
A Software Approach to Unifying Multicore Caches

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich

Abstract
Multicore chips will have large amounts of fast on-chip cache
memory, along with relatively slow DRAM interfaces. The on-
chip cache memory, however, will be fragmented and spread over
the chip; this distributed arrangement is hard for certain kinds of
applications to exploit efficiently, and can lead to needless slow
DRAM accesses. First, data accessed from many cores may be
duplicated in many caches, reducing the amount of distinct data
cached. Second, data in a cache distant from the accessing core may
be slow to fetch via the cache coherence protocol. Third, software
on each core can only allocate space in the small fraction of total
cache memory that is local to that core.

A new approach called software cache unification (SCU) ad-
dresses these challenges for applications that would be better served
by a large shared cache. SCU chooses the on-chip cache in which to
cache each item of data. As an application thread reads data items,
SCU moves the thread to the core whose on-chip cache contains
each item. This allows the thread to read the data quickly if it is
already on-chip; if it is not, moving the thread causes the data to be
loaded into the chosen on-chip cache.

A new file cache for Linux, called MFC, uses SCU to improve
performance of file-intensive applications, such as Unix file utilities.
An evaluation on a 16-core AMD Opteron machine shows that
MFC improves the throughput of file utilities by a factor of 1.6.
Experiments with a platform that emulates future machines with less
DRAM throughput per core shows that MFC will provide benefit to
a growing range of applications.

1. Introduction
Multicore systems have increasingly distributed caches. There is an
inherent cost to accessing far-away cache memory, both between
chips on a motherboard, and within a single chip. To make cache
memory fast, architects place cache units closer to each individual
core. In theory, this provides a large amount of aggregate cache
space across the system, and fast cache memory for each individual
core. Unfortunately, it can be difficult for an application to use
such a distributed cache effectively. This paper explores software
techniques that help applications make better use of distributed
caches on multicore processors.

Consider the difficulties faced by an application trying to use
a distributed cache on a multicore processor. In some processors,
an application can cache data only in the cache memory associated
with its execution core. This provides the application with access
to only a fraction of the overall system’s cache capacity, and cache
memory on other cores remains unused. Even if the application were
to execute code on many cores in parallel, each core’s individual
caches would end up caching the same commonly accessed data,
leaving the number of distinct cached items—and thus, the effective
capacity—low compared to the total on-chip cache size.

Other architectures try to address this problem by allowing
applications to cache data in either far-away or shared caches.
While this gives the application access to more cache capacity, the
slower access times of a far-away or shared cache can reduce the
effectiveness of caching.

This paper explores the opportunity for better management of
distributed caches in multicore processors. We first show that current
off-the-shelf multicore processors can benefit from better cache
management using a technique called software cache unification,
or SCU. We then simulate future multicore processors, which have
less DRAM bandwidth per core, and show that SCU will become
more important over time.

SCU allows applications to make better use of distributed caches,
by combining the speed of local caches with the large aggregate
capacity of a shared cache. In order to use all of the available cache
space, SCU explicitly manages the assignment of application data to
individual cache memories that are part of the system. Then, when
a particular thread is about to access a piece of data, SCU migrates
the thread to a core near the cache assigned to that data item. Thus,
SCU allows applications to use the large aggregate cache capacity
of multicore processors while avoiding costly accesses to far-away
caches.

The key to SCU’s operation is thread migration, which serves
two distinct functions. First, thread migration helps SCU control
cache placement. When a thread references a data item, that thread’s
core fetches the data into its cache. Thus, by migrating the thread to
a particular core, SCU can control which core’s cache will hold that
data. This allows SCU to limit how many times the data is duplicated
in on-chip caches. Second, thread migration helps SCU reduce the
cost of accessing a far-away cache, by executing the thread on a
core closer to the needed data.

A significant challenge in implementing SCU is balancing the
cost of migration with the benefits of larger cache capacity or with
the costs of accessing a far-away cache. If SCU spends too much
time migrating threads, it may reduce application performance, even
if it improves caching efficiency. Another challenge revolves around
deciding when to evict unused data from caches, or when to replicate
a popular data item in more than one cache, without low-level access
to the eviction hardware. Finally, modern hardware has complex
cache eviction algorithms, which make it difficult for SCU to predict
what data is stored in which cache at any given time. Thus, SCU must
be robust in the face of partial or even incorrect caching information.

To demonstrate the feasibility of SCU, we have modified the
Linux file cache to use our approach. The resulting system, called
MFC (short for Multicore-aware File Cache), transparently migrates
unmodified Linux applications between cores as they access file
data using traditional read and write system calls. Applications
that want more control over cache placement, or use memory-
mapped files, can use an explicit interface to influence MFC. MFC
implements migration by removing a thread from its current per-core
Linux run queue and adding it to the target core’s queue.

We evaluated the MFC implementation on a 16-core AMD plat-
form running applications and microbenchmarks. MFC improves
performance of unmodified file utilities by up to a factor of 1.6 com-
pared to running on Linux without MFC, and improves performance
even for working sets much larger than the total on-chip cache. On a
simulated future multicore chip, which has increasingly more cores
without a corresponding increase in the number of DRAM chan-
nels, MFC performs even better. The microbenchmarks demonstrate
that MFC’s heuristics do a good job approximating MFC’s goal,

1



never worse than running without MFC, and that MFC improves
performance because it reduces the number of DRAM loads.

The main contributions of this paper are: (1) the idea of SCU
to unify multicore caches; (2) MFC, which uses SCU to improve
the performance of file-intensive applications; (3) an evaluation of
MFC with several applications that demonstrates that SCU provides
benefits on today’s multicore platforms; and (4) an exploration
of the benefits of MFC on emulated future multicore platforms.
MFC demonstrates that the idea of SCU is effective for improving
the performance of read-intensive file-system applications, but we
believe that the idea of SCU is also more generally applicable. With
the right hardware support SCU could complement and simplify the
design of globally-shared caches, making it applicable to a wider
range of applications.

The rest of this paper is organized as follows. §2 details the
memory challenges caused by multicore processors. §3 explains
our approach to dealing with distributed caches. §4 describes
the MFC design. §5 summarizes the salient details of our MFC
implementation for Linux. §6 measures the benefits of MFC on the
AMD platform. §7 speculates how the idea of SCU could be made
more broadly applicable. §8 puts the MFC design in the context of
related work. §9 summarizes our conclusions.

2. Multicore Caching Challenges
This section outlines the challenges that SCU addresses, which
largely spring from the distributed nature of the on-chip cache
memory on multicore chips. The main focus of this discussion is
read-only or read-mostly data; that is, the focus is on cache capacity
rather than invalidations.

To be concrete, we will illustrate these challenges in the context
of a specific machine, consisting of four quad-core 2 GHz AMD
Opteron chips, although the underlying problems are applicable
to other systems. Figure 1 summarizes the memory system of this
machine. Each core has its own 64KB L1 and 512KB L2 caches
(mutually-exclusive), and the four cores on each chip share a 2 MB
L3 cache. A core can access its own L1 cache in three cycles, but
requires 50 cycles to access the shared L3 cache, and 121 cycles
for a different core’s L1 cache. Access to DRAM, or to caches on a
different chip, takes at least 200 cycles. Each chip has two DRAM
controllers, for a total of 8 in the entire machine.

The four-chip AMD system has a mixture of private and shared
caching. Each core’s L1 and L2 cache is private to that core: only
that core can allocate space in those caches, and the L2 caches of
different cores can independently cache copies of the same data.
Each chip’s L3 cache is shared among the cores on that chip, in
that data used by all those cores might be stored just once in the
L3 cache. On the other hand, each chip’s L3 cache is private to that
chip: only cores on that chip can allocate space in the L3, and the
L3 caches of different chips can independently cache copies of the
same data.

At a high level one can view parallel software running on the
16 cores as having two kinds of read-only data that interacts with
the caches: private data used by just one core, and shared data used
by many cores. A core can store its private data in its own L1 and
L2 caches, and in a fraction of the local chip’s L3 cache, depending
on other uses of the L3 cache. Even in the best case, when no other
cores are actively using cache space, software running on a core can
cache at most 2.5MB of private data, out of the full 16MB available.
SCU can help avoid this limitation.

For shared data, in the extreme case of all 16 cores using entirely
the same data, the same cached data is likely to be stored in the
caches of different chips. Within each chip, each L2 cache is likely
to store the same data as the other L2 caches. Thus, the amount of
distinct data stored in the on-chip caches will be about 2.5MB,
far short of the full 16MB aggregate cache capacity. SCU can

273/1.5

L3

C1 C2 C3C0

L1

L2D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

3/14.5

14/7.3 50/5.3

121/2.4

255/1.8
282/0.8

327/1.3

201/0.9

Figure 1. The AMD 16-core system topology. Memory access
latency is in cycles and listed before the slash. Memory bandwidth
is in bytes per cycle and listed after the slash. The measurements
reflect the latency and bandwidth achieved by a core issuing load
instructions. The costs of accessing the L1 or L2 caches of a different
core on the same chip are the same. The costs of accessing any
cache on a different chip are the same. Each cache line is 64 bytes,
L1 caches are 64 Kbytes 8-way set associative, L2 caches are
512 Kbytes 16-way set associative, and L3 caches are 2 Mbytes
32-way set associative.

help applications use cache capacity more effectively by avoiding
duplication of shared data.

Finally, for both kinds of data, the hardware cache replacement
policy is basically to evict the least-recently-used line from the
associativity set of the newly installed line. This replacement policy
is fairly local; it does not consider other associativity sets in the
same cache, or the contents of other caches. This often leads to
eviction of data that is far from globally least-used. SCU helps make
the global replacement policy more optimal.

It seems likely that future multicore chips will dedicate part
of the total on-chip cache to private caches, and thus potentially
provide less cache capacity to some applications than would be
possible with a fully shared cache. One possible future might look
like the 64-core Tilera TILE64 [25], in which all cache space is
private. Applications running on such chips could benefit from the
larger cache capacity offered by SCU.

At the other end of the spectrum, the Intel 32-core x86
Larrabee [17] graphics processor has a shared cache that is physi-
cally partitioned by address into a piece next to each core. A core
can use data from any cache partition, but has fastest access to the
local partition. In this case, applications already have access to the
entire cache capacity, but would still benefit from SCU by accessing
nearby cache partitions as opposed to far-away ones.

The techniques for efficient use of the entire on-chip cache
capacity explored in this paper are likely to become more important
as the number of cores per chip increases. More cores will lead
to more fragmentation of the total cache space, and thus more
opportunity for duplication and consequent misses for data displaced
by those duplicates. More cores will also lead to longer queues of
misses waiting to be served by the off-chip memory interface, and
thus higher memory latencies.

2



3. Approach: Software Cache Unification
As §2 explained, current multicore chips typically provide a mixture
of shared and per-core private caches. A pure private arrangement
might provide the best performance for software workloads in which
the working set of data needed on each core can fit in one core’s
share of the overall cache memory. A shared cache may be best
when multiple cores use the same data, and the data is too large to
copy into each core’s cache. In such cases the single shared cache’s
high hit rate outweighs its relatively slower hit latency.

The high-level goal of SCU is to provide many of the good
properties of a single large shared cache from a multicore chip’s
private caches. It is aimed at applications whose running time
is dominated by memory access (rather than by computation),
and which have access patterns that could benefit from a shared
cache with size equal to the total on-chip cache. For simplicity, the
following discussion assumes that all of the on-chip cache takes
the form of private caches, though SCU is also applicable in mixed
private/shared designs. In a mixed design, “a core’s cache” denotes
all cache levels associated with that core as well as a hardware-
determined portion of any shared caches. For the AMD system in
Figure 1, “a core’s cache” means the associated L1 and L2 caches
and a portion of the shared L3 cache.

SCU uses software techniques to manage on-chip cache memory.
It tracks the popularity of different data items (files, in the case of
MFC), and arranges to keep only the most popular items in on-chip
cache; that is, it provides a global replacement strategy. It decides
how many copies of each data item to store on-chip: this number
can be greater than one for very popular items that can benefit
from concurrent access on multiple cores. In general SCU arranges
to keep at most one copy of each data item in on-chip cache, to
maximize the amount of distinct data on-chip and thus minimize the
number of misses to DRAM.

SCU must take explicit measures to achieve the above properties,
since none of them hold for straightforward use of a multicore chip
with private caches. The main technique SCU uses to manage the
caches is computation migration. SCU migrates a computation to
a particular core in order to ensure that the data the computation
uses will be cached on that core. That is, if SCU’s partition of
the data over the cores indicates an item is on a particular core,
then SCU will migrate a thread to that core just before the thread
uses the corresponding item. If the item was not previously cached,
accessing the item on that core will cause it to be cached there. SCU
will migrate future accesses of that data to the same core, so that
the data will stay cached in just one core’s cache. For data that SCU
decides is too unpopular to cache at all (i.e. the amount of more-
popular data is enough to fill the total on-chip cache), SCU arranges
to access it using non-caching loads so that it will not displace more
valuable data.

Only certain kinds of applications will benefit from SCU. The
application must be data-intensive as opposed to compute-intensive.
(We expect that many future parallel applications will be data-
intensive because they will be parallel versions of existing serial
data-intensive applications and won’t be able to keep all cores 100%
of the time busy computing.) The application must also use the
same data multiple times, so that caching has a possibility of being
effective. The application must actively use only one data item
at a time—that is, the application must not switch from one item
to another so quickly that the migration cost is prohibitive. The
application’s working set (i.e., a reasonable fraction of the popular
data) must fit in the total on-chip cache, but it must not be so small
that it can be replicated in every private cache.

In the best case, SCU can increase the total amount of cached
data available to each thread from one core’s cache’s worth to an
effective cache size equal to the total cache in the entire system.
How much that improves application performance depends on how

its miss rate decreases with cache size, on what fraction of its time
it spends reading memory, on the hardware costs of cache accesses
and RAM accesses, and on the cost of SCU’s migration. SCU also
helps performance by migrating computations close to the data they
use, converting cross-chip data movement to local cache accesses.

4. Multicore-aware file cache (MFC)
To explore whether SCU is viable, this section describes the design
of MFC, a multicore-aware file cache that uses SCU. Applications
that work with files, such as file utilities like grep or wc, or Web
servers serving static files, are good examples of data-intensive
applications that could benefit from SCU. Furthermore, files are
likely to be large enough to recoup the cost of migrating a thread,
the dominant cost of SCU. MFC uses the idea of SCU to keep the
most-frequently-used files in the on-chip distributed caches and to
provide threads with fast access to those files, and, as a result, can
improve the performance of file applications.

To achieve this goal, MFC extends an existing file cache by
intercepting the call to read a file (i.e., the read system call in
Linux). MFC must perform four main tasks when a thread reads a
file: 1) decide which cache on the chip should hold the file if none
already does; 2) decide which file to remove from the caches to
make room for the new file; 3) load the new file into the chosen
cache; and 4) migrate the thread to the core with the chosen cache.

This section explains the main challenges MFC faces in perform-
ing these 4 tasks, describes the approach to addressing them, outlines
MFC’s cache placement algorithm, and details specific aspects of
this algorithm.

4.1 Challenges and approach
To appreciate the challenge of designing a MFC that holds the most
frequently-used files, consider a workload that a Web server might
generate. A typical Web server has a workload that follows a Zipfian
distribution [1]: a few popular files receive most of the requests
(e.g., 50%) and a large number of individually unpopular files
together receive the remaining requests. Ideally, as many popular
files as possible would be cached on-chip, but the way that the cache
memory is fragmented and distributed over the chip makes this a
difficult goal for the following reasons.

First, as we have described earlier, software running on a core
has fast access only to nearby caches, can cause data to be loaded
only into local cache, and runs the risk of limiting the amount of
distinct data cached if it accesses data already cached on another
core. It is for these reasons that MFC migrates threads among cores.

Second, MFC must balance its use of the computation and cache
resources of each core. For example, if a file is very popular, the core
whose cache holds that file may receive many migrating threads and
become a CPU bottleneck. MFC copies such files to multiple cores’
caches so that enough compute resources are available.

Third, MFC has no direct control over the hardware’s cache
replacement algorithm, and the hardware may in any case lack a
global replacement strategy. MFC needs a way to allow access to
unpopular files, but to prevent the hardware from letting those files
evict popular data. The presented design for MFC assumes that the
processor has non-caching loads, although we also have a more
complex design that works in the absence of non-caching loads.

Fourth, migrating a thread from one core to another core takes
time. For small or popular files it may be more efficient to replicate
the file data in the cache of the thread’s current core, rather than to
migrate the thread to the core that’s currently caching the file data.

Fifth, MFC is not the only user of the hardware caches; other
code and non-file data are cached in unknown quantities. MFC needs
to estimate a reasonable amount of cache space for it to use.

3



4.2 MFC’s algorithm
MFC selects which file data to cache by monitoring read system
calls. When a thread invokes read on the core curcore, the kernel
first calls the mfc access function shown in Figure 2. This
function decides what core should read the file, and returns that
core as newcore. It also returns an indication of whether the file
should be read using caching or non-caching load instructions. If
newcore is different from curcore, the kernel migrates the thread
to newcore before proceeding with the read. read copies the file
from the kernel file cache to user memory either using caching or
non-caching loads. After read completes, the kernel leaves the
thread on newcore.

MFC’s use of migration has two effects. If the file is not already
in newcore’s caches, migrating the read and using caching loads
will cause it to be. If the file is already in newcore’s caches, read’s
copy to user space will run quickly. In either case the user-space
copy will be in newcore’s caches, where the thread has fast access
to them.

mfc access maintains some per-file information. It maintains
in f.cores a list of the cores in which it believes file f is cached.
A frequently-used file may be cached on more than one core to allow
parallel reads. MFC also maintains f.use[a], which counts, for
each file f and each core a in which the file is cached, the number of
times that cached copy has been used. We now briefly describe the
MFC decision function; subsequent sections provide more detail.

On lines 3–4, mfc access first checks the file size, and does
not migrate for small files. This avoids situations in which the
migration overhead is larger than the cost of fetching the file to
the local cache. Fetching the file may cause it to be duplicated in
multiple caches. MFC also treats very large files specially (see §4.7),
though the pseudo-code omits this case.

Lines 6–10 check if curcore has spare capacity in its cache (and
curcore is a frequent user of f , not reflected in pseudo-code), and if
so, MFC replicates f on curcore. This avoids the cost of repeated
thread migration. If spare cache capacity is not available on the
current core, but is available on another core (lines 12–16), MFC
migrates to that core to cache f there.

In lines 18–29, if no core has f cached, but f is more frequently
used than the least frequently-used file cached on any core (lfu1),
mfc access returns a request to migrate to the core c that holds
lfu1 and to use caching loads. This will cause f to be loaded into
c’s cache. mfc access also marks lfu1 as not cached on c, so
it will no longer be used and the hardware will eventually evict it.
If no core has f cached and f is infrequently used (lines 27–29),
then mfc access returns an indication that non-caching loads
should be used, and, because it doesn’t matter which core issues
non-caching loads, that the current core curcore should be used.

If f is cached on some core, mfc access looks up the core
(newcore) that holds the file and is least loaded right now (line 31).
MFC then decides whether it should make a copy of f on core
curcore or migrate the thread to newcore. If newcore is busy, curcore
is not busy (line 32), and curcore holds a file lfu2 that is much
less popular than f (line 35), MFC replicates f on curcore by not
migrating away from curcore. mfc access also removes curcore
from the list of cores that cache lfu2.

Finally, on lines 42–43, if MFC believes f is cached on core
newcore and has decided not to replicate it on core curcore,
mfc access returns newcore so that read will execute there.

4.3 Least-frequently used replacement
At any given time, MFC has chosen some set of files to reside in on-
core caches; read accesses all other files using non-caching loads.
MFC chooses to implement a least-frequently-used replacement
strategy, although others are also possible. With LFU, the on-chip
files are all more popular than the others, as measured by their

1 // returns which core should execute read()
2 [core_id,load_type] mfc_access(file_t f, off_t o)
3 if f.size < min_read_size:
4 return [curcore, caching]
5

6 if curcore.cache_avail > f.size:
7 // curcore has spare capacity, replicate f
8 f.cores = f.cores + {curcore}
9 f.use[curcore]++

10 return [curcore, caching]
11

12 maxcore = core_with_max_cache_avail()
13 if maxcore.cache_avail > f.size:
14 f.cores = f.cores + {maxcore}
15 f.use[maxcore]++
16 return [maxcore, caching] // migrate to maxcore
17

18 if f.cores == {}:
19 // f is not yet cached anywhere by MFC
20 [lfu1, c] = lookup_lfu_file() // least popular file
21 if lfu1.use[c] < sum(f.use):
22 // c has a file lfu1 that is less popular than f
23 f.cores = f.cores + {c}
24 lfu1.cores = lfu1.cores - {c}
25 f.use[c]++
26 return [c, caching] // migrate to c
27 else
28 f.use[curcore]++
29 return [curcore, non-caching]
30

31 newcore = core_with_min_runqueue_len(f.cores)
32 if newcore.runqueue_len > busy_threshold &&
33 curcore.runqueue_len < idle_threshold:
34 lfu2 = lookup_lfu_file(curcore)
35 if f.use[newcore] > 2 * lfu2.use[curcore]:
36 // f is popular enough to evict local lfu2
37 f.cores = f.cores + {curcore} // replicate f
38 lfu2.cores = lfu2.core - {curcore} // remove lfu2
39 f.use[curcore]++
40 return [curcore, caching]
41

42 f.use[newcore]++
43 return [newcore, caching] // migrate to newcore
44

45 update_use() // runs periodically to age files’ use
46 for all f, i:
47 f.use[i] = f.use[i] / 2

Figure 2. Pseudo code for the mfc access function. The func-
tion runs on the core curcore and considers migration to the core
newcore. Each core runs the function update use periodically.

f.use[] counts. Assuming that applications always read the entire
contents of a file, this minimizes the number of cache misses to
access file data, thereby achieving MFC’s goal.

If a file f1 that is not cached is used many times, the sum of
its f.use[] counts may become larger than some files that are
cached. At that point, MFC will start caching f1. It will also mark
the least popular file f2 as not cached, so that it will be accessed
with non-caching loads. Eventually the hardware cache replacement
policy will evict f2 from the on-chip cache.

To account for workload changes over time, f.use[] tracks
an exponentially-weighted moving average of file accesses, by
periodically decaying use counts in update use. This ensures
that MFC caches recently-popular files, as opposed to files that have
been popular in the past.

4.4 Multiple copies
Because caches are associated with particular cores, MFC must be
careful in evaluating the competing use of cores and cache units for
computation and storage. To maximize capacity and reduce DRAM
references, MFC wants to assign each file to only one core, but this
may lower throughput. For example, a core holding a popular file
may be a CPU bottleneck if many threads migrate to it.

4



MFC addresses such bottlenecks by replicating popular files in
the caches of several cores so that they can jointly serve read calls
for that file. It does this when the cores caching the file are busy
(have long scheduler queues), and when there are other less busy
cores that are caching significantly less popular files. MFC then
takes advantage of these extra copies by migrating readers of a file
to the least-busy core that caches the file.

4.5 Migration and avoiding its costs
MFC migrates a thread by moving it from the run queue of one core
to that of another, where the kernel scheduler will find it. Except in
extreme cases of imbalance, the kernel scheduler obeys this form of
migration.

The cost of migration impacts some of MFC’s decisions. For
Linux 2.6 on the AMD platform we measured the time to move a
thread between the run queues of two cores on the same chip as
9.2µs, between two cores on different chips one HyperTransport
hop away as 10.5µs, and between two cores on different chips two
hops away 11.7µs.

mfc access does not migrate a thread that reads a very small
file in order to avoid migration overhead. MFC decides a file is too
small if the time to load the file from off-chip memory would be
less than the time to migrate and load the file from on-chip cache.

MFC estimates the costs of loading a file from on-chip and
off-chip memory by dividing the file size by the on-chip and off-
chip memory bandwidth, respectively. The memory bandwidth is
measured off-line, although MFC could measure it during bootup.

MFC migrates a thread when loading from off-chip is more ex-
pensive than loading from on-chip plus the migration cost, including
the time to move a thread between run queues, and the time to copy
the thread’s working set into local cache after migration. The latter
cost is a property of the application’s working set. MFC conserva-
tively estimates this working set to be 4 Kbytes; §6 presents more
detailed measurements.

An important special case is when a single-threaded application
frequently reads a few popular files whose working set is larger than
a single cache’s capacity. In this case, MFC would like to use all
core’s caches to hold the most-frequently used files. But, if the files
are used often, it may want to migrate a file to the thread’s core
instead of paying the cost of thread migration over and over.

MFC uses a simple competitive algorithm [14] to handle this
case: once the cumulative cost of multiple thread migrations for a
file exceeds the cost of loading it from off-chip memory, MFC stops
migrating and loads the file from off-chip memory.

4.6 Sharing on-chip caches
The description of MFC has assumed so far that MFC can use the
total on-chip cache capacity for caching files. In practice, MFC
must share the caches with other uses such as program text and data.
Furthermore, small files, which MFC ignores, also take up space. To
handle sharing of on-chip caches, MFC must be able to distinguish
a cache that is already full of active data from a cache that has a
significant amount of inactive data that could be replaced.

During a scheduling time quantum MFC uses hardware event
counters to count the number of cache misses in each level of a
core’s multilevel cache. MFC calculates a coarse-grained estimate
of how much of level l cache a core c is using, Muse(c, l), as:

Muse(c, l) =

{
Msize(l) if Mmiss(c, l) ≥ mlines

0 otherwise (1)

For cache level l, this equation assumes a core is using the entire
capacity, Msize(l) bytes, of cache level l if the number of misses
Mmiss(c, l) is more than the total number of cache lines mlines. MFC

then calculates the available on-chip cache capacity on a core c as:

Mavail(c) =Mon-chip−max


all levels∑

l

Muse(c, l),

files on c∑
f

S(f)

 (2)

whereMon-chip is the total amount of cache space accessible to a core
(e.g., the sum of L1, L2, and L3 caches on the AMD system), and
S(f) is the size of file f . Subtracting the maximum of the estimate
calculated using the event counters and the sum of all files on c from
the on-chip capacity Mon-chip avoids assigning too many files to c in
the absence of cache activity.

MFC’s estimate of available on-chip cache capacity is coarse-
grained, but has three important properties. First, it indicates when
the fastest levels of the cache hierarchy are full, which allows MFC
to assign popular files to cores that have the lowest level of cache
space (i.e., fastest) available. Second, it indicates when the caches
are full, so MFC will stop assigning files to the core and avoid
overflowing the total cache capacity. Third, it works well for shared
caches, because the implementation takes into account that the sum
of files on some core c may include files on other cores that overlap
in the shared cache.

4.7 Large files
If a file is larger than the capacity of a core’s cache, MFC splits
the file into several smaller chunks and handles the chunks inde-
pendently. The implementation’s chunk size is half the size of a
core’s L2 cache. This design causes large files to be striped across
caches. MFC keeps track of file chunks by treating each chunk as
an independent file in its implementation of mfc access.

4.8 File writes
In principle, MFC could migrate threads for file writes as well as
reads, since both operations access file data in caches. However,
handling writes turns out to be unimportant in practice. If file writes
are not handled by MFC, they have the potential to invalidate cached
file data on MFC-assigned cores, by modifying the same data on
another core, or causing other file data to be evicted from that
core’s cache. However, performance of applications that involve
a significant fraction of file writes is limited by disk performance,
as opposed to either cache or DRAM speed. On the other hand, in
applications with a small fraction of writes, invalidations of cached
file data due to writes are infrequent, and MFC already allows for
the divergence between its cache information and actual hardware
state, due to unpredictable hardware evictions. In particular, the next
file read might incur a needless migration to a core where the file
data is no longer cached, but accessing the file would load the data
into the correct cache again.

5. Implementation
We implemented our MFC design for Linux kernel version 2.6.29-
rc7 and 64-bit AMD Family 10h CPUs, described in §2. MFC
works on top of the existing Linux file cache. We modified the
read system call to invoke mfc access and perform migration if
necessary. Applications that do not use the read system call (e.g.,
by using mmap) must still inform MFC when they are accessing files,
and MFC provides an explicit system call that allows applications
to invoke mfc access directly in such cases.

Most of the MFC implementation (1,000 lines of C code), is in a
file we added to the source tree. This file contains the mfc access
function and helper routines (600 lines of code), initialization func-
tions (200 lines of code), and a /proc interface (200 lines of code).
We added 50 lines of C code to the scheduling framework, to pro-
vide better thread migration and expose functionality for comparing
CPU loads, copy to user functions that use prefetchnta (a

5



non-caching load instruction), and hooks to the file read code to call
the appropriate the prefetchnta copy to user if the MFC
designates a file as non-cacheable. The MFC implementation is
stable and works with unmodified applications.

The mfc access implementation was built with scalability in
mind. When mfc access does not replicate data or move data
to a popular core the only state shared by multiple cores are per-
replica popularity counters that are incremented each time the file is
accessed. When mfc access does replicate a file or move a file to
a popular core, it acquires per-core spin locks, which protects lists
from concurrent modification, for the cores involved and moves or
replicates the file to a new list with approximately 50 instructions.
The implementation is scalable in the sense that the cost of locking
and accessing the per-replica shared counters is negligible compared
to other overheads, such as migration.

MFC uses the CPU hardware event counters to count L1 misses,
L2 misses, and L3 misses. MFC configures the event counters to
ignore misses that are on modified cache lines. This potentially un-
derestimates the working set size; however, it avoids overestimating
the working set size when applications or the kernel shares data
structures between cores that are modified often, such as spin locks.

6. Evaluation
This section explores the extent to which SCU helps software use
multicore chips’ cache space more effectively. The goal of SCU is to
treat a set of private caches as a single shared cache, with resulting
decrease in off-chip DRAM references. The desired end effect is
higher application throughput. This section therefore compares the
run-times of file-reading applications with and without MFC.

One would expect only certain kinds of applications to benefit
from MFC. The ideal applications would be those that could benefit
from a larger cache—that is, applications that spend most of their
time reading files and comparatively little time computing; that read
the same files multiple times, and thus can benefit from caching;
and that have a total working set size larger than the size of each
private cache, but not too much larger than the total on-chip cache.
Moreover, because MFC uses thread migration to implement SCU,
the ideal application would read relatively large files, one at a time,
to amortize the cost of migration. These properties limit the range
of applications that can benefit from MFC on current hardware, and
determine the choice of benchmarks.

We evaluate MFC’s performance in five steps. First, §6.2 mea-
sures the performance of a set of benchmark applications that have
the above properties to varying degrees, with and without MFC. The
benchmarks include file utilities such as wc and grep, as well as
a microbenchmark that just reads files. MFC improves the perfor-
mance of these single-threaded applications, because it allows the
application to benefit from the unified cache resources of the chip,
even though the application code runs on only one core at a time.

Second, §6.3 evaluates parallel versions of these benchmarks to
show that (to a first approximation) the benefits of SCU apply even
when all cores are actively computing. The parallel benchmarks also
demonstrate that MFC load-balances cache space and cycles well.

Third, §6.4 shows that MFC is applicable to applications that
access multiple files at the same time, by measuring the performance
of a file reading microbenchmark that reads two files at once.

Fourth, §6.5 explores the performance of MFC on possible
future hardware. One possibility we explore in §6.5.1 is that future
multicore chips will have many more cores than the AMD machine
used in the experiments, but will have memory systems that are not
significantly faster. We hypothesize that MFC will provide benefits
to a wider range of applications on such future hardware. In order
to emulate future machines, we run the same benchmarks as before
on the same AMD hardware but with only a subset of its 8 DRAM
controllers enabled. The results show that the benefit of MFC

increases significantly as DRAM bandwidth per core decreases,
suggesting that SCU will become more important in the future.

The other possibility for future hardware that we explore in
§6.5.2 is faster migration. We show that, if migration is cheaper
(either using specialized hardware support, or using existing mecha-
nisms like SMT/HyperThreading), MFC’s benefit increases, which
can make SCU applicable to a wider range of applications.

Finally, §6.6 examines individual MFC design decisions and
characteristics in detail, such as the cost of updating MFC metadata
and the importance of replicating files.

6.1 Experimental setup and applications
We run all of our experiments on the AMD system described in §2,
using both a microbenchmark and a number of existing applications.

Our microbenchmark repeatedly selects a random file and reads
it entirely with pread. The performance of the benchmark is mea-
sured as the number of megabytes read by pread per second. This
microbenchmark reflects the workload that a busy multithreaded
Web server might experience serving static Web pages. We will refer
to this microbenchmark as the read microbenchmark.

We also use several unmodified file-intensive applications
(grep, wc, and md5sum) to demonstrate that existing applica-
tions can achieve performance improvement with MFC. grep
searches for a single character in the input files and wc counts
new-line characters.

The benchmarks run the applications and read microbenchmark
repeatedly on the same set of 256 Kbyte files and select files
to process randomly. With smaller file sizes, the performance of
benchmarks with MFC would decrease due to the overhead of thread
migration in Linux. For files smaller than 45 Kbytes, MFC will stop
migrating threads, and benchmark performance will be equal to
performance without MFC. We explore migration costs in §6.5.2.

To simulate different application workloads, we configure our
benchmarks to select random files according to either a uniform
distribution or a Zipfian distribution1, and report results for both
configurations. Every data point represents the average of five runs.

6.2 Single thread performance
This section demonstrates that SCU can provide higher performance
by helping software use cache space more effectively. We make
this point using MFC with the read microbenchmark and three file-
intensive applications. Figure 3 summarizes the results when the
benchmarks select files according to a uniform distribution and
Figure 4 summarizes the results when the benchmarks select files
according to a Zipfian distribution. The number of files, and thus
the total working set size, varies along the x-axis. The y-axis shows
performance as the number of Megabytes each application reads
per second. Figures 3(b) and 4(b) show the performance with MFC
divided by the performance without.

At a high level, Figure 3 and 4 show that MFC reduces the
runtime of the read microbenchmark relative to Linux without MFC
for most working set sizes.

MFC offers no improvement for working set sizes of 2 Mbytes
and less because each L3 cache can hold an entire copy of the
working set. Improvement in Figure 3(b) starts to be greater than
one at 4 Mbytes, because MFC can fit the entire working set in the
aggregate on-chip cache. Without MFC each core can only use the
fraction of cached data stored on its chip, and must wait for DRAM
for the rest. MFC offers the greatest performance improvement for
all four applications when the working set is 8 Mbytes.

The amount of performance improvement with an 8 Mbyte
working set depends on the amount of computation per byte read

1 In a simple Zipfian distribution the nth most common element occurs 1/n
times as often as the most frequent element.

6



read without MFC
read with MFC

grep without MFC
grep with MFC

wc without MFC
wc with MFC

md5sum without MFC
md5sum with MFC

 0

 1000

 2000

 3000

 4000

 5000

 6000

0.5 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
b
y
te

s/
se

co
n
d
)

Working set size (Mbytes)

(a) Absolute performance.

read
grep

wc
md5sum

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

0.5 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t

Working set size (Mbytes)

(b) Performance improvement.

Figure 3. Uniform: Application and read microbenchmark performance with and without MFC. The working set size varies along the x-axis
and the y-axis shows the read throughput. The benchmark repeatedly selects a file to read according to a uniform distribution.

read without MFC
read with MFC

grep without MFC
grep with MFC

wc without MFC
wc with MFC

md5sum without MFC
md5sum with MFC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0.5 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
b
y
te

s/
se

co
n
d
)

Working set size (Mbytes)

(a) Absolute performance.

read
grep

wc
md5sum

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

0.5 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t

Working set size (Mbytes)

(b) Performance improvement.

Figure 4. Zipfian: Application and read microbenchmark performance with and without MFC. The working set size varies along the x-axis
and the y-axis shows the read throughput. The benchmark repeatedly selects a file to read according to a Zipfian distribution.

(see Figures 3(b) and 4(b)). The read microbenchmark does no
computation and MFC increases its performance by 71%. MFC
improves the performance of md5sum by 62%, grep by 44%, and
wc by 41%. For working sets larger than 16 Mbytes improvement
starts to decrease, because MFC must also wait for DRAM. MFC
still wins for working sets much larger than total on-chip cache
space, and never does worse.

These results suggest that MFC does a good job of keeping the
most-frequently used files in on-chip memory, and delegating less-
frequently used files to off-chip memory. For a given working set
size, if running with MFC causes the benchmark to load fewer bytes
from DRAM than without MFC, it can be concluded that MFC
does a good job of caching frequently used data on-chip. This is
confirmed by counting the number of bytes loaded from DRAM per
byte of file data that the read microbenchmark reads, as shown in
Figure 5. We used a hardware event counter on the AMD to count
the number of DRAM loads. The memory controller on the AMD

quad-core might prefetch data from DRAM, which is not counted
by the hardware event counter.

Based on Figure 5, MFC achieves the most significant reduction
in DRAM references relative to Linux with a working set size
of 8 Mbytes. MFC causes the read benchmark to access DRAM
about 190 times less often than Linux without MFC for uniform file
selection, and about 115 times less often for Zipfian file selection.
MFC cannot store working set sizes 16 Mbytes and larger on chip,
and the number of DRAM access increases. For 128 Mbyte sized
working sets, however, MFC still reduces DRAM loads by a factor
of 1.2 for uniform file selection, and by a factor of 2.3 for Zipfian.

6.3 Parallel applications
To make sure that MFC can improve performance without wasting
CPU cycles, we measure the performance of many copies of the
same benchmark executing in parallel on 16 cores, and show the
results in Figures 6 and 7. For Linux without MFC, 16 processes
use all the available CPU cycles. For MFC, we need to run enough

7



Uniform read without MFC
Uniform read with MFC

Zipfian read without MFC
Zipfian read with MFC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0.5 1 2 4 8 16 32 64 128

D
R

A
M

 b
y
te

s 
p
er

 f
il

e 
b
y
te

s

Working set size (Mbytes)

Figure 5. Aggregate bytes read from DRAM by all cores, per file
byte that the read benchmark reads.

processes to ensure no CPU is ever idle. In practice, 32 processes
turns out to be sufficient, and fewer processes result in idle cores.

The trends for the parallel benchmarks are similar to the single-
threaded ones. When running threads simultaneously on all 16 cores,
each core has a smaller share of off-chip memory bandwidth and
avoiding off-chip DRAM accesses becomes more important for
good performance. For the read microbenchmark, MFC improves
performance of the parallel version by up to a factor of 3.81,
significantly more than the single-threaded version. This is because
the aggregate read bandwidth required by the parallel version, shown
in Figures 6 and 7, exceeds the aggregate 28,000 Mbytes/sec DRAM
bandwidth of our machine.

Other parallel applications do not exceed DRAM bandwidth, but
instead suffer a penalty, because Linux thread migration becomes
less efficient with more processes. For uniform file selection MFC
improves performance by a maximum of 15% for grep, 10% for
wc, and 6% for md5sum. For Zipfian file selection MFC improves
performance by a maximum of 14% for grep, 6% for wc, and 5%
for md5sum.

6.4 Multiple files
SCU can improve performance when applications access multiple
objects at the same time. We demonstrate this with MFC using a
version of the read benchmark that reads two files at the same time,
but only migrates to access the first file. To prevent the benchmark
from migrating to access the second file we configure MFC (using a
debug interface) to always ignore the second file read.

Figure 8 shows the results from this experiment when files
are selected using a uniform distribution. MFC does not improve
performance as much as for the single file case, but still provides a
30% improvement for working set sizes of 16 Mbytes.

6.5 Future hardware
MFC is targeted to future hardware platforms with more cores. We
evaluate how MFC could perform on future hardware by emulating
salient future properties.

6.5.1 DRAM bottleneck
We simulate DRAM bandwidth scarcity by throttling the memory
system of the AMD machine. Applications are only starting to hit
the overall DRAM bandwidth limits of current processors, so we
expect to see only modest improvements for MFC with throttling.
Each chip of the AMD machine has two DRAM controllers (a

multiread without MFC
multiread with MFC

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

0.5 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
b
y
te

s/
se

co
n
d
)

Working set size (Mbytes)

Figure 8. Performance of a single read microbenchmark process,
using uniform file selection, reading two files but only migrating for
the first file read.

total of eight for the machine). We throttle the memory system by
configuring Linux to use DRAM from one, two, or four chips, and
either one or two controllers per chip.

Figure 9 shows the results of the parallel benchmarks with
uniform file selection on a system using only one DRAM controller
on a single chip, which is approximately 1

8
th of the original memory

bandwidth. MFC improves the read benchmark’s performance by a
factor of 5.18, much more than in the non-throttled system. Similarly,
grep improves by 97%, wc by 32%, and md5sum by 7%. The
performance improvement of the grep benchmark on the throttled
system is almost four times that of the non-throttled system.

To explore how memory bandwidth impacts MFC, we measured
the performance improvements of the same grep benchmark with
the DRAM bandwidth constrained to 1, 1

4
, and 1

8
th of the original

memory bandwidth. The grep benchmark achieves improvements
of 15%, 37%, and 97%. These results indicate that SCU will provide
more performance improvement in future processors, as the amount
of DRAM bandwidth per core shrinks even further.

6.5.2 Faster migration
Linux thread migration was designed for periodic load balancing,
and not for frequent migration such as MFC’s. Migrating a thread in
Linux takes about 10µs on the AMD system, which prohibits SCU
from using migration to access fine grained data structures.

With faster thread migration SCU might improve the perfor-
mance of more application workloads. One concern is that appli-
cations might have large working sets which will be expensive to
copy from one core’s cache to another regardless of a well opti-
mized thread migration implementation. We explored this concern
by measuring the number of bytes copied between cores for the read
benchmark, grep, wc, and md5sum. We modified the read bench-
mark, grep, wc, and md5sum to process a single 64 Kbyte file
continuously. Before one of the benchmarks begins to process the
file, it migrates to another core. We used a hardware event counter
to count the number of cache lines copied between the source and
destination while the file was processed.

Figure 10 presents the average number of bytes the destination
core copies from the source core per migration for each application.
At a high level, the results give a lower bound on file size MFC
could manage if thread migration in Linux had no cost. For example,
migrating md5sum requires copying 1344 bytes of md5sum’s
working set, so it will always be cheaper to copy files less than
1344 bytes between cores, instead of migrating. The results indicate

8



read without MFC
read with MFC

grep without MFC
grep with MFC

wc without MFC
wc with MFC

md5sum without MFC
md5sum with MFC

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

0.5 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
b
y
te

s/
se

co
n
d
)

Working set size (Mbytes)

(a) Absolute performance.

read
grep

wc
md5sum

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0.5 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t

Working set size (Mbytes)

(b) Performance improvement. The improvement for the read microbenchmark
is 2.63× for 4 Mbytes, 3.81× for 8 Mbytes, and 2.50× for 16 Mbytes.

Figure 6. Uniform: Parallel application and read microbenchmark performance with and without MFC. The working set size varies along the
x-axis and the y-axis shows the read throughput. The benchmark repeatedly selects a file to read according to a uniform distribution. We ran 16
instances of each application on Linux without MFC and 32 instances of each application on Linux with MFC.

read without MFC
read with MFC

grep without MFC
grep with MFC

wc without MFC
wc with MFC

md5sum without MFC
md5sum with MFC

 0

 10000

 20000

 30000

 40000

 50000

 60000

0.5 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
b
y
te

s/
se

co
n
d
)

Working set size (Mbytes)

(a) Absolute performance.

read
grep

wc
md5sum

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0.5 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t

Working set size (Mbytes)

(b) Performance improvement. The improvement for the read microbenchmark
is 1.65× for 4 Mbytes, 1.79× for 8 Mbytes, and 1.71× for 16 Mbytes.

Figure 7. Zipfian: Parallel application and read microbenchmark performance with and without MFC. The working set size varies along the
x-axis and the y-axis shows the read throughput. The benchmark repeatedly selects a file to read according to a Zipfian distribution. We ran 16
instances of each application on Linux without MFC and 32 instances of each application on Linux with MFC.

Application read grep wc md5sum
Bytes copied per migration 256 832 594 1344

Figure 10. User-level cost of migration measured in the number of
bytes copied per migration.

that more fine grained data management is possible given more a
more efficient thread migration implementation.

6.6 MFC design
This subsection evaluates a few important MFC design properties
individually.

6.6.1 Metadata overhead
MFC maintains metadata for each file and core. MFC updates
metadata each time an application accesses a file and when MFC
changes which cores a file is assigned to. Figure 11 presents the
average time MFC spends updating metadata. We generated load
on MFC with 32 instances of the read benchmark and Zipfian file
selection. The file working set was 128 files of 256 Kbytes each. The
0.495µs overhead for updating metadata is small compared to the
costs of reading a 256 Kbyte file from on-chip memory or DRAM,
which are 45µs and 145µs respectively. It is more costly for MFC to
reassign a file, about 4µs, but this happens only when file popularity
changes. On our 16-core AMD machine, MFC’s metadata amounts
to 234 bytes per file, dominated by per-core access and cache data.

9



read without MFC
read with MFC

grep without MFC
grep with MFC

wc without MFC
wc with MFC

md5sum without MFC
md5sum with MFC

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

0.5 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
b
y
te

s/
se

co
n
d
)

Working set size (Mbytes)

(a) Absolute performance.

read
grep

wc
md5sum

 1

 1.2

 1.4

 1.6

 1.8

 2

0.5 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t

Working set size (Mbytes)

(b) Performance improvement. The improvement for the read microbenchmark
is 4.08× for 4 Mbytes and 5.27× for 8 Mbytes.

Figure 9. Benchmark performance with a throttled memory system. File selection is uniform. We ran 16 instances of each application on
Linux without MFC and 32 instances of each application on Linux with MFC.

Operation Execution time
File access 0.495µs
File assignment 4.101µs

Figure 11. The average time taken by MFC to update file and core
metadata when running 32 instances of the read benchmark with
Zipfian file selection. The read benchmark reads each 256 Kbyte
file in 45µs if the file is in on-chip memory, and in 145µs if the file
is not.

6.6.2 Multiple copies
To demonstrate that MFC’s procedure for replicating file contents is
important, we perform an experiment where MFC disables popular
file replication, and compare the results to regular MFC. The
experiment runs 32 processes of the read microbenchmark with
Zipfian file selection. With replication disabled, each file has a
dedicated core, and threads always migrate to that core to read it.

Figure 12 shows the results from the experiment. The “without
replication” line gives the performance of when MFC disable
popular file replication. For comparison the figure includes the
performance when MFC is configured normally and the performance
without MFC, from previous Figure 7(a). For small working set
sizes MFC without replication performs poorly because the working
set is composed of only a few 256 Kbyte files, so the few cores
that hold the most popular files are bottlenecks. The amount of
concurrency (and improvement) increases as the working set size
increases because the working set is composed of more files.

7. Discussion
While we expect that the SCU approach could be used for a wide
range of applications, the current MFC prototype is limited to a
narrow range of read-heavy file system applications. This is largely
motivated by the convenience of a file system API, which makes
data access explicit, and the limitations of commodity hardware that
MFC runs on. The rest of this section discusses the applicability of
SCU at other levels in the system, and how future hardware support
could improve SCU.

To control the placement of data in a distributed cache, SCU must
migrate threads before they access each data object. The file system
API provides a particularly convenient point of migration, in the

read without MFC
read with MFC

read with MFC but without replication

 0

 10000

 20000

 30000

 40000

 50000

 60000

0.5 1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
b
y
te

s/
se

co
n
d
)

Working set size (Mbytes)

Figure 12. Performance of the 32 processes running the read
microbenchmark with Zipfian file selection, when MFC disables file
replication. Performance of MFC with replication enabled (default),
and of Linux without MFC are shown for reference.

read system call. We expect that other systems with a well-defined
notion of an object could similarly benefit from SCU, and some work
has been done in this direction [4]. For example, a language runtime,
such as the Java VM or a Javascript engine, could migrate threads at
calls to methods that access large objects. Database servers could
also migrate threads when scanning different tables or indices. While
optimizing the cache utilization of write-heavy applications did not
make sense in the file system, applications such as an in-memory
database might achieve higher write performance with SCU as well.
For applications that do not have a natural object access boundary,
current hardware does not provide convenient hooks for intercepting
arbitrary cache misses. However, with the right hardware support,
SCU might be able to support these applications as well.

In addition to intercepting cache misses, two other factors limit
SCU on the hardware side. First, today’s multi-core processors
have relatively high costs for migrating computation between cores.
Thus, applications must not migrate too often, if they are to recoup

10



the cost of migration. Second, processors provide little software
control or introspection for the caching hardware. This requires
maintaining a separate data structure to represent cache contents,
which is both costly and inaccurate, because hardware is making its
own independent decisions about eviction and prefetching.

We expect that both of these limitations could be addressed in
future hardware, which would allow a wider range of applications
to take advantage of SCU. For example, support for efficient thread
migration would make it worthwhile for SCU to migrate a thread
for accessing a smaller amount of data on a remote core. This would
make SCU applicable to applications that do not access data in large
coarse-grained chunks. One way to make thread migration cheaper
that we are exploring is to leverage hardware multi-threading (SMT)
support.

Better support for micro-managing hardware caches would
likewise improve SCU. If hardware allowed SCU to query the
contents of a given cache, or to find out which cache currently
contains a particular data item, SCU could find the migration target
for a given thread with less overhead and with higher accuracy.
SCU would also benefit from being able to explicitly push data to a
certain cache, pin data in cache, or evict data, in order to implement
a globally-optimal cache replacement policy.

With such hardware support, SCU might be able to obtain the
benefits of globally-shared caches without the associated hardware
complexity. Building globally-shared caches in hardware involves
trade-offs, as large far-away caches can be slow to access, or requires
complex designs to allow many concurrent accesses. Even processor
that implement such expensive shared caches in hardware cannot
migrate computation closer to the data, as SCU is able to. In future
work, we plan to explore better hardware support for SCU, and how
it affects the applicability of this technique.

8. Related work
The closest related work is the user-level O2 runtime [4]. With O2

a programmer must mark the beginning and end of an operation on
an object, and then the O2 runtime schedules objects and operations
together. If an object is large enough, O2 migrates the operation
to the core that holds the object. This work helped us in proposing
software cache unification as a general idea, which can be applied
at multiple levels of abstractions (files, language objects, and cache
lines).

Although O2 and MFC have a similar goal—making more
effective use of multicore caches—the systems are different: MFC is
a file cache extension for the Linux kernel, while O2 is a user-level
runtime. As a result, their designs are different and solve different
problems. To the best of our knowledge MFC is the first file cache
design to take advantage of the many on-chip caches on multicore
processors.

MFC is related to techniques to optimize cache use on multicore
chips, MFC’s use of migration is similar to computation migration in
software distributed shared memory, and MFC uses implementation
techniques from other systems. We discuss each relationship in turn.

8.1 Multicore cache management
Several techniques have been proposed to achieve better cache
behavior on multicore processors.

Thread clustering [22] dynamically clusters threads with their
data on to a core and its associated cache. Chen et al. [8] investigate
two schedulers that attempt to schedule threads that share a working
set on the same core so that they share the core’s cache and reduce
DRAM references. These techniques do not migrate computation,
but MFC might benefit from a similar approach for applications that
share a file.

Several researchers have been looking at operating systems tech-
niques to partition on-chip caches between simultaneous executing

applications [9, 13, 18, 21]. Zhang et al. propose an efficient page-
coloring and practical approach to supporting such cache manage-
ment [26]. This line of work is orthogonal to SCU and MFC, but
could be used to make shared caches behave like private caches, and
give MFC more precision in assigning files to caches.

Jaleel et al. propose a thread-aware dynamic insertion policy
(TADIP) for managing shared on-chip caches on a multicore pro-
cessor [12]. TAPID’s goals are similar to MFC’s: understand how
on-chip caches are being used, try to cache data that improves per-
formance, and not cache other data. TAPID, however, is a hardware
cache-management scheme and tries to decide based on a core’s
instruction stream whether to use least-recently used or a bimodal
insertion policy.

Chakraborty et al. [6] propose computation spreading, which
uses hardware-based migration to execute chunks of code from dif-
ferent threads on the same core with the aim of reducing instruction
cache misses and branch mispredictions; the authors used computa-
tion spreading to place repeated user-level code on the same core
and repeated system-call code on the same core. MFC doesn’t try
to improve instruction-cache performance, but one could imagine
extending MFC’s heuristics to take instruction caches into account.

Several researchers have proposed to assign OS functions to
particular cores and have other cores invoke those functions by
sending a message to that core. The Corey [3] multicore operating
can dedicate a core to handling a particular network device and its
associated data structures. Mogul et al. proposes to optimize some
cores for energy-efficient execution of OS code and put the OS code
on those optimized cores [15]. Suleman proposes to put critical
sections on fast cores [20]. MFC can be viewed as dynamically
assigning data to cores to get better cache performance.

Barrelfish attempts to solve a much bigger scheduling problem
than MFC [16]. Its goal is to dynamically schedule applications
across heterogeneous systems of multicore processors, taking into
account diversity in terms of access time, cores, and systems. The
authors of Barrelfish have noted the possibility of improved on-chip
cache sharing on multicore processors through on-line monitoring,
but haven’t proposed a scheme for doing so.

The fos operating system runs like a distributed system on a
multicore chip, treating each core and its cache as an independent
computing node that communicate with other nodes using message
passing [24]. Each core runs a small microkernel with the rest
of the operating system implemented as distributed services. A
benefit of this design is that it doesn’t need globally shared memory
and reduces cache interference between operating system and
applications. SCU can be viewed an approach to obtain scalably
the benefits of private caches while maintaining a shared-memory
interface.

8.2 Computation Migration
MFC migrates a thread to the target core to read the content of that
core’s cache. This technique is similar to computation migration
in distributed shared memory systems such as MCRL [11] and
Olden [5]. These systems can migrate computation to a machine
that has the data in its local off-chip memory in order to reduce
total communication traffic. In the Olden system the decision to
use computation migration is made by the compiler statically and
the language was tailored to make it possible for the compiler
to make static decisions. In the MCRL system, the decision is
made dynamically, using a simple policy which maintains a limited
history of accesses and sometimes migrates computations for read
operations, and always for write operations.

In object-based parallel programming languages, the use of
computation migration comes naturally, since the runtime system
can invoke methods on remote processors/computers. A number
of systems have used this ability to decide dynamically between

11



fetching an object’s data and invoking a method on the local copy
versus sending a message for a remote method invocation (e.g., [2]).
Some of these systems have combined this with memory-aware
scheduling for NUMA machines (e.g., [7, 10]).

Although MFC shares the technique of migration computation
with these systems, MFC uses it to overcome the processor-memory
performance gap, employs it in the context of an operating system’s
file cache, and uses different decision procedures for when to
migrate.

8.3 Implementation techniques
Strong et al. have improved the performance of thread switching
between cores in the Linux kernels by a factor of 2 [19]. Adopting
these techniques would improve the MFC results in §6 further, and
we plan to adopt the techniques. Tam et al. propose a light-weight
scheme for estimating L2 miss rates [23]. MFC might be able to
benefit from such a scheme to obtain a more precise estimate of
available cache space than the one in Section 4.6, yet be efficient.

9. Conclusion
This paper presents the SCU approach to unify the distributed
caches on multicore chips. As a concrete instance of SCU, the
paper introduces MFC, which caches the most frequently-used files
in distinct core’s caches to maximize the use of on-chip memory,
avoiding references to off-chip memory. MFC does so by migrating
a thread to the core that holds the desired file, avoiding unnecessary
replication of the file in multiple caches and consequent eviction of
other useful data.

An implementation of MFC in the Linux kernel can speed up
file-intensive applications by up to a factor of 1.6 on a platform with
four AMD quadcore processors. Microbenchmarks show that MFC
performs well for a wide range of working set sizes relative to the
total on-chip cache, because MFC reduces the number of DRAM
loads. Finally, on future machines with less DRAM bandwidth
per core, MFC improves performance even more. These results
suggest that on future multicore processors SCU will be an important
approach for handling the increasing processor-memory gap.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under grant number 0915164.

References
[1] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Char-

acterizing reference locality in the www. In Proceedings of the 4th
International Conference on Parallel and Distributed Information Sys-
tems, pages 92–103, 1996.

[2] H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen,
T. Rühl, and M. F. Kaashoek. Performance evaluation of the Orca
shared-object system. ACM Trans. Comput. Syst., 16(1):1–40, 1998.

[3] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:
An operating system for many cores. In Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’08), San Diego, California, December 2008.

[4] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek. Reinventing
scheduling for multicore systems. In Proceedings of the 12th Workshop
on Hot Topics in Operating Systems (HotOS-XII), Monte Verità,
Switzerland, May 2009.

[5] M. C. Carlisle and A. Rogers. Software caching and computation
migration in Olden. In Proceedings of the 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 1995.

[6] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation spreading:
employing hardware migration to specialize cmp cores on-the-fly.

In ASPLOS-XII: Proceedings of the 12th international conference
on Architectural support for programming languages and operating
systems, pages 283–292, 2006.

[7] R. Chandra, A. Gupta, and J. L. Hennessy. COOL: An object-based
language for parallel programming. Computer, 27(8):13–26, 1994.

[8] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and
C. Wilkerson. Scheduling Threads for Constructive Cache Sharing
on CMPs. In Proceedings of the 19th ACM Symposium on Parallel
Algorithms and Architectures, pages 105–115, 2007.

[9] S. Cho and L. Jin. Managing distributed, shared L2 caches through
os-level page allocation. In MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 455–
468, 2006.

[10] R. J. Fowler and L. I. Kontothanassis. Improving processor and cache
locality in fine-grain parallel computations using object-affinity schedul-
ing and continuation passing. Technical Report TR411, University of
Rochester, 1992.

[11] W. C. Hsieh, M. F. Kaashoek, and W. E. Weihl. Dynamic computation
migration in DSM systems. In Supercomputing ’96: Proceedings
of the 1996 ACM/IEEE conference on Supercomputing (CDROM),
Washington, DC, USA, 1996.

[12] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer.
Adaptive insertion policies for managing shared caches. In Proc.
PACT’08, Oct. 2008.

[13] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: bridging the gap between
simulation and real systems. In International Symposium on High-
Performance Computer Architecture, pages 367–378, February 2008.

[14] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for
on-line problems. In STOC ’88: Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 322–333, New York,
NY, USA, 1988.

[15] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar.
Using asymmetric single-isa cmps to save energy on operating systems.
IEEE Micro, pages 26–41, May-June 2008.

[16] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs. Embracing diversity in the Barrelfish manycore operating
system. In Proceedings of the Workshop on Managed Many-Core
Systems (MMCS), Boston, MA, USA, June 2008.

[17] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. ACM Trans. Graph., 27(3):1–15, 2008.

[18] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of
last-level cache polluters with OS-level, software-only pollute buffer. In
41rst International Symposium on Microarchitecture (MICRO), pages
258–269, November 2008.

[19] R. Strong, J. Mudigonda, J. Mogul, N. Binkert, and D. Tullsen. Fast
switching of threads between cores. ACM SIGOPS Operating Systems
Review, 32(2), April 2009.

[20] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating
critical section execution with asymmetric multi-core architectures.
In ASPLOS ’09: Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems, pages 253–264, 2009.

[21] D. Tam, R. Amzi, L. Soares, and M. Stumm. Managing shared L2
caches on multicore systems in software. In Workshop on Interaction
between operating systems and computer architecture, pages 27–23,
June 2007.

[22] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors. In Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems, pages 47–58, New York, NY, USA, 2007.

[23] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm. RapidMRC:
approximating L2 miss rate curves on commodity systems for online
optimizations. In ASPLOS ’09: Proceeding of the 14th international

12



conference on Architectural support for programming languages and
operating systems, pages 121–132, 2009.

[24] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the
case for a scalable operating system for multicores. SIGOPS Oper. Syst.
Rev., 43(2):76–85, 2009.

[25] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. IEEE Micro, 27(5):15–
31, 2007.

[26] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-
based multicore cache management. In EuroSys ’09: Proceedings of
the 4th ACM European conference on Computer systems, pages 89–102,
2009.

13


