
began, such that dest is between X and its successor in
that level, or until we reach the top. Line 19 maintains
the invariant that X is the closest node to the left of
where the second phase began (left). The third phase,
lines 20–24, is symmetric to the second phase except
that we are centered arounddest and moving downward.
This third phase is analogous to a binary search or a skip
list search. The node returned from Find-Closest-
At-Level-0 will be the level 0 node closest to the
destination, but it may not be the closest node overall
since the destination node may not be at level 0. In the
fourth phase, implemented in Linear-Search-For-
Destination, we search through the name ID list to
find the node closest to the destination. The correctness
of the algorithm is assured by this last phase.

Next, we will analyze the running time. Theo-
rem 2.5 shows that the first phase requires O(lg n) time
in expectation and O(lg2 n) time with high probability.
Since the number of levels is O(lg n) with high proba-
bility, the outer loops of the second and third phases
will execute no more than O(lg n) times. Each itera-
tion in the second phase does O(1) work except for the
call to Level-Search-By-Name-ID. Note that each
node traversed in this call is a parent of the successor
of the node reached by the previous iteration. Theo-
rem 2.4 shows that the number of such parents is O(1)
in expectation and O(lg n) with high probability. Each
iteration of the third phase is analogous except that we
traverse children instead of parents. Thus the total run-
ning time of the second and third phases is O(lg n) in
expectation and O(lg2 n) with high probability.3 The
analysis of the fourth phase is identical to that of the
first. Thus, the running time of Search-By-Name-ID
is O(lg n) in expectation and O(lg2 n) with high proba-
bility.

3.1.1 Locality. In this section, we show that
Search-By-Name-ID has good locality, in the sense
that it does not traverse nodes that are far outside the
range between the start and destination.

Before doing so, we note that the pseudocode that
we presented in Figure 2 is sequential. A distributed
implementation would execute various portions of that
code at different nodes. As a practical matter, dis-
tributed nodes would cache the name IDs of their neigh-
boring nodes. Using this cache, the distributed search
algorithm can determine that a node is beyond the des-

3There is considerable slack in this argument. It can be
shown that these phases run in O(lg n) time with high probability.
Unfortunately, the tighter bound for these phases does not
improve the bound of the algorithm as a whole.

tination without accessing it. We will assume that such
caching occurs for our discussion of locality and, later,
congestion.

Next, recall that the first phase searches from the
start node for the closest level 0 node. To see why this
first phase is important for locality, suppose that the
start node is at a high level and that the destination
name is very close to the start node’s name. In this case,
the start node’s LevelNext and FirstChild pointers
are both likely to point well beyond the destination
node, so traversing them would result in poor search
locality. Instead, the first phase finds a node at level
0 (so that the expected distance to its successor in the
level list is as small as possible).

We will now analyze the expected locality of
Search-By-Name-ID. To begin, note that the first
and fourth phases have strict locality, in the sense that
they never traverse a node whose name ID is smaller
than start or greater than dest. In the second phase, we
may follow a parent pointer to a node whose name ID is
smaller than start. We want to show that the expected
maximum distance from any such node tostart is O(D),
where D is the distance from start to dest. Similarly, in
the third phase, we may follow a FirstChild pointer to
a node whose name ID is greater thandest. The analysis
of the third phase is symmetric to that of the second.

First, by Theorem 2.6, the expected distance from
the leftmost node traversed at level j to start is
O(2j lg n). We can bound the expected maximum dis-
tance of all nodes traversed up through level j by the
expected sum of these distances. Since these distances
increase geometrically, this sum is also O(2j lg n). Next,
we can condition the expected maximum distance on the
highest level reached, which will be j for the previous
calculation. Define h to be the smallest value such that
D ≤ 2h lg n. Intuitively, we would expect that the high-
est level reached is h or higher. A short calculation that
shows that the probability that the highest level reached
is h + i is at most 1/2i(i−1)/2. Since these probabili-
ties decrease exponentially faster than the conditioned
maximum distances increase, the expected maximum
distance is O(D).

In comparison, searches in a Skip Graph / SkipNet
[1, 6] have strict locality. It is possible to adapt
our Search-By-Name-ID algorithm to achieve strict
locality. To do this, we would add parent pointers that
point right and child pointers that point left. These
pointers would allow the search to remain between the
start and destination nodes during the second and third
phases. (The first and fourth phases already have strict
locality.) Due to space constraints, we do not consider
this variant any further.

Search-By-Numeric-ID(start , bits)
37 name ← start .NameID
38 X ← Find-Closest-At-Level-0(start , name)
39 while true
40 do if X.Level = | bits |
41 then return X
42 if bits [X.Level] = 0
43 then P ← X.Mother
44 else P ← X.Father
45 if P = nil
46 then break
47 X ← Level-Search-By-Name-ID(P , name)
48 X ← Linear-Search-By-Num-ID(X , bits , | bits |)
49 if | bits | <∞
50 then X←Level-Search-By-Name-ID(X , name)
51 return X

Figure 3: The Search-By-Numeric-ID function finds
the node whose numeric ID is closest to the given value.

3.2 Search by Numeric ID. The previous subsec-
tion considered how to find a node with a given name ID.
In this subsection, we show that it is also possible to find
the node whose numeric ID is closest to a given number.
This can be used to implement consistent hashing and,
consequently, a distributed hash table.

The Search-By-Numeric-ID function searches
from a start node X to find the node whose numeric ID
is closest but less than or equal to the given value. This
value can be either a finite or an infinite sequence of bits.
If the input is a finite sequence of k bits, the function
returns a node in the level k list corresponding to the
given bits. In general, this level list will contain more
than one node, so we will return the node whose name
ID is closest to the name of the start node. Figure 3
contains the pseudocode for this operation. Again, for
the sake of simplicity, we have assumed that the target
node is to the right of the start node.

Conceptually, this algorithm is the complement of
Search-By-Name-ID. Instead of moving to a high
level and then back down, this algorithm first searches
for a level 0 node and then moves up. The first phase is
implemented in the call to Find-Closest-At-Level-
0 at line 38. In the second phase, lines 39–47, we start
with a level 0 node and in each iteration find a node that
matches the given value in one additional bit. Within
each level, we find the node whose name is closest to the
name of the start node. As with Search-By-Name-
ID, the first two phases will find a node whose numeric
ID is close but is not guaranteed to be the closest to the
given value. (In particular, this could happen because
an intermediate level list is empty.) In the third phase,
lines 48–50, we perform a linear search in the numeric ID
list to find the closest node, which ensures correctness.

It remains to analyze the running time of this
algorithm. The last subsection showed that the time
required by Find-Closest-At-Level-0 is O(lg n) in
expectation and O(lg2 n) with high probability. The
second phase, lines 39–47, is identical to the second
phase of Search-By-Name-ID except that the parent
choices are given. Thus, the same bound on the running
time applies: O(lg n) in expectation, and O(lg2 n) with
high is probability. The running time of the last phase
depends on the level reached in the second phase. By
Theorem 2.2, we will reach at least level k = lg n −
2 lg lg n − 2 lg(c + 2) with high probability. This leaves
a range of size 1/2k = lg2 n · lg2(c + 2)/n in numeric
ID space to be searched. Hence, a loose bound on
the running time of the linear search is O(lg2 n) in
expectation and O(lg3 n) with high probability. By
conditioning the expectation on the level reached in
the second phase, we can tighten this bound to O(lg n)
in expectation and O(lg2 n) with high probability. We
omit the details of this analysis due to space constraints.
Thus, Search-By-Numeric-ID requires O(lg n) time
in expectation and O(lg2 n) time with high probability.

3.3 Congestion. We define the congestion at node X
to be the probability that a search operation with source
S and target T, chosen uniformly at random, traverses
X. For example, the congestion at the root node of
a balanced binary tree is at least (n

2)2/
(
n
2

)
= Θ(1).

Congestion of Θ(lg n/n) is optimal when the nodes
have constant degree because Θ(lg n) nodes must be
traversed in most search paths. The theorem below
shows that we achieve the optimal bound.

The definition of congestion at a node is a proba-
bility where the unknown random variables are the nu-
meric IDs and levels of all nodes in the data structure,
the random bits used in the search itself, and the choice
of S and T. If we imagine exposing the random bits used
by every node in the data structure, then we could look
at the congestion of the family tree, which is defined
to be the maximum congestion at any node. Note that
this is a probability on the unexposed random variables.
The following theorem shows that the congestion of a
family tree does not deviate much from the congestion
at an arbitrary node.

Theorem 3.1. The congestion at any particular node
in a family tree is O(lg n/n). The congestion of the
family tree is O(lg2 n/n) with high probability.

Proof. We will analyze Search-By-Name-ID. The
analysis for Search-By-Numeric-ID is nearly iden-
tical. Let X be any node in the family tree. X could be
traversed in any of the four phases of the search algo-
rithm. We will consider each in turn and show that, in

each, the probability that X is traversed is O(lg n/n) in
expectation and O(lg2 n/n) with high probability4.

To be traversed in the first phase, X must lie
between S and the closest level 0 node to the right of
S. Theorem 2.5 showed that this distance is O(lg n) in
expectation and O(lg2 n) with high probability. Thus,
the probability that X lies between a randomly chosen
S and its closest level 0 node is O(lg n/n) in expectation
and O(lg2 n/n) with high probability.

For the node X to be traversed in the second phase
(upward search), both of the following conditions must
hold. First, the X.Level random parent choices must
match the corresponding bits of X’s numeric ID. This
occurs with probability 1/2X.Level. Second, S must be
between X and X.LevelNext.FirstChild. Since all
nodes traversed in the upward search are before S, we
will not traverse X if S is before it.5 If S is after
X.LevelNext.FirstChild, then the closest node to
S in the previous level is to the right of X.LevelNext,
so the parent of that node will be X.LevelNext or
further to the right. We can use two applications of
Theorem 2.6 to bound the number of nodes between
X and X.LevelNext.FirstChild as O(2X.Level lg n).
Thus, the probability that a randomly chosen S is
in this set is O(2X.Level lg n/n) in expectation and
O(2X.Level lg2 n/n) with high probability. Since these
two conditions are independent, we can multiply them
to show that the probability that X is traversed in the
second phase is O(lg n/n) in expectation and O(lg2 n/n)
with high probability.

The analysis of the third phase (downward search)
is symmetric to that of the second, and the analysis of
the fourth phase is identical to that of the first. Adding
together the congestion due to each phase, we obtain a
bound of O(lg n/n) in expectation and O(lg2 n/n) with
high probability.

4 Update Operations

In this section, we describe the insert and delete opera-
tions and analyze their performance. Analogous conges-
tion bounds follow immediately from these definitions.

4.1 Insert. Most of the work required to insert a
node is accomplished by calls to the search operations

4By “in expectation” and “with high probability”, we are
referring to the outcome when the structure of the family tree
is revealed. The expected value of the probability is identical
to the probability when no information is known, which is our
definition of congestion.

5We ignore the case where S is before X but the closest level
0 node is after X. This is counterbalanced by the analogous case
where X.LevelNext.FirstChild is substituted for X, which we
do include in the probability.

described in Section 3. Finding the predecessor of the
new node in the name ID list is a simple matter of
calling Search-By-Name-ID. Once this predecessor
has been found, linking the node into this doubly-linked
list requires updating four pointers. Inserting the new
node into the numeric ID list is identical except that
the call is instead made to Search-By-Numeric-ID.
After this, it remains to set the level list pointers and
the inter-level pointers.

In order to choose a level for the new node X, we
must first compute the estimate ` ≈ blg nc. To do this,
we subtract the numeric IDs of X and its successor
(mod 1) and find the first non-zero bit. This will be
found before the (c lg n)-th bit with high probability.
Next, we choose X.Level uniformly at random from
{0, . . . , ` − 1}. Once X has a level, we perform a
Search-By-Numeric-ID, using just the first X.Level
bits of X.NumID, to find the predecessor of X in
its level list. Similarly, we can find X.FirstChild
by performing a Search-By-Numeric-ID using just
the first X.Level − 1 bits of the numeric ID. We
then enumerate all the children of X and update their
appropriate parent pointers to point to X. We handle
X.Mother and X.Father similarly.

Lastly, we turn to the predecessor of X in the nu-
meric ID list. As mentioned in the proof of Corol-
lary 2.1, we must allow this node to re-estimate n and
choose a new level. This ensures that the shape of the
family tree is independent of history. Note that the
predecessor’s numeric ID does not change, only its level
does, so the re-estimation process does not cascade to
other nodes. The procedure for estimating n and choos-
ing a level was described in the previous paragraph. The
procedure for removing this node from its old level is de-
scribed in the next subsection.

It is easy to see that the running time of Insert
is dominated by the six calls to search operations. We
argued above that computing the estimate of lg n takes
O(lg n) time with high probability. The only other work
is updating the pointers. There are only nine outbound
pointers. The number of inbound pointers is O(lg n)
with high probability by Theorem 2.3 and Theorem 2.4.
Thus, the total time required is O(lg n) in expectation
and O(lg2 n) with high probability.

4.2 Delete. The algorithm for deleting a node X
is straightforward. First, we enumerate the nodes
with pointers to X and update them to point to the
appropriate predecessor or successor. As argued in
the previous section, the number of pointers to X is
O(lg n) with high probability. Next, we must allow the
predecessor of X in the numeric ID list to re-estimate
n and choose a new level. As mentioned earlier, the

predecessor’s numeric ID does not change, only its level
does, so the re-estimation process does not cascade to
other nodes. The re-estimation procedure was described
in the previous section. The running time of this
part, and of the algorithm as a whole, is O(lg n) in
expectation and O(lg2 n) with high probability.

5 Conclusion

We have presented the family tree, a new dictionary
data structure suited to implementation in a distributed
environment. Each node in a family tree has only nine
pointers. A family tree can be searched and updated
in expected O(log n) time. Searches and updates both
ensure that no node bears more than an O(log n/n)
fraction of the traffic in expectation. These results are
optimal for any data structure with O(1) pointers per
node. Furthermore, searches in a family tree can take
advantage of locality in the input, only searching nodes
that have names close to the source and target.

Family trees can be used to implement a peer-to-
peer overlay network, as well as a distributed hash table.
Like Skip Graphs [1] and SkipNet [6], family trees are
ordered by keys from an arbitrary domain. Hence they
support efficient range queries and have useful locality
properties. Like Viceroy [15] and Koorde [9], a family
tree’s bounds on degree, congestion, and search and
update performance are optimal. Family trees are the
first data structure to simultaneously support arbitrary
key ordering and achieve these optimal bounds.

A family tree could also be used to implement an
in-memory dictionary. This could be advantageous in
a situation where the dictionary is being accessed by
multiple concurrent readers and writers. Our congestion
bounds imply that such an implementation would have
low lock contention, assuming uniform access patterns.
Furthermore, the family tree could take advantage of
locality in the searches made by a given client.

In summary, family trees are a new contribution
to the theory of data structures. We have shown that
they are optimal in congestion, locality, degree, and
search and update performance. Furthermore, family
trees have immediate practical applications, including
to the implementation of peer-to-peer overlay networks.

Acknowledgments

We thank John Dunagan for many helpful discussions
on this topic and for reviewing drafts of this paper.

References

[1] J. Aspnes and G. Shah. Skip Graphs. In 14th ACM-
SIAM Symposium on Discrete Algorithms, Jan. 2003.

[2] B. Awerbuch and C. Scheideler. The Hyperring: A
Low-Congestion Deterministic Data Structure for Dis-

tributed Environments. In 17th International Sympo-
sium on Distributed Computing, Oct. 2003.

[3] P. Bozanis and Y. Manolopolous. DSL: Accomodating
Skip Lists in the SDDS Model. In Workshop on
Distributed Data and Structures, June 2000.

[4] L. Cowen. Compact Routing with Minimum Stretch.
In Proceedings of the 10th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Jan. 1999.

[5] C. Gavoille and D. Peleg. Compact and Localized
Distributed Data Structures. Technical Report 1261-
01, LaBRI, Université Bordeaux I, Aug. 2001.

[6] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman. SkipNet: A Scalable Overlay Network
with Practical Locality Properties. In USENIX Sympo-
sium on Internet Technologies and Systems, Mar. 2003.

[7] N. J. A. Harvey and J. I. Munro. Deterministic Skip-
Net. In ACM Symposium on Principles of Distributed
Computing, July 2003.

[8] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
decentralized, peer-to-peer web cache. In Proceedings
of the 21st Annual ACM Symposium on Principles of
Distributed Computing. ACM, July 2002.

[9] M. F. Kaashoek and D. R. Karger. Koorde: A simple
degree-optimal distributed hash table. In Proceedings
of the 2nd International Workshop on Peer-to-Peer
Systems, Feb. 2003.

[10] D. Karger, E. Lehman, F. Leighton, M. Levine,
D. Lewin, and R. Panigraphy. Consistent hashing and
random trees: Distributed caching protocols for reliev-
ing hot spots on the World Wide Web. In Proceed-
ings of the 29th Annual ACM Symposium on Theory of
Computing, pages 654–663, May 1997.

[11] B. Kroll and P. Widmayer. Balanced distributed search
trees do not exist. In Workshop on Algorithms and
Data Structures, 1995.

[12] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes. Morgan
Kaufman, 1992.

[13] W. Litwin, M. A. Neimat, and D. A. Schneider. LH* -
Linear hashing for distributed files. In ACM SIGMOD
Intl. Conf. on Management of Data, 1993.

[14] W. Litwin, M. A. Neimat, and D. A. Schneider. RP* -
A family of order-preserving scalable distributed data
structures. In Conf. on Very Large Data Bases, 1994.

[15] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A
scalable and dynamic emulation of the butterfly. In
Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing. ACM, July 2002.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In Proc. of ACM SIGCOMM, Aug. 2001.

[17] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-
uschel. Scribe: The design of a large-scale event notifi-
cation infrastructure. In Third International Workshop
on Networked Group Communications, 2001.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Proc. of
ACM SIGCOMM, Aug. 2001.

[19] M. Theimer and M. B. Jones. Overlook: Scalable
Name Service on an Overlay Network. In Proceedings
of the 22nd International Conference on Distributed
Computing Systems, July 2002.

