
Semi-Matchings for Bipartite Graphs

and Load Balancing

Nicholas J. A. Harvey ∗ Richard E. Ladner † László Lovász ‡ Tami Tamir †

Abstract

We consider the problem of fairly matching the left-hand vertices of a bipartite graph
to the right-hand vertices. We refer to this problem as the optimal semi-matching problem;
it is a relaxation of the known bipartite matching problem. We present a way to evaluate
the quality of a given semi-matching and show that, under this measure, an optimal semi-
matching balances the load on the right hand vertices with respect to any Lp-norm. In
particular, when modeling a job assignment system, an optimal semi-matching achieves the
minimal makespan and the minimal flow time for the system.

The problem of finding optimal semi-matchings is a special case of certain scheduling
problems for which known solutions exist. However, these known solutions are based on
general network optimization algorithms, and are not the most efficient way to solve the
optimal semi-matching problem. To compute optimal semi-matchings efficiently, we present
and analyze two new algorithms. The first algorithm generalizes the Hungarian method
for computing maximum bipartite matchings, while the second, more efficient algorithm is
based on a new notion of cost-reducing paths. Our experimental results demonstrate that the
second algorithm is vastly superior to using known network optimization algorithms to solve
the optimal semi-matching problem. Furthermore, this same algorithm can also be used to
find maximum bipartite matchings and is shown to be roughly as efficient as the best known
algorithms for this goal.

Key words:
bipartite graphs, load-balancing, matching algorithms,

optimal algorithms, semi-matching

∗MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA. E-mail: nickh@mit.edu
†Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA. E-mail:

{ladner, tami}@cs.washington.edu
‡Microsoft Research, Redmond, WA, USA. E-mail: lovasz@microsoft.com

1

1 Introduction

One of the classical combinatorial optimization problems is finding a maximum matching in
a bipartite graph. The bipartite matching problem enjoys numerous practical applications [2,
Section 12.2], and many efficient, polynomial time algorithms for computing solutions [8] [12]
[14]. Formally, a bipartite graph is a graph G = (U ∪V, E) in which E ⊆ U ×V . A matching in
G is a set of edges, M ⊆ E, such that each vertex in U ∪ V is an endpoint of at most one edge
in M . In other words, each vertex in U is matched with at most one vertex in V and vice-versa.

In this paper we consider a relaxation of the maximum bipartite matching problem. We
define a semi-matching to be a set of edges, M ⊆ E, such that each vertex in U is an endpoint
of exactly one edge in M . Clearly a semi-matching does not exist if there are isolated U -vertices,
so we require that each U -vertex in G have degree at least 1. Note that it is trivial to find a
semi-matching — simply match each U -vertex with an arbitrary V -neighbor. Semi-matchings
were previously considered in [15], with the objective of finding semi-matchings of maximum
weight. We consider a different optimization objective: finding semi-matchings that match U -
vertices with V -vertices as fairly as possible, that is, minimizing the variance of the matching
edges at each V -vertex.

Our work is motivated by the following load balancing problem: We are given a set of tasks
and a set of machines, each of which can process a subset of the tasks. Each task requires one
unit of processing time, and must be assigned to some machine that can process it. The tasks
are to be assigned to machines in a manner that minimizes some optimization objective. One
possible objective is to minimize the makespan of the schedule, which is the maximal number
of tasks assigned to any given machine. Another possible goal is to minimize the average
completion time, or flow time, of the tasks. A third possible goal is to maximize the fairness of
the assignment from the machines’ point of view, i.e., to minimize the variance of the loads on
the machines.

These load balancing problems have received intense study in the online setting, in which
tasks arrive and leave over time [4]. In this paper we consider the offline setting, in which all
tasks are known in advance. Problems from the online setting may be solved using an offline
algorithm if the algorithm’s runtime is significantly faster than the tasks’ arrival/departure rate,
and tasks may be reassigned from one machine to another without expense. In particular, the
second algorithm we present can incrementally update an existing assignment after task arrivals
or departures.

One example of an online load balancing problem that can be efficiently solved by an offline
solution comes from the Microsoft Active Directory system [1], which is a distributed direc-
tory service. Corporate deployments of this system commonly connect thousands of servers in
geographically distributed branch offices to servers in a central “hub” data center. Servers in
the branch offices must periodically replicate with the servers in the hub in order to maintain
database consistency. However, there are constraints on which hub servers a given branch server
may replicate with. The database is commonly partitioned according to corporate divisions,
such as “American Division” and “European Division”. Each branch server must replicate with
any hub server that also stores the branch server’s database partition. Thus, the assignment of

2

branch servers to hub servers for the purpose of replication may be viewed as a constrained load
balancing problem: the branch servers are the “tasks”, the hub servers are the “machines”, and
the database partitions induce the constraints. Since servers are only rarely added or removed,
and servers can be efficiently reassigned to replicate with another server, this load balancing
problem is solvable by the offline solutions that we present herein.

Load balancing problems of the form described above can be represented as instances of the
semi-matching problem as follows. Each task is represented by a vertex u ∈ U , and each machine
is represented by a vertex v ∈ V . There is an edge {u, v} if task u can be processed by machine
v. Any semi-matching in the graph determines an assignment of the tasks to the machines.
Furthermore, we show that a semi-matching that is as fair as possible gives an assignment of
tasks to machines that simultaneously minimizes the makespan and the flow time.

The primary contributions of this paper are: (1) the semi-matching model for solving load
balancing problems of the form described above, (2) two efficient algorithms for computing op-
timal semi-matchings, and (3) a new algorithmic approach for the bipartite matching problem.
We also discuss in Section 2 representations of the semi-matching problem as network opti-
mization problems, based on known solutions to scheduling problems. Section 3 proves several
important properties of optimal semi-matchings. One of these properties provides a necessary
and sufficient condition for a semi-matching to be optimal. Specifically, we define a cost-reducing
path, and show that a semi-matching is optimal if and only if no cost-reducing path exists. Sec-
tions 4 and 5 present two algorithms for computing optimal semi-matchings; the latter algorithm
uses the approach of identifying and removing cost-reducing paths. Finally, Section 6 describes
an experimental evaluation of our algorithms against known algorithms for computing optimal
semi-matchings and maximum bipartite matchings.

2 Preliminaries

2.1 Definitions and Problem Statement

Let G = (U ∪ V,E) be a simple bipartite graph with U the set of left-hand vertices, V the
set of right-hand vertices, and edge set E ⊆ U × V . We denote by n and m the sizes of the
left-hand and the right-hand sides of G respectively: i.e., n = |U | and m = |V |. Since our work
is motivated by a load balancing problem, we frequently refer to the U -vertices as “tasks” and
to the V -vertices as “machines”.

We define a set M ⊆ E to be a semi-matching if each vertex u ∈ U is incident with exactly
one edge in M . Note that isolated U -vertices can not be matched with any V -vertex, therefore we
assume that all of the vertices in U have degree at least 1. A semi-matching gives an assignment
of each task to a machine that is capable of processing it.

For v ∈ V , let deg(v) denote the degree of vertex v; in load balancing terms, deg(v) is the
number of tasks that machine v is capable of executing. Let degM (v) denote the number of
edges in M that are incident with v; in load balancing terms, degM (v) is the number of tasks
assigned to machine v. We frequently refer to degM (v) as the load on vertex v. Note that if

3

several tasks are assigned to a machine then one task completes its execution after one time
unit, the next task after two time units, etc. However, semi-matchings do not specify the order
in which the tasks are to be executed.

We define costM (v) for a vertex v ∈ V to be

degM (v)∑

i=1

i =
(degM (v) + 1)degM (v)

2
.

This expression gives the total latency experienced by all tasks assigned to machine v. The total
cost of a semi-matching M is defined to be T (M) =

∑m
i=1 costM (vi); this expression gives the

flow time of the tasks’ schedule [13]. A semi-matching with minimum total cost is called an
optimal semi-matching. We show in Section 3 that an optimal semi-matching is also optimal
with respect to other optimization objectives, such as maximizing the load balance on the
machines (by minimizing, for any p, the Lp-norm of the load-vector), minimizing the variance
of the machines’ load, and the minimizing the maximal machine load.

For a given semi-matching M in G, define an alternating path to be a sequence of edges
P = ({v1, u1}, {u1, v2}, . . . , {uk−1, vk}) with vi ∈ V , ui ∈ U , and {vi, ui} ∈ M for each i.
For convenience, we sometimes treat paths as a sequence of vertices (v1, u1, . . . , uk−1, vk). The
notation A⊕B denotes the symmetric difference of sets A and B; that is, A⊕B = (A\B)∪(B\A).
Note that if P is an alternating path relative to a semi-matching M then P ⊕ M is also a
semi-matching, derived from M by switching matching and non-matching edges along P . If
degM (v1) > degM (vk) + 1 then P is called a cost-reducing path relative to M . Cost-reducing
paths are so named because switching matching and non-matching edges along P yields a semi-
matching P ⊕M whose cost is less than the cost of M . Specifically,

T (P ⊕M) = T (M)− (degM (v1)− degM (vk)− 1).

2.2 Related Work

The maximum bipartite matching problem is known to be solvable in polynomial time using
a reduction from maximum flow [2] [9] or by the Hungarian method [14] [15, Section 5.5].
Push-relabel algorithms are widely considered to be the fastest algorithms in practice for this
problem [8].

The load balancing problems we consider in this paper can be represented as restricted cases
of scheduling on unrelated machines. These scheduling problems specify for each job j and
machine i the value pi,j , which is the time it takes machine i to process job j. When pi,j ∈
{1,∞} ∀i, j, this yields an instance of the semi-matching problem, as described in Section 2.3.
In standard scheduling notation [11], this problem is known as R | pi,j ∈ {1,∞} | ∑

j Cj .
Algorithms are known for minimizing the flow time of jobs on unrelated machines [2, Application
12.9] [7] [13]; these algorithms are based on network flow formulations.

The online version of this problem, in which the jobs arrive sequentially and must be assigned
upon arrival, has been studied extensively in recent years [3] [5] [6]. A comprehensive survey of
the various models, and different objective functions is given in [4].

4

2.3 Representation as Known Optimization Problems

The optimal semi-matching problem can be represented as special instances of two well-known
optimization problems: weighted assignment and min-cost max-flow. However, Section 6 shows
that the performance of the resulting algorithms is inferior to the performance of our algorithms
presented in sections 4 and 5.

Recall that the scheduling problem R | | ∑
j Cj , and in particular the case in which pi,j ∈

{1,∞}, can be reduced to a weighted assignment problem [7] [13]. A semi-matching instance
can be represented as an R | pi,j ∈ {1,∞} | ∑

j Cj instance as follows: Each U -vertex represents
a job, and each V -vertex represents a machine. For any job j and machine i, we set pi,j = 1 if
the edge {uj , vi} exists, and otherwise pi,j = ∞. Clearly, any finite schedule for the scheduling
problem determines a feasible semi-matching. In particular, a schedule that minimizes the
flow time determines an optimal semi-matching. Thus, algorithms for the weighted assignment
problem can solve the optimal semi-matching problem.

The min-cost max-flow problem is one of the most important combinatorial optimization
problems; its objective is to find a minimum-cost maximum-flow in a network [2]. Indeed, the
weighted assignment problem can be reduced to min-cost max-flow problem. Thus, from the
above discussion, it should be clear that a semi-matching problem instance can be recast as a
min-cost max-flow problem. We now describe an alternative, more compact, transformation of
the optimal semi-matching problem to a min-cost max-flow problem.

Given G = (U ∪ V,E), a bipartite graph giving an instance of a semi-matching problem, we
show how to construct a network N such that a min-cost max-flow in N determines an optimal
semi-matching in G. The network N is constructed from G by adding at most |U |+ 2 vertices
and 2|U |+ |E| edges (see Figure 1). The additional vertices are a source s, a sink t, and a set of
“cost centers” C = {c1, . . . , c∆}, where ∆ ≤ |U | is the maximal degree of any V -vertex. Edges
with cost 0 and capacity 1 connect s to each of the vertices in U . The original edges connecting
U and V are directed from U to V and are given cost 0 and capacity 1. For each v ∈ V , v
is connected to cost centers c1, . . . , cdeg(v) with edges of capacity 1 and costs 1, 2, . . . , deg(v)
respectively. Edges with cost 0 and infinite capacity connect each of the cost centers to the sink,
t.

We now prove the validity of this reduction.

Lemma 2.1 If f is a maximum flow in N then f determines a semi-matching in G.

Proof: We may assume that f is integral since standard flow algorithms always return integral
solutions. Since there are no isolated U -vertices, the n edges connecting s and U are a minimum
cut in the network N . Since all edges from s to U have unit capacity, the total capacity of
this cut is n. When this cut is saturated, each U -vertex must send one unit of flow to a single
V -vertex, since the flow is integral. Thus the flow matches each U -vertex with a V -vertex. Since
the value of the maximum flow is equal to the capacity of the minimum cut, this cut is saturated
in any maximum flow, and therefore the flow in f induces a semi-matching. ¥

Lemma 2.2 If M is a semi-matching in G, there exists a corresponding maximum flow f in N

5

���

���

���

� �

���

���

(a)

���

���

���

� �

���

���

	 �

	 �

	 �

�

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �
� �

� �

� �

� �

�

�

�

∞

∞

∞

(b)

Figure 1: (a) shows a graph in which the bold edges form an optimal semi-matching. (b) shows
the corresponding min-cost max-flow problem. Each edge is labeled with two numbers: a cost,
and a capacity constraint. Bold edges carry one unit of flow and doubly-bold edges carry two
units of flow.

with equal cost.

Proof: The flow f is defined as follows: for each u ∈ U , one flow-unit is sent from s to u and
then to the V -vertex to which u is matched. For each v ∈ V , each flow unit arriving at v is sent
to the available edge of least cost connecting v with a cost-center, and then to t. By definition
of the edges from V to C, the total cost of the flow on those edges is

∑m
i=1

∑degM (vi)
j=1 j. Since

all other edges have zero cost, this is also the cost of the whole flow. ¥
In particular, if the optimal semi-matching has cost Copt then the min-cost max-flow in N

has cost Copt. We now extend Lemma 2.1 to show that a min-cost max-flow in N determines a
semi-matching with the same cost.

Lemma 2.3 If fopt is a minimum-cost maximum-flow in N and M is the corresponding semi-
matching in G, then the cost of fopt equals the total cost of M .

Proof: As before, we assume that fopt is integral. In any minimum-cost flow, the flow-units
leaving each v ∈ V must be sent to the cost-centers using edges with least cost. That is, if f(vi)
is the total amount of flow leaving vi then the flow is sent to cost-centers c1, . . . , cf(vi). Since all

the other edges in N have cost zero, the total cost of the flow is
∑m

i=1

∑f(vi)
j=1 j. In the matching

M induced by fopt, each u ∈ U is matched to a vi ∈ V if and only if there is one flow unit on
the edge (u, vi). Therefore, f(vi) = degM (vi), and the total cost of fopt is exactly T (M). ¥

3 Properties of Optimal Semi-Matchings

This section proves various important properties of optimal semi-matchings. Section 3.1 charac-
terizes when a semi-matching is optimal. Section 3.2 generalizes the notion of optimality to other
cost functions. Section 3.3 proves that an optimal semi-matching always contains a maximum

6

matching and discusses various consequences. Section 3.4 proves that an optimal semi-matching
is also optimal with respect to any Lp-norm and the L∞-norm.

3.1 Characterization of Optimal Semi-Matchings

An important theorem from network flow theory is that a maximum flow has minimum cost if
and only if no negative-cost cycle exists [2, Theorem 3.8]. We now prove an analogous result for
semi-matchings. In Section 5 we describe the Algorithm ASM2 which is based on this property.

Theorem 3.1 A semi-matching M is optimal if and only if no cost-reducing path relative to M
exists.

Proof: Let G be an instance of a semi-matching problem, and let M be a semi-matching in
G. Clearly if M is optimal then no cost-reducing path can exist. We show that a cost-reducing
path must exist if M is not optimal.

Let O be an optimal semi-matching in G, chosen such that the symmetric difference O⊕M =
(O \M) ∪ (M \O) is minimized. Assume that M is not optimal, implying that M has greater
total cost than O: i.e., T (O) < T (M). Recall that degO(v) and degM (v) denote the number of
U -vertices matched with v by O and M respectively. Let Gd be the subgraph of G induced by
the edges of O ⊕ M . Color with green the edges of O \ M and with red the edges of M \ O.
Direct the green edges from U to V and the red edges from V to U .

Claim 3.2 The graph Gd is acyclic, and for every directed path P in Gd from v1 ∈ V to v2 ∈ V ,
we have degO(v2) ≤ degO(v1).

Proof: Let P = (v1, . . . , v2) be a directed path in Gd. By the choice of directions for the
edges, P must consist of alternating red and green edges. If degO(v2) > degO(v1) + 1 then
P (in reverse order) is a cost-reducing path for O, in contradiction to the optimality of O. If
degO(v2) = degO(v1) + 1, then by alternating the assignment of the U -vertices along P we get
an optimal assignment with smaller symmetric difference from M , again in contradiction to the
choice of O. Therefore, we must have that degO(v2) ≤ degO(v1). A similar argument shows that
Gd is also acyclic. ¥

Both O and M are semi-matchings, implying that
∑

v degO(v) =
∑

v degM (v) = |U |. Since
T (O) < T (M), there must exist v1 ∈ V such that degM (v1) > degO(v1). Starting from v1,
we build an alternating red-green path P ′ as follows. (1) From an arbitrary vertex v ∈ V , if
degM\O(v) ≥ 1 and degM (v) ≥ degM (v1) − 1, we build P ′ by following an arbitrary red edge
directed out from v. (2) From an arbitrary vertex u ∈ U , we build P ′ by following the single
green edge directed out from u. Such a green edge must always exist. (3) Otherwise, we stop.

By Claim 3.2, Gd is acyclic and therefore P ′ is well-defined and finite. Let v2 ∈ V be the
final vertex on the path. There are two cases.

Case 1: degM (v2) < degM (v1)− 1. Thus P ′ is a cost-reducing path relative to M .

Case 2: degM\O(v2) = 0. In this case, we know that degM (v2) < degO(v2) since P ′ arrived
at v2 via a green edge. By Claim 3.2, we must also have that degO(v2) ≤ degO(v1).

7

Finally, recall that v1 was chosen such that degO(v1) < degM (v1). Combining these
three inequities yields: degM (v2) < degO(v2) ≤ degO(v1) < degM (v1). This implies that
degM (v2) < degM (v1)− 1, and so P ′ is a cost-reducing path relative to M .

Since P ′ is a cost-reducing path relative to M in both cases, the proof is complete. ¥

3.2 Optimality with Respect to Other Cost Functions

So far we have considered only the objective of minimizing T (M) =
∑m

i=1 costM (vi), where
costM (v) =

∑degM (v)
i=1 i = (degM (v)+1)degM (v)

2 . Recall that this expression gives the flow time
of the tasks’ schedule. In this section we show that in fact our results capture a wider set of
objectives, given by different cost functions. We show that an optimal semi-matching is optimal
with respect to any of these cost functions. In other words, an optimal semi-matching minimizes
flow time as well as many other important properties of the system.

Definition 3.1 A cost function for a matching M is a function costf (M) =
∑m

i=1 f(degM (vi)),
where f : R+ → R is a strictly convex function. If f is weakly convex then costf (M) is called a
weak cost function.

For example, T (M) is the cost function induced by the function f(x) =
∑x

j=1 j = x(x+1)/2.

Lemma 3.3 Let P be a cost-reducing path. For any cost function costf , switching matching
and non-matching edges along P yields a semi-matching M ′ = P ⊕M such that costf (M ′) <
costf (M). If costf is a weak cost function then costf (M ′) ≤ costf (M).

Proof: First, we need the following property of convex functions:

Claim 3.4 If f is strictly convex then x > y implies f(x + 1)− f(x) > f(y + 1)− f(y). If f is
weakly convex then the inequality holds but is not strict.

Proof: A property of strictly convex functions is that f(b)−f(a)
b−a < f(c)−f(a)

c−a < f(c)−f(b′)
c−b′ if

a < b < c and a < b′ < c (see, for example, [17]). Setting a = y, b = y + 1, b′ = x and c = x + 1
we obtain that f(y + 1)− f(y) < f(x+1)−f(y)

x+1−y < f(x + 1)− f(x). If f is weakly convex then all
stated inequalities hold but are not strict. ¥

Next, consider the matching M and the cost-reducing path P = (v1, . . . , vk). Let x =
degM (v1) − 1 and y = degM (vk). The change in costf at v1 due to switching edges along path
P is f(x)− f(x + 1). Similarly, the change in costf at vk is f(y + 1)− f(y). Therefore

costf (M ′) = costf (M)− (
f(x + 1)− f(x)

)
+

(
f(y + 1)− f(y)

)
.

Applying Claim 3.4 completes the proof. ¥
Using Lemma 3.3 we can extend Theorem 3.1 as follows.

Theorem 3.5 Let M be a semi-matching. If costf is a strict cost function and if M is optimal
with respect to costf then no cost-reducing path relative to M exists. The converse holds even

8

if costf is a weak cost function: if no cost-reducing path relative to M exists then M is optimal
with respect to costf .

Proof: Identical to the proof of Theorem 3.1. ¥
Thus, if M is optimal with respect to a strict cost function then no cost-reducing path

relative to M exists. Also, if M has no cost-reducing paths then M is optimal with respect to
every cost function.

Corollary 3.6 A semi-matching M that is optimal with respect to any strict cost function is
optimal with respect to every cost function, strict or weak.

3.3 Optimal Semi-Matchings Contain Maximum Matchings

In this section, we prove that every optimal semi-matching must contain a maximum bipartite
matching; furthermore, it is a simple process to find these maximum matchings. Thus, the
problem of finding optimal semi-matchings indeed generalizes the problem of finding maximum
matchings.

Theorem 3.7 Let M be an optimal semi-matching in G. Then there exists S ⊆ M such that S
is a maximum matching in G.

Proof: Given a semi-matching M (not necessarily an optimal one), we may construct an
ordinary matching (not necessarily a maximum one) by selecting one incident M -edge for each
vertex v ∈ V . If there are ` vertices in V with degM (v) > 0, then the resulting matching is of size
`. Conversely, any matching can be extended to a semi-matching (not necessarily an optimal
one) by adding one arbitrary incident edge for any unmatched u in U . Thus, any matching, and
in particular any maximum one, is contained in some semi-matching. In order to show that an
optimal semi-matching contains a maximum matching, we show that an optimal semi-matching
minimizes the number of unmatched V -vertices (i.e., vertices v ∈ V with degM (v) = 0).

Define f : R+ → R such that f(x) = 0 for x ≤ 1 and f(x) = x − 1 for x > 1. Note that
f is weakly convex so costf is a weak cost function. Let M be an optimal semi-matching (i.e.,
with respect to T (M)). M is therefore optimal with respect to costf by Corollary 3.6. costf is
defined such that if degM (v) > 0 then v contributes degM (v)−1 to the total cost. Summing over
all v ∈ V , costf (M) = n − `, where ` is the number of vertices in V with at least one incident
edge in M . Since M minimizes costf , it maximizes `. By our previous remarks, M contains a
matching of size `, so M contains a maximum matching. ¥

The converse of this theorem is not true. As demonstrated in Appendix C, not every maxi-
mum matching can be extended to an optimal semi-matching.

Corollary 3.8 Let M be an optimal semi-matching in G. Define α(M) to be the number of
right-hand vertices in G that are incident with at least one edge in M . Then the size of a
maximum matching in G is α(M).

9

In particular, if G has a perfect matching and M is an optimal semi-matching in G, then M is
a perfect matching. Corollary 3.8 yields a simple algorithm for computing a maximum matching
from an optimal semi-matching M : for each v ∈ V , if degM (v) > 1, select one arbitrary edge
from M that is incident with v.

3.4 Optimality with Respect to Lp-norm and L∞-norm

Let xi = degM (vi) denote the load on machine i, that is, the number of tasks assigned to machine
i. The Lp-norm of the vector X = (x1, . . . , xm) is ‖X‖p = (

∑m
i=1 xp

i)1/p. In this section we
show that an optimal semi-matching is optimal with respect to the Lp-norm of the vector X
for any finite p; in other words, optimal semi-matchings minimize ‖X‖p of the load vector. (All
semi-matchings have ‖X‖1 = |U |, and hence are optimal with respect to the L1-norm).

Theorem 3.9 Let 1 < p < ∞. A semi-matching is optimal if and only if it is optimal with
respect to the Lp-norm of its load vector.

Proof: Fix any p > 1 and define fp(x) = xp. Note that fp is strictly convex so costfp is a
strict cost function. Let X be the load vector for M . Since ‖X‖p = costfp(M)1/p, M optimizes
‖X‖p if and only if it optimizes costfp . By Corollary 3.6, M is optimal with respect to costfp if
and only if M is an optimal semi-matching. ¥

Another common measure for load balancing is the variance of the loads on the machines.
The following theorem shows that optimal semi-matchings are also optimal for this objective.

Theorem 3.10 A semi-matching M is optimal if and only if Varv∈V {degM (v)} is minimized.

Proof: Let µ = n/m be the mean of degM (v) where v ∈ V . Define fVar(x) = (x−µ)2 and note
that costfVar

is a strict cost function. By Corollary 3.6, M is optimal with respect to costfVar
if

and only if M is an optimal semi-matching. ¥
Another important optimization objective in practice is minimizing the makespan, which

is the maximal load on any machine. This is achieved by minimizing the L∞-norm of the
machines’ load vector X. As we show below, optimal semi-matchings do minimize the L∞-norm
of X, and thus are an “ultimate” solution that simultaneously minimizes both the flow time and
the makespan. Recall that |V | = m and consider the function f∞ defined by f∞(x) = (m + 1)x.
Note that costf∞ is a strict cost function.

Claim 3.11 A semi-matching that minimizes costf∞ minimizes the maximal load on a single
V -vertex.

Proof: Let M be an assignment that minimizes costf∞ . Assume that M does not minimize the
maximal load on a single V -vertex, and that this objective is achieved by a different assignment
M ′. Let ∆ and ∆′ be the maximal load on a single V -vertex in M and M ′ respectively. Thus,
costf∞(M) ≥ (m + 1)∆ and costf∞(M ′) ≤ m(m + 1)∆

′
(at worst, all m of the V -vertices have

load ∆′). However, since ∆′ ≤ ∆ − 1, it follows that costf∞(M ′) < costf∞(M), which is a
contradiction. ¥

10

Theorem 3.12 An optimal semi-matching M is also optimal with respect to the L∞-norm.

Proof: Since costf∞ is a cost function, Corollary 3.6 implies that M is optimal with respect
to costf∞ . By Claim 3.11, this implies that M minimizes the maximal load on a V -vertex.
Therefore M is optimal with respect to the L∞-norm. ¥

The converse of Theorem 3.12 is not valid; that is, minimizing the L∞-norm does not imply
minimization of other cost functions. The converse of Theorem 3.12 fails to hold because the
converse of Claim 3.11 does not hold: minimizing the makespan does not necessarily minimize
costf∞ . A semi-matching that minimizes only the L∞-norm is given in Appendix C.

4 ASM1: An O(|U ||E|) Algorithm for Optimal Semi-Matchings

In this section we present our first algorithm, ASM1, for finding an optimal semi-matching. The
time complexity of ASM1 is O(|U ||E|), which is identical to that of the Hungarian algorithm
[14] [15, Section 5.5] for finding maximum bipartite matchings. Indeed, ASM1 is merely a simple
modification of the Hungarian algorithm, as we explain below.

The Hungarian algorithm for finding maximum bipartite matchings considers each left-hand
vertex u in turn and builds an alternating search tree, rooted at u, looking for an unmatched
right-hand vertex (i.e., a vertex v ∈ V with degM (v) = 0). If an unmatched right-hand vertex v
is found, the matching and non-matching edges along the u-v path are switched so that u and
v are no longer unmatched.

Similarly, ASM1 maintains a partial semi-matching M , starting with the empty set. In each
iteration, it considers a left-hand vertex u and builds an alternating search tree rooted at u,
looking for a right-hand vertex v such that degM (v) is as small as possible. To build the tree
rooted at u we perform a directed breadth-first search in G starting from u, where edges in M
are directed from V to U and edges not in M are directed from U to V . We select in this tree
a path P from u to a least loaded V -vertex reachable from u. We increase the size of M by
forming P ⊕M ; in other words, we add to the matching the first edge in this path, and switch
the next matching and non-matching edges along the remainder of the path. As a result, u is
no longer unmatched and degM (v) increases by 1.

We repeat this procedure of building a tree and extending the matching accordingly for
all of the vertices in U . Since each iteration matches a vertex in U with a single vertex in V
and does not change degM (u) for any other u ∈ U , the resulting selection of edges is indeed a
semi-matching. The pseudocode of this algorithm is given in Appendix A.

Interestingly, there is another way to characterize ASM1. Section 2.3 showed that G can
be represented as a network N in which a min-cost max-flow corresponds to an optimal semi-
matching. One way to compute a min-cost max-flow in N is with the successive shortest path
algorithm [2, Section 9.7]. Regarding G as a compact representation of N , ASM1 is an efficient
implementation of the successive shortest path algorithm on G.

Theorem 4.1 Algorithm ASM1 produces an optimal semi-matching.

11

Proof: We show that no cost-reducing path is created during the execution of the algorithm.
In particular, no cost-reducing path exists at the end of the execution; thus, by Theorem 3.1
the resulting matching is optimal.

Assume the opposite and let P ∗ = (v1, u1, . . . , vk−1, uk−1, vk), be the first cost-reducing path
created by this algorithm. Let M1 be the matching after the iteration in which P ∗ is created.
Thus, degM1(v1) > degM1(vk)+1. Without loss of generality (by taking a sub-path of P ∗), we can
assume that there exists some x such that degM1(v1) ≥ x+1, degM1(vi) = x,∀i ∈ {2, . . . , k−1},
and degM1(vk) ≤ x− 1. Consider the last iteration in which the load on v1 is increased. Let u′

be the U -vertex added to the assignment at this iteration. By the definition of the algorithm,
v1 is a least loaded V -vertex reachable from u′; thus, the search tree built for u′ includes only
V -vertices with load at least x; in particular, vk is not reachable from u′.

Given that the path P ∗ exists, at some iteration occurring after the one in which u′ is added,
all the edges (ui, vi) of P ∗ are in the matching. Let u∗ be the U -vertex, added after u′, whose
addition to the assignment creates P ∗. We show a contradiction to the way u∗ is assigned.
Specifically, we show that when adding u∗, the algorithm increases the load on some vertex with
load at least x, while vk, whose load at that time is at most x− 1, is also reachable from u∗.

Claim 4.2 When u∗ is added, the load on vk is at most x− 1 and vk is in the tree rooted at u∗.

Proof: The load on any V -vertex can only increase during the algorithm. Since the load on
vk in M1 is x− 1, and u∗ is added before P ∗ exists, x− 1 is an upper bound on the load on vk

at the time u∗ is added. To see that vk is in T ∗, the search tree built during the assignment of
u∗, recall the assumption that the path P ∗ is created by the assignment of u∗. Let (ui, vi) be
the last edge (i.e., farthest from v1) of P ∗ that is added to the matching in this iteration. Thus,
vi is reachable from u∗, and since the edge (uj , vj) is already in the matching ∀j, i < j ≤ k, the
suffix of P ∗ from vi to vk must also be in T ∗. ¥

Claim 4.3 When u∗ is added, the load on some vertex with load at least x is increased.

Proof: Suppose the opposite. We show that a cost-reducing path exists before u∗ is added,
contradicting our choice of P ∗ as the first cost-reducing path created by the algorithm. Once
again, we use the fact that P ∗ is created when u∗ is added. Let (ui, vi) be the first edge (i.e.,
closest to v1) of P ∗ which is added to the matching at this iteration. Thus, before adding u∗,
the vertex vi is reachable from v1. Let P ′ = (u∗, . . . , v∗) be the path from u∗ to the least loaded
vertex in T ∗. Note that vi must appear in path P ′. Thus, the path from v1 to vi can be extended
to reach v∗ using the suffix of P ′ from vi to v∗. All the edges of this suffix are available before
u∗ is added, since they were all available to T ∗. The load on v∗ must be at least x, otherwise
the above path from v1 to v∗ is a cost-reducing path which exists before P ∗. ¥

Combining Claims 4.2 and 4.3 contradicts the execution of ASM1, and therefore P ∗ cannot
exist. ¥

To bound the runtime of ASM1, observe that there are exactly |U | iterations. Each iteration
requires at most O(|E|) time to build the alternating search tree and at most O(min{|U |, |V |})
time to switch edges along the alternating path. Thus the total time required is at most
O(|U ||E|).

12

Find an initial semi-matching, M
While there exists a cost-reducing path, P

Reduce the cost by switching the matching and non-matching edges on path P

Figure 2: Overview of ASM2

This O(|U ||E|) bound is the same upper-bound as for the Hungarian algorithm. However,
in practice ASM1 is slower than the Hungarian algorithm because it tends to build a very large
search tree in each iteration. The following section presents another algorithm which is much
more efficient in practice.

5 ASM2: An Efficient Practical Algorithm

This section describes ASM2, another algorithm for finding optimal semi-matchings. Our anal-
ysis of this algorithm’s runtime gives an upper bound of O(min{|U |3/2, |U ||V |} · |E|), which is
worse than the bound of O(|U ||E|) for algorithm ASM1. However, our analysis for ASM2 is loose;
in practice, ASM2 performs much better than ASM1, as our experiments in Section 6 show.

Theorem 3.1 proves that a semi-matching is optimal if and only if the graph does not contain
a cost-reducing path. ASM2 uses that result to find an optimal semi-matching. Figure 2 gives
an overview of the ASM2 algorithm. Since each iteration reduces the total cost by an integral
amount, the cost can only be reduced a finite number of times, so this algorithm must termi-
nate. Moreover, if the initial assignment is nearly optimal, the algorithm terminates after few
iterations.

As was the case for ASM1, network flows give an alternative characterization of algorithm
ASM2. As described in Section 2.3, G can be represented as a network N . Regarding G as a
compact representation of N , ASM2 is an efficient implementation of the generic cycle canceling
algorithm [2, Section 9.6] on G.

Finding an Initial Semi-Matching: The first step of algorithm ASM2 is to determine an
initial semi-matching, M . A simple approach would be to arbitrarily assign each left-hand vertex
to a right-hand vertex. However, as a general rule, finding an initial matching with lower cost
tends to reduce the number of iterations required to achieve optimal cost. Our experiments have
shown that the following greedy algorithm works well in practice.

First, the U -vertices are sorted by increasing degree. Each U -vertex is then considered in
turn and assigned to a V -neighbor with least load. In the case of a tie, a V -neighbor with least
degree is chosen. The purpose of considering vertices with lower degree earlier is to allow more
constrained vertices (i.e., ones with fewer neighbors) to “choose” their matching vertices first.
The same rule of choosing the least loaded V -vertex is also commonly used in the online case [3].
However, in the online case it is not possible to sort the U -vertices or to know the degree of the
V -vertices in advance. The pseudocode of this algorithm is given in Appendix B.

The total time required to find this initial matching is O(|E|), since every edge is examined
exactly once, and the sorting can be done using bucket sort. Our experiments have shown that

13

sorting U is effective in practice at reducing the cost of the initial matching, and hence reducing
the number of iterations required to achieve optimal cost.

Finding Cost-Reducing Paths: The critical operation of the ASM2 algorithm is the method
for finding cost-reducing paths. As a simple approach, we can determine if a particular vertex
v ∈ V is the initial vertex of a cost-reducing path simply by growing a depth-first search tree
of alternating paths rooted at v. To determine if G has any cost-reducing paths at all, it
suffices to perform m depth-first searches, one from each vertex v ∈ V . This simple algorithm
unfortunately performs much redundant work. The following claim leads to an approach for
avoiding this redundant work.

Claim 5.1 Let v, w ∈ V be such that degM (v) ≥ degM (w) and there is an alternating path
from v to w. If there is no cost-reducing path starting from v then there is no cost-reducing path
starting from w.

Proof: We prove the contrapositive. Since there is an alternating path from v to w, any
cost-reducing path starting from w can be extended to a cost-reducing path starting from v. ¥

Our algorithm for finding cost-reducing paths works as follows. First we find a vertex v ∈ V
such that v has not been visited by any previous depth-first searches and degM (v) is maximum
over all such vertices. To find a such a vertex v quickly, the non-visited V -vertices are maintained
sorted by their load in an array of |U | + 1 buckets. Next we build a depth-first search tree of
alternating paths rooted at v in the usual manner. If this depth-first search tree does not
contain a cost-reducing path then Claim 5.1 shows that there is no cost-reducing path starting
from any of the vertices that were visited. Since this algorithm considers each edge in G at
most once and there are only |U | + 1 buckets, it finds a cost-reducing path or lack thereof in
O(|U |+ |E|) = O(|E|) time.

Analysis of ASM2: As argued earlier, the initial matching can be found in O(|E|) time. Fol-
lowing this initial step, we iteratively find and remove cost-reducing paths. Identifying a cost-
reducing path requires O(|E|) time. If a cost-reducing path has been identified, then we switch
matching and non-matching edges along that path, requiring O(min{|U |, |V |}) = O(|E|) time.
Thus, the runtime of ASM2 is O(I · |E|), where I is the number of iterations needed to achieve
optimality.

It remains to determine how many iterations are required. A simple bound of I = O(|U |2)
may be obtained by observing that the worst possible initial matching has total cost at most
O(|U |2) and that each iteration reduces the cost by at least 1. We now derive an improved
bound.

Theorem 5.2 ASM2 requires at most O(min{|U |3/2, |U ||V |}) iterations to achieve optimality.

Proof: For a given initial semi-matching, M0, assume that the V -vertices are sorted by load
in non-increasing order, that is, degM0(v1) ≥ . . . ≥ degM0(vm). In each iteration, the algorithm
identifies a cost-reducing path P = (va, . . . , vb). By switching matching and non-matching edges
along this path we remove one unit of load from va and add one unit to vb. This load balancing

14

process can be described as follows: Initially we have n towers of blocks, where the ith tower
consists of degM0(vi) blocks. Reducing the cost using path P amounts to moving one block
from the tower corresponding to va to the tower corresponding to vb. We bound the number of
iterations of ASM2 by bounding the total number of possible block moves. Our proof is based
on the following properties:

1. Since we always move load units to a less loaded vertex, operations may be ordered such
that the V -vertices remain sorted in non-increasing order of their loads throughout the
execution of ASM2. In other words, the towers are always sorted from highest to lowest.

2. By the definition of cost-reducing paths, when moving a load unit from va to vb, the load
on va before the iteration is strictly greater than the load on vb after the iteration.

For any value of m, the total number of moves is at most nm since by the above properties
each block may be moved at most m times. If m >

√
n, we use a different argument. Consider

the kth tower, corresponding to vk, where k is arbitrary. By the first property, the maximum
possible load on vk at any time is n/k. Thus, the height of the kth tower is at most n/k. By
the second property, any block that we keep moving from tower k can be moved at most n/k
additional times before it arrives a tower with height 1 (and hence could never be moved again).

Thus, for any k, each block may be moved at most k+n/k times in total. The tightest bound
is obtained by choosing k = d√ne: Each block may be moved at most 2

√
n + 1 times. Since

each move of a block corresponds to one iteration of ASM2, the number of iterations of ASM2 is
O(n3/2). In conclusion, combining the nm bound that holds for arbitrary m with the improved
bound for m >

√
n, we may bound the total number of iterations by O(min{|U |3/2, |U ||V |}). ¥

Remark: For graphs in which the optimal semi-matching cost is O(|U |), the running time of
ASM2 is O(|U ||E|). This bound holds since Awerbuch et al. [3] show that the cost of the greedy
initial assignment is at most 4 ·T (MOPT); thus ASM2 needs at most O(|U |) iterations to achieve
optimality.

Practical Considerations: The simplified pseudocode for ASM2 given in Appendix B suggests
that each iteration builds a depth-first search forest and finds a single cost-reducing path. In
practice, a single DFS forest often contains numerous vertex-disjoint cost-reducing paths. Thus,
our implementation repeatedly performs linear-time scans of the graph, growing the forest and
removing cost-reducing paths. We repeatedly scan the graph until a scan finds no cost-reducing
path, indicating that optimality has been achieved.

Our bound of O(min{|U |3/2, |U ||V |}) iterations is loose: Experiments show that much fewer
iterations are required in practice. We were able to create “bad” graphs, in which the number
of iterations needed is Ω(|U |3/2); however, most of the cost-reducing paths in these graphs are
very short, thus each iteration takes roughly constant time. While our bound for ASM2 is worse
than our bound for ASM1, we believe that the choice of ASM2 as the best algorithm is justified
already by its actual performance, as described in the next section.

Variants of ASM2, in which each iteration seeks a cost-reducing path with some property
(such as “maximal difference in load between first and last vertex”), will also result in an optimal
semi-matching. It is unknown whether such algorithms yield a better analysis than ASM2, or
whether each iteration of such algorithms can be performed quickly in practice.

15

6 Experimental Evaluation

We implemented a program to execute ASM1, ASM2 and various known algorithms on a variety
of “benchmark” input graphs. Our simulation program was implemented in C and run on a
2.4GHz Pentium 4 machine with 512MB of RAM. Each input graph is a random graph from a
particular family. The graph generators for each family, and the following descriptions of them,
are from [8]. All graphs have |U | = |V |.

FewG and ManyG: The U -vertices and V -vertices are divided into k groups of equal size.
The FewG family has k = 32 and the ManyG family has k = 256. Each vertex in the jth

group of U chooses y random neighbors from the (i− 1)th through (i + 1)th group of V ,
where y is binomially distributed with mean 5.

Grid: The graph is an approximate d-dimensional grid. d is chosen such that the average
degree is roughly 6.

Hexa: The vertices on each side are partitioned into n/b blocks of size b. One random
bipartite hexagon is added between each block i on one side and each of the blocks i + k
on the other side, with |k| ≤ K for some K. The parameters b and K are chosen by the
program in such a way that an average degree of 6 is achieved (i.e., 3K/b = 6), but few
pairs of hexagons have more than one vertex in common.

Hilo: The ith U -vertex is connected to the jth V -vertex, for all positive j with i−10 ≤ j ≤ i.
Rope: The U -vertices and V -vertices are partitioned into t = n/6 blocks of size 6, denoted

U0 . . . Ut−1 and V0 . . . Vt−1. Block i on one side is connected to block i+1 on the other side,
for i = 0 . . . t− 2; block Ut−1 is connected to block Vt−1. Thus the graph is a “rope” that
zigzags between the two sides of the graph. Consecutive pairs of blocks along the rope
are connected alternately by perfect matchings and random bipartite graphs of average
degree 5.

Zipf: The ith U -vertex is connected to the jth V -vertex with probability roughly proportional
to 1/(ij). The constants are chosen such that the average degree is 6.

First, we compared ASM1 and ASM2 with known techniques for computing optimal semi-
matchings based on the transformation to the assignment problem. To solve the assignment
problem, we used two available algorithms: CSA [10], and LEDA [16]. For the CSA algorithm,
the transformed graph was augmented with additional vertices and edges to satisfy CSA’s re-
quirement that a perfect assignment exist1. Table 1(a) summarizes the results of these exper-
iments on graphs with 216 vertices. Appendix D contains graphs of the experimental results
over a wide range of graph sizes. In both cases we measured the elapsed execution time of these
algorithms, excluding the time to load the input data. The reported value is the mean over five
execution runs, each using a different random seed to generate the input graph. Large input
graphs (after being transformed into an assignment problem) exceeded the memory of our test
machine and no reasonable results could be recorded. Therefore we do not report CSA and
LEDA results for all input sizes. These results show that ASM2 is much more efficient than
assignment algorithms for the optimal semi-matching problem on a variety of input graphs.

1We acknowledge Andrew Goldberg’s assistance in finding such a transformation with a linear number of
additional vertices and edges.

16

Graph ASM1 ASM2 CSA LEDA
FewG 1.190 0.165 0.931 22.324
Grid 0.428 0.059 0.975 5.068
Hexa 0.969 0.187 1.531 20.906
Hilo 0.427 0.218 2.059 8.952
ManyG 1.096 0.109 0.897 13.603
Rope 0.175 0.109 0.978 5.890
Zipf 3.962 0.078 — —
Total 8.247 0.925 >7.371 >76.744

(a)

Graph ASM2 BFS LO
FewG 2.696 11.406 1.531
Grid 0.428 3.075 0.850
Hexa 2.715 10.721 1.315
Hilo 2.237 2.247 4.728
ManyG 2.728 10.228 1.631
Rope 1.015 1.818 1.047
Zipf 0.841 0.287 0.693
Total 12.66 39.782 11.795

(b)

Table 1: (a) gives the execution time in seconds of four algorithms for the optimal semi-matching
problem, on a variety of graphs with 65,536 vertices. “—” indicates that no results could be
recorded since the graph exceeded the memory of our test machine. (b) gives the execution time
in seconds of three algorithms for the maximum bipartite matching problem, on a variety of
graphs with 524,288 vertices.

Next, we compared ASM1 and ASM2 with two algorithms for computing maximum bipartite
matchings from [8]: BFS, their fastest implementation based on augmenting paths, and LO,
their fastest implementation based on the push-relabel method. Table 1(b) summarizes the
results of these experiments on graphs with 219 vertices. Appendix D contains graphs of the
experimental results over a wide range of graph sizes. As before, the reported value is the
mean of the execution time over five graphs with different seeds. These results show that ASM2

is roughly as efficient as LO, the best known algorithm for the maximum bipartite matching
problem, on a variety of input graphs.

7 Conclusions and Future Work

This paper has introduced the optimal semi-matching problem for bipartite graphs. We have seen
how this problem can be reduced to known network optimization problems, and that solutions
to this problem minimize all Lp-norms, including the L∞-norm. We have presented two new
algorithms for solving this problem, ASM1 and ASM2; the former has a good worst-case time
bound, and the latter performs very well in practice. ASM2 also solves the maximum bipartite
matching problem with roughly the same efficiency as the best known algorithms.

We feel that our analysis of ASM2 is not the best possible. As future work, we plan to
investigate improved bounds for this algorithm. Other future work may include a generalization
of the semi-matching problem to allow weighted edges in the graph. As in the unweighted case,
one can adopt network optimization algorithms to compute optimal weighted semi-matchings;
thus, the challenge is in developing algorithms for the weighted problem with similar efficiency
to our current algorithms for the unweighted problem.

17

References

[1] Active Directory. http://www.microsoft.com/windowsserver2003/technologies.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[3] B. Awerbuch, Y. Azar, E. Grove, M. Y. Kao, P. Krishnan, and J. S. Vitter. Load Balancing in the
Lp Norm. In Proceedings of the IEEE Symposium on Foundations of Computer Science, 1995.

[4] Y. Azar. On-line Load Balancing. In A. Fiat and G. Woeginger, editors, Online Algorithms: The
State of the Art (LNCS 1442), chapter 8. Springer-Verlag, 1998.

[5] Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. Theoretical Computer Science,
130(1):73–84, 1994.

[6] Y. Azar, J. Naor, and R. Rom. The Competitiveness of On-line Assignments. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, 1992.

[7] J. L. Bruno, E. G. Coffman, and R. Sethi. Scheduling independent tasks to reduce mean finishing
time. Communications of the ACM, 17:382–387, 1974.

[8] B. V. Cherkassky, A. V. Goldberg, P. Martin, J. C. Setubal, and J. Stolfi. Augment or push: a
computational study of bipartite matching and unit-capacity flow algorithms. ACM J. Exp. Algo-
rithmics, 3(8), 1998.
Source code available at http://www.avglab.com/andrew/soft.html.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
second edition, 2001.

[10] A. Goldberg and R. Kennedy. An efficient cost scaling algorithm for the assignment problem. Math.
Prog., 71:153–178, 1995.
Source code available at http://www.avglab.com/andrew/soft.html.

[11] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and ap-
proximation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math, 5:287–326,
1979.

[12] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J.
Computing, 2:225–231, 1973.

[13] W. A. Horn. Minimizing average flow time with parallel machines. Operations Research, 21:846–847,
1973.

[14] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res. Logist. Quart., 2:83–97,
1955.

[15] E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover, 2001.

[16] K. Melhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[17] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.

18

A Pseudocode of ASM1

Algorithm 1 Find an optimal semi-matching via a modified Hungarian algorithm.

// M is the semi-matching that is built by this algorithm. Initially M is empty.
// Q is a queue used for performing breadth-first search. Initially Q is empty.
For each root ∈ U

// Perform breadth-first search from root
Remove all entries from Q
Enqueue(Q, root)

// S is the set of vertices visited during this breadth-first search
Let S = { root }

// bestV is the V-vertex with least load found so far
Let bestV = null

While Q is not empty
Let w = Dequeue(Q)
If w ∈ U Then

Let N = UnmatchedNeighbors(w)
Else

Let N = MatchedNeighbors(w)
If bestV = null Or degM(w) < degM(bestV) Then

Let bestV = w
End

End
For each n ∈ N

Let Parent(n) = w
Enqueue(Q, n)

End
Let S = S ∪ N

End

// Switch edges along path from bestV to root, thus increasing the size of M
Let v = bestV
Let u = Parent(v)
Add {u,v} to M
While u 6= root

Let v = Parent(u)
Remove {u,v} from M
Let u = Parent(v)
Add {u,v} to M

End
End

In this pseudocode, MatchedNeighbors(w) returns a set containing all neighbors of vertex
w that are matched with vertex w. Similarly, UnmatchedNeighbors(w) returns all neighbors of
vertex w that are not matched with vertex w.

19

B Pseudocode of ASM2

Algorithm 2 Compute an initial semi-matching.

// M is the semi-matching that is built by this algorithm. Initially M is empty.
Let U be the list of left-hand vertices
Sort U by increasing degree
For each u ∈ U

Let S be the set of neighbors of u with minimum load
Let v be a member of S such that deg(v) is minimum
Add {u,v} to M

End

Algorithm 3 Find a cost-reducing path.

FindCostReducingPath()
// S is the set of V-vertices that have not yet been visited
Let S = V
While S 6= ∅

Let root be a member of S such that degM(root) is maximum
Remove root from S
Let Parent(root) = null
DoDFS(root)

End
Stop: No cost-reducing path exists

End

DoDFS(v)
For each u ∈ MatchedNeighbors(v)

Let Parent(u) = v

For each w ∈ UnmatchedNeighbors(u)
If w /∈ S Or degM(w) > degM(v) Then

// w has already been visited, or load on w worse than load on v
Skip to next w

End

Remove w from S
Let Parent(w) = u
If degM(w) ≤ degM(root)-2 Then

Stop: Path from w to root is a cost-reducing path
End

DoDFS(w)
End

End
End

20

C Counterexamples to Converses of Theorems 3.7 and 3.12

Not every maximum matching is a subset of an optimal semi-matching. For example, the
maximum matching in Figure 3(a) cannot be extended to an optimal semi-matching in this
graph—the only optimal semi-matching for this graph is given in Figure 3(b).

A semi-matching that minimizes the maximal load but not the total cost is illustrated in
Figure 4(a), where the maximal load is 2 and T (M) = 6. The optimal semi-matching that
minimizes both objectives is given in Figure 4(b), where the maximal load is 2 and T (M) = 5.

���

���

���

� �

���

��	

(a)

���

���

���

� �

���

���

(b)

Figure 3: The maximum matching in (a) cannot be extended to the unique optimal semi-
matching, shown in (b).

������

���

���

���

� �

� �

(a)

������

���

���

���

� �

�	�

(b)

Figure 4: (a) shows a semi-matching that is optimal with respect to the L∞ norm of the load on
the right-hand vertices. (b) shows the unique semi-matching that is optimal with respect to both
the L∞-norm and the L2-norm of the load on the right-hand vertices.

21

D Experimental Results

0.01

0.1

1

10

100

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

CSA

LEDA

Figure 5: Computing optimal semi-
matchings on the FewG graph family

0.01

0.1

1

10

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

CSA

LEDA

Figure 6: Computing optimal semi-
matchings on the Grid graph family

0.01

0.1

1

10

100

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

CSA

LEDA

Figure 7: Computing optimal semi-
matchings on the Hexa graph family

0.01

0.1

1

10

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

CSA

LEDA

Figure 8: Computing optimal semi-
matchings on the Hilo graph family

22

0.01

0.1

1

10

100

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

CSA

LEDA

Figure 9: Computing optimal semi-
matchings on the ManyG graph family

0.01

0.1

1

10

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

CSA

LEDA

Figure 10: Computing optimal semi-
matchings on the Rope graph family

0.01

0.1

1

10

100

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

BFS

LO

Figure 11: Computing maximum bi-
partite matchings on the FewG graph
family

0.01

0.1

1

10

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

BFS

LO

Figure 12: Computing maximum bi-
partite matchings on the Grid graph
family

23

0.01

0.1

1

10

100

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

BFS

LO

Figure 13: Computing maximum bi-
partite matchings on the Hexa graph
family

0.01

0.1

1

10

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

BFS

LO

Figure 14: Computing maximum bi-
partite matchings on the Hilo graph
family

0.01

0.1

1

10

100

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

BFS

LO

Figure 15: Computing maximum
bipartite matchings on the ManyG
graph family

0.01

0.1

1

10

32768 65536 131072 262144 524288

Number of Vertices

R
un

tim
e

(s
)

ASM1

ASM2

BFS

LO

Figure 16: Computing maximum bi-
partite matchings on the Rope graph
family

24

