
Event-driven Programming for Robust Software

Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, Robert Morris
MIT Laboratory for Computer Science

{fdabek,kolya,kaashoek,rtm}@lcs.mit.edu, dm@scs.cs.nyu.edu

Abstract

Events are a better means of managing I/O concurrency
in server software than threads: events help avoid bugs
caused by the unnecessary CPU concurrency introduced by
threads. Event-based programs also tend to have more sta-
ble performance under heavy load than threaded programs.
We argue that our libasync non-blocking I/O library makes
event-based programming convenient and evaluate exten-
sions to the library that allow event-based programs to take
advantage of multi-processors. We conclude that events pro-
vide all the benefits of threads, with substantially less com-
plexity; the result is more robust software.

1 Introduction

The debate over whether threads or events are best suited
to systems software has been raging for decades. The cen-
tral question of this debate is whether threads or events
should be used to manage concurrent I/O. Many prefer
threads because they preserve the appearance of serial pro-
gramming and can take advantage of multi-processor hard-
ware. Programmers find programming with threads diffi-
cult, however, and as a result produce buggy software.
This paper contributes to the debate by showing that event-
based programming can provide a convenient programming
model, that it is naturally robust, and that it can also be ex-
tended to take advantage of multi-processors. For these rea-
sons, we argue that there is no reason to use threads for
managing concurrent I/O in system programs—events pro-
vide all the benefits that threads provide, but in a more ro-
bust way.

Thread-based programs use multiple threads of control
within a single program in a single address space [3].
Threaded programs achieve I/O concurrency by suspend-
ing a thread blocked on I/O and resuming execution in a
different thread. Under this model, the programmer must
carefully protect shared data structures with locks and use
condition variables to coordinate the execution of threads.

Event-based programs are organized around the process-

ing of events. When a program cannot complete an opera-
tion immediately because it has to wait for an event (e.g.,
the arrival of a packet or the completion of a disk transfer),
it registers a callback—a function that will be invoked when
the event occurs. Event-based programs are typically driven
by a loop that polls for events and executes the appropriate
callback when the event occurs. A callback executes indi-
visibly until it hits a blocking operation, at which point it
registers a new callback and then returns.

In this position paper, we show that writing programs in
the event-based model can be convenient and show how to
extend the event-based model to exploit multi-processors
in a way that requires programmers to make only minor
changes to their code. This multi-processor event model
makes it easy to capture the levels of CPU concurrency
typically available to systems programs, but does not re-
quire the programmer to insert locks or condition vari-
ables. The multi-processor support is part of the libasync
asynchronous programming library. Unlike programming
with threads, libasync doesn’t force programmers to man-
age thread synchronization, doesn’t force programmers to
guess how much space to reserve for stacks, provides high
performance under high load, and doesn’t have hidden per-
formance costs. As a result, programs written with libasync
tend to be robust. Based on our experience with the library,
we believe there is no reason to use threads for managing
concurrent I/O.

2 Threads lead to unreliable software

The main advantage of threads is that they allow the pro-
grammer to overlap I/O and computation while preserving
the appearance of a serial programming model. The main
disadvantage of threads is that they introduce concurrent ex-
ecution even where it is not needed. This concurrency un-
necessarily forces programmers to cope with synchroniza-
tion between threads. In practice, threaded programs almost
always have latent data races and deadlocks and, as a re-
sult, they are not robust. In our view, programmers must be
spared the complexities of concurrency to make software
more robust.

1



The problems with thread-based programming have long
been recognized. Ousterhout argues that the convenience of
threads is not worth the errors they encourage, except for
multi-processor code [11]. Engler et al. demonstrate that
synchronization errors, particularly potential deadlocks, are
common in the Linux kernel [5]. Savage et al. [13] found
races in both student code and production servers.

While it might seem that one could eliminate synchro-
nization by moving to non-pre-emptive threads on a unipro-
cessor, errors will still arise if a thread blocks (yields the
CPU) unexpectedly. In complex systems, it is easy for pro-
grammers of one module not to understand the exact block-
ing behavior of code in other modules. Thus, one can eas-
ily call a blocking function within a critical section with-
out realizing that pre-emption may occur [1]. Deadlocks
are also a possibility when using non-preemptive threads,
as one still needs to hold locks across known yields. Adya
et al. propose the use of non-preemptive threads augmented
with runtime checks to detect unexpected yields in submod-
ules [2] and describe a new taxonomy for I/O concurrency
techniques. They also show how to integrate code written in
the event-driven style (described in their taxonomy as co-
operative task management and manual stack management)
with non-preemptive threads (cooperative task management
and automatic stack mangement) in the same program.

Another complication of threads is the need to predict
the maximum size of a stack. Most systems conservatively
use one or two pages of memory per thread stack—far more
than the few hundred bytes typically required per callback.
The designers of the Mach kernel found stack memory over-
head so high that they restructured the kernel to use “contin-
uations,” essentially rewriting the kernel in an event-driven
style [4]. Stack memory overhead is especially burdensome
in embedded environments where memory is scarce. The
standard practice of allocating full pages for thread stacks
also causes additional TLB pressure and cache pressure,
particularly with direct-mapped caches [4]. Cohort schedul-
ing attempts to increase data and instruction locality in
threaded programs by running related computations, orga-
nized as “stages,” consecutively [7].

Robust software must gracefully handle overload con-
ditions. Both Pai et al. [12] and Welsh et al. [14] explore
the advantages of event-driven programs under high load.
Welsh demonstrates that the throughput of a simple server
using kernel-supported threads degrades rapidly as many
concurrent threads are required. Pai extends the traditional
event-driven architecture to overcome the lack of support
for non-blocking disk I/O in most UNIX implementations
by using helper processes to handle disk reads. On work-
loads involving many concurrent clients, Pai’s event-based
Web server provides higher performance than a server using
kernel-based threads.

Writing programs in the event-driven style alleviates all

of the problems mentioned above. Data races are not a con-
cern since event-based programs use a single thread of exe-
cution. Event-driven programs need only allocate the mem-
ory required to hold a callback function pointer and its argu-
ments, not a whole thread stack; this reduces overall mem-
ory usage. In addition, these pointers and arguments can
be allocated roughly contiguously, reducing TLB pressure.
The livelock-like behavior of threaded servers under high
load is avoided by event driven programs that queue events
that cannot be serviced rather than dedicating resources to
them [10].

Lauer and Needham observe that programs based on
message passing (which corresponds to the event-driven
model) have a dual constructed in the procedure-oriented
(threaded) model (and vice versa) [8]. Based on this obser-
vation, the authors conclude that neither model is inherently
preferable. The model described by Lauer and Needham
does not exploit the fact that coordination is considerably
simpler when using non-preemptive scheduling. As a result
the authors’ conclusion neglects the advantages of the lower
synchronization burden offered by the event-driven model.

While this paper focuses on user-level servers, the ar-
guments apply to operating system kernels as well. In this
realm, the event-driven architecture corresponds to a kernel
driven by transient interrupts and traps. Ford et al. compare
event-driven kernels with threaded kernels in the context of
Fluke [6].

3 Making asynchronous programming easy

The most cited drawback of the event-driven model is
programming difficulty. Threaded programs can be struc-
tured as a single flow of control, using standard linguis-
tic constructs such as loops across blocking calls. Event-
driven programs, in contrast, require a series of small call-
back functions, one for each blocking operation. Any stack-
allocated variables disappear across callbacks. Thus, event-
driven programs rely heavily on dynamic memory alloca-
tion and are more prone to memory errors in low-level lan-
guages such as C and C++. As an example, consider the
following hypothetical asynchronous write function:

void awrite (int fd, char *buf, size_t size,
void (*cb) (void *), void *arg);

awrite might return after arranging for the following
to happen: as soon as the file descriptor becomes writeable,
write the contents of buf to the descriptor, and then call cb
with arg. arg is state to preserve across the callback—
state that likely would be stack-allocated in a threaded pro-
gram. A number of bugs arise with functions like awrite.
For example, awrite probably assumes buf will remain
intact until the callback, while a programmer might be



tempted to use a stack-allocated buffer. Moreover, the cast
of arg to void pointer and back is not type safe.

The C++ non-blocking I/O library in use by the au-
thors, libasync, provides several features to eliminate such
memory problems. It supplies a generic reference-counted
garbage collector so as to free programmers from worrying
about which function is responsible for deallocating what
data.

libasync also provides a type-safe method of passing
state between callbacks. A heavily overloaded template
function, wrap, allows the programmer to pass data between
callbacks with function currying: wrap takes as arguments
a function or method pointer and one or more arguments
and returns a function object accepting the original func-
tion’s remaining arguments. Thus, the state of an operation
can be bundled as arguments to successive callbacks; the
arguments are type-checked at compile time.

Finally, the library also provides classes to help deal with
the complications of short I/O operations (i.e., when kernel
buffers fill up and a system call such as writev only writes
part of the data). The suio class can hold onto a reference
counted object until the “printed” data is consumed by an
output call.

Experience with libasync shows that it is easy to learn
and use. We use the library day-to-day when implement-
ing network applications. Students have used the library to
complete laboratory assignments including web proxies and
cryptographic file systems.

4 Multi-processor event programming

We have modified the asynchronous programming li-
brary described in Section 3 to take advantage of multi-
processors. The modified library (libasync-mp) provides a
simple but effective model for running threads on multiple
CPUs, but avoids most of the synchronization complexity
of threaded programming models.

Programs written with libasync-mp take advantage of
multi-processors with a simple concurrency mechanism:
each callback is assigned a color by the programmer, and
the system guarantees that no two callbacks with the same
color will run concurrently. Because callbacks are assigned
a default color, libasync-mp is backwards compatible with
existing event-based applications. This allows the program-
mer to incrementally add parallelism to an application by
focusing on just the event callbacks that are likely to benefit
from parallel execution. In contrast, typical uses of threads
involve parallelizing the entire computation, by (for exam-
ple) creating one server thread per client; this means that
all mutable non-thread-private data must be synchronized.
The concurrency control model provided by libasync-mp
also avoids deadlocks: a callback has only one color, so cy-
cles can’t arise; even if multi-color callbacks were allowed,

the colors are pre-declared, so deadlock avoidance would be
easy.

The libasync-mp model is more restrictive than many
thread synchronization models; for example, there is cur-
rently no concept of a read-only color. However, our expe-
rience suggests that the model is sufficient to obtain about as
much parallel speedup as could typically be obtained from
threads.

libasync-mp maintains a single queue of pending call-
backs. The library uses one kernel thread per CPU to ex-
ecute callbacks. Each kernel thread repeatedly dequeues a
callback that is eligible to run under the color constraints
and executes it. An additional callback, inserted by the li-
brary, calls the select () system call to add new call-
backs to the queue when the events they correspond to oc-
cur.

Ideal support for multi-processor programming would
make it easy to port existing programs to a multi-processor,
and would make it easy to modify programs to get good par-
allel speedup. Thus we are interested in two metrics: per-
formance and ease of programming. We evaluate the two
criteria in an example application: the SFS file server [9].

Our performance results were obtained on a 700 MHz
4-processor Pentium III Xeon system running Linux ker-
nel 2.4.18. Processor scaling results were obtained by com-
pletely disabling all but a certain number of processors on
the server while running the benchmark.

All communication between the SFS server and clients
is encrypted using a symmetric stream cipher, and authenti-
cated with a keyed cryptographic hash. Because of its use of
encryption, the SFS server is compute-bound under heavy
workloads and therefore we expect that by using libasync-
mp we can extract significant multiprocessor speedup.

The modifications to the SFS server are concentrated
in the code that encrypts, decrypts, and authenticates data
sent to and received from the clients. The callback respon-
sible for sending data to the client is representative of how
we parallelized this server: we split the callback into three
smaller callbacks. The first and last remain synchronized
with the rest of the server code (i.e. have the default color),
and copy data to be transmitted into and out of a per-client
buffer. The second callback encrypts the data in the client
buffer, and runs in parallel with other callbacks (i.e., has
a different color for each client). The amount of effort re-
quired to achieve this parallel speedup was approximately
90 lines of changed code, out of a total of roughly 12,000 in
the SFS server.

We measured the total throughput of the file server to
all clients, in bits per second, when multiple clients read
a 200 MByte file whose contents remained in the server’s
disk buffer cache. We repeated this experiment for different
numbers of processors.

The bars labeled “libasync-mp” in Figure 1 show the per-



0 1 2 3 4

Number of CPUs

0

10

20

30
T

hr
ou

gh
pu

t 
(M

B
yt

es
/s

ec
on

d)

libasync-mp
N-copy

Figure 1. Performance of the SFS file server
using different numbers of CPUs, relative to
the performance on one CPU.

formance of the parallelized SFS server on the throughput
test. On a single CPU, the parallelized server is 0.95 times
as fast as the original uniprocessor server. The parallelized
server is 1.62, 2.18, and 2.55 times as fast as the original
uniprocessor server on two, three and four CPUs, respec-
tively. Further parallelization of the SFS server code would
allow it to incrementally take advantage of more processors.

To explore the performance limits imposed by the hard-
ware and operating system, we also measured the total per-
formance of multiple independent copies (as many as CPUs
were available) of the original libasync SFS server code. In
practice, such a configuration would not work unless each
server were serving a distinct file system. An SFS server
maintains mutable per-file-system state, such as attribute
leases, that would require synchronization among the server
processes. This test gives an upper bound on the perfor-
mance that SFS with libasync-mp could achieve.

The results of this test are labeled “N-copy” in Figure 1.
The SFS server implemented using libasync-mp closely fol-
lows the aggregate performance of multiple independent
server copies for up to three CPUs. The performance differ-
ence for the 2- and 3-processor cases is due to the penalty
incurred due to shared state maintained by the server, such
as file lease data, user ID mapping tables, and so on.

5 Conclusions

The traditional wisdom regarding event-driven program-
ming holds that it offers superior performance but is too dif-
ficult to program and cannot take advantage of SMP hard-
ware. We have shown that, by using libasync-mp, program-
mers can easily write event-driven applications and take ad-
vantage of multiple processors.

References

[1] The Amoeba reference manual: Programming guide.
http://www.cs.vu.nl/pub/amoeba/manuals/pro.pdf.

[2] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W. J.,
AND DOUCEUR, J. R. Cooperative task management with-
out manual stack management or, event-driven programming
is not the opposite of threaded programming. In Proc. Usenix
Technical Conference (2002).

[3] BIRRELL, A. D. An introduction to programming with
threads. Tech. Rep. SRC 35, Digital SRC, 1989.

[4] DRAVES, R. P., BERSHAD, B. N., RASHID, R. F., AND

DEAN, R. W. Using continuations to implement thread
management and communication in operating systems. In
Proceedings of the 13th ACM Symposium on Operating Sys-
tems Principles (1991), Association for Computing Machin-
ery SIGOPS, pp. 122–136.

[5] ENGLER, D., CHELF, B., CHOU, A., AND HALLEM, S.
Checking system rules using system-specific, programmer-
written compiler extensions. In Usenix Symposium on Oper-
ating Systems Design and Implementation (OSDI) (2000).

[6] FORD, B., HIBLER, M., LEPREAU, J., MCGRATH, R.,
AND TULLMANN, P. Interface and execution models in the
Fluke kernel. In Operating Systems Design and Implemen-
tation (1999), pp. 101–115.

[7] LARUS, J. R., AND PARKES, M. Using cohort scheduling
to enhance server performance. In Proc. Usenix Technical
Conference (2002).

[8] LAUER, H. C., AND NEEDHAM, R. M. On the duality
of operating system structures. In Proc. Second Interna-
tional Symposium on Operating Systems, IRIA (Oct. 1978).
Reprinted in Operating Systems Review, Vol. 12, Number 2,
April 1979.

[9] MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F., AND

WITCHEL, E. Separating key management from file system
security. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’99) (Kiawah Island,
South Carolina, December 1999).

[10] MOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating
receive livelock in an interrupt-driven kernel. ACM Trans.
Comput. Syst. 15, 3 (Aug. 1997), 217–252.

[11] OUSTERHOUT, J. K. Why threads are a bad idea (for most
purposes). Invited talk at the 1996 USENIX technical con-
ference, 1996.

[12] PAI, V., DRUSCHEL, P., AND ZWAENEPOEL, W. Flash: An
efficient and portable web server. In Proceedings of the 1999
Annual Usenix Technical Conference (June 1999).

[13] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO,
P., AND ANDERSON, T. Eraser: A dynamic data race detec-
tor for multithreaded programs. ACM Transactions on Com-
puter Systems 15, 4 (1997), 391–411.

[14] WELSH, M., CULLER, D., AND BREWER, E. SEDA: An
architecture for well-conditioned, scalable Internet services.
In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (Oct. 2001), pp. 230–243.


