
Verifying Hardware Security Modules with Information-Preserving Refinement
Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

Abstract
Knox is a new framework that enables developers to build
hardware security modules (HSMs) with high assurance
through formal verification. The goal is to rule out all hard-
ware bugs, software bugs, and timing side channels.

Knox’s approach is to relate an implementation’s wire-
level behavior to a functional specification stated in terms of
method calls and return values with a new definition called
information-preserving refinement (IPR). This definition cap-
tures the notion that the HSM implements its functional speci-
fication, and that it leaks no additional information through its
wire-level behavior. The Knox framework provides support
for writing specifications, importing HSM implementations
written in Verilog and C code, and proving IPR using a com-
bination of lightweight annotations and interactive proofs.

To evaluate the IPR definition and the Knox framework,
we verified three simple HSMs, including an RFC 6238-
compliant TOTP token. The TOTP token is written in 2950
lines of Verilog and 360 lines of C and assembly. Its behavior
is captured in a succinct specification: aside from the defini-
tion of the TOTP algorithm, the spec is only 10 lines of code.
In all three case studies, verification covers entire hardware
and software stacks and rules out hardware/software bugs and
timing side channels.

1 Introduction
A powerful approach for building secure computer systems
is to factor out the core security functionality onto a separate
device. For example, on the server side, certificate authorities
use hardware security modules (HSMs) to store their signing
key and sign certificates [10, 58]; credit card networks use
HSMs for pin translation, secure re-encryption of payment re-
quests during routing; cloud providers use HSMs to safeguard
PIN-protected backup keys [9, 43, 47]; and some tax author-
ities require the use of an HSM to timestamp invoices. On
the client side, the iPhone uses its secure enclave processor
to enforce PIN guessing limits for unlocking the phone [15];
and users often rely on USB security keys to protect their
authentication private key in the face of a compromised com-
puter [65]. For simplicity, this paper refers to all of these
types of devices as HSMs. These devices are in widespread
use; e.g., there are hundreds of millions of deployed secure
enclaves and security keys.

This approach defends against a broad class of attacks
where an adversary gains access to any host computer that
the HSM might be connected to, regardless of the specific
attack vector (exploiting a buffer overflow, missing access

control checks, or even gaining access to the administrator’s
SSH key). As long as the security of the overall system is
rooted in the device, an adversary that controls the host cannot
undermine the security of the overall system. Of course, the
device must be correctly implemented to make sure that the
adversary cannot compromise it, which in practice means that
the device must provide simple, well-defined functionality.

Although HSMs are relatively simple, any vulnerability
in their hardware or software can undermine their security.
HSMs have suffered from bugs throughout the hardware/soft-
ware stack, such as logic bugs, memory corruption, hardware
bugs, and timing side channels [1–8, 21, 31, 45, 51, 68]. This
paper presents an approach for ruling out such bugs through
formal verification, with a particular focus on eliminating
leakage through timing side channels.

Our approach is to relate the behavior of the HSM imple-
mentation at the wire level interface — the ground truth of
what the host machine controls and observes at the digital
level, which captures timing channels at a cycle-accurate level
— to a functional specification of the methods that the HSM
exposes. Figure 1 shows the implementation of a simplified
PIN-protected backup HSM, which we use as a running ex-
ample through the paper. The host connects to this HSM via
two input wires and two output wires, which the host can
read/write at every cycle. Figure 2 shows the functional speci-
fication for this HSM. It exposes two operations, store and
retrieve. The specification does not have an operation for
reading back the PIN, and it enforces a guess limit on PINs.

We relate a physical implementation to a functional speci-
fication with a new definition called information-preserving
refinement (IPR), inspired by definitions of zero-knowledge
proofs in cryptography [40, 41]. IPR captures the notion that
the implementation implements the spec, and that its wire-
level I/O behavior leaks no additional information. In IPR,
a driver describes the I/O protocol that a host computer can
follow to get correct results from the HSM, describing how
each spec-level operation translates to wire-level I/O with the
HSM. The driver is a part of the specification (and is trusted).
Its dual, an emulator, is a proof artifact that describes how
wire-level behavior can be explained in terms of spec-level
operations. The existence of an emulator shows that no matter
what wire-level inputs are given to the device (including in-
puts that violate the I/O protocol), its outputs reveal no more
information than the specification.

Applied to HSMs, IPR can capture subtle security bugs:
for example, Figure 3 shows code that is correct and even
crash safe but has a subtle bug involving persistence and

1

PIN-protected
backup HSM

tx

rx

rts

cts

Figure 1: The physical implementation of the PIN-protected
backup HSM. It connects to the host via 4 wires, speaking
UART with flow control.

var bad_guesses = 0, secret = 0, pin = 0

def store(new_secret, new_pin):
secret = new_secret
pin = new_pin
bad_guesses = 0

def retrieve(guess):
if bad_guesses >= 10:
return ’No more guesses’

if guess == pin:
bad_guesses = 0
return secret

bad_guesses = bad_guesses + 1
return ’Incorrect PIN’

Figure 2: A functional specification for a PIN-protected
backup HSM. The spec doesn’t support reading out the PIN,
and retrieval of the secret requires supplying the correct PIN.
Limiting guesses prevents brute-forcing.

timing. The way this code gets compiled, the circuit takes
longer to persist the incremented guess count, in the case of
an incorrect guess, than it takes to zero the guess count, in the
case of a correct guess (it takes longer to take the branch than
to fall through). This can be abused to reset the guess count by
repeatedly guessing every possible PIN and powering off the
device after just enough cycles to reset the guess count in the
case that the guess is correct (but not waiting long enough to
persist if the guess is incorrect). Verifying IPR caught this bug
in our implementation (§7.1.1). The buggy implementation
doesn’t enforce guess limits, which leaks more information
than the specification, and this is prohibited by IPR.

Existing security definitions like noninterference or declas-
sification either do not apply or are insufficient to capture the
security of wire-level observations and arbitrary wire-level
I/O as in the Knox setting (§9).

To be able to verify HSMs with IPR, we developed the
Knox framework. Developers using Knox write HSM im-
plementations using standard languages (i.e., Verilog and C
code), write specifications in Knox DSLs, and use a combi-
nation of lightweight annotations and interactive proofs to
show that the implementation is an information-preserving
refinement of the specification.

To demonstrate that IPR and the Knox framework can be
applied to HSMs and catch bugs in their implementations, we
developed and verified three HSMs: a PIN-protected backup
HSM, a password-hashing HSM, and an RFC 6238-compliant
TOTP token [54]. The Knox HSMs do not have the imple-

// return error if PIN guess limit exceeded
// ...

// check PIN guess and update guess_count accordingly
if (!constant_time_cmp(&entry->pin, guess)) {

entry->bad_guesses++;
uart_write(ERR_BAD_PIN);
return;

}
entry->bad_guesses = 0;

// output secret
// ...

Figure 3: Code snippet from an insecure retrieve imple-
mentation. entry points to persistent memory. The commit
point depends on whether the PIN guess is correct.

mentation complexity of commercial HSMs: for example,
the RISC-V processor they use is simpler than the ARM
Cortex-M series embedded processors ubiquitous in security
tokens such as SoloKeys. Still, the HSMs demonstrate many
of the hardware and software complexities present in real
HSMs. They all use an embedded processor (a RISC-V CPU)
and interface with the host via digital I/O (UART), and the
password hasher and TOTP token include hardware cryp-
tographic accelerators. All three run application-specific C
code, with some including cryptographic functionality, such
as HMAC in the TOTP token. Knox proofs are end-to-end,
encompassing hardware and software and showing that the
implementation is free of exploitable hardware bugs, software
bugs, and timing side channels.

In summary, this paper makes the following contributions:
• The definition of information-preserving refinement (IPR),

which relates a physical implementation to a functional
specification and captures that it: (1) implements the speci-
fication, and (2) leaks no additional information

• The Knox framework for proving that an HSM implemen-
tation satisfies its specification under the IPR definition

• An evaluation of the IPR definition and Knox’s application
to three simple HSMs
This paper applies IPR to HSMs, but we believe the def-

inition is broadly applicable to other contexts for capturing
non-leakage properties.

This paper has several limitations. The three HSMs verified
using Knox are relatively simple: for example, they do not use
public-key signatures, which are common HSM operations,
because it is difficult to scale up proofs in Knox to handle so-
phisticated arithmetic needed for public-key implementations.
Relatedly, for cryptographic operations such as public-key
signatures, IPR requires the emulator to be efficient. Knox
currently relies on a manual audit to ensure that the emulator
does not brute-force secrets or run in exponential time (§8.1).
Finally, IPR does not support true random number generators
(TRNGs) — the functional specification has to be determinis-
tic. We believe that a pseudo-random number generator is a
reasonable workaround that fits into IPR (§8.2).

2

2 Threat model and security goal
This paper considers a powerful adversary that gains direct
access to the wire-level digital I/O of the HSM, with the
ability to set logic levels on the input wires and read logic
levels on the output wires at every cycle. This captures many
realistic attacks, such as an adversary that compromises the
host computer and is able to send malformed commands or
observe all wire-level outputs at every clock cycle. Such an
adversary may be able to extract secrets from an HSM, even
if that HSM operates correctly when the host computer is
well-behaved.

Our threat model is focused on remote compromise of the
host machine, one of the primary attacks that HSMs aim to
defend against, so it does not include physical attacks on the
HSM. While the adversary can perform arbitrary digital I/O to
the HSM through a compromised host, remote compromise is
unlikely to allow the adversary to violate the HSM’s electrical
specifications (e.g., supply 5V into an input wire expecting
3.3V logic or supply current to an output pin of the HSM)
or observe analog characteristics of the I/O interface (e.g.,
measure analog voltage on a pin).

While the threat model includes (digital) timing side chan-
nels due to the level at which we model the host-HSM inter-
face (wire-level I/O at every cycle), the threat model does not
include arbitrary side channels [73] such as electromagnetic
radiation [12], temperature [44], and power [49], because a
remote attacker is unlikely to able to make such observations.

The goal of a Knox HSM is to be as secure as its specifica-
tion. A host machine should be able to follow an I/O protocol
to invoke spec-level operations on the HSM and obtain the
correct outputs, but the host machine should not be able to
abuse the wire-level interface to subvert the HSM and bypass
its API or cause it to leak secrets.

3 Information-preserving refinement
The goal of information-preserving refinement (IPR) is to
define what it means for an implementation with a wire-level
physical interface to implement a functional specification and
leak no additional information. IPR achieves this by estab-
lishing a bi-level correspondence between implementation
and specification, at both the level of the functional interface
(spec-level operations) and the physical interface (wire-level
I/O). Illustrated in Figure 4, IPR is defined as an indistin-
guishability between two worlds: the real world, and an ideal
world that is correct and secure by construction.

The real world models the host machine connected to the
actual HSM implementation. The host can take a physical
view of the device and directly perform arbitrary wire-level
I/O (reading and writing the I/O pins at every cycle). The
host can also take a functional view of the device and follow
the HSM’s I/O protocol, which is described by a driver that
is part of the specification. The driver translates spec-level
operations to wire-level I/O, describing how the host invokes

Physical

Implementa�on

Driver

mode

func�onal

interface

physical

interface

real world

Func�onal

Specifica�on

Emulator

mode

func�onal

interface

physical

interface

ideal world

≈

Figure 4: Information-preserving refinement (IPR), defined
as an indistinguishability between a real world and an ideal
world that is correct and secure by construction.

the operation and reads the return value by interacting with
the HSM over its wire-level interface.

The ideal world is set up to provide the same interface as
the real world but be correct and secure by construction. In
the ideal world, a host machine that takes a functional view of
the device invokes operations directly on the specification. To
provide a physical view, an emulator mimics wire-level be-
havior, given only query access to the functional specification.
The emulator is a dual of the driver; it translates wire-level
I/O into spec-level operations. Unlike the driver, the emulator
is merely a proof artifact. The ideal world can be instantiated
with any emulator, and it remains secure by construction. IPR
is defined to hold if there exists some emulator such that the
real and ideal worlds are indistinguishable.

The host can switch between the functional view and the
physical view at any time. Switching from the functional view
to the physical view models compromise of the host machine;
switching from the physical view back to the functional view
models recovery (for example, by unplugging the device and
moving it to an uncompromised machine). When switching
views from physical to functional, in the real world, the driver
is re-initialized; when switching from functional to physical,
in the ideal world, the emulator is re-initialized.

The ideal world is correct and secure by construction.
When the host takes a functional view of the device, opera-
tions are invoked directly on the specification, so the behavior
is correct and secure by definition. Under the functional view,
spec-level operations are not seen by the emulator. When the
host takes a physical view of the device, the wire-level I/O
behavior it observes is produced by an emulator that only
has query access to the specification, so the physical inter-
face leaks no more information than the specification exposes
through its API. Furthermore, when the host switches back
to the functional view of the device, it continues interacting
with the same specification that was queried by the emulator,
so the effect of any queries made by the emulator in order to
mimic wire-level outputs is present in the specification state.
In the ideal world, any execution, no matter how it switches
between functional and physical interfaces, maps to some
sequence of operations invoked on the specification.

3

Due to the indistinguishability that IPR requires between
real and ideal worlds, any execution in the real world also
maps to some sequence of operations invoked on the speci-
fication. In other words, when IPR holds, any attack that an
adversary could execute on the real device could be trans-
formed into an attack on the specification itself: the adversary
could run the emulator and then execute the original attack
using the emulator, which matches the implementation’s wire-
level behavior, given only query access to the specification.
Indistinguishability between real and ideal worlds guarantees
that the implementation is as secure as the specification.

Definition (Information-preserving refinement). A physical
implementation is an information-preserving refinement of a
functional specification with respect to a driver if there exists
an emulator such that the real world is indistinguishable from
the ideal world as illustrated in Figure 4. �

3.1 Applying IPR to HSMs
IPR, without explicitly talking about hardware, software, or
timing side channels, captures exploitable bugs in all of those.
If there were such exploitable bugs, IPR would not be sat-
isfied: when there are implementation behaviors that can’t
be explained in terms of the specification, there does not ex-
ist an emulator that makes the real world and ideal world
indistinguishable.

IPR relates any wire-level interaction with the HSM to an
interaction with the specification. For example, suppose that
the host machine follows the driver to perform a number of
spec-level operations, and then it gets compromised, at which
point it begins performing arbitrary I/O in an attempt to sub-
vert the HSM. IPR, by requiring indistinguishability between
the real and ideal worlds, says that this scenario corresponds
to some sequence of spec-level operations, and that the arbi-
trary I/O reveals no more information than those spec-level
operations do. Furthermore, IPR says that after the HSM is
moved to an uncompromised host, normal operation can re-
sume (as the host follows the driver), and that the behavior
of the device will reflect any specification state changes that
were a result of queries made by the emulator (any operations
that were effectively invoked during arbitrary wire-level I/O).

The definition directly addresses host machine compromise
by an adversary while the host is in between spec-level opera-
tions. It might seem like IPR only addresses arbitrary I/O that
begins between these operations; however, a compromise in
the middle of an operation can be thought of as a compromise
that happens slightly earlier, at the start of the operation, and
IPR covers this case.

Information-preserving refinement transfers both crypto-
graphic and non-cryptographic security properties from the
specification to the implementation. For example, the PIN-
protected backup specification limits PIN guesses, and so
IPR implies that the implementation enforces the guess limit

as well. If it didn’t limit guesses, it would reveal more in-
formation than the specification (through subsequent retrieve
operations), which IPR prohibits. This rules out the subtle bug
shown in Figure 3, even though the information disclosure
manifests after the buggy code executes. If a specification
computed signatures without revealing a key, then IPR would
imply that the implementation also doesn’t leak the key, in-
cluding through its timing behavior.

4 Proving IPR
Knox models the specification and the implementation (§4.1)
as state machines, relates the two with a refinement relation,
and proves three properties: an initialization property (§4.2),
functional equivalence (§4.3, indistinguishability of the func-
tional view), and physical equivalence (§4.4, indistinguisha-
bility of the physical view), tying together these properties
with the refinement relation. Together, these properties imply
IPR.

4.1 Physical implementation
Knox models HSM implementations with a cycle-accurate
description of their wire-level I/O behavior, covering hard-
ware and software. Figure 1 shows the interface of a circuit
implementing PIN-protected backup. The HSM interface al-
lows for: (1) setting input wires, (2) reading output wires, and
(3) waiting for the HSM to execute for a clock cycle of the
HSM’s internal clock.

In the case of the PIN-protected backup HSM, the UART
rx and cts wires can be set and the tx and rts wires can
be read at every cycle. The baud rate is independent of the
HSM clock frequency; the IPR formalism itself has no notion
of a serial port or baud rate, only wires and hardware-level
clock cycles. The three main Knox case studies use UART,
but simpler Knox examples use different I/O protocols.

The HSM model comprises the circuit state, a step function
describing behavior for a single cycle, the initial state of
the HSM (contents of non-volatile memory, such as ROM
containing code and read-write persistent memory being zero-
initialized), and a description of the power-on / reset behavior
of the circuit (losing the contents of volatile memory).

4.2 Refinement relation and initialization
Knox uses a refinement relation R, a proof artifact supplied
by the developer, to relate the state of the implementation
to the state of the specification in between spec-level oper-
ations. That is, it is not required to hold at arbitrary steps
of the circuit, only before/after spec-level operations, or af-
ter switching from the physical view to the functional view,
which involves re-initializing the driver (which in our imple-
mentations, resets the circuit). Use of a common R connects
functional equivalence and physical equivalence.

R relates states and usually includes an invariant that cap-
tures circuit quiescence (it holds in between spec-level op-
erations). Figure 5 shows the refinement relation used in

4

spec.bad_guesses = swap32(impl.fram[0..3]) ∧
spec.pin = impl.fram[4..9] ∧

spec.secret = impl.fram[10..19] ∧
Inv(impl)

Figure 5: A simplified version of the refinement relation used
in the proof of PIN-protected backup. impl.fram refers to the
persistent memory of the implementation. swap32 performs a
byte order swap. Inv is the invariant (not shown here).
(define (store secret pin)
(send-byte #x02) ; command number
(send-bytes pin)
(send-bytes secret)
(recv-byte)) ; wait for ack

(define (wait-until-clear-to-send)
(while (get-output ’rts))
(tick))) ; wait a cycle

(define (send-bit bit)
(set-input ’rx bit)
(for ([i (in-range BAUD-RATE)])
(tick)))

(define (send-byte byte)
(wait-until-clear-to-send)
(send-bit #b0) ; send start bit
;; send data bits
(for ([i (in-range 8)])
(send-bit (extract-bit byte i)))

(send-bit #b1)) ; send stop bit

(define (send-bytes bytes)
(for ([byte bytes])
(yield) ; wait for arbitrary number of cycles
(send-byte byte)))

Figure 6: A code snippet from the PIN-protected backup
driver. The function corresponding to a spec-level operation
is shown in blue. Driver-language primitives are in red.

the proof of the PIN-protected backup HSM. It relates each
variable in the specification to the persistent memory of the
circuit.

Knox requires that the initial implementation state is related
by R to the initial specification state.

4.3 Functional equivalence
Functional equivalence states that spec-level behavior is ob-
tained from the implementation’s wire-level interface by fol-
lowing the I/O protocol described by the driver. The driver is
a program, written in Knox’s driver language, that is part of
the specification of the HSM. For every spec-level operation,
the driver has a corresponding function that describes how
the host invokes the operation on the HSM over its wire-level
I/O interface.

For example, Figure 6 shows the driver for the PIN-
protected backup HSM. The driver exposes a function corre-

c
1

f
1

R

c
2

f
2

R

op

v

. . .

driver[op] v

Figure 7: Functional equivalence: for all implementation
states c1 and spec states f1 that are related by R, and for
all spec-level operations op:
(1) the spec-level output v matches the driver output
(2) the final states c2 and f2 are related by R

sponding to each spec-level function, such as (store ...),
implemented in terms of driver-language primitives for in-
teracting with the implementation: (set-input ...) and
(get-output ...) write the input wires and read the out-
put wires, respectively; (tick) waits for the HSM to execute
for a single cycle; (yield) models situations where the host
is allowed to wait for an arbitrary number of cycles, e.g., in
between sending bytes in an asynchronous protocol.

Figure 7 defines functional equivalence: starting from
circuit/spec states related by R, invoking an operation on
the specification gives the same result as running the cor-
responding driver function against the circuit, and the final
circuit/spec states continue to be related by R.

The HSM runs asynchronously from the host: its clock
keeps ticking even if there is no operation to perform. To
model this, the driver also describes a spec-level no-op: e.g.,
in the case of the PIN-protected backup HSM, the host sets
the rx line high, indicating that it has nothing to transmit.
Functional equivalence also covers this no-op case.

4.4 Physical equivalence
Physical equivalence states that wire-level behavior match-
ing the real circuit’s behavior can be obtained by running an
emulator (with query access to the specification), capturing
the notion that the circuit leaks no more information than
the specification. The emulator in IPR is a dual of the driver:
it is a program, written in Knox’s emulator language, that
implements wire-level interactions in terms of spec-level op-
erations. Unlike the driver, the emulator is a proof artifact:
if there exists an emulator that mimics circuit behavior, then
physical equivalence holds.

An emulator exposes a function corresponding to each
wire-level interaction: setting the input, getting the output,
and running for a cycle. These are implemented in terms
of emulator-language primitives for invoking spec-level op-
erations (e.g., (store ...) and (retrieve ...), for the
PIN-protected backup). Besides the ability to make black-
box queries to the functional specification, the emulator can
maintain auxiliary state across emulating multiple cycles;
the auxiliary state is initialized to a null value whenever the
emulator is re-initialized.

5

R R

f
1

f
2

. . . .

c
1

c
2

.
i
1

o
1

i
2

o
2

i
3

o
2

i
n

o
n

c
3

emulator[i
1
, i

2
, . . ., i

n
] o

1
, o

2
, . . ., o

n

Figure 8: Physical equivalence: for all spec states f1 and
implementation states c1 that are related by R, and for all
wire-level inputs i1 . . . in:
(1) the circuit outputs o1 . . .on match the emulator outputs
(2) the final states f2 and c3 (c2 after a reset) are related by R

c
1

f
1

R

c
2

f
2

R —OR— R

op

. . .
driver[op]

Figure 9: Crash safety: for all implementation states c1 and
spec states f1 that are related by R, and for all spec-level
operations op: if the driver is interrupted at any point, the
post-reset state of the circuit c2 is related by R to either f1 or
f2.

Figure 8 defines physical equivalence: starting from cir-
cuit/spec states related by R, any wire-level I/O behavior
exhibited by the circuit is matched by the emulator, which
makes queries to the specification as it runs. Furthermore, the
final specification state is related by R to the final circuit state
(after the circuit is reset).

IPR is satisfied as long as there exists some emulator such
that the real and ideal worlds are indistinguishable. Proofs of
physical equivalence in Knox involve constructing an emu-
lator (i.e., writing a program in the emulator language) that
satisfies the definition of physical equivalence. Because the
emulator is merely a proof artifact, the details of the con-
struction do not matter, as long as the program satisfies the
definition. The Knox case studies (§7) describe the techniques
used in practice to write emulators.

4.5 Crash safety
Physical equivalence already covers the case of an inter-
rupted spec-level operation, because an interrupted protocol-
following execution can be viewed as a case of arbitrary I/O:
physical equivalence guarantees that any wire-level I/O corre-
sponds to some sequence of spec-level operations. However,
we can state an additional property that is stronger: when
the HSM is interrupted in the middle of an operation while
the host is following the driver, the implementation is crash
safe, acting either as if the operation never started or as if
the operation completed successfully. Figure 9 defines this
crash-safety property.

5 The Knox framework
The Knox framework uses hybrid symbolic execution [67]
and SMT solvers to help developers prove IPR. Knox includes
techniques to handle the challenges that arise when applying
symbolic execution for proving functional equivalence and
physical equivalence. In functional equivalence proofs, Knox
handles the nondeterminism of yield in drivers by automat-
ically finding fixed points (§5.1). In physical equivalence
proofs, Knox supports reasoning about unbounded-length in-
puts using an approach we call guided symbolic model check-
ing (§5.2). In both, Knox allows the proof developer to supply
hints, untrusted guidance where the framework invokes the
solver as necessary to ensure soundness (§5.3).

5.1 Nondeterminism
Knox verifies the functional equivalence property using sym-
bolic execution of the driver-language program against the
HSM implementation, comparing the execution of each driver
operation against the corresponding spec operation. However,
symbolic execution cannot directly handle the nondetermin-
ism of (yield), which has the semantics of the driver waiting
for an arbitrary number of cycles while the HSM runs.

Knox addresses this by finding a fixed point of the circuit’s
step function at every yield point. During symbolic execution,
the circuit’s state is a symbolic term. Stepping the circuit
produces a new symbolic term, and so on. At yield points,
Knox computes a set of symbolic terms such that the set is
closed under the circuit’s step function, and it forks symbolic
execution for each term in the set.

Closure is defined in terms of symbolic state subsumption.
A symbolic term t under a path condition p, written as t|p,
can be thought of as representing a set of concrete values,
Jt|pK, the set of values that t can evaluate to for all possible
assignments satisfying p of values to t’s symbolic variables. A
term t1 under path condition p1 is subsumed by a term t2 under
path condition p2, written as t1|p1 ⊆ t2|p2, if Jt1|p1K⊆ Jt2|p2K.
For a set S of symbolic terms paired with path conditions, let
JSK= {Jt|pK : t|p ∈ S}. Finally, call S a fixed point of the step
function if ∀x ∈ JSK,step(x) ∈ JSK.

Knox includes an efficient algorithm for subsumption
checks, and fixed points are found through iteratively calling
the step function on the symbolic circuit state to build up a set
of symbolic terms. Once a fixed-point S is found, symbolic
execution proceeds for each of the t|p ∈ S, similar to how
branching produces multiple paths to be checked.

Left unchecked, multiple (yield)s can result in an expo-
nential number of cases to check, analogous to the problem
of branching resulting in path explosion in symbolic execu-
tion. For this reason, Knox uses untrusted (merge) hints in
the driver at points where some branches could be merged
together. At merge points, Knox uses subsumption checks to
automatically find a smaller set of symbolic terms |S′| ≤ |S|
that still represent all the concrete values included in the
original, i.e., JSK ⊆ JS′K, which addresses case explosion.

6

. . .

subsumed

Figure 10: An illustration of guided symbolic model checking
exploring a state space. Each green circle is a symbolic term
representing a set of states. Black arrows show STEP invoca-
tions and purple arrows show SUBSUMED invocations.

5.2 Unbounded-length inputs
In Knox, emulators can be symbolically executed with black-
box query access to a functional specification. Unlike the
functional equivalence property which considers a single
(spec-level) input, the physical equivalence property consid-
ers an arbitrary-length sequence of (wire-level) inputs, so
Knox can’t prove the physical equivalence property in the
same way. Symbolic execution could verify this property for
a fixed-length input, but it cannot directly handle arbitrary-
length input.

The standard approach to handling arbitrary-length inputs
is to write down an inductive invariant and reason about one
step at a time. This approach does not work for large circuits
because of the infeasibility of manually writing down the
inductive invariant. It would have to include an invariant of
circuit execution, capturing which states are reachable and
which are not, and it is infeasible to manually write down
exactly how CPU microarchitectural registers, peripheral reg-
isters, RAM state, etc. are related to each other at every cycle
of execution of the software.

Instead, Knox uses an approach that we describe as guided
symbolic model checking. At a high level, Knox uses a model-
checking-style approach to start from the initial states of the
circuit and emulator in the definition of physical equivalence,
explore all reachable states, and ensure that the circuit’s be-
havior matches the emulator’s behavior and the recovery con-
dition holds at every step. Exploration starts out at a circuit
state c1, an emulator state e0 (the initial emulator auxiliary
state, null), and functional spec state f1, where both f1 and
c1 are symbolic terms, and R is assumed to relate f1 and
c1. Knox can step the circuit and step the emulator, given
the same symbolic input, and check that their outputs match.
Knox repeats this process until it has explored all reachable
states.

This model-checking process involves guidance from the
developer in the form of a proof script. Knox provides two
primitives that allow the developer to guide exploration of the
state space:
• STEP steps the circuit and the emulator/spec (with the same

symbolic input) for one cycle and verifies the output equiv-
alence and recovery properties for that single cycle

• SUBSUMED checks that the state currently under considera-

tion is subsumed by a state that was explored earlier, “tying
the knot” and finishing a branch of the exploration
Figure 10 illustrates how STEP and SUBSUMED let the

developer guide the model checker to explore the state space.
In addition to these primitives, the developer uses additional
hints (§5.3) to safely manipulate symbolic terms and help the
model checker efficiently explore the state space.

An alternative view of this process is that it incrementally
builds up the induction hypothesis that would have been used
in an induction-based approach. Once model checking has
explored all reachable states, it has visited a set of states S
that includes the initial circuit/emulator/spec state where R
holds, and the set S has the property of being closed under the
circuit/emulator step functions, and the property of matching
outputs for a single cycle holds for every state in S. The
induction hypothesis is that the state is contained in S.

The proof script is untrusted, and Knox checks that the
state space is fully explored. At worst, an incorrect proof
script can result in poor performance or Knox reporting that
the state space has not been fully explored.

5.3 Hints

In both functional equivalence proofs and physical equiv-
alence proofs, relying only on hybrid symbolic execution
quickly results in an explosion in term size, and in the case
of HSMs involving cryptography, queries that make the SMT
solver time out.

Knox addresses this with untrusted (solver-checked) hu-
man guidance called hints. Knox has 8 primitive hints:
• CASE-SPLIT performs case analysis
• CONCRETIZE invokes the solver to prove that a symbolic

term is concrete and replaces it with the concrete value
• OVERAPPROXIMATE replaces a term with a fresh variable
• WEAKEN weakens the current path condition
• REPLACE rewrites or simplifies terms
• REMEMBER, SUBSTITUTE, and CLEAR effectively allow

marking terms as opaque to symbolic execution and substi-
tuting in their values later
Furthermore, Knox supports writing higher-level tactics

that can reflect on the current state of symbolic execution
and invoke primitive hints (or other tactics). A tactic might,
for example, analyze the state of the circuit to determine if a
CPU is about to branch, and in that situation, it can invoke
a CASE-SPLIT hint with the appropriate cases constructed
based on analyzing the symbolic circuit state.

All invocations of hints are verified by the Knox framework
with an call to the SMT solver when necessary. Hints are
untrusted: at worst, hints can be incorrect and fail (e.g., when
attempting to replace a term with an unequal term), which
will result in an error message to the user, or the given hints
can be inadequate to ensure good performance, in which case
verification will be slow or fail to terminate.

7

6 Implementation
The Knox framework builds on top of Racket [37] and the
Rosette solver-aided programming language [67], and it relies
on the Z3 SMT solver [32]. To compile circuits to a shallow
embedding in Rosette, Knox uses GCC and its RISC-V back-
end to compile C code, Yosys [69] and its SMT-LIB backend
to process Verilog, and #lang yosys (700 LOC of Racket
and Rosette) from Notary [16] to convert the SMT-LIB output
into a Rosette model.

The Knox framework’s core — the semantics for the driver
and emulator languages, and the tools for verifying functional
equivalence and physical equivalence — is implemented in
3000 lines of Racket and Rosette. Achieving good verifica-
tion performance required many optimizations and some new
techniques, including symbolic state serialization, term sub-
stitution, fixpoint finding, state merging, and a new algorithm
for symbolic subsumption checking based on a disjoint-set
data structure.

The case studies are implemented in Verilog, C, and as-
sembly (summarized in Figure 16). The case studies run on
a $65 1BitSquared iCEBreaker development board, which
has a Lattice iCE40UP5K FPGA, and use an open-source
FPGA toolchain: the Yosys synthesis tool, the nextpnr place
and route tool [72], and Project IceStorm [70] to create the
bitstream and flash the FPGA. The FPGA connects using an
FTDI cable to a host computer running Linux, for which we
wrote client libraries for the three HSMs.

Figure 11 shows an overview of the different components
that the developer writes when using Knox to verify an HSM.
The functional specification, physical implementation, and
refinement relation R are common inputs, used when veri-
fying both functional equivalence and physical equivalence.
When verifying functional equivalence, Knox takes as addi-
tional input the driver, along with hints to guide symbolic
execution. When verifying physical equivalence, Knox takes
as additional input the emulator and a proof script. The func-
tional specification and the driver, highlighted in green, com-
prise the code written by the developer that is trusted. Other
components, the HSM implementation and proof artifacts,
are verified by the framework. Similar to other tools based
on symbolic execution, when verification in Knox fails, the
framework can provide a concrete counterexample, aiding the
developer in debugging the implementation or the proof.

Source code for Knox and the case studies is available at
https://github.com/anishathalye/knox.

7 Evaluation
To evaluate information-preserving refinement and the Knox
framework, we ask the following questions:
• Can IPR and Knox be applied to HSM hardware/software?
• What types of bugs does verification prevent?
• What is the performance of the Knox framework?
• What is the performance of HSMs verified with Knox?

Func�onal

Specifica�on

Implementa�on
So ware (.c)

Hardware (.v)

R

Driver Hints

Func�onal equiv.

Physical equiv.

Knox

OK /

FAIL

Emulator Proof Script

Figure 11: An overview of the Knox workflow. Trusted inputs
are shown in green.

Methodology. We evaluate the first two questions through
case studies (§7.1) that formally verify three HSMs with dif-
ferent types of specification and implementation complexity:
a PIN-protected backup HSM, a password-hashing HSM,
and an RFC 6238-compliant TOTP token [54]. To answer
questions related to verification performance and the perfor-
mance of the HSM implementations, we report on measure-
ments (§7.2).

7.1 Case studies
7.1.1 PIN-protected backup HSM
Specification. A simplified PIN-protected backup HSM (Fig-
ure 2) was a running example through this paper; we verified
an HSM with additional functionality: storing multiple secrets,
each protected by its own PIN, and indexed by a slot number.
The specification exposes four functions: status, store,
retrieve, and delete. The specification demonstrates sup-
port for non-cryptographic security properties, such as the
guess limit on PINs.

Implementation. Figure 12 shows a schematic of the im-
plementation. It uses the PicoRV32 RISC-V CPU and the
SimpleUART peripheral from the PicoSoC [71] with mini-
mal modifications: we removed asynchronous reset from the
CPU and added hardware flow control to the UART. The
HSM uses ferroelectric RAM (FRAM) for persistent storage.
Knox requires cycle-accurate models of the entire hardware,
and FRAM has simple cycle-precise behavior, supporting
durable word-level writes in a single cycle. For convenience,
to avoid wiring an external chip, the prototype uses FPGA
Block RAM in place of FRAM for the experiments. In total,
the HSM hardware is described in 2670 lines of Verilog.

The software is written in a combination of C and assembly.
To simplify verification, the HSM uses a strategy inspired
by Notary [16] to minimize variation in the states that the
hardware can be in. The HSM uses a reset-based design: the
SoC is held in an “embryo” state until the host is ready to
perform an operation, and after the HSM performs a single
operation, it enters the embryo state again until the host begins
the next operation. This is done through a combination of
hardware and software: the HSM’s cts input doubles as a
signal that the host is ready to perform an operation, and a

8

https://github.com/anishathalye/knox

CPU

ROM
(C code)

RAM

FRAM
(durable)

UART

tx rx rts cts

Figure 12: A schematic of the PIN-protected backup HSM.

small amount of logic implemented in hardware holds the rest
of the circuit in a reset state until the host is ready to perform
an operation. After the HSM performs a single operation, it
signals this power management hardware to reset the SoC
and return to the embryo state.

The software on the HSM includes a driver for the memory-
mapped UART peripheral, along with code to implement each
of the operations. The main function of the HSM reads a com-
mand and arguments from the UART, calls the appropriate
handler, and then shuts down. The code for the HSM is written
in 150 lines of C and 40 lines of assembly.

Verification and bugs caught. Knox physical equivalence
proofs are constructive. We designed the emulator for the
PIN-protected backup as follows. The emulator runs a copy
of the circuit with dummy data. The emulator does not have
access to the data in the real circuit, in particular the read-
write persistent memory, but the structure of the circuit and
the code in the ROM is common knowledge. The emulator
carefully watches the internal state of its copy of the circuit:
when the circuit is about to perform an operation, the emula-
tor reads input data out of its circuit’s state and translates it
into a spec-level input, makes a query to the specification, and
injects the result back into its circuit’s state, so that the output
behavior of the circuit copy matches that of the real circuit.
For example, for the retrieve operation, when the emulator
sees that its circuit copy has just completed the equality com-
parison, the emulator extracts the slot number and PIN guess
from the circuit copy’s RAM, makes a retrieve query to the
specification, and injects the result (match or no match) back
into its copy of the circuit, also injecting the secret into the
appropriate location in memory if the guess indeed matched.
All of the emulators for the case studies follow this general
construction. Through the physical equivalence proof, we
show that all implementation-level behavior can be explained
with spec-level behavior, proving that the implementation
leaks no more than the spec.

Verifying physical equivalence catches classic security
bugs, such as a bug where the implementation’s timing behav-
ior leaks how many bytes of the PIN guess matches due to
using strcmp. This information is not revealed by the spec —
which only reveals whether or not the guess is correct (and the

var secret = 0

def config(new_secret):
secret = new_secret

def hash(password):
return sha256(password || secret)

Figure 13: The functional specification for the password-
hashing HSM.

secret, when the guess is correct), not how many bytes of the
guess match the PIN — so IPR prevents the implementation
from leaking it. For such a buggy implementation, an emula-
tor satisfying the IPR definition doesn’t exist: the emulator
doesn’t have direct access to the true PIN (only query access
through the specification), so its behavior can’t match the real
circuit’s leaky behavior.

Verifying physical equivalence caught a subtle security
bug involving persistence and timing. Figure 3 shows a
code snippet from the insecure implementation. The com-
piler happens to compile this code using a branch instruction,
branching in the case where the guess is incorrect, and the
CPU implementation takes longer to take the branch than to
fall through to the next instruction. This has the effect that
the circuit takes longer to write the updated bad_guesses
value to persistent memory in the case of an incorrect PIN
guess (where it’s executing entry->bad_guesses++) than
in the case of a correct PIN guess (where it’s executing
entry->bad_guesses = 0). An attacker can abuse this to
reset the guess count by guessing a PIN, powering off the
device after just enough cycles to reset the guess count in the
case that the guess is correct (but not waiting long enough
that entry->bad_guesses++ has a chance to run, in the
case that the guess is incorrect), and repeating this process
for every possible PIN. This is not a correctness or even a
crash-safety bug: this insecure implementation is both correct
and crash safe. However, physical equivalence prevents this
security bug in the implementation. The bug is fixed by using
constant-time code to make the commit point of the operation
independent of whether the PIN guess is correct.

7.1.2 Password-hashing HSM
Specification. Figure 13 outlines the specification for the
password-hashing HSM. It includes a specification of
SHA256 (not shown) that follows FIPS 180-4 [57]. The pass-
word hasher is configured with a secret, and then it computes
salted hashes using the stored secret. There is no function
to retrieve the secret after it is stored. The specification also
guarantees that future operations cannot leak past inputs, be-
cause the secret cannot be read back, and passwords are not
stored.

Implementation. The hardware is similar to that of the PIN-
protected backup HSM. This HSM adds a hardware SHA256
cryptographic accelerator (about 300 lines of Verilog), which

9

implements the SHA256 block function. We originally used
an off-the-shelf SHA256 core [66], but we switched to a
custom implementation to minimize FPGA area so the de-
sign would fit on our low-cost board. The software includes
a driver for the SHA256 peripheral, which implements the
message padding function and drives the memory-mapped
SHA256 peripheral, one block at a time. The software is
written in 200 lines of C code and 40 lines of assembly.

The HSM needs to be crash safe, and the specification has
operations that require updating multi-word values (the secret,
in our specification, is 20 bytes), but the FRAM only supports
word-level (32-bit) atomic writes. For this reason, the HSM
uses a simple journaling strategy where it keeps two copies
of the state in persistent memory and uses a flag to determine
which one is active. To do an atomic write, the HSM writes
to the inactive region and then toggles the flag.

Verification and bugs caught. The functional equivalence
proof caught a bug in the hardware implementation, in the
integration of the SHA256 peripheral into the SoC. The
memory-mapped SHA256 peripheral’s chip select input
was being set based on the CPU’s mem_addr bus, but the
mem_addr is uninitialized on reset (it becomes stable after a
couple cycles), so the SHA256 hardware could receive an un-
intended command right at boot. This bug would be difficult
to catch through testing because it is only triggered in rare
cases, when the uninitialized address bus contains a particular
value on reset. The bug was fixed by adding an additional
condition that mem_valid was also asserted (which all the
other peripherals did, but the SHA256 peripheral didn’t when
it was first integrated).

Verification caught a security bug in the software, where the
code branched on the flag indicating which region of persis-
tent memory was active, and so there was observable timing
variation where the circuit leaked more than the spec. Leak-
ing which region of memory was active effectively leaked the
parity of the total number of hash operations that the HSM
had processed, which the specification does not expose. We
fixed this by writing more careful C code that GCC compiled
without branches so that there was no leakage.

7.1.3 TOTP token
Specification. Figure 14 outlines the specification for the
TOTP token. It includes a specification of the TOTP algorithm
(not shown) that follows RFC 6238 [54], which relies on
HOTP [53], HMAC [46] and SHA1 [57]. The spec doesn’t
support reading back the secret after it has been set. It allows
computing TOTP values given a timestamp supplied by the
host machine, but it doesn’t allow rewinding the timestamp.
It supports an audit function to get the last timestamp value,
to be able to identify if the HSM was ever abused to compute
future TOTP values.

Implementation. The hardware is similar to that of the
password-hashing HSM, except this token uses a hardware

var secret = 0, last_timestamp = 0

def set_secret(new_secret):
secret = new_secret

def get_totp(timestamp):
if timestamp < last_timestamp:
return ’Cannot rewind timestamp’

last_timestamp = timestamp
return totp(secret, timestamp)

def audit():
return last_timestamp

Figure 14: The functional specification for the TOTP token.

/* old implementation:
uint32_t s = (buf[offset] & 0x7f) << 24

| (buf[offset+1] & 0xff) << 16
| (buf[offset+2] & 0xff) << 8
| (buf[offset+3] & 0xff);

*/
uint32_t s = 0;
for (int i = 0; i < 0x10; i++) {

uint32_t match = ((i != offset) - 1);
s += ((buf[i] & 0x7f) & match) << 24;
s += ((buf[i+1] & 0xff) & match) << 16;
s += ((buf[i+2] & 0xff) & match) << 8;
s += ((buf[i+3] & 0xff) & match);

}

Figure 15: Rewriting TOTP dynamic truncation to avoid sym-
bolic memory addresses.

SHA1 cryptographic accelerator. Its software includes a driver
for the SHA1 peripheral that implements message padding,
along with a software implementation of HMAC and the
TOTP algorithm. Part of the TOTP algorithm is implemented
in assembly, carefully written to prevent timing side chan-
nels. In one situation, we had to modify C code to be more
amenable to symbolic execution, avoiding symbolic memory
addresses in favor of fixed addresses and bit-twiddling tricks,
as shown in Figure 15. The software for the TOTP token
comprises 300 lines of C code and 60 lines of assembly.

Verification and bugs caught. The TOTP token uses a strat-
egy matching the password hasher for achieving atomic state
updates. Verifying functional equivalence caught a crash-
safety bug where a struct field was missing a volatile qual-
ifier and the compiler re-ordered a commit point (toggling the
flag) before a write that should happen first (updating state in
the inactive region of memory).

The emulator for the TOTP token follows the same ba-
sic construction as the others. One interesting detail: the
get_totp implementation branches based on whether the
timestamp is less than the last seen timestamp value; because
the timestamp is a 64-bit value and PicoRV32 uses a 32-bit ar-
chitecture, this turns into a number of comparisons/branches.
The emulator, in order to make sure its behavior matches the
real circuit’s timing behavior, calls the audit function to re-
trieve the real last timestamp value and inject it in place of the

10

HSM Spec Driver HW SW Proof
core total

PIN backup 32 60 110 2670 190 470
PW hasher 5 150 90 3020 240 650
TOTP 10 180 80 2950 360 830

Figure 16: Lines of code for case studies. Lines of code for
the spec are broken down into “core” and “total”, where core
is the main HSM functionality and doesn’t include boilerplate
or definitions of functions like SHA1, HMAC, and TOTP.

dummy data in the circuit copy, so that the timing behavior
matches the real circuit. Also, the commit point for the TOTP
operation is right after saving the new timestamp value, before
the actual call to the TOTP function, so the emulator calls the
functional specification’s get_totp operation at the commit
point in order to satisfy the recovery condition, stashes the
output in auxiliary state, and when the circuit copy gets to the
point where it’s returning from its call to the TOTP function
(computing with dummy data), injects the cached return value
in place of the dummy value in the circuit.

The physical equivalence proof caught an issue with the
TOTP implementation: it was using the C modulus (%) op-
erator to compute the final mod 106 operation, but this op-
eration had variable latency dependent on its input, which
leaks information that is not available in the functional spec-
ification. The spec doesn’t reveal the output of the HMAC
or dynamic truncation, only the final 6-digit code. The fix
was to implement this functionality in constant time, which
we did in assembly code using sltu and bitwise/arithmetic
instructions.

7.1.4 Summary

IPR and Knox can be applied to simple HSM hardware
and software. A design goal of the Knox HSMs, the im-
plementations are minimal, using simple hardware through-
out the SoC (e.g., a small RISC-V processor, simpler than
the ARM Cortex-M found in many security tokens). Still,
the Knox HSMs have implementation features found in real-
world HSM hardware (e.g., microprocessor, I/O peripheral,
persistent memory, cryptographic accelerator) and software
(e.g., peripheral drivers, cryptography, crash safety), and
Knox verification covers all of these.

Knox specs are succinct and proofs are manageable. Fig-
ure 16 shows lines of code in the spec and driver, imple-
mentation (hardware and software), and proof required for
verifying each HSM. We break down spec lines of code into
“core” and “total”, where core doesn’t include boilerplate or
definitions of functions like SHA1, HMAC, and TOTP. Knox
specifications are as short as their pseudocode: for example,
aside from the definition of the TOTP algorithm as specified
in RFC 6238, the core of the TOTP token specification in
Knox is only 10 lines of code, as shown in Figure 17.

(struct state (secret last-ts))

(define s0 (state (bv 0 160) (bv 0 64)))

(define ((set-secret secret) s)
(result #t (state secret (state-last-ts s))))

(define ((get-otp ts) s)
(if (bvult ts (state-last-ts s)) (result (bv 0 32) s)

(result (totp (state-secret s) ts)
(state (state-secret s) ts))))

(define ((audit) s)
(result (state-last-ts s) s))

Figure 17: The core of the Knox specification for the TOTP to-
ken. The definition of totp, not show here, is a pure function
that follows the spec in RFC 6238.

HSM FE-N FE-N+C FE FE+C PE

PIN backup 1 10 209 962 8
PW hasher 1 6 74 238 4
TOTP 3 8 44 141 8

Figure 18: Time taken (in minutes) for verification by Knox.
FE is functional equivalence; the -N variation disables nonde-
terminism in the driver; +C adds verification of crash safety.
PE is physical equivalence. The two bolded columns, FE and
PE, together imply IPR.

Knox catches bugs throughout hardware/software. Verifi-
cation caught bugs across hardware (e.g., SHA256 peripheral
initialization, in the password hasher) and software (e.g., com-
piler re-ordering a commit point, in the TOTP token), includ-
ing timing side channels (e.g., variable-time modulus, in the
TOTP token) and subtle bugs involving hardware, software,
timing, and persistence (e.g., commit point dependent on the
PIN guess being correct, in the PIN-protected backup).

7.2 Performance
Verification performance. Figure 18 shows Knox’s verifi-
cation performance, evaluated on a 2014-era Intel i7-5930K.
The implementation is currently single-threaded. Most of the
time in functional equivalence proofs is due to nondetermin-
ism (yield and merge) or verifying crash safety. The relatively
low performance of verifying PIN-protected backup is due to
performing case analysis on the slot number, which causes
many paths to be explored independently.

When developing functional equivalence proofs, we usually
begin by disabling driver nondeterminism and verification of
crash safety. This significantly reduces verification time, and
the tighter feedback loop speeds up the initial proof devel-
opment process. After verification completes successfully in
this simplified setting, we add back complexity and fix up the
implementation and proof as needed.

Implementation performance. The case studies showed
that hardware or software may need to be modified to satisfy

11

Metric Baseline Verified

FPGA LUTs 3966 3962 (−0%)
Max clock freq 20.01 MHz 20.53 MHz (+3%)
Code size 2412 B 2592 B (+7%)
TOTP op latency 0.73 ms 0.83 ms (+14%)

Figure 19: Overhead of modifications to TOTP token.

the strict definition of IPR and simplify verification. The
TOTP token required the most modifications among the case
studies. Figure 19 shows the impact of these modifications
on hardware (FPGA area and maximum clock frequency)
and software (code size and performance). Code performance
was measured at a clock of 12 MHz and baud rate of 2M for
the totp operation. Most of the slowdown results from the
modification to the dynamic truncation code (Figure 15).

The verified TOTP token can perform TOTP operations
with a latency of 0.83 ms, which is fast enough for interactive
use [50]. The other HSMs have similar per-operation latency.

8 Discussion

This section elaborates on some of the design decisions made
in IPR and Knox and discusses their implications.

8.1 Emulator efficiency
To meaningfully apply IPR to specifications that involve cryp-
tography, the adversary must be efficient, and therefore, the
emulator must be efficient as well. Without an efficiency re-
quirement, an implementation that, for example, leaks an
RSA signing key, could be justified by an emulator that calls
the specification to get the public key, factors products of
large primes in exponential time to compute the private key,
and then perfectly mimics the physical interface because it
has determined the implementation’s internal state.

The emulator must satisfy a coarse-grained notion of
efficiency: being prohibited from performing exponential-
time computation and brute-forcing secrets. Without an effi-
ciency requirement, information-preserving refinement cap-
tures an information-theoretic notion of information preserva-
tion, rather than a computational one.

The Knox framework does not fully formalize or mechan-
ically verify emulator efficiency. Instead, the proofs rely on
a manual audit of the emulator code. The emulators we con-
struct are simple, so the efficiency property is easy to check. In
fact, the Knox emulators in our case studies satisfy a stricter
definition of efficiency than necessary — per cycle of the
circuit that they emulate, they perform at most one query to
the specification and perform computation roughly equivalent
to what the circuit does in one cycle — meaning that an ad-
versary could run the emulator with computational resources
equivalent to the circuit itself.

8.2 Randomness
Functional specifications in IPR are deterministic, so IPR
cannot be used to verify HSMs that use true random num-
ber generators (TRNGs). As an alternative, HSMs can use
cryptographically-secure pseudo-random number generators
(CSPRNGs), and this fits into IPR, because IPR supports in-
ternal state. The specification can internally use a CSPRNG,
the spec can be augmented to expose an operation to add
entropy to the CSPRNG, and this operation can be called
by the host at device initialization time (and again at any
time later) to seed the random number generator. IPR ensures
that the CSPRNG’s internal state cannot be leaked by the
implementation.

8.3 Allowed leakage
IPR enforces that the implementation leaks no more than
the specification; sometimes, it is desirable to allow the im-
plementation to leak some non-sensitive information, e.g.,
the current bad_guesses count in the PIN-protected backup.
This fits in to IPR: the leakage can be expressed as a spec-
level leak operation. Knox supports leakage specifications
using this strategy, and it allows the user to skip proving func-
tional equivalence for leak operations (a well-behaved host
does not need to invoke this operation; it is only relevant for
modeling leakage as part of physical equivalence).

8.4 Monolithic end-to-end verification
Knox performs monolithic end-to-end verification, which has
some benefits over modular verification. There is no need to
define intermediate specifications and prove that layers satisfy
these specs; there is no distinction between hardware and
software, or a notion of, e.g., an instruction set architecture.
Knox simply reasons about the cycle-accurate behavior of
the entire circuit. If the circuit happens to contain a CPU that
runs some software, the software is “inlined” into hardware
(the initial contents of a ROM, for example).

Knox uses symbolic execution, and due to performing sym-
bolic execution end-to-end across software and hardware,
symbolic execution can be kept as concrete as possible, which
improves performance. For example, Knox doesn’t attempt to
prove a CPU correct (that it executes any program correctly);
this would require reasoning about symbolic instructions/pro-
grams. Instead, a proof of a Knox HSM only shows (indi-
rectly) that the CPU executes the HSM’s particular software
correctly, which is an easier task.

Lack of modularity could be a challenge when scaling up
Knox to more sophisticated HSM implementations, because
end-to-end symbolic execution across hardware and software
will perform poorly as hardware gets more sophisticated, and
the proof developer might have trouble with non-modular rea-
soning as complexity increases. But modular reasoning about
security properties is also challenging: e.g., proving software
correct with respect to an ISA specification is inadequate for
proving absence of timing side channels.

12

A potential approach to this problem could involve struc-
turing the HSM implementation to delay responses until a
worst-case execution time bound, and then specializing the
verification framework to reason about HSMs following such
a design. With such a structure, precise Knox-style reasoning
about software executing on hardware may not be necessary,
making it possible to separately reason about correctness (fol-
lowing standard approaches) and then reason about worst-case
execution time bounds of software executing on hardware to
show a top-level property like IPR.

9 Related work
Noninterference. Noninterference [39] captures confiden-
tiality properties in systems where high-sensitivity inputs
should not affect low-sensitivity outputs, which are separate
from high-sensitivity outputs. seL4 [55], mCertiKOS [30],
Komodo [36], and Nickel [64] verify noninterference proper-
ties such as process isolation. HACL* [62, 74], Vale [25, 38],
EverCrypt [63], and Jasmin [14] phrase freedom from timing
side channels in crypto code as noninterference by defining
a leakage trace (the low-sensitivity output) that captures ad-
versary observations, such as every program counter value,
and showing that two executions that have matching public
inputs but differing secrets (high-sensitivity inputs) produce
identical leakage traces.

The Knox setting does not have separate low/high-
sensitivity outputs: there is just one output, the logic levels on
the output wires at every cycle, and this is what the adversary
observes. Noninterference does not hold in the Knox setting:
the output can and will be secret-dependent. Instead, IPR says
that the output does not leak more information than the spec,
which is not a noninterference property.

Declassification. Noninterference with declassification [56]
separates low and high-sensitivity inputs (i.e., public and
secret inputs) and supports controlled influence of secrets on
outputs through an explicit declassify function that marks
secret-dependent values as safe to output. Ironclad [42] uses
this style of security definition; the proofs cover only software,
not hardware, and do not rule out timing side channels.

The Knox setting does not separate low and high-sensitivity
inputs. There is just one input, the logic levels on the input
wires at every cycle. IPR says that after the HSM receives
inputs from the driver (i.e., corresponding to a spec-level
operation), its future behavior does not leak more information
than the specification, which is not a declassification property.

Ironclad contains a PassHash app similar to the Knox pass-
word hasher. PassHash generates a secret internally, from a
computer’s TPM, and it services network requests: given a
password, it returns a hash of the password salted with the se-
cret. The secret is a high-sensitivity input (from the TPM) and
the password is low-sensitivity input (from the network); the
security definition is phrased as noninterference with declas-
sification, allowing the final output to the network to depend

on the secret in a controlled way. In the Knox HSM, the se-
cret is not generated internally but received from the host,
and both secrets and passwords are received over the same
input wires (there are no separate public and secret inputs).
A declassification-style definition does not apply. IPR says
that the implementation’s behavior can’t leak more informa-
tion than the specification, so for example, after a host sets
the secret, the HSM can’t leak the secret. IPR also gives the
same property with passwords: the HSM can’t leak passwords
that were input earlier. In contrast, the noninterference prop-
erty for PassHash doesn’t prevent the implementation from
leaking passwords, because they are low-sensitivity inputs.

Hardware/software verification. A long line of work per-
forms end-to-end verification of functional correctness prop-
erties for hardware/software systems, with an emphasis on
modular verification [13, 23, 35, 48]. Proving functional cor-
rectness does not rule out timing side channels, while address-
ing side channels is a central goal of IPR and Knox.

Knox uses Notary’s toolchain to convert C/Verilog to
Rosette models, and Knox uses Notary’s idea of reset-based
design for simplifying verification [16, 52]. Knox solves a dif-
ferent problem than Notary. IPR is a new security definition
for HSMs that captures the notion that a hardware/software
implementation satisfies a functional specification and leaks
nothing more, and Knox is a framework for proving this prop-
erty, including support for writing specifications, encoding
drivers and emulators, and proving correctness and security.
Notary’s focus is a hardware/software architecture for better
isolation between multiple mutually-distrustful agents run-
ning on the same device, and Notary only verifies a simple
(but key) property of an embedded system and its boot code,
that all internal state is cleared after reset.

Simulation-based definitions of security. IPR is inspired
by simulation-based definitions of security for multiparty
computation (MPC) and universal composability (UC) [28,
40, 41]. The Knox emulator is similar to the MPC simulator,
which formalizes the notion of zero knowledge in an MPC
protocol. Knox uses this concept to define non-leakage for a
hardware/software system.

Verified cryptography. Some tools [18, 19, 24, 61] verify
cryptographic properties of functional specifications and pro-
tocols. These are complementary to Knox, as illustrated by
work that formally analyzes HSM interfaces [26, 33].

Other works prove functional correctness of crypto imple-
mentations [17, 22, 27, 29, 34]. Some of these provide side-
channel resistance with cryptographic constant-time code,
which can be compiled to machine code while preserving
constant-time [20], but the security property does not go down
to the hardware / wire I/O level.

Verifying efficiency. Cryptographic proofs generally reason
about efficient adversaries, and some frameworks for ver-
ified cryptography support proving polynomial bounds on

13

programs’ running time [18, 61]. Knox could follow their
approach, adding a cost semantics for the emulator language,
to formally reason about emulator efficiency.

Secure compilation. In Knox, the circuit is not derivable
from the specification via compilation, but the IPR defini-
tion bears some resemblance to the properties secure compil-
ers guarantee about their compilation results. Fully-abstract
compilers [11] preserve and reflect observational equivalence
from the source to the target language. Some security prop-
erties can be stated as program equivalences [60], but IPR’s
non-leakage property is not captured by this type of defi-
nition. In fact, some Knox specifications such as the pass-
word hasher have no instances that are observationally (exten-
sionally) equivalent but not intensionally equal, so a secure-
compilation-style equivalence preservation at the circuit level
would be vacuous. Trace-preserving compilation [59] pre-
serves trace equivalence between source and target and han-
dles invalid target-level inputs. The definition is not general
enough to apply to the HSM setting because source-level
inputs don’t map to single target-level inputs (function call
to wire input for a single cycle), and there is no notion of
“ignoring invalid inputs” (for any wire-level inputs, the HSM
will have wire-level outputs). Furthermore, similar to the case
of program equivalence, some Knox specifications such as the
password hasher have no instances that are trace-equivalent
but not equal, so trace-equivalence preservation at the circuit
level would be vacuous.

10 Conclusion
Information-preserving refinement (IPR) is a new security
definition that captures the idea that a circuit-level imple-
mentation should implement its logical-level specification
and leak nothing more. Knox demonstrates that IPR is useful
in practice for ruling out bugs in an HSM’s hardware and
software. We believe that IPR is applicable beyond HSMs
and hope that it can serve as a foundation of future security
definitions.

Acknowledgments
We would like to thank Henry Corrigan-Gibbs and Joseph
Tassarotti for insightful discussions that helped us develop
the IPR definition. We are grateful to Emina Torlak and Xi
Wang for their guidance on working with Rosette. This paper
has been improved thanks to feedback from many individu-
als, including Akshay Narayan, Alexandra Henzinger, Ariel
Szekely, Derek Leung, Kyle Hogan, Ralf Jung, Robert Mor-
ris, Sacha Servan-Schreiber, Stella Lau, Tej Chajed, Thomas
Bourgeat, Yun-Sheng Chang, the anonymous reviewers, and
our shepherd, George Candea. This research was supported
by NSF award CNS-1812522 and by Google.

References
[1] CVE-2004-0320. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2004-0320, Sept. 2004.

[2] YSA-2015-1. https://developers.yubico.com/
ykneo-openpgp/SecurityAdvisory%202015-04-14.
html, Apr. 2015.

[3] CVE-2018-6875. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2018-6875, Feb. 2018.

[4] YSA-2018-01. https://www.yubico.com/support/
security-advisories/ysa-2018-01/, Jan. 2018.

[5] CVE-2019-18671. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-18671, Nov. 2019.

[6] CVE-2019-18672. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-18672, Nov. 2019.

[7] YSA-2020-04. https://www.yubico.com/support/
security-advisories/ysa-2020-04/, July 2020.

[8] CVE-2021-31616. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2021-31616, Apr. 2021.

[9] WhatsApp security whitepaper: Security of end-to-end
encrypted backups. https://www.whatsapp.com/
security/WhatsApp_Security_Encrypted_Backups_
Whitepaper.pdf, Sept. 2021.

[10] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley,
A. Flores-López, J. A. Halderman, J. Hoffman-Andrews,
J. Kasten, E. Rescorla, S. Schoen, and B. Warren. Let’s En-
crypt: An automated certificate authority to encrypt the entire
web. In Proceedings of the 26th ACM Conference on Com-
puter and Communications Security (CCS), pages 2473–2487,
London, United Kingdom, Nov. 2019.

[11] M. Abadi. Protection in Programming-Language Translations,
pages 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg,
1999. ISBN 978-3-540-48749-4.

[12] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi.
The EM side-channel(s). In Proceedings of the 2002 IACR
Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), Redwood City, CA, Aug. 2002.

[13] E. Alkassar, W. J. Paul, A. Starostin, and A. Tsyban. Pervasive
verification of an OS microkernel: Inline assembly, memory
consumption, concurrent devices. In Proceedings of the 3rd
Working Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE), pages 71–85, Edinburgh, United King-
dom, Aug. 2010.

[14] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire,
V. Laporte, T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y.
Strub. Jasmin: High-assurance and high-speed cryptography.
In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), pages 1807–1823, Dallas,
TX, Oct.–Nov. 2017.

14

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0320
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0320
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6875
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6875
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18671
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18671
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18672
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31616
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31616
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf

[15] Apple, Inc. Apple platform security. https:
//manuals.info.apple.com/MANUALS/1000/MA1902/
en_US/apple-platform-security-guide.pdf, May
2021.

[16] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. Notary: A device for secure transaction approval. In
Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 97–113, Huntsville, Ontario,
Canada, Oct. 2019.

[17] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers,
K. Liao, and B. Parno. SoK: Computer-aided cryptography.
In Proceedings of the 42nd IEEE Symposium on Security and
Privacy, pages 777–795, Virtual conference, May 2021.

[18] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certi-
fication of code-based cryptographic proofs. In Proceedings
of the 36th ACM Symposium on Principles of Programming
Languages (POPL), pages 90–101, Savannah, GA, Jan. 2009.

[19] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin.
Computer-aided security proofs for the working cryptographer.
In Proceedings of the 31st Annual International Cryptology
Conference (CRYPTO), pages 71–90, Santa Barbara, CA, Aug.
2011.

[20] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte,
D. Pichardie, and A. Trieu. Formal verification of a constant-
time preserving C compiler. In Proceedings of the 47th ACM
Symposium on Principles of Programming Languages (POPL),
New Orleans, LA, Jan. 2020.

[21] J.-B. Bédrune and G. Campana. Everybody be cool,
this is a robbery! https://donjon.ledger.com/
BlackHat2019-presentation/, Aug. 2019.

[22] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel. Verified
correctness and security of OpenSSL HMAC. In Proceed-
ings of the 24th USENIX Security Symposium, pages 207–201,
Washington, DC, Aug. 2015.

[23] W. R. Bevier, W. A. Hunt Jr., J. S. Moore, and W. D. Young.
An approach to systems verification. Journal of Automated
Reasoning, 5(4):411–428, Dec. 1989.

[24] B. Blanchet. A computationally sound mechanized prover for
security protocols. In Proceedings of the 27th IEEE Symposium
on Security and Privacy, pages 140–154, Oakland, CA, May
2006.

[25] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R.
Lorch, B. Parno, A. Rane, S. Setty, and L. Thompson. Vale:
Verifying high-performance cryptographic assembly code. In
Proceedings of the 26th USENIX Security Symposium, pages
917–934, Vancouver, Canada, Aug. 2017.

[26] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attack-
ing and fixing PKCS#11 security tokens. In Proceedings of
the 17th ACM Conference on Computer and Communications
Security (CCS), pages 260–269, Chicago, IL, Oct. 2010.

[27] B. Boston, S. Breese, J. Dodds, M. Dodds, B. Huffman,
A. Petcher, and A. Stefanescu. Verified cryptographic code for
everybody. In Proceedings of the 33rd International Confer-
ence on Computer Aided Verification (CAV), pages 645–668,
Los Angeles, CA, July 2021.

[28] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 136–145, Las Vegas, NV, Oct. 2001.

[29] Y.-F. Chen, C.-H. Hsu, H.-H. Lin, P. Schwabe, M.-H. Tsai, B.-
Y. Wang, B.-Y. Yang, and S.-Y. Yang. Verifying Curve25519
software. In Proceedings of the 21st ACM Conference on Com-
puter and Communications Security (CCS), pages 299–309,
Scottsdale, AZ, Nov. 2014.

[30] D. Costanzo, Z. Shao, and R. Gu. End-to-end verification
of information-flow security for C and assembly programs.
In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 648–664, Santa Barbara, CA, June 2016.

[31] F. Cremonese. Security analysis of the Solo
firmware. https://blog.doyensec.com/2020/02/
19/solokeys-audit.html, Feb. 2020.

[32] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), pages 337–340, Budapest, Hungary, Mar.–Apr.
2008.

[33] S. Delaune, S. Kremer, and G. Steel. Formal analysis of
PKCS#11. In Proceedings of the 21st IEEE Computer Security
Foundations Symposium (CSF), pages 331–344, Pittsburgh,
PA, June 2008.

[34] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala.
Simple high-level code for cryptographic arithmetic – with
proofs, without compromises. In Proceedings of the 40th
IEEE Symposium on Security and Privacy, pages 73–90, San
Francisco, CA, May 2019.

[35] A. Erbsen, S. Gruetter, J. Choi, C. Wood, and A. Chlipala.
Integration verification across software and hardware for a
simple embedded system. In Proceedings of the 42nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2021.

[36] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Ko-
modo: Using verification to disentangle secure-enclave hard-
ware from software. In Proceedings of the 26th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 287–305,
Shanghai, China, Oct. 2017.

[37] M. Flatt and PLT. Reference: Racket. Technical Report PLT-
TR-2010-1, PLT Design Inc., 2010. https://racket-lang.
org/tr1/.

15

https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://donjon.ledger.com/BlackHat2019-presentation/
https://donjon.ledger.com/BlackHat2019-presentation/
https://blog.doyensec.com/2020/02/19/solokeys-audit.html
https://blog.doyensec.com/2020/02/19/solokeys-audit.html
https://racket-lang.org/tr1/
https://racket-lang.org/tr1/

[38] A. Fromherz, N. Giannarakis, C. Hawblitzel, B. Parno, A. Ras-
togi, and N. Swamy. A verified, efficient embedding of a
verifiable assembly language. In Proceedings of the 46th ACM
Symposium on Principles of Programming Languages (POPL),
Cascais, Portugal, Jan. 2019.

[39] J. A. Goguen and J. Meseguer. Security policies and secu-
rity models. In Proceedings of the 3rd IEEE Symposium on
Security and Privacy, pages 11–20, Oakland, CA, Apr. 1982.

[40] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229,
New York, NY, May 1987.

[41] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. In Proceedings of the
17th Annual ACM Symposium on Theory of Computing (STOC),
pages 291–304, Providence, RI, May 1985.

[42] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad Apps: End-to-end security
via automated full-system verification. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 165–181, Broomfield, CO, Oct.
2014.

[43] M. Hemmel, J. Meltzer, T. Pornin, K. Ryan, J. Samuel,
D. Wong, R. Wood, and G. Worona. Android cloud backup/re-
store. https://research.nccgroup.com/wp-content/
uploads/2020/07/Final_Public_Report_NCC_Group_
Google_EncryptedBackup_2018-10-10_v1.0.pdf, Oct.
2018.

[44] M. Hutter and J.-M. Schmidt. The temperature side chan-
nel and heating fault attacks. In Proceedings of the 12th
Smart Card Research and Advanced Application Confer-
ence (CARDIS), pages 219–235, Berlin, Germany, Nov. 2013.

[45] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. Minerva: The
curse of ECDSA nonces (systematic analysis of lattice attacks
on noisy leakage of bit-length of ECDSA nonces). IACR Trans-
actions on Cryptographic Hardware and Embedded Systems,
2020(4):281–308, 2020.

[46] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
hashing for message authentication. RFC 2104, Network
Working Group, Feb. 1997.

[47] I. Krstić. Behind the scenes with iOS security.
https://www.blackhat.com/docs/us-16/materials/
us-16-Krstic.pdf, Aug. 2016.

[48] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish,
O. Abrahamsson, and A. Fox. Verified compilation on a ver-
ified processor. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI), pages 1041–1053, Phoenix, AZ, June 2019.

[49] R. Mayer-Sommer. Smartly analyzing the simplicity and the
power of simple power analysis on smartcards. In Proceedings
of the 2000 IACR Workshop on Cryptographic Hardware and
Embedded Systems (CHES), pages 78–92, Worcester, MA,
Aug. 2000.

[50] R. B. Miller. Response time in man-computer conversational
transactions. In Proceedings of the AFIPS 1968 Fall Joint
Computer Conference, pages 267–277, San Francisco, CA,
Dec. 1968.

[51] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger. TPM-
FAIL: TPM meets timing and lattice attacks. In Proceedings
of the 29th USENIX Security Symposium, pages 2057–2073,
Aug. 2020.

[52] N. Moroze, A. Athalye, M. F. Kaashoek, and N. Zeldovich. rtlv:
push-button verification of software on hardware. In Proceed-
ings of the 5th Workshop on Computer Architecture Research
with RISC-V (CARRV), Virtual conference, June 2021.

[53] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ra-
nen. HOTP: An HMAC-based one-time password algorithm.
RFC 4226, Network Working Group, Dec. 2005.

[54] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-
based one-time password algorithm. RFC 6238, Network
Working Group, May 2011.

[55] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from
general purpose to a proof of information flow enforcement.
In Proceedings of the 34th IEEE Symposium on Security and
Privacy, pages 415–429, San Francisco, CA, May 2013.

[56] A. Myers and B. Liskov. A decentralized model for information
flow control. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP), pages 129–147, Saint-
Malo, France, Oct. 1997.

[57] National Institute of Standards and Technology. Secure hash
standard. Federal Information Processing Standards (FIPS)
180-4, U.S. Department of Commerce, Washington, DC, Aug.
2015.

[58] OASIS PKCS 11 Technical Committee. PKCS #11 cryp-
tographic token interface current mechanisms specification
version 3.0. https://docs.oasis-open.org/pkcs11/
pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html,
June 2020.

[59] M. Patrignani and D. Garg. Secure compilation and hyperprop-
erty preservation. In Proceedings of the 30th IEEE Computer
Security Foundations Symposium (CSF), pages 392–404, Santa
Barbara, CA, Sept. 2017.

[60] M. Patrignani, A. Ahmed, and D. Clarke. Formal approaches
to secure compilation: A survey of fully abstract compilation
and related work. ACM Computing Surveys, 51(6), Nov. 2019.

[61] A. Petcher and G. Morrisett. The Foundational Cryptography
Framework. In Proceedings of the 4th International Confer-
ence on Principles of Security and Trust, pages 53–72, Apr.
2015.

16

https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html

[62] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananan-
dro, P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud,
C. Hritcu, K. Bhargavan, C. Fournet, and N. Swamy. Veri-
fied low-level programming embedded in F*. In Proceedings
of the 22nd ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), Oxford, United Kingdom, Sept.
2017.

[63] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Pol-
ubelova, K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-
Lavaud, C. Fournet, N. Kulatova, T. Ramananandro, A. Ras-
togi, N. Swamy, C. Wintersteiger, and S. Zanella-Beguelin. Ev-
erCrypt: A fast, verified, cross-platform cryptographic provider.
In Proceedings of the 41st IEEE Symposium on Security and
Privacy, pages 983–1002, San Francisco, CA, May 2020.

[64] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt,
E. Torlak, and X. Wang. Nickel: A framework for design and
verification of information flow control systems. In Proceed-
ings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 287–306, Carlsbad,
CA, Oct. 2018.

[65] S. Srinivas, D. Balfanz, E. Tiffany, and A. Czeskis. Universal
2nd Factor (U2F) overview. https://fidoalliance.
org/specs/fido-u2f-v1.1-id-20160915/
fido-u2f-overview-v1.1-id-20160915.pdf, Sept.
2016.

[66] J. Strömbergson. sha256. https://github.com/
secworks/sha256, 2013.

[67] E. Torlak and R. Bodik. A lightweight symbolic virtual ma-
chine for solver-aided host languages. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 530–541, Edin-
burgh, United Kingdom, June 2014.

[68] F. Uekermann. Buggy OTP slot range check. https:
//github.com/Nitrokey/nitrokey-pro-firmware/
issues/4, June 2016.

[69] C. X. Wolf. Yosys Open SYnthesis Suite. https://github.
com/YosysHQ/yosys, 2012.

[70] C. X. Wolf. Project IceStorm — Lattice iCE40 FPGAs
bitstream documentaion. https://github.com/YosysHQ/
icestorm, 2015.

[71] C. X. Wolf. PicoRV32 – a size-optimized RISC-V CPU.
https://github.com/YosysHQ/picorv32, 2015.

[72] C. X. Wolf, gatecat, D. Gisselquist, S. Bazanski, M. Milanovic,
and E. Hung. nextpnr. https://github.com/YosysHQ/
nextpnr, 2018.

[73] Y. Zhou and D. Feng. Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security
testing. Cryptology ePrint Archive, Report 2005/388, Oct.
2005.

[74] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beur-
douche. HACL*: A verified modern cryptographic library. In
Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

17

https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://github.com/secworks/sha256
https://github.com/secworks/sha256
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/icestorm
https://github.com/YosysHQ/icestorm
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr

	Introduction
	Threat model and security goal
	Information-preserving refinement
	Applying IPR to HSMs

	Proving IPR
	Physical implementation
	Refinement relation and initialization
	Functional equivalence
	Physical equivalence
	Crash safety

	The Knox framework
	Nondeterminism
	Unbounded-length inputs
	Hints

	Implementation
	Evaluation
	Case studies
	PIN-protected backup HSM
	Password-hashing HSM
	TOTP token
	Summary

	Performance

	Discussion
	Emulator efficiency
	Randomness
	Allowed leakage
	Monolithic end-to-end verification

	Related work
	Conclusion

