
Nail: A practical interface generator for data formats

Julian Bangert and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

We present Nail, an interface generator that allows pro-
grammers to safely parse and generate protocols defined
by a Parser-Expression based grammar. Nail uses a richer
set of parser combinators that induce an internal repre-
sentation, obviating the need to write semantic actions.
Nail also provides solutions parsing common patterns
such as length and offset fields within binary formats that
are hard to process with existing parser generators.

1 INTRODUCTION

Code that handles untrusted inputs, such as processing
network data or parsing a file, is error-prone and is often
exploited by attackers. This is in part because attackers
have precise control over the inputs to that code, and
can craft inputs that trigger subtle corner cases in input
processing. For example, the libpng library has had 24
remotely exploitable vulnerabilities from 2007 to 2013,1

and Adobe’s PDF and Flash viewers have been notori-
ously plagued by input processing vulnerabilities. Even
relatively simple formats, such as those used by the zlib
compression library, have had input processing vulnera-
bilities in the past.2

A promising approach to avoid such vulnerabilities is
to specify a precise grammar for the input data format,
and to use a parser generator, such as lex and yacc, to
synthesize the input processing code. Developers that use
a parser generator do not need to write error-prone input
processing code on their own, and as long as the parser
generator is bug-free, the application will be safe from
input processing vulnerabilities. Unfortunately, applying
this approach in practice, using state-of-the-art parser
generators, still requires too much manual programmer
effort, making it error-prone, as we describe next.

First, parser generators typically parse inputs into an
abstract syntax tree (AST) that corresponds to the gram-
mar. In order to produce a data structure that the rest
of the application code can easily process, application
developers must write explicit semantic actions that up-

1http://www.cvedetails.com/vulnerability-list/
vendor_id-7294/Libpng.html

2http://www.cvedetails.com/vulnerability-list/
vendor_id-72/product_id-1820/GNU-Zlib.html

date the application’s internal representation of the data
based on each AST node. Writing these semantic actions
by hand is error-prone, much like other input processing
code, and mistakes can result in memory corruption bugs
or misinterpreted inputs. Writing these semantic actions
also requires the programmer to describe the structure
of the input three times—once to describe the grammar,
once to describe the internal data structure, and once
again in the semantic actions that translate the gram-
mar into the data structure—leading to another potential
source of bugs and inconsistencies.

Second, applications often need to produce output in
the same format as their input—for example, applica-
tions might both read and write files, or both receive
and send network packets. Most parser generators just
focus on parsing an input, rather than producing an out-
put, thus requiring the programmer to manually construct
outputs, which is error-prone. Some parser generators,
such as Boost.Spirit [7], allow reusing the grammar for
generating output from the internal representation. How-
ever, those generators require yet another set of semantic
actions to be written, transforming the internal represen-
tation into an AST.

Third, data formats, especially binary formats such
as PNG or PDF, can have structural dependencies, such
as offset, length, and checksum fields that are hard to
express in state-of-the-art grammar languages. Often the
programmer is required to manually write control code,
such as re-positioning the parser’s input stream, looping
over the invocation of a sub-parser, or computing a check-
sum over raw input bytes. Besides leaving much room
for errors with offset arithmetic, such code is usually not
reusable when generating output.

This paper presents the initial design and implemen-
tation of Nail, a parser generator that greatly reduces
the programmer effort required to use a grammar-based
parser. Nail addresses the above three challenges with
several key ideas.

First, Nail reduces the expressiveness of its grammar
language by removing semantic actions. Existing parser
generators allow arbitrary computation to transform be-
tween the AST and the parser output. Instead, Nail de-
rives the structure of its output automatically from the
grammar, forcing the programmer to clearly separate

1

http://www.cvedetails.com/vulnerability-list/vendor_id-7294/Libpng.html
http://www.cvedetails.com/vulnerability-list/vendor_id-7294/Libpng.html
http://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html
http://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html


syntactic validation and semantic processing.
Second, this well-defined internal representation al-

lows Nail to invert the parser and generate output. How-
ever, Nail allows constants in the external format to have
multiple representations if they should not affect the se-
mantics of the data. For example, in a text protocol, the
amount of white-space separating tokens should not af-
fect the meaning of the data and consequently Nail does
not expose it to the application. As long as constants
are only used for their intended purpose of representing
syntax-only features, the generated output will have the
same semantics as the parsed input.

Third, Nail provides support for structural dependen-
cies, transparently handling offset and length fields. By
hiding the offset and length values from the programmer,
Nail ensures they remain consistent even if the data is
changed by the application.

We have implemented an initial prototype of Nail for
C. Our experience so far suggests that it is a promising
approach: we were able to construct a succinct grammar
for DNS packets, and write a small DNS server that uses
Nail for all packet input and output, and operates purely
on Nail-generated data structures, with no need for any
semantic actions.

The rest of this paper is organized as follows. §2 puts
Nail in the context of related work. §3 describes Nail’s
design. §4 discusses our initial implementation of Nail.
§5 provides some initial evaluation results. §6 suggests
several directions for future work, and §7 concludes.

2 RELATED WORK

Language safety. Input processing vulnerabilities fall
into two broad classes. The first class is memory safety
bugs, such as buffer overflows, which allow an adver-
sary to corrupt the application’s memory using specially
crafted inputs. These mistakes arise in lower-level lan-
guages that do not provide memory safety guarantees
(such as C), and can be partially mitigated by a wide
range of techniques, such as static analysis, dynamic in-
strumentation, and address space layout randomization,
that make it more difficult for an adversary to exploit
these bugs. Nail helps developers of lower-level lan-
guages avoid these bugs in the first place.

The second class is logic errors, where application
code misinterprets input data. This can lead to serious
security consequences when two systems disagree on the
meaning of a network packet or a signed message, as in
iOS3 [8] and Android4 [11] code signing and even the

3The XNU kernel and the user code-signing verifier interpret exe-
cutable metadata differently, so the code signature sees different bytes
at a virtual address than the executable that runs.

4Android applications are distributed as .zip files. Signatures are

X.509 protocol underlying SSL [12]. These mistakes
are highly application-specific, and are difficult to miti-
gate using existing techniques, and these mistakes can
occur even in high-level languages that guarantee mem-
ory safety. By allowing developers to specify their data
format just once, Nail avoids logic errors and inconsis-
tencies in parsing and output generation.

A subclass of logic errors are so-called weird ma-
chines, where implementation side effects or under-
specified parser behavior leads to a protocol or data for-
mat inadvertently becoming a Turing-complete execution
environment, even though the original grammar did not
require it. Frequently, this execution environment can
either then directly manipulate data in unwanted ways or
be used to make exploiting another bug feasible.5 Exam-
ples include x86 page tables [1], and ELF symbols and
relocations [17]. In the offensive research community,
this has been generalized into treating a program as a
weird machine [4] that operates on an input, analogous
to a virtual machine operating on bytecode. Nail avoids
these problems by having the parser precisely match the
specified grammar, eliminating under-specified behavior.

Parsing frameworks. Proper input recognition has
been shown to be an excellent way of eliminating ma-
licious inputs. In one case, a PDF parser implemented
in Coq could eliminate over 95% of known malicious
PDFs [2]. However, manually writing parser code does
not scale to the number of file formats and protocols
in existence and might result in parser code tied to one
specific application.

Generating parsers and generators from an executable
specification is the core concept of Interface Generators,
e.g. in CORBA or more recently [19]. However, while
interface generators work very well for existing gram-
mars, they do not allow full control over the format of the
output, so cannot be used to implement legacy protocols.
Very related work has been done at Bell Labs with the
PacketTypes system [14], however PacketTypes works
only as a parser, not as an output generator and does not
support the expressive power of parsing expression gram-
mars (PEGs), but rather implements a C-like structure
model enhanced with data-dependent length fields and
constraints.

Parser generators for binary protocols were first intro-
duced by the Hammer [16] parser. While previous parser
generators could also be used to write grammars for

verified with a Java program, but the program is extracted with a C
program. The Java program interprets all fields as signed, whereas the
C program treats them as unsigned, allowing one to replace files in a
signed archive, thereby undermining Android’s security model.

5For example, by compiling a return-oriented-programming exploit
from code fragments discovered on the fly.

2



binary protocols,6 doing so is practically inconvenient.
Hammer allows the programmer to specify a grammar
in terms of bits and bytes instead of characters. Com-
mon concerns, such as endianness and bit-packing are
transparently hidden by the library. Hammer implements
grammars as language-integrated parser combinators, an
approach popularized by Parsec for Haskell [13]. The
parser combinator style (to our knowledge, first described
in [5]) is a natural way of concisely expressing top-down
grammars [6]7 by composing them from one or multiple
sub-parsers. Hammer then constructs a tree of function
pointers which can be invoked to parse a given input into
an abstract syntax tree (AST).

Nail improves upon Hammer in three ways. First,
Nail generates output besides recognizing input. Second,
Nail does not require the programmer to write potentially
insecure semantic actions. Last, Nail’s structural depen-
dencies allow it to work with protocols Hammer cannot
recognize, such as protocols with offset fields or length
fields (Hammer has extremely limited support for length
fields: it can parse arrays immediately preceded by their
length).

Application use of parsers. Generated parsers have
long been used to parse human input, such as program-
ming languages and configuration files. Frequently, such
languages are often specified with a formal grammar in
an executable form.

Unfortunately, parser frameworks are seldom used
to recognize machine-created input. For example, the
security-critical and well-engineered MIT Kerberos dis-
tribution uses parser generators, but only for handling
configuration files. A notable exception is the Mongrel
web server8 which uses a grammar for HTTP written
in the Ragel [18] regular expression language. Mongrel
was re-written from scratch multiple times to achieve
better scalability and design, yet the grammar could be
re-used across all iterations [15].

3 DESIGN

3.1 Overview
To integrate the data format and the internal representa-
tion, Nail provides a rich set of combinators that not only
describe the grammar of the external protocol, but also
induce an internal model.

6Theoretically speaking, the alphabet over which a grammar is an
abstract set, so most algorithms work just as well on an alphabet of
{0,1}.

7For more background on the history of expressing grammars, see
Bryan Ford’s masters thesis [9], which also describes the default parsing
algorithm used by Hammer.

8http://mongrel2.org/

Syntax Semantics

int32 32-bit signed integer

uint4
4-bit unsigned integer,
returned as an 8-bit value

uint8 | 1..3
8-bit unsigned integer,
1 ≤ x ≤ 3

uint16 | ..512
unsigned 16-bit integer,
x ≤ 512

int32 | [1,255,512]
signed 32 bit integer,
x ∈ {1,255,512}

Figure 1: Example Nail grammars for integer values.

A central design decision of Nail is that there is a
semantic bijection between the model exposed to the
programmer and the byte-level input and output, up to
syntactic equivalence for unambiguous grammars. More
precisely, the parser is the generator’s inverse, so parsing
the generator’s output will yield the generator’s input,
but generating the parsers output does not necessarily
yield the parsers input. To understand why this makes
sense, consider a grammar for a text language that tol-
erates white space, or a binary protocol that tolerates
arbitrarily long padding.9 In that case, the program se-
mantics should be independent of the number of padding
elements in the input, and Nail therefore does not expose
that information to the programmer. We call such dis-
carded fields constants. Currently, Nail always makes a
default choice when there are multiple options to express
a constant, however Nail could be extended to allow a
grammar-specific plug-in to make these choices, say for
faster alignment, streaming applications when data is not
ready, or visual appearance in human-readable protocols.
Similarly, Nail does not preserve the layout of objects
referred to by their offsets. If the grammar contains no
constants and offset fields, there is a proper isomorphism
between model and protocol.

Nail evaluates the combinators and produces:

• type declarations for the internal model,

• the parser, a function to parse a sequence of bytes
into an instance of the model, and

• the generator, a function to create a sequence of
bytes from an instance of the model.

In the rest of this section, we present Nail’s combinators.

9Say, the physical layer of most communication protocols is a
possibly infinite sequence of symbols that are syntactically nil followed
by a pre-determined synchronization sequence and the actual contents
of the transmission.

3

http://mongrel2.org/


header = {
id uint16
qr uint1
opcode uint4
aa uint1
tc uint1
rd uint1
ra uint1
uint3 = 0
rcode uint4

}

struct header {
uint16_t id;
uint8_t qr;
uint8_t opcode;
uint8_t aa;
uint8_t tc;
uint8_t rd;
uint8_t ra;
uint8_t rcode;

};

Figure 2: Nail grammar (left) and data model (right) for a part of the
grammar for DNS packets. The uint3 = 0 grammar represents 3 bits
of padding (filled with zeroes).

Fundamental parsers. The elementary parsers of Nail
are the same as those of Hammer, signed and unsigned
integers with arbitrary lengths up to 64 bits. Note that
is possible to define parsers for sub-byte lengths, e.g.
to parse the 4-bit data offset within the TCP header; in
Nail’s syntax. Integer parsers return their value in the
smallest appropriately sized machine integer type; e.g., a
24-bit integer is stored in a 32-bit wide variable.

Integer parsers can be constrained to fall either within
an (inclusive) range of values or be an element of a set of
allowed values. Figure 1 shows several examples. Invalid
values or prematurely reaching the end of input will raise
an error when parsing input or generating output, and
abort the procedure.

Sequence. Nail’s fundamental concept is the structure
combinator. It contains a list of named parsers and un-
named constant parsers. The parser invokes each field in
sequence and returns a structure containing the result of
each parser. For example, Figure 2 shows the structure
combinator from a part of the grammar for DNS packets,
along with the data model corresponding to it.

Repetition. The many combinator takes a parser and
applies it repeatedly until it fails, returning an array of
the inner parsers results. The sepBy combinator addi-
tionally takes a constant parser, which it applies in be-
tween parsing two values, but not before parsing the
first value or after parsing the last. For example, many
uint8 represents an array of 8-bit unsigned integers, and
sepBy uint8=’,’ (many uint8 | ’0’..’9’) rec-
ognizes comma-separated lists of decimal numbers.

Semantic choice. We extend a parsing expression
grammar’s ordered choice combinator with a tag for each
choice. The parser attempts to parse each option in the
order they are specified in the field and stores the result
in a tagged union. If an option fails, the parser backtracks

choose {
A = uint8 | 1..8
B = uint16 | ..256

}

Figure 3: A simple choice combinator that parses either an 8-bit
unsigned integer with a value between 1 and 8 (option A), or a 16-bit
unsigned integer with a value of at most 256 (option B).

to the beginning of the choice combinator’s input. Care
must be taken that the choices do not overlap, because
Nail always picks the first successfully parsed choice.
If two options overlap, generated output for the latter
option is not necessarily understood identically by the
parser. However, actual data formats are usually not am-
biguous in this sense. Figure 3 demonstrates a simple
choice combinator.

3.2 Constant parsers
Nail also features constant parsers, which do not affect
the internal representation. Constant parsers can appear
instead of structure fields and as separators in the sepBy
combinator.

The simplest constant parser is an integer or array of
integers with fixed value; for example, uint8=0, or many
uint8=[1,2]. A convenience notation for strings is also
supported: many uint8 = "foo".

Wrap combinator. When implementing real protocols
with Nail, we often found that structures that consist of
many constant parsers and only one named field. This
pattern is common in binary protocols which use fixed
headers to denote the type of data structure to be parsed.
In order to keep the internal representation cleaner, we in-
troduced the wrap combinator, which takes a sequence of
parsers containing exactly one non-constant parser. The
parser and generator act as though the wrap combinator
was a sequence of parsers, but the data model does not
wrap the single value in another structure, making the
application-visible representation (and thus application
code) more concise.

For example, <uint8=’"’; many int8 |
’a’..’z’; uint8=’"’> parses a quoted lower-
case word into an array, excluding the quotation
marks.

Constant combinators. In some protocols, there
might be many ways to represent the same constant
field and there is no semantic difference between the
different syntactic representations. To support this pat-
tern, Nail allows developers to use choice and repetition
combinators together with constant fields, such as many

4



(uint8=’ ’) (representing any number of space char-
acters), or || uint8 = 0x90 || uint16 = 0x1F0F
(parsing two of the many representations of NOP on the
x86 architecture). Note that constant may have varying
lengths. This is particularly useful for handling padding
or whitespace.

As discussed above, choosing to use these combina-
tors on constant parsers removes the bijection between
byte-strings and our data model, as there are multiple
byte-strings that correspond to the same internal data
structure and the generator has to choose one of these
representations. As such, constant combinators are the
generator dual of ambiguous choice combinators in the
parser, because they lead to ambiguities in the generator.

3.3 Dependent fields
Another problem for parser generators is that binary pro-
tocols often contain length and offset fields. Conven-
tional parsing algorithms can, in principle, deal with
bounded offset fields: a finite automaton can count a
bounded integer, and we can feed the (finite) input multi-
ple times to the finite automaton. However, this imple-
mentation is both time-inefficient (it feeds many bytes
into the automaton that will just be skipped) and very
cumbersome to express with current parser generators.
Therefore, if languages with offset fields need to be
parsed with parser generators, the only currently prac-
tical way is to add ad-hoc hacks such as changing the
input pointer of the generated parser on the fly, as part of
the code in the semantic action for the offset field.

Nail will properly support both offset and length fields
and much of the following discussion applies to both,
although the current prototype only implements lengths,
which we will focus on.

We call length or offset fields dependent fields, because
during parsing, another parser depends on them, and
while generating output, their value depends on some
other structure in the data model. Dependency fields
appear in a structure combinator as would any other
integer field, but their name begins with an @ sign. A
dependency field has to appear in the grammar before it
can be used.

Dependency fields are not exposed in the data model,
but instead are transparently computed. This frees the
developer from checking that these fields are correct (for
input) or having to keep their values in sync with the rest
of the data structure (for output).

Length fields. The length combinator, n_of, takes a
dependency field n and a parser, evaluates the parser
exactly n times (i.e., setting the number of iterations to
be the n field’s value), and returns an array of the parser’s

values. When generating output, it emits the array and
writes its length to the dependency field.

Offsets. The offset combinator takes a dependency
field and a parser. It moves the parser to the position spec-
ified in the offset field and invokes the inner parser, and
then moves the input back to its original position. While
generating output, all structures referred to by offset are
generated after the main structure and the dependent
offset fields are patched up.

Checksums. In many data formats, some values de-
pend on external representation, such as checksums and
cryptographic signatures. While it would be possible to
extend our constraint language to be powerful enough to
support such constructs, we would essentially be build-
ing a separate, Turing-complete language that has all the
same pitfalls existing programs have. Therefore, we in-
tend to allow the programmer to carefully escape Nail’s
programming model and write a function that takes a
pointer to the dependent value and a range of bytes, us-
ing the raw_depend combinator.

For example, we imagine the following grammar could
be used to represent a sequence of bytes data followed
by its CRC32 checksum:

data many uint8; @checksum uint32
raw_depend @checksum data crc32

where crc32 is a function supplied by the application,
with the following signature:

bool crc32(uint32_t *out, uint8_t *in);

Because this feature compromises Nail’s security guar-
antees, it should only be used in limited circumstances
and with carefully prepared checksum functions. This
feature is not implemented in the current prototype.

4 IMPLEMENTATION

The current prototype of the Nail parser generator sup-
ports the C programming language and top-down parsers.
Options for C++ STL data models and emitting Pack-
rat parser [10] are under development. In this section,
we will discuss some particular features of our parser
implementation.

The source code of our implementation, together with
the examples described in §5 are available on GitHub at
https://github.com/jbangert/nail.

5

https://github.com/jbangert/nail


utfstring = many choose {
SUPP = {
lead uint16 | 0xD800..0xDBFF
trail uint16 | 0xDC00..0xDFFF

}
BASIC = uint16 | !0xD800..0xDFFF

}

struct utfstring {
struct {
enum { SUPP, BASIC } N_type;
union {
struct {
uint16_t lead;
uint16_t trail;

} SUPP;
uint16_t BASIC;

};
} *elem;
size_t count;

};

Figure 4: Nail grammar (left) and data model (right) for UTF-16 strings.

Parsing. A generated Nail parser makes two passes
through the input: the first to validate and recognize the
input, and the second to bind this data to the internal
model. Currently the parser is a straightforward top-
down parser, although facilities have been made to add
Packrat parsing to achieve linear parsing times.

Memory allocation. Many security vulnerabilities can
occur when heap allocations are done improperly. There-
fore, just like Hammer, Nail avoids using the heap as
much as possible, using a custom arena allocator and
allocating only fixed-size blocks from the system allo-
cator (malloc). However, Nail extends upon Hammer’s
approach and uses two arenas for each parsed input. One
arena is used for intermediate results and is released (and
zeroed) after parsing completes, whereas the other arena
is used only for allocating the result, and has to be freed
by the programmer.

Intermediate representation. Most parser generators,
such as Bison, do not have to dynamically allocate tem-
porary data, as they evaluate a semantic action on every
rule. However, as our goal is to perform as little com-
putation as possible before the input has been validated,
and we do not want to mix temporary objects with the
results of our parse, we use an append-only trace to store
intermediate parser results.

Hammer solves this problem by storing a full abstract
syntax tree. However, this abstract syntax tree is at least
an order of magnitude larger than the input, because it
stores a large tree node structure for each input byte and
for each rule reduced. This allows Hammer semantic
actions to get all of the necessary information without
ever seeing the raw input stream. However, because
we also automatically generate our second pass, which
corresponds to Hammer’s semantic actions, we can trust
it as much as we trust the parser, and thus can expose it

to the raw input stream.
Under this premise, the actions need limited informa-

tion from the recognizer to correctly handle the input
stream. In particular, the parser’s control flow branches
only at the choice, repetition, and constant combinators.
Thus, for each of those combinators, we store the mini-
mum amount of information required to reconstruct the
syntactic structure of the input. The trace is an array of
integers. Whenever the parser encounters a choice, it
appends two integers to the trace. After it successfully
parses a choice, the parser writes the number of that
choice and the length of the trace when it began parsing
that choice. When backtracking in the input, the parser
does not backtrack in the trace. This means that offsets
within the trace can be used for a Packrat hash-table to
memoize backtrack-heavy parsers.

When encountering a repetition combinator, the parser
records the number of times the inner parser succeeded,
and when encountering a constant parser of variable size,
it records how much input was consumed by the constant
parser.

In a second pass, the parser then allocates the inter-
nal representation from an arena allocator and binds the
fields to values from the input, while following the trace
to determine how many array fields to parse and which
choices to pick.

Dependency fields. During parsing, dependency fields
occur before the context in which they are used. The
parser stores their values and retrieves them afterwards
when encountering the combinator that uses them. When
generating output, the dependency field is first filled with
a filler value, then later when the first combinator that
determines this fields value is encountered, the field is
overwritten. Any further combinators using this depen-
dency will then validate that the dependency field is
correct.

6



Bootstrapping. To demonstrate the feasibility of the
Nail parser generator, our parser generator uses a Nail
parser to recognize Nail grammars. A superset of the
grammar language described in this paper is implemented
in 100 lines of Nail, which feed into about 1,000 lines
of C++ that implement the actual parser generator. Boot-
strapping is supported via an implementation of the Nail
language in the Lemon parser generator, a variant of
Yacc.

5 EVALUATION

In our preliminary evaluation of Nail, we try to answer
two questions:

• Can Nail grammars support real-world data for-
mats?

• How much programmer effort is required to build an
application that uses Nail for data input and output?

Data formats. To answer the first question, we imple-
mented two Nail grammars: one for UTF-16 encoded
strings, exposing an array of code points (shown in Fig-
ure 4), and another for a subset of DNS packets sent
to and from an authoritative name server, without la-
bel compression, as per RFC1035 (shown in Figure 5).
Furthermore, our GitHub repository contains other Nail
grammars, such as a TAP network stack that processes
Ethernet, ARP, ICMP, IP, and UDP packets, and the gram-
mar for Nail itself.10 The results suggest that Nail is a
good fit for these data formats.

Programmer effort. To answer the second question,
we implemented a functioning toy DNS server. In par-
ticular, we cloned the test DNS server from the Hammer
distribution to Nail. Hammer ships with a toy DNS
server written in 683 lines of code, excluding the Ham-
mer framework itself, that responds to any valid DNS
query with a CNAME record to the domain “spargelze.it”.
Most of this code is taken up with custom validators, se-
mantic actions, and data structure definitions, with only
52 lines of code defining the grammar with Hammer’s
combinators.

Our DNS server consists of 148 lines of C code and
48 lines of Nail grammar, and supports a custom zone
file format with A, NS, MX, and CNAME records. The
same grammar is used, together with 98 lines of C, to
implement a functional toy clone of the host command-
line tool. However, because our grammar does not yet

10https://github.com/jbangert/nail/tree/master/
examples

labels = <many { @length uint8 | 1..255
label n_of @length uint8 }

uint8 = 0>

question = {
labels labels
qtype uint16 | 1..16
qclass uint16 | [1,255]

}

answer = {
labels labels
rtype uint16 | 1..16
class uint16 | [1]
ttl uint32
@rlength uint16
rdata n_of @rlength uint8

}

dnspacket = {
id uint16
qr uint1
opcode uint4
aa uint1
tc uint1
rd uint1
ra uint1
uint3 = 0
rcode uint4
@qc uint16
@ac uint16
uint16 = 0 // authority
uint16 = 0 // additional
// We don’t support authority or
// additional sections in the prototype
questions n_of @qc question
responses n_of @ac answer

}

Figure 5: Nail grammar for DNS packets, used by our prototype DNS
server.

7

https://github.com/jbangert/nail/tree/master/examples
https://github.com/jbangert/nail/tree/master/examples


support DNS label compression, the latter tool will oc-
casionally reject valid real-world DNS responses. Both
clients have functional anti-spoofing measures.

It is hard to compare the programming effort required
to implement our toy DNS server to that of a real world
DNS server, since we have less functionality, in partic-
ular for DNS compression and additional hint records
that real-world DNS servers send. However, the closest
in functionality and intent is Dan Bernstein’s djbdns,11

which aims to be a minimalist, highly secure DNS
server. The latest release of djbdns, including various
support tools, is about 10,000 lines of C as measured
by sloccount. We expect that it is possible to build a
feature-par version with Nail that is an order of magni-
tude smaller and intend to do so.

Other issues. As Nail is work in progress, many parts
of the implementation, syntax and design are not com-
plete yet and we do not yet have meaningful performance
or security metrics.

6 FUTURE WORK

The Nail parser generator is currently a work-in-progress,
and we would appreciate feedback on our initial design
and prototype implementation. Short-term next steps
include improving the scoping of dependency fields and
adding support for offset fields.

One problem with the current design of Nail is that the
design of the grammar dictates the internal structure of
the software. This makes changing grammars or adding
Nail to existing software awkward. One possible solution
to this problem would be to implement a concept simi-
lar to relational lenses [3], which would allow the data
model to be “seen” by the rest of the program through an
isomorphism. Such an isomorphism would still be much
more concise than two sets of semantic actions, while
allowing changes in syntax, alternative representations,
and adaption to legacy systems.

Finally, we would like to demonstrate the capabilities
of Nail by implementing various binary formats “notori-
ous” for their insecurity in Nail. Nail was designed with
the idioms of formats such as PDF and PNG in mind. Ul-
timately, we want to provide examples of successful Nail
parsers throughout a network stack, from a user-space
TCP stack to a PNG de-compressor.

7 CONCLUSION

This paper presented the initial design and implemen-
tation of Nail, an interface generator for data formats.
Nail helps programmers to avoid memory corruption and

11http://cr.yp.to/djbdns.html

ambiguity vulnerabilities while reducing effort in pars-
ing and generating real-world protocols and file formats.
Nail achieves this by reducing the expressive power of
the grammar, maintaining a semantic bijection between
data formats and internal representations, and allowing
programmers to specify structural dependencies in the
data format. Preliminary experience with implementing
a DNS server using Nail suggests that this is a promising
approach.

The source code for our prototype of Nail is available
at https://github.com/jbangert/nail.

ACKNOWLEDGMENTS

We thank M. Frans Kaashoek and the anonymous re-
viewers for their feedback. This research was supported
by the DARPA Clean-slate design of Resilient, Adap-
tive, Secure Hosts (CRASH) program under contract
#N66001-10-2-4089, and by NSF award CNS-1053143.

REFERENCES

[1] Julian Bangert, Sergey Bratus, Rebecca Shapiro,
and Sean W Smith. The page-fault weird machine:
lessons in instruction-less computation. In Pro-
ceedings of the 7th USENIX Workshop on Offensive
Technologies, Washington, DC, August 2013.

[2] Andreas Bogk. Certified programming with de-
pendent types. Chaos Communication Camp, Au-
gust 2011. http://www.youtube.com/watch?
v=CmPw7eo3nQI.

[3] Aaron Bohannon, Benjamin C Pierce, and Jeffrey A
Vaughan. Relational lenses: a language for updat-
able views. In Proceedings of the 25th ACM Sym-
posium on Principles of Database Systems, pages
338–347, Chicago, IL, June 2006.

[4] Sergey Bratus, Michael E Locasto, Meredith L Pat-
terson, Len Sassaman, and Anna Shubina. Exploit
programming: From buffer overflows to weird ma-
chines and theory of computation. ;login: The Mag-
azine of Usenix & Sage, 36(6):13–21, December
2011.

[5] William H Burge. Recursive programming tech-
niques. Addison-Wesley Reading, 1975.

[6] Nils Anders Danielsson. Total parser combinators.
In Proceedings of the 15th ACM SIGPLAN Inter-
national Conference on Functional Programming,
pages 285–296, Baltimore, MD, September 2010.

8

http://cr.yp.to/djbdns.html
https://github.com/jbangert/nail
http://www.youtube.com/watch?v=CmPw7eo3nQI
http://www.youtube.com/watch?v=CmPw7eo3nQI


[7] Joel de Guzman and Hartmut Kaiser. Boost Spirit
2.5.2, October 2013. http://www.boost.org/
doc/libs/1_55_0/libs/spirit/doc/html/.

[8] Team Evaders. Swiping through modern security
features. In Proceedings of the HITB Amsterdam,
2013.

[9] Bryan Ford. Packrat parsing: a practical linear-
time algorithm with backtracking. Master’s thesis,
Massachusetts Institute of Technology, 2002.

[10] Bryan Ford. Packrat parsing: Simple, powerful,
lazy, linear time. In Proceedings of the 2002 ACM
SIGPLAN International Conference on Functional
Programming, October 2002.

[11] Jay Freeman. Yet another Android master key bug,
2013. http://www.saurik.com/id/19.

[12] Dan Kaminsky, Meredith L. Patterson, and Len
Sassaman. PKI layer cake: New collision attacks
against the global X.509 infrastructure. In Proceed-
ings of the 2010 Conference on Financial Cryptog-
raphy and Data Security, pages 289–303, January
2010.

[13] Daan Leijen and Erik Meijer. Parsec: Direct style
monadic parser combinators for the real world.
Technical Report UU-CS-2001-27, Department of
Computer Science, Universiteit Utrecht, 2001.

[14] Peter J McCann and Satish Chandra. Packet types:
abstract specification of network protocol messages.
ACM SIGCOMM Computer Communication Re-
view, 30(4):321–333, 2000.

[15] Meredith Patterson. Langsec 2011-2016.
http://prezi.com/rhlij_momvrx/
langsec-2011-2016/.

[16] Meredith Patterson and Dan Hirsch. Hammer parser
generator, March 2014. https://github.com/
UpstandingHackers/hammer.

[17] Rebecca Shapiro, Sergey Bratus, and Sean W Smith.
“Weird machines” in ELF: A spotlight on the un-
derappreciated metadata. In Proceedings of the
7th USENIX Workshop on Offensive Technologies,
Washington, DC, August 2013.

[18] Adrian D. Thurston. Parsing computer languages
with an automaton compiled from a single regular
expression. In Proceedings of the 11th Interna-
tional Conference on Implementation and Applica-
tion of Automata, pages 285–286, Taipei, Taiwan,
2006.

[19] Kenton Varda. Protocol buffers: Google’s
data interchange format, June 2008. http:
//google-opensource.blogspot.com/2008/
07/protocol-buffers-googles-data.html.

9

http://www.boost.org/doc/libs/1_55_0/libs/spirit/doc/html/
http://www.boost.org/doc/libs/1_55_0/libs/spirit/doc/html/
http://www.saurik.com/id/19
http://prezi.com/rhlij_momvrx/langsec-2011-2016/
http://prezi.com/rhlij_momvrx/langsec-2011-2016/
https://github.com/UpstandingHackers/hammer
https://github.com/UpstandingHackers/hammer
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html

	Introduction
	Related work
	Design
	Overview
	Constant parsers
	Dependent fields

	Implementation
	Evaluation
	Future work
	Conclusion

