
A Knapsack Secretary Problem with

Applications

Moshe Babaioff1, Nicole Immorlica2, David Kempe3, and Robert
Kleinberg4

1 UC Berkeley School of Information. moshe@ischool.berkeley.edu. Supported by
NSF ITR Award ANI-0331659.

2 Microsoft Research. nickle@microsoft.com
3 University of Southern California, Department of Computer Science.

clkempe@usc.edu. Work supported in part by NSF CAREER Award 0545855.
4 Cornell University, Department of Computer Science. rdk@cs.cornell.edu.
Partially supported by an NSF Mathematical Sciences Postdoctoral Research

Fellowship. Portions of this work were completed while the author was a postdoctoral
fellow at UC Berkeley.

Abstract. We consider situations in which a decision-maker with a fixed
budget faces a sequence of options, each with a cost and a value, and
must select a subset of them online so as to maximize the total value.
Such situations arise in many contexts, e.g., hiring workers, scheduling
jobs, and bidding in sponsored search auctions.

This problem, often called the online knapsack problem, is known to
be inapproximable. Therefore, we make the enabling assumption that
elements arrive in a random order. Hence our problem can be thought
of as a weighted version of the classical secretary problem, which we
call the knapsack secretary problem. Using the random-order assumption,
we design a constant-competitive algorithm for arbitrary weights and
values, as well as a e-competitive algorithm for the special case when all
weights are equal (i.e., the multiple-choice secretary problem). In contrast
to previous work on online knapsack problems, we do not assume any
knowledge regarding the distribution of weights and values beyond the
fact that the order is random.

1 Introduction

Allocation of resources under uncertainty is a very common problem in
many real-world scenarios. Employers have to decide whether or not to
hire candidates, not knowing whether future candidates will be stronger or
more desirable. Machines need to decide whether to accept jobs without
knowledge of the importance or profitability of future jobs. Consulting
companies must decide which jobs to take on, not knowing the revenue
and resources associated with potential future requests.

More recently, online auctions have proved to be a very important re-
source allocation problem. Advertising auctions in particular provide the
main source of monetization for a variety of Internet services including
search engines, blogs, and social networking sites. Additionally, they are
the main source of customer acquisition for a wide array of small online
businesses, the so-called “mom and pop shops” of the networked world.
In bidding for the right to appear on a web page (such as a search en-
gine), advertisers have to trade off between large numbers of parameters,
including keywords and viewer attributes. In this scenario, an advertiser
may be able to estimate accurately the bid required to win a particular
auction, and the benefit either in direct revenue or name recognition to
be gained, but may not know about the trade off for future auctions.

All of these problems involve an online scenario, wherein an algorithm
has to make decisions on whether to accept an offer (such as a candidate,
job, or a bidding opportunity), based solely on the required resource in-
vestment (or weight) w and projected value v of the current offer, without
knowledge of the weights or values of future offers. The total weight of all
selected offers may not exceed a given budget W . Thus, the problem we
are concerned with is an online knapsack problem. In general, this prob-
lem does not permit any good competitive ratio, as evidenced by trivial
bad examples. Instead, we focus on the case where the offers arrive in a
uniformly random order.

Summary of Results: In this model, we prove two results: for the
case of general weights and values, we give a constant-competitive online
algorithm (specifically, it is 10e-competitive). For the special case where
all the weights are uniform, and the weight constraint thus poses a con-
straint on the total number of offers that can be accepted, we improve
the approximation factor to e, via two simple and natural algorithms.

Secretary Problems: When the weights are uniform and equal to
the weight constraint, our problem reduces to the famous secretary prob-

lem, or the problem of selecting online an element of maximum value
in a randomly-ordered sequence. This problem was first introduced by
Dynkin [9] in 1963. His paper gives an algorithm which selects the max-
imum value element with probability that tends to 1/e as n tends to
infinity and hence is e-competitive. Many generalizations of this prob-
lem have been studied in the literature. In one natural generalization,
Kleinberg [11] considers the multiple-choice secretary problem in which
k elements need to be selected and the goal is to maximize the combined
value (sum) of the selected elements. Kleinberg presents an asymptotically
optimal 1/(1 − 5/

√
k)-competitive algorithm for this problem. Another

closely related generalization considered in the literature is the matroid

secretary problem, introduced by Babaioff et al. [2], in which the elements
of a weighted matroid arrive in a random order. As each element is ob-
served, the algorithm makes an irrevocable decision to choose it or skip it,
with the constraint that the chosen elements must constitute an indepen-
dent set. Again, the objective is to maximize the combined weight of the
chosen elements. Babaioff et al. give an O(log k)-competitive algorithm
for the matroid secretary problem, where k is the rank of the matroid, as
well as constant-competitive algorithms for several specific matroids.

In this paper, we study both the multiple-choice secretary problem and
a weighted generalization, which we call the knapsack secretary problem.
The multiple-choice secretary problem is a special case of the matroid
secretary problem (for the truncated uniform matroid). We show how to
apply an intuitive algorithmic idea proposed by Babaioff et al. [2] to get
a e-competitive algorithm for this problem for any k. Hence, our result
improves upon the competitive ratio of the algorithm by Kleinberg [11]
for small k and is significantly simpler. The knapsack secretary problem,
on the other hand, can not be interpreted as a matroid secretary problem,
and hence none of the previous results apply. In this paper, we give the
first constant-competitive algorithm for this problem, using intuition from
the standard 2-approximation algorithm for the offline knapsack problem.

Knapsack Problems: Our work builds upon the literature for knap-
sack problems. It is well known that the NP-complete (offline) knapsack
problem admits an FPTAS as well as a simple 2-approximation, whereas
the online knapsack problem is inapproximable to within any non-trivial
multiplicative factor. Assuming that the density (value to weight ratio)
of every element is in a known range [L, U], and that each weight is
much smaller than the capacity of the knapsack (or that the packing is
allowed to be fractional), Buchbinder and Naor [4, 5] give an algorithm
with a multiplicative competitive ratio of O(log(U/L)) for online knap-

sack based on a general online primal-dual framework. They also show
an Ω(log(U/L)) lower bound on the competitive ratio of any algorithm
under such assumptions.

Several papers have also considered a stochastic online knapsack prob-
lem [12, 13] in which the value and/or weight of elements are drawn ac-
cording to a known distribution. These papers provide algorithms with
an additive approximation ratio of Θ(log n) as well as showing that no
online algorithm can achieve a constant additive approximation. Dean et
al. [7, 8] consider a stochastic offline knapsack problem where the algo-
rithm knows the values and the distribution of the weights of the elements.

They present an involved way for choosing the order of the elements so
as to achieve a constant-competitive outcome in the multiplicative sense.
The main difficulty in their model is that the weight of an element is not
revealed until it is actually selected.

Our results show that a constant-competitive algorithm exists for any
sequence when elements arrive in a random order. The random order
assumption allows us to eliminate all assumptions from previous papers,
e.g., that elements have small weights [4, 5], and densities are bounded [4,
5] or drawn according to a known distribution [7, 8, 12, 13].5 In return,
we are able to design a constant-competitive online algorithm for our
setting. In contrast, for the online setting of Buchbinder and Naor, there
is a super-constant lower bound of Ω(ln(U/L)) for a worst-case order of
arrivals [4, 5].

Sponsored Search: Several recent papers have considered applica-
tions of the knapsack problem to auction design. Aggarwal and Hart-
line [1] design truthful auctions which are revenue competitive when the
auctioneer is constrained to choose agents with private values and pub-
licly known weights that fit into a knapsack. Knapsack algorithms have
also been used to design bidding strategies for budget-constrained adver-
tisers in sponsored search auctions. That the bidding problem in such
settings is similar to knapsack was first noted by Borgs et al. [3] (who
considered using knapsack to model slot selection) and Rusmevichien-
tong and Williamson [16] (who considered using stochastic knapsack to
model keyword selection). The bidding problem was further studied in pa-
pers by Feldman et al. [10] and Muthukrishnan et al. [15] which consider
the problem of slot selection in more complicated settings, including in-
teractions between keywords and stochastic information. All these papers
assume that the set of keywords and distributional information regard-
ing values and weights are known upfront by the algorithm; hence the
algorithms they develop are inspired by offline knapsack problems. Re-
cently, Chakrabarty et al. [6] modeled the bidding problem using online
knapsack. Under the same assumptions as the paper of Buchbinder and
Naor [4, 5] mentioned above, Chakrabarty et al. design a (ln(U/L) + 1)-
competitive online algorithm for a worst case sequence of keywords.

Outline of paper: In Section 2, we introduce a formal model for
the knapsack secretary problem. We then give a pair of e-competitive
algorithms for the unweighted knapsack secretary problem in Section 3.

5 In contrast to the Dean et al. [7, 8] models, our model and the others mentioned make
the stronger assumption that the weights of elements are learned before deciding
whether or not to select them.

Finally, in Section 4, we design a constant-competitive algorithm for the
general case.

2 Model

In formalizing the resource allocation problem, we will adopt the termi-
nology of the secretary problem, and think of our problem as a weighted

secretary problem. A set U = {1, . . . , n} of n elements or secretaries each
have non-negative weight w(i) and value v(i). We extend the notation to
sets by writing w(S) :=

∑

i∈S w(i) and v(S) :=
∑

i∈S v(i).

The algorithm will be given a weight bound W , and must select, in
an online fashion, a set S ⊆ U of secretaries (approximately) solving the
following knapsack problem:

Maximize
∑

i∈S

v(i) subject to
∑

i∈S

w(i) ≤ W. (1)

We assume that the secretaries in U are presented to the algorithm in
a uniformly random order. In order to be able to number the elements
by their arrival order, we assume that the actual weights and values are
obtained as v = v0 ◦ π, w = w0 ◦ π, where π is a uniformly random
permutation of n elements, and v0, w0 are arbitrary initial weight and
value functions. For simplicity, we also assume that no two secretaries
have the same values v(i), v(j). This is easy to ensure, by fixing a random
(but consistent) tie-breaking between elements of the same value, based
for instance on the identifier of the element.6

The algorithm is online in the following sense: initially, the algorithm
knows only n, the total number of secretaries, but knows nothing about
the distribution of weights or values. Whenever a secretary i arrives, the
algorithm learns its weight w(i) and value v(i). It must then irrevoca-
bly decide whether to select i or pass: a selected secretary cannot later
be discarded, nor can a passed secretary be added. Thus, the algorithm
maintains a set S of currently selected secretaries, which grows over the
course of the execution, but must always satisfy w(S) ≤ W .

Clearly, this setting does not permit the design of an optimal algo-
rithm. Hence, we look for algorithms which are constant-competitive in
that the expected value of the selected set S is within a constant of the op-
timum value. More precisely, we say an algorithm is α-competitive for the
weighted secretary problem if for any initial weight and value functions

6 Note that such a tie-breaking can be accomplished in polynomial time.

v0, w0

α · E [v(S)] ≥ v(S∗),

where S∗ is the optimal solution to Program 1 and the expectation is over
all permutations π.

Note that this is a generalization of the classical secretary problem of
Dynkin [9]. In the classical secretary problem, all weights are one (i.e.,
w(i) = 1 for all i) and the weight bound W is also one; thus, the algorithm
is to select exactly one secretary. Dynkin gives a e-competitive algorithm
for this special case. Our formulation can also be used to capture the
k-secretary problem by setting all weights equal to one and the weight
bound W equal to k. This case has been studied by Kleinberg [11], who
gave a 1/(1 − 5/

√
k)-competitive algorithm.

In the following sections, we first present two algorithms for the k-
secretary problem. Our algorithms are simpler than those of Kleinberg
and show that there is a e-competitive algorithm for all k (Kleinberg’s
result is strictly worse than e for small k). We then present a constant-
competitive algorithm for the general case of weighted secretaries, al-
though the constant is worse than that of k-secretaries.

3 The Unweighted Case

In this section we present two simple algorithms for the unweighted case
(i.e., the multiple-choice secretary problem), in which all weights w(i) are
equal to 1 and the knapsack capacity W is equal to k. Both algorithms
will achieve a competitive guarantee no worse than e. While the second
algorithm, called the “optimistic algorithm” is perhaps more natural (and
our analysis is almost certainly not tight), the first algorithm, called the
“virtual algorithm”, has a significantly simpler analysis, yielding essen-
tially a tight bound on its performance.

Both algorithms are based on the same idea of a sampling period
of t ∈ {k + 1, . . . , n} steps (during which the algorithm passes on all
candidates), followed by hiring some of the secretaries for the remaining
n − t steps. We call t the threshold time of the algorithms, and denote
the set of sampled elements by T . We leave t unspecified for now; after
analyzing the algorithm, we will specify the optimal value of t, which will
be approximately n/e.

Both algorithms use the first t time steps to assemble a reference set

R, consisting of the k elements with the largest v(i) values seen during
the first t steps. These elements are kept for comparison, but not selected.
Subsequently, when an element i > t with value v(i) is observed, a decision

of whether to select i into the set S is made based on v(i) and R, and
the set R is possibly updated. At any given time, let j1, j2, . . . , j|R| be the
elements of R, sorted by decreasing v(ji).

Virtual: In the virtual algorithm, i is selected if and only if v(i) > v(jk),
and jk ≤ t (jk is in the sample). In addition, whenever v(i) > v(jk)
(regardless of whether jk ≤ t), element i is added to R, while element
jk is removed from R.

Thus, R will always contain the best k elements seen so far (in par-
ticular, |R| = k), and i is selected if and only if its value exceeds that
of the kth best element seen so far, and the kth best element was seen
during the sampling period.

Optimistic: In the optimistic algorithm, i is selected if and only if
v(i) > v(j|R|). Whenever i is selected, j|R| is removed from the set
R, but no new elements are ever added to R. Thus, intuitively, el-
ements are selected when they beat one of the remaining reference
points from R.

We call this algorithm “optimistic” because it removes the reference
point j|R| even if v(i) exceeds, say, v(j1). Thus, it implicitly assumes
that it will see additional very valuable elements in the future, which
will be added when their values exceed those of the remaining, more
valuable, ji.

We first observe that neither algorithm ever selects more than k sec-
retaries. Each selection involves the removal of a sample ji ∈ R ∩ T from
R, and no elements from T are ever added to R by either algorithm after
time t. Since R starts with only k samples, no more than k elements can
be selected.

Next, we prove that both the virtual and the optimistic Algorithm
are e-competitive, if t = ⌊n/e⌋ elements are sampled.

Theorem 1. The competitive ratio of both the Virtual and the Optimistic

Algorithm approaches e as n tends to infinity, when the algorithms sample

t = ⌊n/e⌋ elements.

The proof of the theorem for both algorithms follows from stronger
lemmas, establishing that each of the top k elements is selected with
probability at least 1/e. Specifically, let v∗1, v

∗
2, . . . , v

∗
k denote the k largest

elements of the set {v(1), v(2), . . . , v(n)}, and for a = 1, 2, . . . , k let i∗a =
v−1(v∗a) be the index in the sequence v(i) at which v∗a appeared. We will
then establish the following lemmas:

Lemma 1. For all a ≤ k, the probability that the virtual algorithm selects

element v∗a is

Prob[i∗a ∈ S] ≥ t
n ln(n/t).

Lemma 2. For all a ≤ k, the probability that the optimistic algorithm

selects element v∗a is

Prob[i∗a ∈ S] ≥ t
n ln(n/t).

Proof of Theorem 1. The theorem follows immediately from these
two lemmas, as the expected gain of the algorithm is

E [v(S)] ≥ ∑k
a=1 Prob[i∗a ∈ S] · v∗a > t

n ln(n/t) · v(S∗).

t
n ln(n/t) is maximized for t = n/e, and setting t = ⌊n/e⌋ gives us that
t/n → 1/e as n → ∞. Thus, the algorithms’ competitive ratios approach
e as n tends to infinity.

The proof of Lemma 1 turns out to be surprisingly simple and elegant,
while the proof of Lemma 2 for the optimistic algorithm is significantly
more complex, and will be given in the full version of this paper.

Proof of Lemma 1. If v∗a is observed at time i∗a = i > t, it will be
selected if and only if the kth smallest element of R at that time was sam-
pled at or before time t. Because the permutation is uniformly random,
this happens with probability t/(i − 1). Each i is equally likely to be the
time at which v∗a is observed, so the probability of selecting v∗a is

Prob[i∗a ∈ S] =
∑n

i=t+1
1
n · t

i−1 = t
n

∑n
i=t+1

1
i−1 > t

n

∫ n
t

dx
x = t

n ln
(

n
t

)

.

Notice that the proof of Lemma 1 is essentially tight. Each of the top
k elements is selected with probability approaching 1/e in the limit for
our choice of t.

4 The Weighted Case

In this section, we present an algorithm for the weighted case, with a
competitive ratio of 10e. The algorithm is based on the familiar paradigm
of sampling a constant fraction of the input and using the sample to define
a selection criterion which is then applied to the subsequent elements

observed by the algorithm. One complication which arises in designing
algorithms for the weighted case is the need to address at least two cases:
either there is a single element (or, more generally, a bounded number
of elements) whose value constitutes a constant fraction of the optimal
knapsack solution, or there is no such element7. In the former case(s), we
use a selection criterion based on the values of elements but ignoring their
sizes. In the latter case, we use a selection criterion based on the value

density, i.e., the ratio of value to weight. To incorporate both cases, we
randomize the selection criterion.

4.1 Notation

For i ∈ U , we define the value density (or simply “density”) of i to be
the ratio

ρ(i) =
v(i)

w(i)
.

We will assume throughout this section that distinct elements of U have
distinct densities; this assumption is justified for the same reason our
assumption of distinct values is justified. (See Section 2.) If Q ⊆ U and
x > 0, it will be useful to define the “optimum fractional packing of
elements of Q into a knapsack of size x.” This is defined to be a vector

of weights (y
(x)
Q (i))n

i=1 which is a solution of the following linear program

(that is, y
(x)
Q (i) = y(i)).

max
∑n

i=1 v(i)y(i)
s.t.

∑n
i=1 w(i)y(i) ≤ x

y(i) = 0 ∀i /∈ Q
y(i) ∈ [0, 1] ∀i.

(2)

The reader may verify the following easy fact about y
(x)
Q (i): there exists

a threshold density ρ
(x)
Q such that y

(x)
Q (i) = 1 for all i ∈ Q such that

ρ(i) > ρ
(x)
Q and y

(x)
Q (i) = 0 for all i ∈ Q such that ρ(i) < ρ

(x)
Q . Finally, for

a set R ⊆ U we will define v
(x)
Q (R), w

(x)
Q (R) by

v
(x)
Q (R) =

∑

i∈R

v(i)y
(x)
Q (i)

w
(x)
Q (R) =

∑

i∈R

w(i)y
(x)
Q (i).

7 This type of case analysis is reminiscent of the case analysis which underlies the de-
sign of polynomial-time approximation schemes for the offline version of the knapsack
problem.

4.2 The algorithm

For convenience, we assume in this section that W = 1. (To reduce from
the general case to the W = 1 case, simply rescale the weight of each
element by a factor of 1/W .) Our algorithm begins by sampling a random
number a ∈ {0, 1, 2, 3, 4} from the uniform distribution. The case a = 4 is
a special case which will be treated in the following paragraph. If 0 ≤ a ≤
3, then the algorithm sets k = 3a and runs the k-secretary algorithm from
Section 3 (with t = ⌊n/e⌋) to select at most k elements. If the k-secretary
algorithm selects an element i whose weight w(i) is greater than 1/k, we
override this decision and do not select the element.

If a = 4, our algorithm operates as follows. It samples a random t ∈
{1, 2, . . . , n} from the binomial distribution B(n, 1/2), i.e. the distribution
of the number of heads observed when a fair coin is tossed n times. Let
X = {1, 2, . . . , t} and Y = {t + 1, t + 2, . . . , n}. For every element i ∈ X,
the algorithm observes v(i) and w(i) but does not select i. It then sets

ρ̂ = ρ
(1/2)
X and selects every element i ∈ Y which satisfies w(i) ≤ 3−4,

ρ(i) ≥ ρ̂, and w(S<i ∪ {i}) ≤ 1, where S<i denotes the set of elements
which were already selected by the algorithm before observing i.

4.3 Analysis of the algorithm

Theorem 2. The algorithm in Section 4.2 is (10e)-competitive.

Proof. Let OPT ⊆ U denote the maximum-value knapsack solution, and
suppose that i1, i2, . . . , im are the elements of OPT arranged in decreasing
order of weight. Partition OPT into five sets B0, B1, . . . , B4. For 0 ≤ j ≤ 3,

Bj = {iℓ | 3j ≤ ℓ < 3j+1},

while for j = 4, B4 = {i81, i82, . . . , im}. Let bj = v(Bj) for 0 ≤ j ≤ 4.

Let S denote the set of elements selected by the algorithm. For 0 ≤
j ≤ 4, define

gj = E [v(S) | a = j]

where a denotes the random element of {0, 1, 2, 3, 4} sampled in the first
step of the algorithm. In Lemmas 3 and 4 below, we prove that bj ≤ 2egj

for 0 ≤ j ≤ 4. Summing over j, we obtain:

v(OPT) = b0 + b1 + b2 + b3 + b4

≤ 2e(g0 + g1 + g2 + g3 + g4)

= (10e)
4

∑

j=0

Prob[a = j]gj

= 10eE[v(S)].

This establishes the theorem.

Lemma 3. For 0 ≤ j ≤ 3, bj ≤ 2egj .

Proof. Let k = 3j . Recall that every element i ∈ Bj appears in at least
the kth position on a list of elements of OPT arranged in decreasing order
of weight. Since the sum of the weights of all elements of OPT is at most 1,
we have that w(i) ≤ 1/k for every i ∈ Bj . Let Q = {i ∈ U |w(i) ≤ 1/k},
and let R be the maximum-value k-element subset of Q. Since Bj ⊆ Q
and |Bj | ≤ 2k, we have v(Bj) ≤ 2v(R). On the other hand, Theorem 1
implies that gj ≥ v(R)/e. The lemma follows by combining these two
bounds.

Lemma 4. b4 ≤ 2eg4.

Proof. Assuming the algorithm chooses a = 4, recall that it splits the
input into a “sample set” X = {1, 2, . . . , t} and its complement Y =
{t+1, . . . , n}, where t is a random sample from the binomial distribution
B(n, 1/2). Recall that in the case a = 4, the algorithm aims to fill the
knapsack with multiple items of weight at most 1/81, and value density
at least equal to the value density of the optimal solution for the sample
(and a knapsack of size 1/2). Thus, let Q ⊆ U consist of all elements i ∈ U
such that w0(i) ≤ 1/81. We will show that with sufficiently high constant
probability, the algorithm obtains a “representative” sample, in the sense
that the optimal value density estimated from X is bounded from above
and below in terms of the optimal value density for all of Q (with dif-
ferent knapsack sizes). This in turn will imply that each element of Q is
picked by the algorithm with constant probability, more specifically, with
probability at least 0.3.

To obtain sufficiently high probability, we rely on the independence
of membership in X between elements, which in turn allows us to apply
Chernoff Bounds. Recall that we encoded the random ordering of the
input by assuming that there exists a fixed pair of functions v0, w0 and a

uniformly random permutation π on U , such that v = v0 ◦ π, w = w0 ◦ π.
This implies that, conditional on the value of t, π−1(X) is a uniformly-
random t-element subset of U . Since t itself has the same distribution as
the cardinality of a uniformly-random subset of U , it follows that π−1(X)
is a uniformly-random subset of U . For each i ∈ U , if we define

ζi =

{

1 if π(i) ∈ X
0 otherwise,

then the random variables ζi are mutually independent, each uniformly
distributed in {0, 1}.

Since B4 ⊆ Q and w(B4) ≤ 1,

b4 ≤ v
(1)
Q (Q) ≤ 4

3
v

(3/4)
Q (Q). (3)

For every j such that y
(3/4)
π(Q) (π(j)) > 0 we will prove that Prob[π(j) ∈

S | a = 4] > 0.3. This implies the first inequality in the following line,
whose remaining steps are clear from the definitions.

v
(3/4)
π(Q) (π(Q)) < E

[

10
3 v

(3/4)
π(Q) (S) | a = 4

]

≤ 10
3 E[v(S) | a = 4] = 10

3 g4. (4)

Combining (3) and (4) we will have derived b4 ≤ (40/9)g4 < 2eg4, thus
establishing the lemma.

Note that for all i ∈ U, x > 0, the number y
(x)
π(Q)(π(i)) does not de-

pend on the random permutation π, since it is the i-th component of the
solution of linear program (2) with v0 and w0 in place of v and w, and
the solution to the linear program does not depend on π. We will use

the notation y(i, x) as shorthand for y
(x)
π(Q)(π(i)). Fix any j ∈ Q. We will

show that j will be picked by the algorithm with probability at least 0.3.
To prove this, we will upper and lower bound the total weight of π(Q)
(scaled by the fractional solutions for knapsacks of different sizes) seen in
X and Y . This will allow us to reason that j will have density exceeding
ρ̂, and there will still be room in S by the time j is encountered.

We will reason about the expected fractional weight of items other
than j in X in a knapsack of size 3/4, and of items other than j in Y in
a knapsack of size 3/2. Formally, we define the random variables

Z1 = w
(3/4)
π(Q) (X \ {π(j)}) =

∑

i∈Q\{j}

w0(i)y(i, 3/4)ζi (5)

Z2 = w
(3/2)
π(Q) (Y \ {π(j)}) =

∑

i∈Q\{j}

w0(i)y(i, 3/2)(1 − ζi) (6)

Since Z1, Z2 are sums of independent random variables taking values in
the interval [0, 1/81], we can use the following form of the Chernoff bound,
obtained from standard forms [14] by simple scaling: If z1, z2, . . . , zn are
independent random variables taking values in an interval [0, zmax] and if
Z =

∑n
i=1 zi, µ = E[Z], then for all δ > 0,

Prob[Z ≥ (1 + δ)µ] < exp

(

− µ

zmax
[(1 + δ) ln(1 + δ) − δ]

)

.

Because the expectations of Z1 and Z2 are

E[Z1] = 1
2w

(3/4)
π(Q) (π(Q) \ {π(j)}) = 1

2

(

3
4 − w0(j)y(j, 3/4)

)

∈
[

3
8 − 1

162 , 3
8

]

,

E[Z2] = 1
2w

(3/2)
π(Q) (π(Q) \ {π(j)}) = 1

2

(

3
2 − w0(j)y(j, 3/2)

)

∈
[

3
4 − 1

162 , 3
4

]

,

applying the Chernoff Bound to Z1 and Z2 with zmax = 1/81, δ = 1
3 − 8

243
yields Prob[Z1 ≥ 1/2 − 1/81] < 0.3 and Prob[Z2 ≥ 1 − 2/81] < 0.1.

Let E denote the event that Z1 < 1
2 − 1

81 and Z2 < 1− 2
81 . By a union

bound, Prob[E | a = 4] > 0.6. Conditional on the event E (and on the event
that a = 4), the element π(j) can add no more than 1/81 to the weight

of X or Y (whichever one it belongs to). Hence, w
(3/4)
π(Q) (X) < 1/2 and

w
(3/2)
π(Q) (Y) < 1 − 1

81 , which in turn implies w
(3/2)
π(Q) (X) > 1/2 > w

(3/4)
π(Q) (X),

since every element of π(Q) belongs to either X or Y and w
(3/2)
π(Q) (π(Q)) =

3/2. Because the threshold density for a fractionally packed knapsack
with larger capacity cannot be larger than for a knapsack with smaller
capacity, the above bounds on the weight imply that

ρ
(3/4)
π(Q) ≥ ρ

(1/2)
X ≥ ρ

(3/2)
π(Q) . (7)

Let S+ denote the set of all elements of Y \ {π(j)} whose value density

is greater than or equal to ρ̂ = ρ
(1/2)
X . (Note that the algorithm will pick

every element of S+ that it sees until it runs out of capacity, and it will
not pick any element which does not belong to S+ except possibly π(j).)
We claim that the combined size of the elements of S+ is at most 1− 1

81 .
This can be seen from the fact that for all but at most one i ∈ S+,

the coefficient y
(3/2)
π(Q) (i) is equal to 1. Hence the combined size of all the

elements of S+ is bounded above by

1
81 + w

(3/2)
π(Q) (Y \ {π(j)}) = 1

81 + Z2 < 1 − 1
81 ,

from which it follows that the algorithm does not run out of room in its

knapsack before encountering π(j). If y(j, 3/4) > 0, then ρ(π(j)) ≥ ρ
(3/4)
π(Q)

and (7) implies that ρ(π(j)) ≥ ρ̂. Thus, the algorithm will select π(j) if
π(j) ∈ Y . Finally, note that the event π(j) ∈ Y is independent of E , so

Prob[π(j) ∈ S | E ∧ (a = 4)] = Prob[π(j) ∈ Y | E ∧ (a = 4)] = 1
2 .

Combining this with the bound Prob[E | a = 4] > 0.6 established earlier,
we obtain

Prob[π(j) ∈ S | a = 4] > 0.3,

which completes the proof of the lemma.

5 Conclusions

In this paper, we have presented algorithms for a knapsack version of
the secretary problem, in which an algorithm has to select, in an online
fashion, a maximum-value subset from among the randomly ordered items
of a knapsack problem. We gave a constant-competitive algorithm in this
model, as well as a e-approximation for the k-secretary problem, in which
all items have identical weights.

The competitive ratios we obtain are certainly not tight, and it ap-
pears that the analysis for the “optimistic algorithm” is not tight, either.
Determining the exact competitive ratio for this algorithm, as well as im-
proving the algorithm for the knapsack problem, are appealing directions
for future work.

Furthermore, many natural variants of the secretary problem remain
to be studied. How general a class of set systems admits a constant-factor
(or even a e) approximation in the random ordering model? An appealing
conjecture of Babaioff et al. [2] states that a e approximation should be
possible for all matroids. We have shown that there is an interesting class
of non-matroid domains - knapsack secretary problems - that admits a
constant-factor approximation. Are there other natural classes of non-
matroid domains that admit a constant-factor approximation?

An interesting question is how the random ordering model relates with
other models of stochastic optimization. In particular, the “sample-and-
optimize” approach taken in all algorithms in this paper bears superficial
similarity to the standard techniques in multi-stage stochastic optimiza-
tion. It would be interesting to formalize this similarity, and perhaps
derive new insights into both classes of problems.

References

1. G. Aggarwal and J. Hartline. Knapsack auctions. In SODA, pages 1083–1092,
2006.

2. M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and
online mechanisms. In SODA, pages 434–443, 2007.

3. C. Borgs, J. Chayes, O. Etesami, N. Immorlica, K. Jain, and M. Mahdian. Dy-
namics of bid optimization in online advertisement auctions. In Proceedings of the

16th International World Wide Web Conference, 2007. to appear.
4. N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing

problems. In ESA, 2005.
5. N. Buchbinder and J. Naor. Improved bounds for online routing and packing via

a primal-dual approach. In FOCS, 2006.
6. D. Chakrabarty, Y. Zhou, and R. Lukose. Budget constrained bidding in keyword

auctions and online knapsack problems. In WWW2007, Workshop on Sponsored

Search Auctions, 2007.
7. B. Dean, M. Goemans, and J. Vondrák. Approximating the stochastic knapsack

problem: The benefit of adaptivity. In FOCS, pages 208–217, 2004.
8. B. Dean, M. Goemans, and J. Vondrák. Adaptivity and approximation for stochas-

tic packing problems. In SODA, pages 395–404, 2005.
9. E. B. Dynkin. The optimum choice of the instant for stopping a Markov process.

Sov. Math. Dokl., 4, 1963.
10. J. Feldman, S. Muthukrishnan, M. Pal, and C. Stein. Budget optimization in

search-based advertising auctions. In Proceedings of the 8th ACM Conference on

Electronic Commerce, 2007. to appear.
11. R. Kleinberg. A multiple-choice secretary problem with applications to online

auctions. In SODA, pages 630–631, 2005.
12. G. Lueker. Average-case analysis of off-line and on-line knapsack problems. In

SODA, pages 179–188, 1995.
13. A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems.

Mathematical Programming, 68:73–104, 1995.
14. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
15. S. Muthukrishnan, M. Pal, and Z. Svitkina. Stochastic models for budget opti-

mization in search-based. manuscript, 2007.
16. P. Rusmevichientong and D.P. Williamson. An adaptive algorithm for selecting

profitable keywords for search-based advertising services. In Proceedings of the 7th

ACM Conference on Electronic Commerce, 2006.

