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Abstract

Metadata-private messaging designs that scale to support
millions of users are rigid: they limit users to a single device
that is online all the time and transmits on short regular
intervals, and require users to choose precisely when each of
their buddies can message them. These requirements induce
high network and energy costs for the clients, restricting users
to communicate via one powerful device, like their desktop.

Groove is the first scalable metadata-private messaging
system that gives users flexibility: it supports users with
multiple devices, allows them to message buddies at any
time, even when those buddies are offline, and conserves the
user’s device bandwidth and energy. Groove offers flexibility
by introducing oblivious delegation, where users designate an
untrusted service provider to participate in rigid mechanisms
of metadata-private communication. It provides differential
privacy guarantees on par with rigid systems like Stadium
and Karaoke.

An evaluation of a Groove prototype on AWS with 100
servers, distributed across four data centers on two continents,
demonstrates that it can achieve 32 s of latency for 1 million
users with 50 buddies in their contact lists. Experiments
with a client running on a Pixel 4 smartphone show that
it uses about 100 MB/month of bandwidth and increases
battery consumption by S0mW (416%) compared to an idle
smartphone. These measurements show that Groove makes it
realistic to hide messaging metadata on a mobile device.

1 Introduction

There has been significant recent progress in scalable
metadata-private messaging systems. These systems hide
who communicates with whom and can support more users
by deploying proportionally more servers (supporting a large
user base is crucial for privacy [9]). However, systems that
are scalable and provide strong privacy guarantees impose
rigid requirements on users [16, 19, 20,26, 27], like needing
users to synchronize messaging into rounds and coordinate
precisely in which rounds they will communicate with their
buddy. If two buddies are not simultaneously online, they
cannot communicate. Naively storing a message for a buddy
to fetch later exposes the age of the message, which can be
used to correlate the sender. Instead, this line of work has
relied on expensive dialing protocols [21,27] to coordinate
conversations, which are impractical for mobile devices.
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Rigidity in private messaging systems is inherently
costly for clients. Since communicating users must be
simultaneously online, an attacker monitoring the network
can correlate buddies over time. To combat such attacks,
clients submit and poll for messages at every round, leading
to high bandwidth and energy overhead. This makes running
a client on a phone prohibitively expensive and effectively
requires the users to have an always-on desktop computer
(e.g., at home). However, many users do not have such a
computer, e.g., if they use a laptop that they carry with them.
Finally, using metadata-private messengers from multiple
devices poses a risk if the devices become partitioned and
accidentally send multiple message to the same buddy in the
same round (which reveals the sender). These limitations
stand out compared to traditional messaging systems (without
metadata privacy) and hinder adoption.

We present Groove, the first flexible messaging system
that provides metadata privacy and scales well to support a
large user base. Groove’s users can send messages to any
of their buddies from any device, and can go offline and
retrieve messages sent to them later. Groove provides similar
messaging latency to recent metadata-private communication
systems under the same global active adversary model [15, 16,
19,20, 26]. Groove builds on mixnets, where servers shuffle
messages in batches, to unlink senders from their messages.
However, mixnets are inherently rigid: they require all users
to submit a message in every round to mix all conversations
together, and for all users to receive messages from the mixnet
at the same rate to avoid correlated traffic patterns between
buddies. To handle this rigidity, Groove introduces oblivious
delegation to an untrusted service provider. Groove clients
interact with a service provider who participates in the rigid
mixnet protocol on their behalf and synchronizes multiple
devices. Oblivious delegation ensures that an adversary can
not learn anything about users’ communication metadata
by compromising their service providers, even if the users’
devices go offline or get partitioned. Achieving oblivious
delegation involves three mechanisms, as follows.

Non-interactive setup (Figure 1a). Establishing a message
channel between buddies requires them to submit just one
setup message through the mixnet, without waiting for their
peer’s response. A non-interactive setup protocol is crucial
since buddies might not be simultaneously online to run the



epochs:

1
2
3

T'= = =
(goes offline)

Users Service Provider

Mixnet

(a) Non-interactive Setup. Groove’s async
setup protocol enables metadata-private
messaging between buddies, even if they
are not simultaneously online. The service
provider buffers setup messages and submits
them to the mixnet at the right time.
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(b) Uncoordinated Replacement. Groove
allows multiple clients (on different devices)
of the same user to interact with the system
safely, even if they cannot coordinate. Clients
can replace old messages buffered at the
service provider to support new buddies.
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(¢) Oblivious Fetch. Groove’s clients avoid
retrieving cover traffic messages stored at
the service provider, without revealing which
messages they fetch. The servers only
process a user’s messages once per client,
regardless of the number of messages stored.

Figure 1: The three mechanisms that allow oblivious delegation in Groove.

protocol.

Groove hides communication metadata even if

sensitive information to the service provider (e.g., which

only one buddy attempts this setup (or their peer’s provider
discards the other setup message). Message channels persist
for long epochs, and this protocol allows Alice to prepare
setup messages at her service provider well in advance and
for many epochs. Service providers, if they’re honest, submit
setup messages to the mixnet at the right time, allowing

Alice’s buddies to send her messages even she goes offline.

If the service provider misbehaves, messages might be
(noticeably) lost but privacy is preserved, and Alice can switch
to a different provider.

Uncoordinated replacement (Figure 1b). The adversary
may partition a user’s devices and prevent them from deciding
which device communicates at a given round. If several
devices of the same user accidentally submit messages to
the same buddy in the same round, they can expose the
recipient, who receives extra messages. Groove solves the
issue with a new message replacement technique: each
device can independently refresh the messages queued at

the service provider without coordinating with other devices.

Crucially, the protocol ensures that no metadata is revealed
to the adversary, even if the provider is rogue and submits all
messages (old and new) to the mixnet. This is achieved
through path selection and message-tagging mechanisms,
which ensure that each buddy receives at most one message
from all of the user’s devices. The replacement protocol
allows clients to update setup messages, and hence to add

buddies after preparing message channels for future epochs.

It also allows users to switch between their devices, like
traditional messaging applications.

Efficient messaging with many buddies (Figure Ic).

Groove avoids expensive dialing (as in [21,27]) by keeping
a message channel open for each of a user’s buddies. To
minimize client costs when having many message channels,
Groove’s clients use a submission protocol that avoids sending
a cover message for each idle channel, and a fetch protocol

that avoids retrieving cover messages from idle channels.

Crucially, both protocols are oblivious and do not reveal

channels were active and carried real messages from buddies).
Finally, Groove minimizes the cost that each message channel
induces on the mixnet, with the most crucial improvement
over prior work being the memory footprint. Groove supports
75M parallel message exchanges with 100 servers (prior work
supports 1M—10M parallel message exchanges in the same
deployment [16, 19, 20, 26]).

We analyze Groove’s design and show that it achieves
differential privacy against an attacker who has complete
control over the network and has the power to compromise
many servers that make up the system (including all service
providers). Through this analysis, we choose the system’s
parameters that would provide a strong degree of privacy.

To demonstrate that Groove can support a large user
base, we built a prototype and evaluated its performance
on AWS servers distributed across four data centers. We
also implemented a mobile client, deployed it on a Pixel 4
phone, and measured Groove in terms of battery and network
usage. We show that Groove scales well with the number
of servers and using 100 servers, it supports 1-3 million
users sending and receiving messages from 50 buddies every
32-80 seconds. The client uses 54 MB-106 MB of network
bandwidth per month and its battery consumption increases
by 16% compared to the idle phone (when using cellular
data). We recognize that Groove’s latency is high compared
to traditional messaging apps; nonetheless, it removes the
rigid client requirements of previous designs and enables
large-scale metadata-private messaging for mobile users.

In summary, our contributions are the following:

* oblivious delegation, an approach for offloading rigid
mixnet requirements to an untrusted service provider, which
enables client flexibility;

* Groove, a scalable metadata-private messaging system, and
an analysis proving Groove’s privacy guarantee;

e an implementation of Groove and an experimental
evaluation of its performance, showing that it can support
mobile clients and scale well to handle a large user base.



2 Related Work

Differential privacy. Groove’s approach of providing
differentially-private communication using a mixnet is based
on prior work [19,26,27]. However, these earlier designs
impose rigid requirements on users. First, users must be
simultaneously online, and their clients must send and receive
messages at every round to communicate. Second, users can
only run a client on a single device, which also sidesteps the
problem of device partitions. When a user’s devices cannot
coordinate, a conversation (which normally has one message
per round) might end up with multiple messages per round,
revealing the recipient. Groove addresses these problems
through oblivious delegation.

Private Information Retrieval (PIR). PIR protocols
support storing and retrieving information asynchronously
from a database, without revealing anything about which
message is retrieved [7,23]. These protocols could provide
a good degree of flexibility to clients: they have low client
bandwidth requirements and allow the recipient to read a

message at any time after the sender deposits it in a database.

However, as users’ messages accumulate in the database,
processing each client’s PIR query requires more work
from the database server, limiting scalability. For example,
Pung [2,4] supports up to 20k—60k fetches per minute with
1M messages in its database. Express [11] optimizes PIR
retrievals at the cost of making writes more expensive, but
still the system only supports sending tens of messages per
second across all clients. In contrast, Groove clients induce
the same amount of work independent of how many messages
accumulate in the system, enabling millions of users to send
and receive messages every minute.

Communicating with many buddies. Metadata-private
messaging systems minimize the load on the servers and
overhead for the client by limiting users to receive messages
from one buddy at a time [2,4, 16, 19,26,27]. They require
buddies to run a hefty dialing protocol to agree on when to
communicate. For PIR systems, such as Pung and Addra[1,4],
relying on dialing is even more essential; since reading is
expensive for the servers, clients cannot retrieve messages
from each buddy all the time. Many systems [1,2, 16, 19,26]
propose using Alpenhorn’s differentially private dialing [21],
which takes about 5 minutes to coordinate between buddies

and requires 62 GB of client bandwidth per month [21, §8.2].

Groove mitigates the clients’ costs through its oblivious
message fetching protocol and minimizes the load each
message channel induces on the system, so users can keep
channels with many buddies (e.g., 50 buddies per user
in our implementation). Dialing may also be seen as a

limited form of asynchronous messaging between users.

The Vuvuzela [27] and Alpenhorn [21] dialing protocols
use at least 3000 x more bandwidth on clients than Groove,

when configured to provide 1-minute messaging latency like
Groove.

Metadata-private communication over persistent
channels. Groove’s users communicate over persistent
message channels, similar to Tor’s circuits. However, Tor
does not protect users from a strong adversary model. An
adversary monitoring the network can infer the path of users’
messages across relays by correlating incoming and outgoing
packets. Hydra [25] uses circuits to connect two endpoints,
like Tor’s hidden services [5], but does not hide the number
of active conversations to the adversary [25, §4.61], which
allows for intersection attacks. Yodel [20] uses a mixnet with
persistent circuits but requires two communicating users to
be online at the same time to coordinate their circuits. Both
Hydra and Yodel support only one device per user and have
clients send and receive messages every round, two rigid
shortcomings that Groove addresses.

Flexible clients through trusted servers. Loopix [24] hides
metadata by relaying messages through a mixnet. It addresses
the client flexibility problem by storing messages for users at
trusted service providers. The service providers sees when
a user receives a message, and can thus perform intersection
attacks with other users who were online in time to send
this message. Thus, users must make a tricky decision
about which service providers they trust. Furthermore, the
service provider is a singular target for learning about the
relationships of its users. Pond [17] requires users to run
a trusted server themselves. This leads to a simpler design
than Groove (e.g., partitioned devices are not a concern) but
limits the system to savvy users who can securely operate
their own servers.! This is problematic for metadata-private
communication, which benefits from a large user base [9]. In
Groove, users maintain privacy even if their service providers
fall under the attacker’s control, so they do not need to operate
servers themselves.

3 Overview

Groove allows buddies that share a secret to secretly exchange
short text messages (e.g., 100B). Each buddy can run clients
on multiple devices and seamlessly switch between them.
Service providers bridge between the rigid mixnet protocol
and the flexible clients, that can send and receive messages
asynchronously. Each user designates a service provider and
runs Groove’s oblivious protocols for setting up message
channels (Figure la), replacing messages (Figure 1b), and
fetching messages (Figure 1c). The service provider submits
messages to the mixnet on the user’s behalf and stores
messages that the user receives from the mixnet. It also helps
the user synchronize their clients across all devices. Users

'Running a personal server in the cloud undermines security against a
strong adversary that may be able to compel the cloud operator to disclose
data or exploit side channels by deploying a VM on the same machine, and
operating a physical server requires significant effort and expertise.



need not trust their service provider for privacy. To anonymize
messages, Groove uses a parallel mixnet [12]. Parallel
mixnets scale well with the number of servers by offering
many parallel routes for processing messages. Groove extends
the servers’ message processing logic to enable oblivious
delegation, and it is otherwise agnostic to the mixnet’s internal
design choices, such as the server topology or verification
protocol (that ensures servers process messages correctly).

3.1 Threat model

Groove aims to hide its users’ communication metadata from
a global active attacker that controls all network links. In
particular, this attacker observes when clients (dis)connect
from the network and may partition users’ devices. The
attacker may also control all service providers, and each
mixnet server with some probability f, which is provided
as an assumption in the system’s configuration. A smaller f
yields better performance at the expense of a stronger trust

assumption. The attacker can also run arbitrarily many clients.

Still, an attacker could learn about a user’s communication
by directly compromising their device or the devices of their
buddies [3], although forward secrecy prevents them from
learning about the user’s communication in the past. Finally,
Groove assumes that the attacker is computationally bounded,
so standard cryptographic primitives, such as hash functions
and encryption schemes, are secure.

3.2 Goals

Privacy. Groove achieves differential privacy [10]. Consider
an attacker and their view of the system through all network
links and service providers, and the mixnet servers and clients
that they operate. Groove ensures that the attacker’s view
is likely to be the same whether two users, call them Alice
and Bob, are buddies or not. More formally, consider the

attacker’s observations & and the following two scenarios.

In one scenario, Alice and Bob are buddies and can chat
(denoted by A < B), and in the other, they are not buddies
and cannot chat (denoted by A 4 B). Groove ensures the
following inequalities for small €,5 > 0:

Pr[O|A < B] < e Pr[O|A ¢ B]+ 6, (1)
Pr(O)|A 4 B| < Pr|O|A < B]+ 6

That is, the probability for any observations the attacker could
make is close under both scenarios (up to small constants
€,0). Informally, Alice being buddies with Bob appears to

the adversary almost as likely as them not being buddies.

Thus, Alice could plausibly deny being buddies with Bob or
claim to be buddies with anyone else. This privacy guarantee
holds even if Alice or Bob is the sole honest user of a rogue
service provider, the attacker partitions their devices, and
observes the system for a long time.

Client flexibility. Groove should not impose strong timing
or resource requirements on clients. It should allow Bob to
retrieve Alice’s message at any time after it reaches Bob’s

service provider and accommodate clients with network and
battery constraints (that need to minimize communication or
that might go offline). In particular, Groove should support
clients running on mobile devices. At the same time, Groove
should allow other clients to connect more often and achieve
lower message latency. Finally, Groove should enable users
to run clients on multiple devices and switch between them.

Performance. Groove aims to support millions of users with
dozens of buddies. Once Alice sends a message, Bob can
retrieve it with a latency on the order of a minute. The system
should scale, i.e., provide the same performance to a larger
user base by deploying proportionally more servers.

Availability. Groove’s availability guarantees in the face
of failing servers should primarily come from the mixnet
and not degrade by its oblivious delegation approach. An
overloaded or downed service provider can prevent service
to its users, but the system’s availability for users of
other service providers should not be affected. Since the
service provider is untrusted, it can use replication for better
availability guarantees without security implications for its
users. Moreover, having untrusted service providers also
allows users to change to another provider if they suspect
their provider is preventing service without risking exposing
sensitive information to more parties (the current and new
provider). We describe how users can detect and combat such
providers in Groove’s design (§5).

4 Background

Groove’s users send and receive messages over message
channels called circuits. A circuit is a fixed route of servers
in the mixnet that persists for an epoch, which consists of
many communication rounds (e.g., an hour to a day’s worth).
Each circuit connects a user’s service provider to a dead drop,
an ephemeral address where users exchange messages. Two
buddies coordinate pseudorandom dead drops using a shared
secret. The mixnet ensures that an adversary cannot correlate
which service provider connects to what dead drop using
noise messages. Groove borrows this communication model
from previous systems [5, 19, 20, 25] (see §2), but changes
the way circuits establish to support oblivious delegation. We
summarize below the existing techniques that Groove uses to
simplify the exposition of its new mechanisms in §5.

Like other mixnets [15,26,27], Groove’s mixnet servers
have unique public keys per epoch. Clients know the
servers’ public keys, e.g., through a transparent public key
infrastructure [18, 22]. The way rounds are kicked-off
depends on the mixnet, which Groove abstracts; e.g., many
designs use an untrusted coordinator that announces to all
mix servers when to start new rounds [15,16,19,20,26,27].

Messaging over circuits and dead drops. The circuit setup
message is onion encrypted with the public keys of the
servers on the route. Each onion layer includes the next



server’s ID, an ephemeral Diffie-Hellman public key, and
an authentication code that ensures no earlier server has
modified the onion. Each server completes the Diffie-Hellman
handshake to derive a shared symmetric key with the client,
and uses this key to verify the authentication code. After
receiving messages from all servers in the previous hop, the
server deduplicates and shuffles messages, and forwards them
to the next hop. Servers store their shuffle’s permutation and
the symmetric keys; later, they use these records to process
messages over the circuit.

During a communication round, mixnet servers process one
message on each circuit. Each message is onion encrypted
with the symmetric keys registered at circuit setup. The
mixnet’s servers shuffle and decrypt messages they receive
using the permutation and symmetric keys they stored earlier.
Servers deduplicate messages on the same circuit. If a
server does not receive a message on a circuit, it fills in a
cover message to ensure all circuits have one message. The
symmetric encryption ensures that any random message that
a server fills in is indistinguishable from a real message to
other servers along the route. When two circuits connect to
the same dead drop, the server hosting its address swaps the
messages on these circuits and sends them back through the
circuits, which is how buddies exchange messages.

Noise. Previous work shows how mixnet servers can add
noise messages to protect metadata [19,27]. We apply this
technique in the context of Groove’s circuits. For each inter-
server mixnet link, each server decides on the number of noise
circuits to route over that link by drawing from the Poisson
distribution. Servers generate two kinds of noise: “doubles’
which is a pair of circuits bound to the same dead drop to
obscure the number of buddy-relationships, and “singles’
which is a circuit terminating at a dead drop without a pair,
to obscure the case where one of the buddies does not create
their circuit to the shared dead drop. Like Karaoke [19],
Groove uses Bloom filters to ensure that malicious servers do
not drop the noise circuits.

)

s

5 Design

Figure 1 illustrates the parties in Groove: users, clients
running on different types of devices, service providers, and
the mixnet. When Alice and Bob become buddies, they add
each other to their address books, and their clients establish
a fresh shared secret. This secret allows Alice and Bob’s
clients to authenticate and encrypt messages (end-to-end) and
coordinate dead drops for exchanging messages. The clients
might create this secret out-of-band (e.g., by scanning QR
codes if users meet in person) or via a metadata-private “add-
friend” protocol (like in Alpenhorn’s protocol suite [21]%).
Users designate a service provider that stores their
messages and participates in the rigid mixnet protocol on their

2 Alpenhorn’s add-friend protocol differs from its dialing protocol, which
precedes every conversation—a cost that Groove avoids.

while true {
<-client.Schedule

if oncePerDay {
client.RefreshCircuits()
client.ForwardSecrecy()

}
buddy, msg := client.OutgoingMessageQueue.Pop()

if buddy == nil {

msg = random.Bytes(MessageSize)
3
client.SendMessage(buddy, msg)
client.CheckForMessages()

3

Figure 2: The client’s main loop. The client refreshes circuits once
per day, at that time it also evolves the multidevice and buddy keys
for forward secrecy. It sends and receives messages according to
the schedule, which can be configured to balance battery life with
communication rate.

behalf. The mixnet operates in rounds, where messages are
exchanged over circuits. We envision rounds being relatively
frequent, e.g., starting every 30 seconds to a minute. Every
round, service providers submit messages to the mixnet. The
mix servers shuffle messages and ensure each circuit carries
precisely one message per round (by deduplicating messages
on the same circuit and filling in a cover message when one is
missing, as §4 describes). Messages are exchanged between
circuits at the end of the mixnet and then sent back through
the mixnet towards the service providers, where users can
fetch their messages.

In the remainder of this section, we introduce the concept of
client schedules, present the protocols for oblivious delegation
from Figure 1, and the mechanism for forward secrecy. Our
descriptions follow the client’s operation, outlined in Figure 2,
and its interactions with the service provider via the API
depicted in Figure 3.

5.1 Client schedules

To achieve Groove’s privacy goal, the network traffic pattern
between a user’s client and their service provider must not
reveal information about the user’s communication with
their buddies. In particular, this pattern includes when the
client initiates requests to the service provider, which we
call the client’s schedule. The adversary can potentially
infer any information that goes into deciding the client’s
schedule, and hence it should be independent of the user’s
buddy-relationships, which Groove aims to hide. Groove
gives flexibility for clients to operate on their own schedule,
independent from other clients. In this manner, it can
accommodate clients on low-power devices with lightweight
schedules without impacting other clients. A simple and
safe schedule is to communicate with the service provider
at regular intervals. Clients can use different intervals to
trade network and power consumption for communication
latency. They can also piggyback on other device wake-



var B = MaxBuddies
type Onion = [MessageSize + SymmetricOnionOverhead]byte

rpc BeginTransaction() *Txn
rpc (t *Txn) Commit() error

rpc (t *Txn) GetAddressBook() ([lbyte, int)
rpc (t *Txn) SetAddressBook(data [Jbyte, round int)

// RPC to set the circuit setup onions for an epoch
// Each buddy corresponds to 2 circuits.
rpc (t *Txn) SetEpochOutgoing(epoch int, onions [B][2][]byte)

// RPC to fetch messages from our buddies.

rpc (t *Txn) GetHeaders(epoch int, round int) [BJ][2]byte

rpc (t *Txn) ShuffleInbox(ShuffleParams) [][Ibyte

rpc (t *Txn) FetchInbox(DHkey [Jbyte, indices [Jint) [J[Jbyte

// RPCs to queue a message for a buddy.
rpc (t *Txn) GetRoundOutgoing(epoch int, round int) RoundData

rpc (t *Txn) SetRoundOutgoing(epoch int,round int,rd RoundData)

type RoundData struct {
// Messages are split into two, one for each buddy circuit.
Onion [2]Onion
// Previously sent message for this round.
OutboundMsg [Jbyte
}

Figure 3: Service provider API. Clients use these RPCs
asynchronously to setup circuits to their buddies and send/receive
messages through them.

ups (like checking for software updates) to interact with the
service provider at a relatively low cost.

Clients can change their communication patterns if this
change is independent of the user’s buddies. For instance,
it is safe for Alice’s client to skip transmissions due to a
network outage or because Alice boards a flight and her
phone disconnects from the internet. It is also safe for users
to have correlated schedules, as long as the correlation is
not caused by their relationship status (being buddies or not).
For example, users in the same time zone may prefer their
devices to be more conservative during the day when on
battery, but less at night when near a power outlet. Such
correlations do not leak new information to the attacker
(who can already observe their IP addresses and deduce
their geographic locations). However, changes in the client’s
network patterns that depend on a user’s buddies are unsafe;
e.g., if Bob’s client stops sending messages whenever Alice’s
device goes offline, an adversary might infer that Bob is
connected with Alice.

5.2 Non-interactive circuit setup

Groove splits time into epochs, which correspond to the
circuits’ lifetimes. Periodically, e.g., once a day, clients
call RefreshCircuits to generate circuit setup messages
and upload them to their service provider (see the client’s
main loop in Figure 2). The service provider queues these
messages and sends them to the mixnet at the appropriate
time (sending circuit setup messages for the next epoch when
the preceding epoch nears its end), even if all of the user’s
clients go offline. Users exchange messages over circuits,

func (c *Client) RefreshCircuits() error {
epochs := c.serviceProvider.UpcomingEpochs()
txn := c.serviceProvider.BeginTransaction()

// Get address book and epoch of last update.
addressBook, epochUpdated := txn.GetAddressBook()
addressBookKey := c.MultiDeviceKey[epochUpdated]

// Merge address books (buddy lists) across devices.
prevBuddies := Decrypt(addressBookKey, addressBook)
c.buddies = MergeAddressBooks(prevBuddies, c.buddies)

// Pad the buddy list so its size doesn't reveal anything
// to the provider and so we generate noise onions below.
if len(c.buddies) < MaxBuddies {

c.buddies = append(c.buddies, GenerateFakeBuddies())
3

newBook:= Encrypt(c.MultiDeviceKey[c.currentEpoch],c.buddies)

txn.SetAddressBook (newBook, c.currentEpoch)

for epoch := range epochs {
var onions [MaxBuddies][2][]byte
for i, buddy := range c.buddies {
// Devices use the same PRNG to choose circuit
// routes & tags, enabling deduping setup messages.
randRouteTag

}
txn.SetEpochOutgoing(epoch, onions)

3

return txn.Commit()

3

Figure 4: Pseudocode for updating a client’s address book and
corresponding circuit setup onions for upcoming epochs, which are
stored on the service provider. It is safe for multiple devices to run
this function concurrently.

so adding or removing buddies only takes effect on epoch
boundaries, when circuits are established. The more epochs
a client prepares for in advance (by uploading circuit setup
messages for future epochs in RefreshCircuits), the longer
the user can go offline and keep receiving messages from
their buddies. If all of a user’s clients remain offline beyond
this number of epochs, Groove will eventually not be able
to establish circuits with the user’s buddies, preventing them
from communicating. Differential privacy is still maintained,
however, due to mixnet noise during circuit setup. The
epoch’s duration is a knob that allows Groove to trade less
client communication for higher latency in setting up circuits
with new buddies.

Figure 4 gives the pseudocode for RefreshCircuits.
First, the client synchronizes the user’s contacts through the
service provider, since the user might have added or removed
a buddy through another device. The service provider’s
BeginTransaction and Commit APIs allow each of the
user’s clients to retrieve and upload data atomically with
respect to the user’s other clients, which may simultaneously
call RefreshCircuits. Rogue providers can break the
transactional semantics or deliver different address books
to different clients, leading clients to set up circuits for stale
address books; Groove protects against such providers, as we
prove in §6. The client retrieves the address book from the

:= PRNG(i, epoch, c.MultiDeviceKey[epoch])
onions[i][@] = GenCircuitSetupMsg(randRouteTag,buddy, @)
onions[i][1] = GenCircuitSetupMsg(randRouteTag,buddy, 1)



service provider, appends new buddies to the first available
slots, and pushes the new address book to the service provider.
Clients pad the address book to MaxBuddies slots and encrypt
it under the multidevice key, which hides when users add or
remove buddies.

Next, the client prepares two circuit setup messages for
each buddy and many upcoming epochs (e.g., for the next
month) and uploads these messages to the service provider.
The reason for creating two circuits per buddy, rather than
one circuit, is to allow clients to fake connections to buddies
when the user has less than MaxBuddies friends, hiding their
number of friends. In this case, the client creates two “cover
circuits” to one dead drop, so there are precisely two circuit
setup messages to all dead drops a client uses (regardless of
the number of buddies the user has). The client learns the
epoch number from the service provider and relies on it to
submit circuit setup messages at the right epoch; however, the
provider can cheat. Thus, the client writes the epoch number
in each onion layer, so the mixnet servers can discard circuit
setup messages the provider sends at the wrong time. As one
epoch nears the end, the mixnet runs circuit setup for the next
epoch, so circuits are ready at all times to route messages
between buddies. The mixnet’s servers then process the setup
messages as in previous works (§4).

One issue is that Groove must ensure privacy when one
user establishes a circuit and their buddy does not. Groove
handles this challenge by noising the circuit setup step with
cover circuits generated by the mix servers. The cover
circuits ensure that, regardless of whether Alice and Bob
are buddies, the attacker observes the same traffic pattern (on
the network and to dead drops). Groove applies Karaoke’s
noising technique [19], of creating “single” and “double” dead
drop accesses, to circuit setup messages (summarized in §4).

Circuit setup messages in Groove are acknowledged to the
clients, which then learn whether anyone dropped their circuit
or the circuit from their buddy. This allows users to detect
active attacks and, as in previous systems [19,20], provision a
tighter privacy budget when choosing the system parameters
(and thus, achieving better performance) compared to systems
that do not detect active attacks (like [26,27]). To achieve
this in Groove, the content of circuit setup messages is a
pseudorandom ID that each user derives from the secret they
share with their buddy (or the multidevice key if the circuit
is cover). When the circuit setup message reaches the dead
drop, the server hosting that dead drop swaps the content of
messages (see §4) and returns it through the mixnet to the
user’s service provider. The next time the client connects
to the provider and learns the current epoch, it downloads
the returned IDs of the circuits from previous epochs and
checks they are correct by deriving the IDs the buddies would
use. Correct IDs acknowledge to clients that the circuit setup
message from them and their buddy had propagated to the
dead drop, so all servers in the route shuffled these messages
with the other setup messages.

5.3 Oblivious replacement

Preparing circuits for future epochs allows users to go offline
for a long time. However, users might add buddies after
submitting circuit setup messages. Groove clients can update
the circuit setup messages stored at the service provider, so
users can communicate with new buddies soon after adding
them to their address books. Each client performs this
replacement periodically, according to its schedule (Figure 2);
if there are no changes in the address book, the client uploads
fresh circuit setup messages pointing to the same dead drops.
The key challenge in performing this replacement is that,
without coordination across the user’s devices, several of their
clients might establish circuits to the same dead drop. This
will create a distinct access pattern (i.e., not the single- or
double- dead drop access patterns covered by the noise). An
attacker controlling the dead drop’s hosting server can then
associate that dead drop with the user.

Groove introduces circuit tagging, which enables safe
replacement of old setup messages without relying on
communication between a user’s devices, as illustrated
in Figure 1b. When choosing the circuit’s path,
RefreshCircuits seeds a pseudorandom number generator
(randRouteTag in Figure 4) for each epoch with the
multidevice key and the buddy’s slot number in the user’s
address book. This pseudorandom number generator is the
same across all of the user’s devices. The clients then use it
to choose the route for each address book slot and include
a pseudorandom tag derived from this generator in each
layer of the circuit’s setup message. Honest servers on the
route deduplicate circuit setup messages according to this
tag. Although the routes are the same, each client submits
different-looking messages to the service provider since the
onion encryption scheme is randomized.

This route and tag selection procedure ensures that Alice
submits circuit setup messages with the same route and tags
across all her devices for each buddy in her address book.
If all of Alice’s devices upload circuit setup messages and a
malicious service provider submits all of them, the first honest
server along each the (identical) routes of duplicate messages
observes the duplicate tags and discards the redundant
messages. This ensures the user’s circuits do not access a
dead drop an unusual number of times.

5.4 Efficient messaging

Groove uses oblivious protocols for efficiently submitting and
fetching messages over many concurrent circuits.

Sending messages. During an epoch, there are 2 X
MaxBuddies circuits available to the client for messaging.
Uploading a message to every circuit every time the client’s
schedule is triggered (Figure 2) incurs unnecessary bandwidth
costs, especially since users do not typically talk to all of
their buddies at once. Instead, the Groove client submits just
one message (split into two parts, leveraging two circuits



func (c *Client) SendMessage(buddy, msg string) error {

epoch := c.currentEpoch
round := c.nextRound
txn := c.serviceProvider.BeginTransaction()

rd := txn.GetRoundOutgoing(epoch, round)

prevMsg, prevBuddy :=
Decrypt(c.MultiDeviceKey[epoch], rd.OutMsg)

if IsRealMessage(prevMsg) {
err = "refusing to overwrite user-typed message
// Re-encrypts previous content.
msg, buddy := prevMsg, prevBuddy

} else {
msg = MsgHeader(epoch, round, buddy.key[epoch]) ++ msg

1

}

msgl, msg2 := SplitMessage(msg)

ix := GetBuddyIndex(buddy)

onionl:= EncryptSymOnion(epoch.circuits[ix][0@].keys,msgl)
onion2:= EncryptSymOnion(epoch.circuits[ix][1].keys,msg2)

txn.SetRoundOutgoing(epoch, round, RoundData{

Onion: {onionl, onion2},

OutMsg: Encrypt(c.MultiDeviceKey[epoch], {buddy, msg}),
»

return txn.Commit(), err
Figure 5: Client pseudocode for sending messages.

per buddy) and does not reveal the designated circuits to the
service provider. The service provider then broadcasts the
message on all of the user’s circuits (i.e., the first half of
the message on even circuits, and the second half on odd
circuits). Messages are encrypted end-to-end, so only the
intended recipient can decrypt them. If a rogue provider
does not broadcast a message, the first honest mix server on
each path will fill in a cover message, ensuring buddies keep
receiving messages at the same rate (§4). Figure 5 gives the
client’s pseudocode for sending messages.

Fetching messages. The recipient’s service provider receives
messages from the mixnet (one message per circuit per round)
and stores them for the clients to fetch later. Clients should
avoid fetching cover messages to minimize their bandwidth
and energy costs (e.g., messages that mixnet servers fill in or
that are intended for another buddy), and at the same time,
hide which circuits carry real messages to hide when someone
messages the user. We could use PIR to fetch messages,
but this comes at high cost and complexity clients and the
service provider, especially as messages accumulate. Instead,
Groove’s fetch protocol relies on mixing messages, where a
set of servers processes the messages from the provider just
once regardless of the number of messages a client retrieves.
We describe it following the illustration in Figure 1c and the
pseudocode in Figure 6.

When Bob’s client calls CheckForMessages from its main
loop (Figure 2), it first retrieves from the service provider
a short header for each stored message (e.g., two bytes per
buddy). The header acts as a pseudorandom flag, shared
between the two buddies: when Alice sends a message to

func (c *Client) CheckForMessages(epoch int) ([Jint,[]1[Jbyte){
round := c.GetNextRound()
mixers := RandomMixnetPath(11) // Path of length 11

hdrs := c.serviceProvider.GetHeaders(epoch, round)

// Identify the indices of real messages from buddies
indxs = []
for i, buddy := range c.buddies {
if hdrs[i] == MsgHeader(epoch, round, buddy.key[epoch]){
indxs = append(indxs, i)
3
3

// Shuffle user's inbox with a fresh key
pk, sk := GenerateDHKeypair()

nonces := c.serviceProvider.ShuffleInbox(ShuffleParams{
Epoch: epoch,
Round: round,
PublicKey: pk,
Mixers: mixers,
1))

// Predict the indices after mixing step in ShuffleInbox
shuffledIxs := PredictPositions(sk, mixers, nonces, indxs)

// Ensure we fetch a constant number of messages
PadWithFakeRequests(shuffledIxs)

// Fetch messages at the (shuffled) indices
onions := c.serviceProvider.FetchInbox(shuffledIxs)

// Remove onion encryption from ShufflelInbox's mixing step
msgs := DecryptOnions(onions, sk, mixers, nonces)

// Map the messages back to the correct buddy
Unshuffle(msgs, sk, mixers, nonces)

return indxs, msgs
3
Figure 6: Client pseudocode for oblivious fetch. Clients first fetch
headers from the service provider and identify indices of interest.
Finally, they request the shuffled indexes corresponding to the result
of the mixing step of the oblivious fetch.

Bob, her client derives the header’s value from the current
round and the key that Alice and Bob share, and sends it along
with the content (inside the onion). Bob’s client derives the
same header and compares it against the header from Alice’s
circuit (users only need to check one of the circuits in the
pair). If the header values match, his client knows to fetch the
corresponding message next. To avoid revealing messaging
rates between buddies, the service provider must not learn
from which circuits Bob fetches messages. Groove hides this
by mixing Bob’s messages again, as follows.
CheckForMessages instructs the service provider to
submit all messages pending for Bob to a “fetch mixchain,
which is a sequence of mixnet servers chosen by the client.
The client also supplies a new Diffie-Hellman public key,
which the service provider relays to the first server in the
sequence. The first server uses its secret key to complete the
Diffie-Hellman handshake and derives a shared secret with
the client; it then chooses a fresh nonce and hashes it with
this shared secret to derive an ephemeral symmetric key. The
server derives the shuffle permutation from this ephemeral
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key and encrypts the messages. The server passes its nonce,
the client’s public key, and the list of the remaining servers
to the next mixchain server, which continues in the same
fashion. The nonces ensure that a mixchain server’s output
looks freshly random, even if a rogue service provider replays
an old request. The last server passes the shuffled messages
and the nonces to the recipient’s service provider, who in turn
forwards the nonces to the client. The client then derives the
symmetric key for each server and computes the (shuffled)
position of the messages it should fetch. Finally, it fetches
messages at the shuffled indices directly from the service
provider. The freshness of the client’s Diffie-Hellman key
ensures that it accesses random-looking locations each time
it runs the protocol.

Clients download a small fixed number of messages in
every round. For example, a client could always download
six messages per round to support up to three buddies
simultaneously messaging the user. This way, the number
of messages clients retrieve does not reveal information
about messaging rates to the attacker. The oblivious fetch
mechanism also lets clients retrieve a different number of
messages to quickly catch up after being offline for an
extended time. Similarly, if there’s a burst of real messages in
some round (beyond the fixed fetch rate), the client can run a
large daily fetch procedure (e.g., for 100 messages) to catch
any missed messages at relatively low cost.

5.5 Forward secrecy

Groove achieves forward secrecy for both the message
contents as well as metadata, meaning that an adversary that
compromises a user’s device cannot retroactively decrypt
messages, determine who the user communicated with, or
who was in the user’s address book. Note, however, that an
adversary that compromises a user’s device does get to see
the device’s current address book and messages.

The challenge in achieving forward secrecy in Groove
is that user devices may be partitioned from one another,
and thus cannot refresh their keys by coordinating over the
network. To achieve forward secrecy in this setting, Groove
deterministically evolves secret keys based on the epoch: for
each passing epoch, clients hash the keys (as described below)
and erase the pre-image. Clients evolve the multidevice key,
ensuring that an adversary compromising a device cannot
track old circuit routes from the user to a dead drop, and
cannot decrypt old copies of the user’s address book. Clients
also evolve shared secrets across buddies to ensure that the
adversary cannot decrypt old messages.

Deterministically evolving keys could allow an adversary
that obtains old keys (e.g., by compromising a user’s
old powered-off phone) to derive all future keys, thereby
compromising data and metadata privacy for all epochs
since the stale compromised key, a form of post-compromise
insecurity [8]. To avoid this vulnerability, Groove involves
the servers in computing the hash function for evolving keys,

and honest servers refuse to compute this hash function for
epochs in the past or that are more than T epochs in the
future. This limits the vulnerability window by ensuring that
an adversary with access to older keys cannot evolve them
forward to decrypt newer user data or metadata.

Realizing this approach is challenging because it requires
combining secrets from two parties, without either party
learning the other’s secret. The client wants to hash a
key without giving it to the server, and the server must
not reveal its secret that would allow hashing arbitrary
values in the future. We address this by using an oblivious
pseudorandom function (OPRF), specifically, the verifiable
DH-OPREF construction from [13]. Groove’s clients run the
verifiable DH-OPREF protocol with each server (evolving their
keys with each server in turn). This ensures that the keys are
evolved with at least one honest server’s secret key. Clients
verify the DH-OPREF result against the server’s public key for
that epoch (§4). Verifying this result is critical here, since it
ensures that an adversary cannot cause two of a user’s devices
to diverge in their multidevice key, which would cause them
to create different circuit paths and thus leak metadata.

The client evolves keys every day (see Figure 2), deleting
keys older than T epochs from the newest key. The client
keeps keys for T epochs in the future, which allows circuit
setup messages to be prepared in advance. If the device is off
for longer than 7', the client’s newest key becomes stale, and
the servers will refuse to roll it forward with their old keys.
Thus, the duration T is a tradeoff between security and user
convenience: after T epochs offline, a device must be set up
again manually (e.g., by copying keys from another device).
If the provider lies about committing the address book, then
the evolved key on the device is also useless since it cannot
decrypt the address book.

5.6 Provider availability and switching providers

Groove’s service providers are not trusted for privacy (as
we prove in §6), but a service provider can still block
communication for its users. To address this, Groove clients
can periodically send messages to themselves (on empty
buddy circuits) and detect provider malfunction in case these
messages often do not route back intact (the provider cannot
tell which message is for a buddy and which would route
back to the user). In this case, the client notifies the user
to switch providers. Such self-addressed messages were
proposed in prior work to detect attacks [24]. Keeping
providers untrusted for privacy, however, simplifies dealing
with such availability attacks compared to prior work since
users can switch providers without risking exposing their
communication metadata to more parties. Moreover, this
property also protects against attacks that steer users towards
corrupt providers and contrasted against systems with trusted
providers (§2).

Users can also submit copies of messages to multiple
providers to ensure availability when all but one provider



fail. This is safe since Groove ensures privacy even if rogue
providers duplicate messages (by deduplicating messages in
the mixnet, §5.3). One detail when using multiple providers
is that Groove delivers only one message copy (to defend
against malicious providers submitting multiple messages).
Malicious providers can thus actively try to prevent service by
submitting corrupt messages, hoping their copies will prevail.
Users can detect this intervention and switch providers (as
discussed above).

6 Privacy analysis

Clients send and receive messages through the user’s service
provider. They communicate according to a schedule that
is independent of their buddy relationships (§5.1); thus, the
clients’ network pattern does not leak sensitive information
about the user.

Since it places the users’ trust in the mixnet’s servers as
a collective rather than their service provider, our analysis
focuses on reducing the security of Groove to the security
of the mixnet (§6.1). We analyze each oblivious protocol
and show that a more restricted attacker, who controls the
network and the same mixnet servers but not the service
provider, can obtain the same information. Groove’s design
uses a parallel mixnet as a black box that hides the sender of
messages. The dead drop-based message exchange provides
differential privacy for every epoch (since users can change
their communication patterns by setting up circuits on epoch
boundaries), similar to prior work [19,26,27]. The advanced
composition theorem [10, 3.20] allows to compute Groove’s
privacy guarantee after multiple epochs, as we do in §7.

6.1 Oblivious delegation

We now prove that the security of Groove reduces to the
mixnet; controlling the service providers does not enable an
attacker that already controls the network and some mixnet
servers to learn new information. In particular, this implies
that it is safe to be the sole user of a rogue service provider.

Theorem 1. Consider Groove’s attacker, who controls the
users’ service providers, the network, and a portion of
the mixnet servers, and his observations about the users’
communication. A restricted attacker, who only controls
the network and the same mixnet servers (but not the service
providers), can obtain the same observations.

Proof. We consider all the ways a user’s clients interact with
their service provider. These interactions take part in three
oblivious protocols (non-interactive circuit setup, oblivious
replacement, and efficient messaging). We analyze each
protocol in §6.1.1 — §6.1.3 and show that Groove’s attacker
cannot learn any information that the restricted attacker could
not obtain (e.g., by dropping network packets). O
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6.1.1 Non-interactive setup

The user’s clients synchronize address books through one
service provider. Clients always update the user’s address
book before preparing circuit setup messages (§5.2). On
each update, the client uploads the address book under fresh
encryption, padded to a fixed length (MaxBuddies), so the
service provider cannot tell whether it has changed. The
service provider may give stale address books to clients; this
is our focus in §6.1.2.

Clients also retrieve the current epoch number from their
service provider before preparing circuit setup messages. A
malicious service provider can lie about the epoch number
or submit the circuit setup messages to the mixnet at the
wrong epoch. The client writes the epoch number in every
onion layer of the setup message, and honest mix servers
discard onions with the wrong epoch number. Thus, if an
honest server exists en route, this service provider’s attack is
equivalent to a network attacker simply dropping the user’s
circuit setup messages. If there is no honest server on the
route, then even the restricted attacker can learn everything
about the circuit by observing the setup message going from
one malicious mix server to the next. (Groove mitigates this
risk by using sufficiently long mixnet routes, §7.1.)

6.1.2 Oblivious replacement & device partitions

A rogue service provider may interfere when clients replace
circuit setup messages, or collect and submit setup messages
from multiple devices. Since the attacker controls the
network, it might partition devices and prevent them from
communicating. The risk with partitioned devices is that a
rogue service provider submits circuits from different devices
and creates distinct dead drop access patterns (i.e., a dead drop
getting more than two accesses, which is not obscured by the
“single” and “double” noise). Groove solves this problem with
its mechanism for choosing circuit routes and tagging circuit
setup messages (§5.3), as we prove next.

Consider the user Alice with two partitioned devices, d
and d’, and a circuit they establish for the buddy at slot i €
[1,MaxBuddies] in their respective address books for the same
epoch. Both devices submit setup messages for circuits with
the same route and tag: they derive them from the buddy’s
slot number i, the multidevice key, and the epoch number,
which are all the same for both devices, even if their address
book differs and have different buddies for the same slot (see
Figure 4). (The multidevice key is identical on all devices
for the same epoch. If two devices use different epochs, the
mixnet will discard the circuit setup message from the device
using the wrong epoch, as described above.) If there is no
honest server on this route, then the attacker can trace Alice’s
messages through the malicious mixnet servers to the dead
drop, regardless of controlling her provider.

Otherwise, an honest mix server exists on the circuits
route. It will de-duplicate the two circuit setup messages
and ensure that only one circuit will be established. There

)



are two cases regarding the dead drops at the end of these
circuits. First, the circuits from d,d’ reach the same dead
drop. In this case, since the honest server drops one message,
the attacker’s observations will be precisely the same as if the
devices could coordinate and only one device submitted setup
messages. The second case is that device d submits a circuit
setup message to a different dead drop than device d’. A
device-partitioning attacker can cause this, e.g., by giving one
device an old address book where a now-occupied slot was
free. In this case, one of the circuits’ dead drops receives one
less circuit, i.e., becomes a “single”-access dead drop, which
is covered by Groove’s noise. The attacker could obtain the
same view by dropping one circuit setup message from Alice
on the network (even if Alice had just one device).

6.1.3 Efficient messaging

The sender’s client submits one fixed-length, onion-encrypted
message to the service provider. However, it does not contain
any information about the intended recipient and, therefore,
cannot teach the provider about the user’s communication
(the service provider broadcasts it on all circuits, §5.4).

The service provider serves messages to the recipient’s
client by routing them through the fetch mixchain, which the
client chooses when calling CheckForMessages (see §5.4).
The choice of mixchain servers is independent of the
user’s buddy-relationships, so it leaks nothing about them.
Since mixchain servers choose fresh nonces when shuffling
messages, they uses different ephemeral keys for processing
every fetch. Thus, the messages output from the fetch
mixchain always appear random to the recipient’s service
provider. Furthermore, the client chooses a new ephemeral
key each time it calls CheckForMessages, so it always
fetches messages from random-looking locations (even if the
service provider replays old headers). Therefore, having one
honest server on the fetch mixchain ensures that the client’s
pattern of retrieving messages appears random every time.

7 Implementation

We implemented a prototype of Groove in Go on top of
Yodel’s mixnet framework [20] in 20k lines of code. The
mixnet has a full-mesh server topology [19,20], which allows
Groove to scale with the number of servers. The prototype
uses ChaCha20 for symmetric onion encryption, the NaCl box
primitive to generate circuit setup onions, and the Blake2b
hash function. To implement forward secrecy with DH-OPRF,
we use BLS12-381 in the CIRCL library [6].

Communications between clients, service providers and
mixnet servers all use gRPC over TLS 1.3 for transport
security. The service provider uses BadgerDB to implement
atomic transactions and manage user state.

Our implementation includes two types of clients, for
desktop and mobile devices. The desktop client is a command-
line program, and the mobile client is built for Android using
the gomobile tool.
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Memory usage. A prominent challenge in implementing
Groove has been minimizing the circuits’ memory footprint
to allow users receive messages from any of their buddies
in parallel. With 3M users, 100 circuits per user, 100 mix
servers, and 14 mixnet hops, each server needs to keep track
of at least 42 million pieces of cryptographic state per epoch:

100 circuits x 3000000 users x x 14 hops = 42M.

100 servers
Initially, we used AES-GCM to implement Groove’s circuits,
but its state is 512B, resulting in at least 20 GB of memory
usage per mixnet server. To reduce memory, we replaced
AES-GCM with ChaCha20, which requires only 32B per
state, reducing this memory usage to 1.3 GB per server, but
increasing CPU usage due to lack of hardware acceleration.

7.1 Parameter selection

We set Groove to resist f = 20% malicious mixnet servers,
and the mixnet path length to be 14 hops (similar to prior
work with the same mixnet topology [19, 20]). As shown
in prior work, this topology requires two honest servers on
a circuit’s route, and the probability that this holds for all
four circuits that two buddies use to communicate in Groove
is >1—4-107%, assuming f = 20%. The fetch mixchain
requires only one honest server on its path, so we set its length
to 11, which fails with even smaller probability. Users send
128-byte messages, split over the two circuits they create per
buddy. Out of the 128 bytes, 2 bytes are reserved for the
pseudorandom header indicating whether the message is real
or cover traffic (§5.4), 12 bytes are reserved for the end-to-end
authentication code, and 12 bytes are reserved for a nonce.
Thus, recipients get a 102 byte encrypted text message per
buddy per mixnet round.

Noise in practice. We configure Groove to tolerate 245
epochs of active attacks and 9600 epochs of passive
observations. These parameters are comparable to the
suggested configuration in Karaoke [19], which resists the
same number of active attacks, and sustains passive attacks
for a year (if epochs are at least 1 hour long, then 9600 epochs
are over a year’s worth).

Specifically, with 100 mixnet servers, each honest server
creates 88 000 noise circuits on average in every epoch to
provide (& =1n2,8 = 10~*)-differential privacy (the same
€,0 as Vuvuzela’s implementation, and better than Karaoke’s
€ =1In4,8 = 10~* and Stadium’s € =1n 10,8 = 1074 [19,26,
27]). The more servers there are, the less noise each server
contributes (e.g., a mixnet with 50 servers requires each of
them to create 125k noise circuits for the same privacy level).
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Figure 7: Latency of circuit setup and messaging rounds with
respect to the number of circuits. The figure also compares with
Karaoke’s messaging round as a baseline (1 user relationship in
Karaoke equals 2 Groove circuits) [19]. The mixnet has 100 servers.

8 Evaluation

We use the prototype to evaluate Groove’s performance and
costs. Our experiments answer the following questions:

1. What throughput and latency can Groove achieve?

2. How does Groove scale with the number of servers?
3. What are Groove’s deployment costs?
4

. What are the costs for a mobile client in terms of battery
consumption and network usage?

5. What is the cost for a client catching up to old messages
after having been offline?

6. How does Groove’s performance compare to prior work?

First, we focus on the Groove’s servers, i.e., the service
providers and mixnet, and then on the mobile client.

8.1 Server performance and costs

Setup. We test Groove with 25-150 mixnet servers that
we deploy evenly split across 3 EC2 regions across the US
and one in Europe: us-east-1, us-east-2, us-west-2,
eu-west-1. Each server is an r5.8xlarge VM with an
Intel Platinum 8000 3.1 GHz CPU with 32 cores, 256 GB
of memory, and a 10 Gbit/s network link. We evaluate with a
single service provider on us-east-1: since service providers
only buffer and relay messages, but do not participate in
processing messages through the mixnet, the performance of
Groove’s mixnet does not depend on the number of service
providers. Only clients connected through an overloaded
service provider will experience performance issues.

We simulate hundreds of millions of circuits by having
mix servers create extra circuits. Assuming each user has up
to 50 buddies, and hence requires 100 circuits, the system

load corresponds to relationships between millions of users.

Although clients do not use these circuits, they correspond to
real conversation load on the servers. We set Groove’s system
parameters as described in §7.

Throughput and latency. We measure messaging latency

for a given circuit load in deployment of 100 mixnet servers.

To measure the latency, we measure the time from when the
service provider submits a message until the mixnet completes
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Figure 8: Scalability of the mix servers. The mixnet server load is
constant (1 million circuits per server). This experiment shows that
by having more mix servers, Groove can support more clients with
the same communication latency.

the round and returns the result to the service provider, plus
the time needed for the fetch protocol (§5.4). Users will
experience additional latency depending on their schedules
and the network RTT to their service provider. Groove is
not tied to one configuration of buddies per user, so we use
the number of circuits to quantify Groove’s load (each buddy
requires two circuits). Since Groove ensures there is one
message delivered on every circuit in every round §4, the
number of circuits sets the load on its servers.

In Figure 7, we observe that the Groove’s messaging round
latency is 32.4s, 55.9s and 79.83 s for 100M, 200M and
300M circuits, respectively. The measured latencies have
two components: The first, larger, component is mixing the
users’ messages and routing them from the source to the
destination service provider; this represents the majority of
the duration of Groove’s messaging round (28.7 s, 50.8 s and
71.3 s for 100M, 200M and 300M circuits). The second,
smaller, component (= 11% of the total duration) is the time
spent on running Groove’s fetch protocol (§5.4). For this
second part, we model an average load of clients running the
fetch protocol: we simulate fetches at the end of each round,
and we wait for all messages of a round to be fetched before
moving on to the next round. Thus, assuming the average user
sets up 100 circuits (to communicate with up to 50 buddies),
Groove could support IM—3M users with these latencies.

The duration for setting up the circuits in Groove is 13.3
minutes for 300 million circuits (Figure 7). Since circuit
setup is relatively infrequent (e.g., once a day), it can run
in the background and stretch up to an epoch’s duration.
Groove’s circuit setup is similar to a messaging round in
Karaoke [19], which also offers differential privacy, though
there is a difference in the payload size (Groove’s payload is
about 200 bytes smaller than Karaoke). For the same setup,
where the system processes 300M messages per round, a
communication round in Karaoke takes 14 minutes (Figure 7).

Scalability. We test how Groove scales with the number of
users by measuring the latency for varying deployment sizes
of 25-150 mixnet servers and keeping the number of circuits
per server constant at 1M (so the load on the system increases
proportionally to the number of servers). Figure 8 shows that



Groove scales well: it can support additional users at almost
the same latency by proportionally increasing the number of
servers. We attribute the slight latency increase to the fact
that shuffling messages together requires each server, in every
hop along the mixnet route, to wait for inputs from all other
servers that processed messages at the previous hop.

Deployment costs. With 300 million circuits, each of the
100 mixnet servers sends at about 2 Gbps at peak usage, for
a network usage of 13.4 GB per messaging round. In this
deployment, setting up circuits for one epoch uses 47.5 GB
of network data per mixnet server.

Service providers buffer messages for their users. For a
user who generates circuit setup messages for the next 30
epochs (i.e., the next month if epochs last a day), the storage
requirement for circuit setup is 2.1 MB. Further, if messaging
rounds happen every minute, then storing a month’s worth of
received messages amounts to 264 MB per user.

Forward secrecy. On the server, computing OPRF incurs
low overheads. A single server can answer 12k DH-OPRF
requests per second, or 10° per day. A client evolves keys with
all their buddies and the multidevice key every epoch (§5.5),
creating 51 requests/day with day-long epochs. Servers can
run the OPRF computations in the background and load-
balance client requests throughout the day, allowing servers
to easily support 1-3M users as in the earlier experiments. On
the client-side, it takes 2.03 s to run ForwardSecrecy with
100 servers (primarily due to the network latency, then to
the two pairing operations used in the verification), and the
bandwidth usage is 150kB/day.

8.2 Mobile clients

We evaluate Groove’s mobile client, which represents an
important class of clients enabled by its flexibility. We
focus on two metrics: the impact on battery life and network
usage. We run the mixnet with 32s messaging round time,
which correspond to the latency with 100M circuits and 100
servers (Figure 7). We evaluate the mobile client on a Pixel 4
cellphone running the stock Android 10 OS. Our tests include
cellular (3G with HSDPA) and WiFi networks.

Battery usage. We explore the impact of different schedules
on battery life. To evaluate battery consumption, we
connected the mobile device to a USB power meter (UM25C)
and collected energy consumption roughly every 1 second.
We force-enable doze mode to reduce noise from apps
running in the background; this is the battery-saving
optimization that typically runs when the device’s USB port
is unplugged. Yet, running Groove’s app in this mode implies
that the client’s transmissions may change without adhering
to the schedule. Therefore, we excluded our app from doze
mode (Android’s AlarmManager provides APIs to avoid it).
First, we measure the baseline energy consumption when
the phone is fully charged, idle, the screen is turned off, and
Groove’s client is not installed. We observe that after an hour,
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Figure 9: Client’s energy consumption on a Pixel 4 phone for
different schedules and network types. The graph shows how much
more energy is spent running a schedule compared to leaving the
phone idle. The bumps in some of the lines correspond to wake-ups
to service other running apps (as we verified by reading device logs).

the idle phone consumes about 310 mWh of energy, both
when the phone uses WiFi and cellular networks. Then, we
run Groove’s client with different schedules. At the beginning
of the experiment, the client uploads circuit setup messages
for the next 30 epochs. Then, the client sends a message
and downloads pending messages according to its schedule
(following Figure 2).

Figure 9 shows the energy consumption over an hour for
different schedules compared to the baseline. It is apparent
from the figure that as the schedule becomes more frequent,
the energy consumption increases, especially when using
cellular networks. A mobile client following the mixnet’s
~ 30s round-schedule would have increased battery usage
by 47% over the idle phone, but flexibility allows the mobile
client to use lighter schedules. On a 1-minute schedule, the
client on the cellular network uses an extra 50 mWh compared
to the baseline, a 16% increase. Moreover, the energy cost
from running the client is substantially reduced further when
the client runs on a 5-minute schedule (about 6% over idle).
We hypothesize that this allows the phone to hibernate and
save power. The energy consumption is more modest when
using WiFi, which is more energy-efficient [14].

Network usage. We monitored the link between the client
and service provider to quantify the client’s network usage.
It uploads one message to the service provider every time
the schedule triggers and downloads a message per round
(see Figure 2). Consequently, different schedules affect the
message upload volume, which ranges from 33kB /h with a
5-minute send schedule to 77kB /h with a 1-minute schedule.
The download volume is 39kB /h on the 5-minute schedule
and 69kB /h on the 1-minute schedule. In addition, the client
sends about 110kB for the circuit setup per epoch; for a
month’s worth of prepared circuits, this phase costs 3.2MB.
These measurements show that Groove’s client uses a total of
54MB to 106 MB of bandwidth per month, depending on the
schedule. We believe that Groove’s moderate network usage
is compatible with mobile data packages.



Catch-up. Groove’s oblivious fetch protocol filters cover
messages, allowing clients to quickly catch up on messages
that buddies send their users after being offline for an
extended time (§5.4). Consider a client that catches up on
a month by downloading 500 messages per offline day (15k
total); we evaluate it requires 11 MB of bandwidth.

8.3 Comparison with prior work

Groove provides asynchronous messaging with many buddies,
whereas recent mixnet-based work, like Karaoke, Stadium,
and Yodel [19,20,26], provide synchronous communication
with one buddy. PIR-based approaches, like Pung [4],
could allow asynchronous messaging but with a significant
performance cost compared to [19,20,26] (owing to stronger
privacy guarantees and weaker trust assumptions); see
discussion in §2.

Thus, these prior systems rely on a hefty dialing protocol
(Alpenhorn [21]) to synchronize between buddies before
they can communicate. Groove outperforms prior designs
when users talk with multiple buddies since dialing through
Alpenhorn adds about 5 minutes of latency when users switch
between buddies. On the other hand, if users communicate
with just one buddy who is simultaneously online, they can
avoid frequent dialing, and in this case, Yodel and Karaoke
outperform Groove.

In more detail, Stadium, Karaoke, Yodel, Pung, and Groove
were evaluated on a similar 100 server configuration, which
we use to compare. We assume that users in Stadium,
Karaoke, Yodel, and Pung only chat with one buddy that
is simultaneously online. Karaoke supports 1M users with
7s of latency (Figure 6 in the Karaoke paper [19]), while
IM Groove users can communicate with 50 buddies with a
latency of 32s. The increase in latency is only 4 x that of
Karaoke, despite Groove supporting all 50 buddies to message
the user at the same time, since Groove establishes circuits
through the mixnet (allowing for more efficient symmetric
onion encryption rather than the public-key onion encryption
used in Karaoke). Stadium induces latency on the order of
minutes (see Figure 9 in the Stadium paper [26]) largely
because of its use of zero-knowledge proofs to ensure that
mixnet servers process messages correctly. Pung’s latency
increases quadratically with the number of users [2,4]; with
millions of users, latency is over 30 minutes (as we interpolate
from Figure 8 in the Pung paper [2] assuming that a 100-
server Pung cluster performs 100x better than one server).
This performance gap grows with the size of the user base.
Yodel builds on its interactive circuit establishment protocol
to directly connect (not through the mixnet) each user to its
buddy’s dead drop. Groove avoids this direct connection
to protect the user’s communication metadata-privacy if the
buddy is offline (hiding the user was trying to connect with
an offline buddy). For 1M users, Yodel’s latency is 750 ms
(Figure 10 from the Yodel paper [20]), 42x better than
IM Groove users that can communicate with 50 buddies
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simultaneously (corresponding to the 100M circuits data-
point in Figure 8). If we limit Groove to allow one buddy per
user, then it needs to support only 2M circuits per 1M users
(as in Yodel), and Groove’s latency shrinks to about 4 x that
of Yodel. This remaining performance gap is primarily due
to Groove connecting both buddies to dead drops through the
mixnet (above) and Groove’s fetch protocol that conserves
client bandwidth at the expense of routing the messages
buffered at the recipient’s service provider again through
the mixnet.

Another significant difference is the client bandwidth.
Dialing through Alpenhorn requires clients to receive
62GB per month (§2), on top of the overlying system’s
bandwidth requirements (such as Karaoke, Stadium, etc.).
In contrast, Groove’s oblivious messaging protocols allow
communication with many buddies while reducing clients’
bandwidth costs by orders of magnitude (see §8.2).

9 Conclusion

Groove removes the rigid requirements that prior metadata-
private messaging systems imposed on clients. Groove allows
users to have asynchronous text message chats with multiple
buddies, while seamlessly switching between resource-
constrained mobile devices. It does so with similar scalability
and privacy guarantees as prior rigid differentially-private
messaging systems. Groove achieves this advancement by
introducing protocols for oblivious delegation that allow users
to have an untrusted service provider participate in the rigid
messaging protocol on their behalf. Our evaluation of a
prototype of Groove shows that it can support a large user
base with latency on the order of a minute. Our experiments
with a Pixel 4 smartphone demonstrate that Groove can
accommodate the network and power constraints of a mobile
device, unlike previous rigid systems. Groove’s techniques
narrow the gap between metadata-private messaging and
standard messaging apps, allowing for broader adoption.
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