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Abstract. Tiptoe is a private web search engine that allows
clients to search over hundreds of millions of documents,
while revealing no information about their search query to the
search engine’s servers. Tiptoe’s privacy guarantee is based
on cryptography alone; it does not require hardware enclaves
or non-colluding servers. Tiptoe uses semantic embeddings
to reduce the problem of private full-text search to private
nearest-neighbor search. Then, Tiptoe implements private
nearest-neighbor search with a new, high-throughput protocol
based on linearly homomorphic encryption. Running on a
45-server cluster, Tiptoe can privately search over 360 million
web pages with 145 core-seconds of server compute, 56.9 MiB
of client-server communication (74% of which occurs before
the client enters its search query), and 2.7 seconds of end-to-
end latency. Tiptoe’s search works best on conceptual queries
(“knee pain”) and less well on exact string matches (“123
Main Street, New York”). On the MS MARCO search-quality
benchmark, Tiptoe ranks the best-matching result in position
7.7 on average. This is worse than a state-of-the-art, non-
private neural search algorithm (average rank: 2.3), but is
close to the classical tf-idf algorithm (average rank: 6.7).
Finally, Tiptoe is extensible: it also supports private text-to-
image search and, with minor modifications, it can search over
audio, code, and more.

1 Introduction
The first step of performing a web search today, whether using
Google, Bing, DuckDuckGo, or another search engine, is to
send our query to the search engine’s servers. This is a privacy
risk: our search queries reveal sensitive personal information
to the search engine, ranging from where we are (“Tokyo
weather”), to how we are doing (“Covid19 symptoms”), to
what we care about (“Should I go to grad school?”) [13, 55].
The search engine may inadvertently disclose this information
in a data breach or intentionally resell it for profit. Even if you
anonymize your IP address by accessing the search engine
through Tor [36], the query itself can contain personally
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identifying information, and similarities across queries can
link requests and deanonymize the user [99, 100].

Today’s web search engines must see the user’s search
query because common algorithms and data structures for
text search make many query-dependent lookups [10,50,134].
For example, the keywords in the query may determine which
shard of servers processes the query, which rows of an inverted
index the servers inspect, and how the servers aggregate the
relevant documents. If the servers do not know the query, they
cannot apply standard search techniques.

In contrast, cryptographic schemes that provide strong
query privacy [28,67] generally require the servers to scan the
entire data set in response to each query [5,9,133]—otherwise,
the servers would learn which parts of the data set were not
relevant to the query [16]. This is challenging for Internet-
scale search, as scanning every crawled web page on each
query becomes very costly. Using the state-of-the-art system
for private text search, Coeus [5], to search over the entire
Internet would be prohibitively expensive: we conservatively
estimate that, searching over a public web crawl with 360
million pages [108], a Coeus query would take more than
900 000 core-seconds and 3 GiB of traffic (see §8). For private
text-to-image search, no such systems even exist.

This paper presents Tiptoe, a search engine that learns
nothing about what its users are searching for. Tiptoe provides
a strong privacy guarantee: its servers take as input a query
ciphertext from the user and, using linearly homomorphic
encryption [94, 95] and private information retrieval [56],
compute the response ciphertext without ever decrypting the
query ciphertext. This approach ensures privacy based only
on cryptographic assumptions: Tiptoe does not require Tor,
trusted hardware, or non-colluding infrastructure providers.

Inspired by non-private search engines [39,91,138], Tiptoe
uses semantic embeddings for document selection and ranking.
A semantic embedding function maps text strings (or images
or other content) to vectors such that strings that are close
in meaning produce vectors that are close in inner-product
distance. Many pretrained embedding models have been made
publicly available for off-the-shelf use [68, 81, 114]. Using
embeddings, Tiptoe reduces the problem of private web search
to the problem of private nearest-neighbor search: the client
must find the document vectors that maximize the inner-
product score with its query vector. With this design, Tiptoe
is extensible to search over many different forms of media,
including text, images, video, audio, and code; this paper
demonstrates both text and text-to-image search.

To implement this search, Tiptoe introduces a new
lightweight protocol for private nearest-neighbor search that



allows the client to find the documents most relevant to its
query. In particular, the client sends an encryption of its query
vector to the Tiptoe service; the Tiptoe servers compute inner-
product scores under encryption and return the encrypted
results to the client. Tiptoe uses a recent lattice-based encryp-
tion scheme [56, 112] that lets the servers perform most of
their computation in a client-independent preprocessing step.
The servers then only need to perform a much smaller amount
of per-query computation for each document.

Finally, to reduce communication cost, Tiptoe clusters doc-
uments together by topic. The client uses private-information-
retrieval techniques to fetch encrypted inner-product scores
for only the documents in the most relevant cluster, while
hiding the identity of this cluster from the Tiptoe servers.
Though this approach slightly worsens Tiptoe’s search quality,
it lets Tiptoe’s communication costs scale sublinearly with the
number of documents in the search corpus—which is crucial
to operating at web scale.

We implement a prototype of Tiptoe in Go and evaluate it on
a public web crawl consisting of 360 million English-language
web pages [108]. When running Tiptoe on a cluster of 45
servers, Tiptoe clients execute private web search queries with
2.7 seconds of end-to-end latency, using 145 core-seconds of
total server compute and 56.9 MiB of network traffic. Of this
traffic, 42.2 MiB is sent before the client decides on its search
query, leaving only 14.7 MiB on the latency-critical path. We
give a detailed evaluation in §8, which includes text-to-image
search over a corpus of 400 million images [119].

To evaluate the quality of Tiptoe’s search results, we use
the MS MARCO search-quality benchmark for end-to-end
document retrieval [92]. On this benchmark, Tiptoe ranks
the best result on average at position 7.7 out of 100, which
is comparable to the standard tf-idf algorithm (average rank:
6.7) but worse than state-of-the-art non-private neural search
engines (average rank: 2.3). While Tiptoe’s search works best
on conceptual queries, it performs most poorly on exact-string
searches such as for phone numbers and addresses. At the
same time, as Tiptoe makes black-box use of machine-learning
models for information retrieval, future improvements in these
techniques can directly improve Tiptoe’s search quality.

2 Goals and limitations
Tiptoe is a search engine that learns nothing about what its
users are searching for. In particular, an attacker that controls
all Tiptoe servers should be able to learn no information
about the clients’ search queries (e.g., the strings typed into
the search engine), even if the Tiptoe servers deviate from
the prescribed protocol. We formalize this property as query
privacy, which is essentially an adaptation of the cryptographic
notion of semantic security to our setting [49]:

Definition 2.1 (Query privacy). For a query string 𝑞 ∈ {0, 1}∗
and an adversarial search service A, let 𝑀A,𝑞 be a random
variable representing the messages that the search client sends

to the search service when the client searches for string 𝑞. We
say that a search engine provides query privacy if, for all pairs
of strings 𝑞0, 𝑞1 ∈ {0, 1}∗ and for all efficient adversaries
A, the corresponding probability distributions of 𝑀A,𝑞0 and
𝑀A,𝑞1 are computationally indistinguishable.

Our definition of query privacy implies that all aspects
of the search engine’s behavior—including the queries it
receives, its memory access patterns, the precise timing of
its execution, and the responses it sends back to the client—
are independent of the query issued by the client, up to
cryptographic assumptions. This also implies that the search
engine does not learn the set of search results that it sends
back to the client.

For a system to provide query privacy, the search engine’s
servers can never see the client’s query in plaintext—otherwise,
the server could easily distinguish between client queries for 𝑞0
and for 𝑞1. Private-search systems based on anonymizing
proxies (e.g., Tor [36], mix-nets [22]) cannot provide this
type of query privacy, since at some point the search system’s
servers must see the query in order to answer it.

As we will demonstrate, Tiptoe achieves query privacy
under standard cryptographic assumptions.
Non-goals and limitations. Tiptoe hides what a client is
searching for; Tiptoe does not hide when a client makes a
query, or how many queries the client makes. Moreover, Tiptoe
does not protect information about a client’s web-browsing
behavior after the client makes its query. For example, if
the client browses to a URL that Tiptoe’s search returns, the
client’s post-search HTTP/HTTPS requests could indirectly
leak information about its query to a network adversary.

In the face of malicious servers, Tiptoe guarantees neither
the availability of its service nor the correctness of its results.
This limitation is inherent: malicious servers can decide which
corpus to serve, and lie about the contents of documents.

Finally, Tiptoe’s embedding-based search returns semantic
matches rather than exact lexical ones. This brings with
it many of the limitations of machine learning: bias, lack
of interpretability, and difficulty to generalize beyond the
embedding’s training set [76]. Crucially, Tiptoe only relies
on the embedding model for search result correctness—not
privacy.

3 Tiptoe design
Tiptoe achieves query privacy by ensuring that:
• every protocol message that the client transmits is encrypted

with a secret key known only to the client, meaning that
the Tiptoe servers only ever see ciphertexts, and

• the message flow and packet sizes do not depend on the
client’s secret query string or on the servers’ behavior.

The Tiptoe servers compute the answers to the client’s queries
directly on the encrypted data, without ever decrypting it.
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Figure 1: Tiptoe’s semantic search with embeddings. Tiptoe uses
embeddings to represent documents as points in a vector space. To
search: ➊ the query is embedded into the same vector space, ➋ the
cluster of documents nearest to the query point is identified, and ➌

the closest document to the query point within the cluster is returned.

3.1 Design ideas

The core challenge in Tiptoe lies in the tension between
supporting expressive queries, hiding the query contents from
the search engine, and searching over hundreds of millions of
documents, all in the span of seconds. To provide privacy, the
search engine’s servers must, on every query, scan over a data
structure whose size is linear in the number of documents
searched. (Otherwise, an adversary controlling the search
engine can learn which documents the client is not interested
in.) At the same time, performance requirements rule out
any expensive, per-document cryptographic computations
(for example, checking for the joint appearance of encrypted
keywords in documents). Tiptoe resolves this tension using
the following techniques.

Embedding-based search. Tiptoe represents documents us-
ing semantic embeddings [68, 81, 114], a machine-learning
technique that many recent non-private search systems use [39].
A semantic embedding function maps each document to a
short, fixed-size vector (e.g., 768 floats for text search), such
that semantically similar documents map to vectors that are
close in the embedding space. The Tiptoe search protocol
supports any embedding function that uses inner product or
cosine similarity as its vector similarity measure; as such,
Tiptoe is compatible with popular embeddings [85], including
transformer models [114].

Using embeddings, Tiptoe reduces the private document-
search problem to that of private nearest-neighbor search. To
perform a search, the client locally embeds its query string into
a vector and then needs to find the document in the server-side
corpus whose embedding has the maximal inner product (i.e.,
dot product) with the client’s query embedding. We illustrate
Tiptoe’s embedding-based search algorithm in Figure 1. This
approach provides three key benefits:
1. Embeddings are small (less than 4% the size of the average

document in our web-search corpus), which dramatically
reduces the cost of the Tiptoe servers’ linear scan.

2. Embeddings allow Tiptoe to natively support expressive
queries—without any special machinery for keyword inter-
section or term-frequency analysis.

3. Embeddings exist for an array of document types (e.g.,
text, image, audio, and video), allowing Tiptoe to support
private search over these document types.

Private nearest-neighbor search with fast linearly homo-
morphic encryption. To find the closest documents to its
query, the client sends an encryption of its query embedding
to the Tiptoe search engine, and the Tiptoe servers homomor-
phically (i.e., under encryption) compute the inner product of
the query embedding with every document in the corpus. The
servers return the encrypted inner-product scores to the client.
The key to achieving good performance is that the document
embeddings are plaintext vectors, and so the inner-product
scores that the servers need to compute are a public, linear
function of the client’s encrypted query embedding. Therefore,
we can use a linearly homomorphic encryption scheme (that
is, an encryption scheme that supports computing only linear
functions on encrypted data), which is much simpler and faster
than its “fully” homomorphic counterpart [44].

In §4, we show that using a high-throughput, lattice-based
encryption scheme [56] makes Tiptoe’s server-side computa-
tion fast, despite touching every document. Applied directly,
this encryption scheme requires the client to download and
store one large (8 KiB) ciphertext for each inner-product score.
We shrink the download to eight bytes per score, at the expense
of requiring some per-query preprocessing that can execute
before the client has decided on its search query (§6).
Clustering to reduce communication. Finally, Tiptoe uses
clustering [25,58,61,71,106] to shrink client-server traffic. In
particular, to avoid having the client download 𝑁 inner-product
scores on an 𝑁-document corpus, Tiptoe groups documents
with similar embeddings into clusters of size roughly

√
𝑁 . The

client downloads a list of
√
𝑁 cluster “centroids” ahead of time

and, at query time, uses this list to find the cluster closest to its
query embedding. Then, the client fetches the inner-product
scores for only the

√
𝑁 documents in this best-matching

cluster, using a cryptographic protocol that hides the cluster’s
identity from the servers. The servers still compute over all 𝑁
documents to ensure that the protocol’s privacy is not affected,
but clustering drastically reduces the communication (from
linear to 𝑂 (√𝑁)), at some cost in search quality (see §8).

3.2 Tiptoe architecture
A Tiptoe deployment consists of data-loading batch jobs, a
client, and two client-facing services—a ranking service and
a URL service—that implement the core search functionality.
We show an overview of Tiptoe’s architecture in Figure 2. In
our prototype, the batch jobs and the client-facing services
run on a cluster of tens of physical machines.
Data-loading batch jobs. The Tiptoe batch jobs convert a raw
corpus of documents into a set of data structures for private
search. The batch jobs perform three steps:
Embed. First, the batch jobs run each document through a
server-chosen embedding function to generate a fixed-size



vector representation of the document. The output of this
step is one embedding vector per document. The choice of
embedding function depends only on the type of document
being indexed (e.g., text, image) and not on the corpus itself;
our prototype uses off-the-shelf, pretrained models.
Cluster. Second, the batch jobs group the embedded document
vectors into clusters of tens of thousands of documents each
and compute the centroids (i.e., average embedding values)
of each cluster. Since nearby embedding vectors represent
documents that are close in content, the documents within
each cluster are typically about related topics.
Preprocess cryptographic operations. Finally, the batch jobs
compute a set of cryptographic data structures required for
our private-search protocols. (These correspond to the “hint”
in the SimplePIR private information retrieval scheme [56].)
Search queries with Tiptoe. Before a client can issue Tiptoe
search queries, it must download the embedding function that
the servers used during data loading (265 MiB for text search)
along with the set of cluster centroids and associated metadata
(68 MiB for a 360 million-document text corpus). To perform
a private search, a Tiptoe client executes the following steps:
1. Embed query. The client embeds its query string into a fixed-
size vector using the server-provided embedding function.
2. Rank documents (§4). The client then uses Tiptoe’s ranking
service to find the IDs of the documents that best match its
query, while revealing to the Tiptoe service neither its query
nor its embedded query vector. To do so, the client uses its
local cache of cluster centroids to identify the cluster whose
centroid is closest to its query embedding. Then, the Tiptoe
client uses a new cryptographic protocol to obtain the distance
between its query embedding and all of the documents in its
chosen cluster, while hiding its query and its chosen cluster
from the Tiptoe servers.
3. Fetch URLs (§5). Once the client has the IDs of the best
matching documents, the client uses Tiptoe’s URL service to
privately fetch the URLs for its top few documents. The Tip-
toe client uses a cryptographic private-information-retrieval
protocol [28] to query the URL service for this data, while
hiding which documents it is interested in.
Handling updates to the corpus. To support continuous
updates to the search corpus, the Tiptoe servers can run the
new or changed documents through the embedding function,
assign them to a cluster, and publish the updated cluster
centroids and metadata to the clients. Even if all centroids
change, fetching this data (in a compressed format) requires
at most 18.7 MiB of download for our 360 million-document
text-search corpus.

4 Tiptoe’s private ranking service
This section describes Tiptoe’s ranking service, which allows
the client to find the IDs of the documents that are most
relevant to its query.

Preprocessing

Per query

✪ Corpus indexing

1. Embed

2. Cluster

3. Crypto

Documents

Ranking service

URL service

Clusters ✪
Embeddings

URLs

✪ Cluster centroids,
metadata

Client

Enc(query1 )

Enc(answer1 )

Enc(query2 )

Enc(answer2 )

➊ query

URL

Pretrained
embedding ✪ Embedding fn.



Embed Find cluster
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Find doc. ID

Decrypt➌

Figure 2: The Tiptoe system architecture. ✪ In a preprocessing
phase, the Tiptoe batch jobs embed each document into a vector
(with a pretrained embedding function), cluster the vectors, and
generate the cryptographic data structures. The client and servers
each store portions of the preprocessed data. ➊ For each query, the
client embeds the query string into a vector, identifies the cluster
nearest its query vector, and queries the ranking service to find the
best documents within that cluster. ➋ Once the client knows the
IDs of the best-matching documents, it queries the URL service.
➌ Finally, from the URL service’s answer, the client recovers the
best documents’ URLs.

Tiptoe implements this ranking step using a new private
nearest-neighbor search protocol. On a corpus of 𝑁 docu-
ments with 𝑑-dimentional embedding vectors, the total com-
munication cost required for ranking grows as

√
𝑁𝑑, and the

server-side time is roughly 2𝑁𝑑 64-bit word operations.
An important caveat is that our protocol only allows the

client to find approximate nearest neighbors—it does not
produce exact results and provides no formal correctness
guarantees. However, since Tiptoe builds on semantic embed-
dings which similarly do not provide formal guarantees of
correctness, approximate nearest-neighbor results suffice.

4.1 Tiptoe’s private nearest-neighbor protocol

At the start of the ranking step:
• the ranking service holds a list of 𝑁 document-embedding

vectors of dimension 𝑑, partitioned by topic into roughly√
𝑁 clusters (see §4.2), and

• the client holds the semantic embedding q of its query
string, along with a list of the cluster centroids that it has
fetched in advance and cached.

The client’s goal is to find the IDs of the server-side documents
whose embedding vectors are closest to its query embedding q.
For now, we think of the embedding as consisting of 𝑑 integers;
we discuss how to handle real-valued vectors in §4.3.
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Figure 3: The matrices in our private nearest-neighbor computation,
for a data set with 𝐶 = 3 clusters of 5 vectors each. The client,
in this example searching within Cluster 2, uploads an encrypted
query vector q̃ and receives the encrypted inner-product scores for
all documents in Cluster 2 in response. The client then decrypts to
recover the document scores.

To perform the nearest-neighbor search, the client and
ranking service execute the following steps:
Step 1: Client query preparation. The client uses its locally
cached set of cluster centroids to identify the index 𝑖∗ of the
cluster nearest to its query embedding q.

The client then prepares a vector q̃ that encodes its query
embedding q and its chosen cluster index 𝑖∗. In particular, if
there are 𝐶 server-side clusters and the client’s query vector
has dimension 𝑑, the client constructs a vector q̃ of 𝑑𝐶 integers,
which is zero everywhere except that it contains the client’s
query q in the 𝑖∗-th block of 𝑑 integers (Figure 3).

Then, the client encrypts this vector using a linearly homo-
morphic encryption scheme to get a ciphertext ct = Enc(q̃).
The client sends this ciphertext ct to the ranking service. Be-
cause the Tiptoe ranking service only receives a fixed-length
ciphertext, it learns nothing about either the client’s query
vector q, or about the cluster 𝑖∗ it is interested in.
Step 2: Ranking-service computation. The ranking service
arranges its 𝑁 document-embedding vectors into a matrix M.
If there are 𝑁 total document embeddings, grouped into 𝐶
clusters, the ranking service arranges these vectors into a
matrix M with 𝐶 columns and 𝑁/𝐶 rows, such that for all
𝑖 ∈ {1, . . . , 𝐶}, column 𝑖 of the matrix contains all vectors in
cluster 𝑖 (Figure 3). For the purposes of this protocol, we think
of all clusters as being roughly the same size, and we pad the
height of the matrix M to the size of the largest cluster. Since
each embedding vector has dimension 𝑑, each element of the
matrix will contain 𝑑 integers.

Upon receiving a query ciphertext ct from the client, the
server computes the matrix-vector product ct′ = M · ct. Since
Enc is a linearly homomorphic encryption scheme, it holds
that ct′ = M·Enc(q̃) = Enc(M·q̃)—meaning that the ranking
service has just computed the product M · q̃ under encryption.
The server returns the resulting ciphertext ct′ to the client.
Step 3: Client decryption. The client decrypts ct′ to recover

M · q̃. Based on how we construct the ranking service’s matrix
M and the client’s vector q̃, the product M · q̃ contains the
≈ √𝑁 inner-product scores for the documents in the client’s
chosen cluster 𝑖∗ (see Figure 3). The client outputs the index
of the documents with the largest inner product scores as the
nearest neighbors.

We give a more detailed description of the protocol in
Figure 10 of Appendix B.

4.2 Protocol analysis

Security. The server sees only the encryption of the client’s
augmented query vector q̃, under a secret key known only to
the client. Provided that the underlying encryption scheme
is semantically secure [49], the server learns nothing about
the client’s query embedding q nor about the index 𝑖∗ of its
cluster of interest.
Correctness. With this scheme, the client learns the inner
product of its query vector q with each vector in its chosen
cluster 𝑖∗. This may not always return the true nearest neighbors
of q, since the true nearest neighbor may not always lie in the
cluster searched by the client. (This is because the client uses
its local cache of cluster centroids to determine which cluster
to search.) Whenever the centroid of the cluster containing
the true best match is not the closest centroid to q, the client
will instead obtain an approximate nearest neighbor.

While we do not provide guarantees on how good of
an approximation this scheme will provide, our empirical
evaluation suggests that it is reasonable on average (§8).
Communication cost. On a corpus of 𝑁 documents with
𝑑-dimensional embeddings divided into 𝐶 clusters:
• the client uploads the encryption of a vector of dimen-

sion 𝑑𝐶,
• the ranking service applies a matrix with 𝑑𝑁 integer entries

to the encrypted vector ( 𝑁𝐶 rows, 𝑑𝐶 columns), and
• the ranking service returns an encrypted vector of dimen-

sion 𝑁
𝐶 to the client.

Taking 𝐶 ≈ √𝑁 , the total communication cost scales roughly
as 𝑑
√
𝑁 . (If the dimension 𝑑 grows large, we can take 𝐶 ≈√︁

𝑁/𝑑 to reduce the total communication slightly to
√
𝑑𝑁 .)

Performance. In this protocol, the ranking service computes
a matrix-vector product between the large matrix M and the
vector Enc(q̃), encrypted with a linearly homomorphic en-
cryption scheme. The performance of computing on encrypted
data thus determines the ranking service’s throughput. In Tip-
toe, we use a recent fast linearly homomorphic encryption
scheme, which we describe in §6.

4.3 Implementation considerations

We now describe how we build the private ranking service
that responds to private nearest-neighbor queries.



Representing real-valued embeddings. Embeddings are
traditionally vectors of floating-point values [68, 114], but the
linearly homomorphic encryption scheme Tiptoe uses can only
compute inner products over vectors of integers modulo 𝑝.
Choosing a smaller modulus 𝑝 improves performance. To
bridge this gap, Tiptoe represents each real number as an
integer mod 𝑝 using a standard fixed-precision representation,
which we describe in Appendix B.1.
Scaling out to many physical machines. The server’s per-
query computation in Figure 10 consists of multiplying the
large, corpus-dependent matrix M by the client’s encrypted
query vector Enc(q̃). For a corpus with hundreds of millions
of documents, the matrix M can be 50 GiB or more in size.
Sharding M across multiple servers reduces query latency
and, for very large data sets, ensures that the entire matrix
fits in main memory. Tiptoe shards by cluster: to shard across
𝑊 worker machines, we vertically partition the matrix as
M = (M1∥ · · · ∥M𝑊 ), and we store matrix M𝑖 on server 𝑖.

In our design, a front-end “coordinator” server receives
the ciphertext vector ct = Enc(q̃) from the client. The
coordinator partitions the query vector into 𝑊 chunks,
ct = (ct1∥ · · · ∥ct𝑊 ), and then, for 𝑖 ∈ {1, . . . ,𝑊}, ships
ciphertext chunk ct𝑖 to worker 𝑖. Worker 𝑖 computes the an-
swer a𝑖 ← M𝑖 · ct𝑖 and returns a𝑖 to the coordinator. The
coordinator computes a =

∑𝑊
𝑖=1 a𝑖 , which it sends to the client.

Our implementation ships each ciphertext chunk ct𝑖 to
a single physical machine. If any machine fails during this
computation, the coordinator cannot reply to the client. To
improve latency and fault-tolerance at some operating cost,
the coordinator could farm out each task to multiple machines.

5 Tiptoe’s URL service
In this section, we describe the functionality of Tiptoe’s URL
service. Once the client has identified the IDs of the documents
most relevant to its query, the client must fetch the metadata
for these documents. In Tiptoe, this metadata is the document
URL, though it could potentially also include web-page titles,
summaries, or image captions. By default, the Tiptoe client
fetches and outputs the metadata for the top 100 search results.
Using private information retrieval. To fetch the document
metadata, Tiptoe uses an existing single-server private infor-
mation retrieval [28, 67] protocol with additional optimiza-
tions (see §6). Cryptographic private-information-retrieval
protocols allow a client to fetch a record from a server-held
array, without revealing to the server which record it has
retrieved. Tiptoe implements this step using SimplePIR [56],
which has the lowest server compute cost among single-server
private-information-retrieval schemes.

Under the hood, SimplePIR uses many of the same tools
as the private nearest-neighbor search protocol described in
§4: at a high level, the SimplePIR client builds a vector that
consists of all zeros, except with a single ‘1’ at the position of
the record it would like to retrieve. The client then encrypts

this vector with a linearly homomorphic encryption scheme,
and uploads it to the server. The server multiplies its array
of records by this encrypted vector, effectively selecting out
the record that the client is trying to read, and then sends
the resulting ciphertext back to the client. Exactly as in §4,
the server here only ever sees and computes on fixed-length
ciphertexts and touches every record in the array as part of
this computation. As a result, the server learns nothing about
the URLs that the client is retrieving.

SimplePIR serves data to the client only in relatively large
chunks—roughly 40 KiB with our parameter settings. The
client must always fetch at least one of these chunks from the
server. Tiptoe packs as much useful information into a single
chunk as possible, in the following two ways:
Compressing batches of URLs. Since the client fetches a
few hundred kilobytes with each metadata query, we assemble
URLs into batches and compress roughly 880 of them at a
time using zlib, dropping any URLs that are more than 500
characters in length. By compressing many URLs at once,
each URL takes only 22 bytes to represent on average.
Grouping URLs by content. We group URLs together into
these batches by content. Then, if the client fetches the meta-
data for the best-matching document, it is likely to find the
metadata for other top-matching documents within the same
compressed batch. Our prototype of Tiptoe fetches only a
single batch of URLs (chosen to be the one containing the
best-matching document) and then outputs the 𝑘 = 100 URLs
for the best-ranked documents in this batch. We show in §8
that retrieving a single batch of URLs (rather than 𝑘 batches
of URLs) does not significantly reduce the search quality.

6 Cryptographic optimizations
The ranking service (§4) accounts for the bulk of the per-query
computational cost in Tiptoe. Its main computational overhead
comes from the use of linearly homomorphic encryption; for
each query, the service must multiply an encrypted vector by
a matrix as large as the entire search index. We accelerate this
matrix-vector product with the following ideas:
1. We use an off-the-shelf high-throughput linearly homomor-

phic encryption scheme that has large ciphertexts (§6.1).
2. We compress the ciphertexts using a second layer of ho-

momorphic encryption (§6.2).
3. We perform the bulk of the compression work in a per-

query setup phase that runs before the client makes a search
query, i.e., off of the latency-critical path (§6.3).

We also apply optimizations 2 and 3 to the private-information-
retrieval step used for URL retrieval (§5). These techniques
effectively eliminate the client-side “hint” storage required
by SimplePIR [56], at the cost of increasing the per-query
communication by roughly 4×.

We give a formal description of the resulting linearly ho-
momorphic encryption scheme in Appendix A; we thank Yael



Kalai, Ryan Lehmkuhl, and Vinod Vaikuntanathan for helpful
discussions pertaining to this section.

6.1 Preprocessing to reduce per-query computation
Tiptoe uses the high-throughput linearly homomorphic en-
cryption scheme developed in SimplePIR [56], which is in
turn based on Regev’s lattice-based encryption scheme [112].
This encryption scheme allows the server to preprocess a ma-
trix M ahead of time. Thereafter, given a ciphertext Enc(q̃)
encrypting a vector q̃ (i.e., a query vector), the server can
compute the matrix-vector product M · Enc(q̃) = Enc(M · q̃)
almost as quickly as computing the same product on plaintext
values. The server can compute many subsequent matrix-
vector products (with the same M), amortizing away the cost
of its one-time preprocessing step.

In Tiptoe, the matrix held by the ranking service does not
depend on the client’s query—it is a fixed function of the
search index. Thus, the Tiptoe servers can preprocess this
matrix during the data-loading batch processing phase that
occurs whenever the document corpus changes (§3.2). To
give a sense of the concrete efficiency of the SimplePIR-style
encryption scheme in Tiptoe, if the matrix M is a

√
𝑁-by-

√
𝑁

matrix, the query vector q̃ consists of
√
𝑁 16-bit integers, and

the security parameter (i.e., lattice dimension) is _ ≈ 1024,
then the linearly homomorphic encryption scheme has the
following performance characteristics:
Small computation. After the one-time preprocessing of the
matrix M, the cost of computing M · Enc(q̃) is small: only
2𝑁 64-bit operations. For comparison, computing M · q̃ on
plaintext (unencrypted) values requires 2𝑁 16-bit operations.
Large communication. After computing on the ciphertexts,
they become large: the ciphertext encrypting the product
Enc(M·q̃) is a factor of ( 64

16 )·_ ≈ 4096 larger than the plaintext
vector M · q̃. In the context of Tiptoe’s ranking service, this
would amount to an impractical 0.75 GiB download to search
over 360 million documents. (If the client makes multiple
queries to the same corpus, SimplePIR can re-use a large
portion—namely, 99.9%—of this download; however, the
total download would still be at least as large.)

The exact cost expressions are:
• Matrix preprocessing. The server executes _

√
𝑁 64-bit

operations for the one-time preprocessing of the matrix M.
• Homomorphic matrix-vector product. The server computes

M · Enc(q̃) with 2𝑁 64-bit additions and multiplications.
• Ciphertext size before homomorphic operation. The cipher-

text Enc(q̃) consists of
√
𝑁 64-bit integers.

• Ciphertext size after homomorphic operation. The resulting
ciphertext Enc(M · q̃) consists of _

√
𝑁 64-bit integers.

6.2 Compressing the download
While the linearly homomorphic encryption scheme that
we use makes homomorphic operations cheap, it has large

ciphertexts—roughly 4_ ≈ 4096 times larger than the corre-
sponding plaintext. To shrink the size of these ciphertexts, we
introduce a trick inspired by the “bootstrapping” technique
used in fully homomorphic encryption schemes [44].

To be concrete, let C be a ciphertext encrypting the
dimension-

√
𝑁 result of a matrix-vector product Enc(M · q̃).

In the Regev scheme, the ciphertext C is a matrix of 64-bit
integers of dimension roughly

√
𝑁 × _. The Regev secret key

s is a vector of _ 64-bit integers. To decrypt the ciphertext C
with secret key s, the client just computes the matrix-vector
product y = C · s, where all arithmetic is modulo 264. The
decrypted message is in the high-order bits of each entry of the
vector y. In sum, decryption essentially requires computing a
matrix-vector product modulo 264.

Our new technique, inspired by theoretical work on fully
homomorphic encryption [19, 45, 75, 78], is to “outsource”
the work of decrypting the large ciphertext C to the server:
1. The client encrypts its secret key s using a second lin-

early homomorphic encryption scheme Enc2, which allows
encrypting vectors of 64-bit integers. The client sends
Enc2 (s) to the server.

2. The server, holding ciphertext C, computes the matrix-
vector product C ·Enc2 (s) = Enc2 (C · s) = Enc2 (y) under
encryption. That is, the server “decrypts” C under encryp-
tion.

3. The server returns Enc2 (y) to the client, who decrypts it.
The crucial observation here is that the encryption scheme

Enc2 can be slow as long as it has compact ciphertexts after
homomorphic evaluation. More specifically, the computation
C · Enc2 (s) involves a matrix C of size _

√
𝑁—much smaller

than the original matrix M, which has size 𝑁 . Thus, the homo-
morphic operations using Enc2 will not be a computational
bottleneck, even if they are slow. We instantiate Enc2 with
an encryption scheme based on the ring learning-with-errors
assumption [74]. We detail all cryptographic parameters used,
as well as additional low-level optimizations, in Appendix C.

6.3 Reducing latency with query tokens
Finally, we push much of the client-to-server communication
to a per-query preprocessing step. This optimization reduces
the client-perceived latency between the moment that the
client submits a search query and receives a response.

Using the optimization of §6.2, the client sends an encrypted
secret key Enc2 (s) to the server and downloads the product
C · Enc2 (s). Since the encryption of the secret key does not
depend on the client’s query, the client can send it to the Tiptoe
services in advance. In Tiptoe, 99.9% of the ciphertext matrix
C is also fixed—it just depends on the document corpus.
(This portion of the matrix C corresponds to the hint in the
SimplePIR encryption scheme [56].) Therefore, the ranking
service can compute and return most of the bits of the product
C · Enc2 (s) to the client before the client has decided on its
query string.



We refer to the chunk of bits that the client downloads
ahead of time as a “query token.” The client can execute one
search query per token; once the client has used a token, it
may never use it again. (Otherwise, the security guarantees of
the encryption scheme break down: the client would be using
the same secret key s to encrypt multiple query vectors.) The
client can fetch as many tokens as it wants in advance; these
tokens are usable until the document corpus changes.

7 Implementation
The source for our Tiptoe prototype is available at github.com/
ahenzinger/tiptoe. Our prototype consists of roughly 5 200
lines of code: 3 700 lines of Go and Python for the Tiptoe
client and services, 1 500 lines of Python for the batch jobs,
and 1 000 lines of Python for cluster management.

We implemented the core cryptosystem (§6) in a separate
library in 1 000 lines of Go and 300 lines of C/C++, building
on the SimplePIR codebase [56] and on Microsoft SEAL [121].
It is available at github.com/ahenzinger/underhood.
Embedding models. For text search, we use the msmarco-

-distilbert-base-tas-b text model, which outputs embed-
ding vectors of dimension 768 [57, 58]. We compute each
document’s embedding over its first 512 tokens (the maxi-
mum that the model supports). We chose this embedding as it
supports fast inference.

For text-to-image search, we use the CLIP embedding
function [107], which maps text and images to the same
dimension-512 vector-embedding space. Modifying our Tip-
toe prototype to support plain image search (i.e., using an
image to find similar images) only requires changing a few
lines of code at the client.
Dimensionality reduction. Following prior work [84], Tip-
toe reduces the dimension of its document embeddings by
performing principal component analysis on the embeddings
for the entire corpus. The principal-component-analysis al-
gorithm outputs a linear function that projects the original
embeddings down to a vector space of smaller dimension. The
client downloads this function (0.6 MiB in size) and applies
it locally to its query embedding before interacting with the
Tiptoe services. We reduce the embedding dimension to 192
(from 768) for text search and to 384 (from 512) for image
search; we measure the effect on search quality in §8.
Clustering. Tiptoe uses the Faiss library [62, 63] to group
documents into clusters; for both text and image search, these
clusters consist of approximately 50 000 documents. Tiptoe
computes the clusters using a variant of 𝑘-means: we first
compute centroids by running 𝑘-means over a subset of the
data set (roughly 10 million documents), and then assign every
document to the cluster with the closest centroid. To obtain
roughly balanced clusters, we recursively split large clusters
into multiple smaller ones.

A common technique to increase search quality in cluster-
based nearest-neighbor-search is to assign a single document

to multiple clusters [25,61]. Following prior work [25], Tiptoe
assigns documents to multiple clusters if they are close to
cluster boundaries. In particular, Tiptoe assigns 20% of the
documents to two clusters and the remaining 80% only to a
single cluster, resulting in a roughly 1.2× overhead in server
computation and

√
1.2× overhead in communication. We show

in §8 that this optimization improves search quality.

8 Evaluation
In this section, we answer the following questions:
• How good are Tiptoe’s text-search results? (§8.2)
• What is the performance and cost of Tiptoe? (§8.3)
• How do Tiptoe’s costs compare to those of other private-

search systems? (§8.4)
• How well does Tiptoe scale to larger corpuses? (§8.5)
• To what extent do our optimizations reduce Tiptoe’s search

costs and affect its search quality? (§8.6)

8.1 Experimental setup
System configuration. We run the Tiptoe services on a cluster
of many memory-optimized r5.xlarge AWS instances (with
4 vCPUs and 32 GiB of RAM each), since Tiptoe’s server
workload is bottlenecked by DRAM bandwidth. We allocate
enough servers to each service to allow each machine’s shard
of the search index to fit in RAM, and to keep the client-
perceived latency on the order of seconds. For text search, the
ranking service runs on 40 servers, and the URL service runs
on four servers. For image search, which runs over a 1.2×
larger corpus and uses a 2× larger embedding dimension, the
ranking service runs on 80 servers and the URL service on 8
servers. Each server holds roughly 8-12 GiB of data.

We additionally run a single front-end coordinator server,
shared among both services, on a r5.8xlarge AWS instance
(32 vCPUs, 256 GiB RAM). The coordinator performs all the
server-side work in the query-token-generation step (§6.3),
but fans out the client’s queries to the corresponding machines
in the ranking step and the URL-retrieval step.

Finally, we run a single Tiptoe client on a r5.xlarge AWS
instance (4 vCPUs, 32 GiB of RAM) for text search, and
on a r5.2xlarge AWS instance (8 vCPUs, 64 GiB of RAM)
for image search. The simulated link between the client and
the coordinator has 100 Mbps bandwidth with a 50 ms RTT.
To measure query throughput, we simulate running up to 19
clients on one r5.8xlarge instance (32 vCPUs, 256 GiB of
RAM), which generates enough load to saturate the servers.

To be conservative, when we report compute costs in
“core-seconds,” we measure the total number of AWS vCPUs-
seconds paid for (counting idle cores).
Data sets. For text search, we search over the C4 data set, a
cleaned version of the Common Crawl’s English web crawl
corpus with 364M web pages [108,109]. The Common Crawl
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Figure 4: Search quality for the full-retrieval document ranking MS
MARCO task. For tf-idf, we report the score with an unrestricted
dictionary. On the left, we show MRR@100 scores. On the right, we
show the percent of queries where the best (human-chosen) result
appears at location ≤ 𝑖. The dotted gray line represents the fraction
of queries on which Tiptoe searches in the cluster containing the
human-chosen answer, which bounds Tiptoe’s search quality.

data set is not as comprehensive as the crawls used by com-
mercial search engines such as Bing and Google. At the same
time, this data set spans much of the web and is far larger than
those considered by prior work (e.g., Coeus’s search over 5M
Wikipedia articles [5]). In §8.5, we analytically estimate how
Tiptoe would scale to handle more documents.

For image search, we use the LAION-400M data set of 400
million images and English captions [119]. We deduplicate
images and discard captions.

Since neither of these data sets contains ground-truth labels
for search, we evaluate Tiptoe’s search quality on the smaller
MS MARCO document-ranking “dev” data set [92]. This
data set contains 3.2M documents, along with 520 000 query-
document pairs consisting of real Bing queries and human-
chosen answers. We use the standard MRR@100 (“mean
reciprocal rank at 100”) search quality metric, which is the
the inverse of the rank at which the true-best result appeared
in the top 100 returned results, averaged over the test queries.

8.2 Search quality
In Figure 4, we compare the search quality on the MS
MARCO document-ranking task for multiple search algo-
rithms: a deep-learning-based state-of-the-art retrieval system
(ColBERT) [66], a standard keyword-based retrieval sys-
tem (BM25), the classic term frequency-inverse document
frequency (tf-idf) algorithm, an exhaustive search over em-
beddings that ranks the documents by inner-product score (no
clustering), and Tiptoe.

On the left, Figure 4 shows each algorithm’s MRR@100
score: for ColBERT, we report the score from the MS MARCO
leaderboard [80]; for BM25, we report the Anserini BM25
baseline document ranking with the default parameters (𝑘1 =
0.9, 𝑏 = 0.4) [135]; for tf-idf, we use the Gensim library for
stemming and building the tf-idf matrix [113]; for embedding
search, we use the same embedding function as Tiptoe (but
do not cluster the embeddings). As the MS MARCO data set

is roughly 100× smaller than the C4 data set, for Tiptoe, we
reduce the size of embedding and URL clusters by

√
100× =

10×. (Per §4.2, Tiptoe sets the cluster size proportionally to
the square-root of the corpus size.) On average, the top search
result apears at rank 7.7 with Tiptoe. This is worse than the
search quality achieved with ColBERT, BM25, and exhaustive
embedding search, but is comparable to that of tf-idf with an
unrestricted dictionary size. In particular, Tiptoe’s MRR@100
score is within 0.02 of tf-idf’s.

The state-of-the-art system for private search over
Wikipedia, Coeus [5], uses tf-idf with a dictionary restricted
to only the 65K stemmed words with the highest inverse-
document-frequency score (that is, the words that appear in
the fewest documents). As the MS MARCO data set con-
tains many document-specific keywords, we find that the
MRR@100 score of tf-idf with Coeus’s method of restricting
the dictionary size is 0. By comparison, Tiptoe’s use of em-
beddings allows it to generalize to large and diverse corpuses
and vocabularies more effectively.

On the right, Figure 4 compares Tiptoe’s distribution of
search results to tf-idf and exhaustive embedding search.
Tiptoe correctly identifies and searches within the cluster
containing the best (human-chosen) result on roughly 35%
of the queries. When it does so, Tiptoe roughly matches the
search quality of the exhaustive search and ranks the human-
chosen result higher on average than tf-idf. However, when it
does not, the human-chosen result does not appear in the 100
search results returned by Tiptoe (because the human-chosen
result does not appear in the cluster that the Tiptoe client is
searching over). Querying more clusters could improve search
quality, but would substantially increase Tiptoe’s costs. One
avenue for improving Tiptoe’s search quality is thus to avoid
the need for clustering: clustering allows Tiptoe to operate at
web scale by drastically reducing communication costs, but
accounts for a large share of the search-quality loss.

In Figure 5, we show Tiptoe’s top search results on several
randomly sampled queries, for both text and image search.
Appendix E lists additional queries and results.

8.3 Tiptoe end-to-end performance

Table 6 shows the end-to-end performance of Tiptoe, as well
as several private search baselines for comparison. Tiptoe’s
text search costs $0.003 per query ($0.008 for image search)
and achieves an end-to-end query latency of 2.7 s (3.5 s for
image search). Tiptoe’s performance compares favorably to
client-side baselines and to Coeus, as we now describe.
Baseline: Client-side search index. One approach for private
search is to download and store a search index for the entire data
set on the client. As shown in Table 6, locally storing Tiptoe’s
text search index requires at least 48 GiB of client storage.
Alternatively, the client could directly download a search
index for a state-of-the-art retrieval scheme like ColBERT
or a keyword-based retrieval scheme like BM25. However,



Q: what test are relvant for heart screenings

A: https://newyorkcardiac.com/best-heart-palpitati

ons-cardiac-doctor-nyc

Q: what is the ige antibody

A: https://www.empr.com/home/news/new-sc-inj-for-pri

mary-immunodeficiency-approved/

Q: foodborne trematodiases symptoms

A: https://bowenmedicalibrary.wordpress.com/2017/

04/04/foodborne-trematodiases/

————————————————————————–
Q: A train is next to an enclosed train station

A: https://en.wikipedia.org/wiki/File:Waynejunction

0810a.JPG

Q: A man and a woman pose next to a small dog which

is wearing a life jacket

A: https://commons.wikimedia.org/wiki/File:Jack_Lon

don_age_9_-_crop.jpg

Q: A young man wearing a tie and a blue shirt

A: https://commons.wikimedia.org/wiki/File:Emil_Jann

ings_-_no_watermark.jpg

Figure 5: Sample of Tiptoe search results. At top, answers to random
text-search queries from the MS MARCO dev document retrieval
data set. At bottom, answers to random image-search queries from
the MS COCO caption data set [72]; we used rejection sampling to
select queries whose top results are public-domain images.

such client-side indexes would be orders of magnitude larger:
roughly 4.6 TiB for BM25 or 6.4 TiB for ColBERT, perhaps
reduced down to 0.9 TiB using techniques from PLAID [117].
(We estimate the size of the ColBERT and BM25 indices by
scaling up the index sizes reported on the much smaller MS
MARCO document and passage ranking data sets, with the
same configuration we use to report search quality.) Existing
tools [30] could compress the client-side index further at the
expense of search quality, but at an absolute minimum would
require 7.4 GiB of storage just for the compressed URLs.

Baseline: Coeus query-scoring. Coeus is a state-of-the-art
text-search system that uses tf-idf (with a limited vocabulary)
to privately search over five million Wikipedia articles, run-
ning on 96 machines with 48 vCPUs each [5]. Coeus supports
private search (“query scoring,” in their terminology) and
private document retrieval; to compare against Tiptoe, we
use Coeus’s query-scoring costs only. Like Tiptoe, Coeus’s
server-side work grows linearly with the number of documents
in the corpus. We estimate that, searching over 𝑁 documents,
Coeus’s query-scoring requires 10.66 · 𝑁 bytes of communi-
cation. (We obtained this formula via private communication
with the Coeus authors.) Scaling Coeus’s performance to the
size of the C4 web crawl, which is roughly 72× larger than
Wikipedia, we estimate that each query with Coeus would
require more than 3 GiB of download, 900 000 core-seconds
of server compute, and $4.00 in AWS cost.

In comparison to Coeus, Tiptoe has more than 1 000× lower
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Wikipedia search over 5 million docs
Coeus query-scoring [5] 0 50 12 900 2.8 0.059

Text search over 360 million docs
Client-side Tiptoe index 48 0 0 0 0
Tiptoe 0.3 42♦ + 15 145 2.7 0.003

Image search over 400 million docs
Client-side Tiptoe index 98 0 0 0 0
Tiptoe 0.7 50♦ + 21 339 3.5 0.008

Table 6: Comparison of Tiptoe to private search alternatives: (1)
Coeus and (2) downloading the Tiptoe index to the client. We give
Coeus’s reported costs [5]. We compute Tiptoe’s AWS cost using list
prices ($0.252/hour for r5.xlarge, $2.016/hour for r5.8xlarge, and
$0.09/GiB of egress bandwidth). AWS costs do not include one-time
download costs that may be amortized over any number of queries
(i.e., the embedding model and centroid metadata). We highlight
Tiptoe’s performance in yellow . ♦ This traffic occurs before the
client enters its search query (§6.3).

AWS operating costs. We attribute Tiptoe’s performance im-
provements over Coeus to: (1) semantic embeddings, which
are two orders of magnitude smaller than the rows in a tf-idf
matrix (whose dimension must scale with the size of the
dictionary used); (2) clustering, which allows Tiptoe’s com-
munication to scale sublinearly with the number of documents;
and (3) the high-throughput cryptographic protocols [56] used
by Tiptoe, which are roughly an order of magnitude faster than
prior single-server private-information-retrieval schemes.
Image search. A Tiptoe search over the LAION-400M image
data set, which is 1.2× larger than the C4 text data set and
uses 2× larger embeddings, is roughly twice as expensive as
text search in AWS cost: it uses 2.3×more compute (339 core-
seconds/query) and 1.2×more communication (71 MiB/query,
of which 50 MiB can occur ahead of time).

8.4 Tiptoe cost breakdown

We now detail the operating costs for each of the entities in a
Tiptoe deployment (§3.2):
Data-loading and setup costs. In Table 7, we report ap-
proximate core-hours for Tiptoe’s data-loading batch jobs. To
assign documents to clusters, we used a single, large shared
machine; the running time varied widely with the number
of concurrent active jobs. We balanced the embedding clus-
ters and ran principal component analysis using a set of 100
r5.2xlarge instances (32 vCPUs, 128 GiB of RAM). Finally,
we constructed the data structures held by the Tiptoe services
on one r5.24xlarge instance (96 vCPUs, 768 GiB of RAM).
In total, Tiptoe’s data-processing pipeline requires roughly
0.01-0.02 core-seconds per document.



Setup cost Text Image
Corpus size
Documents 364M 400M
Embedding dim. 192 384

Index preprocessing (core hours)
Embed (est.)♥ 92 583
Build centroids 224 262
Cluster assign. 703 1,231
Balance, PCA 312 290
Crypto. 50 120

Total (core-s/doc) 0.013 0.022

Client download (GiB)
Model 0.27 0.59
Centroids 0.02 0.02

System configuration (vCPUs)
Token♦ 32 32
Ranking 160 320
URL 16 32

Query cost Text Image
Communication (MiB/query)

Up, token♦ 32.4 32.4
Up, ranking 11.6 16.2
Up, URL 2.4 3.2
Down, token♦ 9.8 17.4
Down, ranking 0.5 1.0
Down, URL 0.1 0.2

Preprocessing (s/query)
Client (§6) 37.7 36.7

Query latency (s)
Token♦ 6.5 8.7
Ranking 1.9 2.5
URL 0.6 0.6

Tot. perceived (s) 2.7 3.5

Throughput (query/s)
Token♦ 0.5 0.2
Ranking 2.9 2.3
URL 5.0 7.0

Table 7: Breakdown of Tiptoe costs for text and image search. We
computed text embeddings on a heterogeneous GPU cluster and
we sourced image embeddings from the LAION-400M data set.
♥ Estimated GPU-hours on a V100 GPU. ♦ This step occurs before
the client enters its search query (§6.3).

Search costs. Table 7 additionally gives Tiptoe’s search costs.
With Tiptoe’s optimizations (§6), many of the cryptographic
operations, as well as more than 70% of the client-server
communication, happen before the client has decided on its
search query. For text search, our cluster of machines can
sustain a throughput of 0.5 queries/s for token generation, 2.9
queries/s for ranking, and 5 queries/s for URL retrieval.

8.5 Scaling to tens of billions of documents

Popular search engines index tens of billions of documents or
more [51]. In Figure 8, we analytically compute how Tiptoe’s
search costs would scale to handle data sets of this size. If we
increase the corpus size by a factor of 𝑇 , the server compute
increases by roughly a factor of 𝑇 and the communication
increases by roughly a factor of

√
𝑇 . For example, on a corpus

of 8 billion documents, the number of Google knowledge
graph entities (as of March 2023) [3], a Tiptoe search query
would require roughly 1 900 core-seconds of compute and
140 MiB of communication.

Moreover, Tiptoe’s throughput scales linearly with the
numbers of physical machines used: doubling the machines al-
located to each service roughly doubles the measured through-
put. Tiptoe can support dynamically adding more physical
machines at runtime, by either having more machines serve
each shard of the database or having each machine serve a
smaller shard (without repeating any of the preprocessing).
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Figure 8: Analytical Tiptoe per-query performance, scaling to large
text corpuses [1,2,3,108]. The cross indicates measured performance.

8.6 Impact of optimizations

Figure 9 shows how Tiptoe’s optimizations trade off between
text-search quality and performance. First (not shown in
Figure 9), we reduce the embedding precision from floating
point values to signed 4-bit integers, decreasing MRR@100
by 0.005. Without other optimizations ➊, the client must
retrieve an inner-product score for every document, resulting in
communication similar to that of Coeus’s query scoring. With
clustering ➋, computation is constant, but communication
shrinks by 20× since the client now only downloads inner-
product scores for one cluster. MRR@100 also decreases by
0.2, as the best result might not be in the chosen cluster.

Without any URL optimizations, the client must run Sim-
plePIR to individually retrieve each of the 100 URLs displayed
to the client. (We use 100 because MRR@100 considers the
top 100 results.) Compressing chunks of URLs and retrieving
only the chunk with the top result ➌ reduces communica-
tion and computation by 4× at the cost of a drop of 0.04
in MRR@100. Clustering URLs into semantically similar
batches ➍ does not affect communication and computation,
but improves MRR@100 by 0.04.

Assigning documents at cluster boundaries to two clusters
➎ increases index size by 1.2× but improves MRR@100
by 0.015. Finally, ➏ reducing the embedding dimension by
3× with PCA improves the bandwidth and the computation
by roughly 2×, but decreases MRR@100 by 0.02. Overall,
Tiptoe’s optimizations improve communication by two orders
of magnitude and computation by one order of magnitude,
at the cost of a 0.2 drop in MRR@100—on average, the top
result appears at position 7.7 rather than at position 3.
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Figure 9: Analytical impact of optimizations on Tiptoe’s text search performance. We compute MRR@100 scores (𝑦-axis) on the MS MARCO
data set and performance numbers (𝑥-axis) on the C4 data set. We report measured performance for full Tiptoe, but expected performance
for (a) Coeus and (b) Tiptoe without some optimizations. ➊ No optimizations (return inner-product score for every document and run a
private-information-retrieval scheme to retrieve the top 100 results, using a SEAL PIR-like homomorphic encryption scheme [8]). ➋ Cluster
embeddings and only return inner-product scores for a cluster. ➌ Within a cluster, retrieve a random chunk of URLs containing the top result and
output the top 100 results from this chunk. ➍ Cluster the URLs to retrieve a batch of related URLs containing the top result and output the top
100 results from this batch. ➎ Assign documents at cluster boundaries to 2 clusters. ➏ Reduce the embedding size by 3× with PCA (full Tiptoe).

9 Discussion
In this section, we discuss extensions and related topics
pertaining to Tiptoe.
Private advertising. Search engines make money by dis-
playing relevant ads alongside search results [52]. Tiptoe is
compatible with this business model: just as a client uses
Tiptoe to fetch relevant webpages, a client could use Tiptoe to
fetch relevant textual ads. The search provider could embed
each ad using an embedding function. The client would then
use Tiptoe to identify the ads most relevant to its query—
instead of privately fetching a URL in the last protocol step,
the client would privately fetch the text of the ad.

The privacy guarantees here hold only until the client clicks
on the ad. This type of private ad retrieval may be compatible
with techniques for private impression reporting [53, 127].
Private recommendations. Tiptoe’s private nearest-neighbor
search protocol may be useful in applications beyond private
web search, for example in private recommendation engines.
Just like text and images, items can also be represented by
embeddings that map semantic proximity to vector-space
proximity. In a recommendation system, the client can hold
a vector representing its profile or its recently viewed items.
Then, with Tiptoe’s private nearest-neighbor search proto-
col, the client can privately retrieve similar items from the
recommendation system’s servers.
Private search on encrypted data. Tiptoe can be extended
to search over encrypted documents. To do so, the client
processes the corpus (as done, in our prototype, by the Tiptoe
batch jobs): the client embeds each document, clusters the
embeddings, and stores the centroids locally. Instead of storing
the plaintext embeddings and URLs on the Tiptoe servers,
the client encrypts the embeddings and URLs and stores the
encrypted search data structures on the Tiptoe servers.

Later on, the client can search over these documents while
revealing no information about its query or the corpus (apart
from the total corpus size) to the server. The only difference to
Tiptoe is that, in the ranking step, the server must now compute
the inner product of the client’s encrypted query embedding
with each encrypted document vector. This is possible using a
homomorphic encryption scheme that supports degree-two
computations on encrypted data [17].
Reducing communication with non-colluding services. In
Tiptoe, the client interacts with a single logical server, which
may be adversarial. If instead the client can communicate
with two search services assumed to be non-colluding, we
can forgo the use of encryption to substantially reduce the
communication costs. To execute the nearest-neighbor search
within a cluster, the client would share an encoding of its query
embedding (vector q̃ in Figure 10) using a distributed point
function [18]. The servers could execute the nearest-neighbor
search protocol of §4 on a secret-shared query, instead of
an encrypted one. No server-to-server communication would
be necessary, as the servers only perform linear operations.
URL-fetching would work exactly as in Tiptoe, except with
two-server private information retrieval. We estimate that the
per-query communication on the C4 data set would be roughly
1 MiB (instead of Tiptoe’s 56.9 MiB).
Exact keyword search. Tiptoe’s embedding-based search
algorithm does not perform well on textual queries for rare
strings, such as phone numbers, addresses, and uncommon
names. One way to extend Tiptoe to handle such queries
would be to construct a suite of search backends—one for
each common type of exact-string query. For example, there
would be a private phone-number search backend, a private
address-search backend, etc. Each backend would implement
a simple private key-value store mapping each string in the
corpus (e.g., each phone number) in some canonical format to



the IDs of documents containing that string. The client could
use a standard keyword-based private-information-retrieval
scheme [4, 27] to privately query this key-value store.

Upon receiving a query string, the Tiptoe client software
would attempt to extract a string of each supported type
(phone number, address, etc.) from the query string. The
client software would canonicalize the query string and use it
to make a key-value lookup to the corresponding backend.
Personalized search. Tiptoe could potentially support per-
sonalized search by incorporating a client-side embedding
function that takes as input not only the user’s query, but
also the user’s search profile. As an example, the embedding
function could take as input the user’s location so that a query
for “restaurants” would return restaurants that are nearby. The
servers could continue using their embedding function that
does not take a search profile as input, but that preserves the
distance to outputs of the client’s embedding function.

10 Related work
Three popular non-cryptographic methods have been used to
strenghten privacy for web search. The first is to send search
queries to a conventional search engine via an anonymizing
proxy, such as Tor [36] or a mix-net [22]. The second approach
uses dummy queries or obfuscates queries [11, 15, 37, 89, 93,
101, 111, 136]. Both techniques still reveal some version
of the client’s query to the search engine, allowing it to
link queries and deanonymize users [46, 99, 100]. The third
approach is to use trusted hardware [70, 83, 102], which
provides security guarantees that are only as strong as the
underlying hardware [23, 26, 54, 60, 88, 98, 110, 120, 126, 129,
130,131,132]. Because trusted execution environments leak
memory-access patterns, a trusted-hardware-based approach
would need to use oblivious RAM [48] to hide memory-access
patterns, incurring additional overheads [32, 82, 118].

DuckDuckGo and other privacy-preserving search engines
do not track users and route queries to search back-ends
without identifying information. However, the search back-
ends similarly still learn the client’s search query in plaintext.

Coeus [5] is a private Wikipedia search system with security
properties matching those of Tiptoe, but at orders of magnitude
higher costs (Table 6). While Tiptoe uses embedding-based
search, which works well for conceptual queries, Coeus uses
tf-idf search, which better handles exact-string matching but
cannot support non-text search.

Cryptographic private-information-retrieval protocols [28,
67] also perform private lookups, though they only natively
support private array lookups or key-value queries, rather
than full-text string queries. The performance of private-
information-retrieval systems has improved by orders of mag-
nitude in recent years [4,7,8,9,56,77,79,86], taking advantage
of fast lattice-based encryption techniques [112]. A number of
recent works have shown how to build single-server sublinear-
time private-information-retrieval protocols. However, these

schemes still have high per-query overheads in practice [29,73]
or require streaming the entire database to the client [87,137],
which is impractical for a large database that changes regularly.
Tiptoe also exploits lattice-based encryption schemes (§4)
and uses private information retrieval as a subroutine (§5).

Splinter [133] is a system that extends private information
retrieval to support more expressive query types (e.g., range
queries with various aggregation functions), provided that
the client can communicate with two non-colluding database
replicas. Splinter does not support full-text search.

An orthogonal line of work has developed cryptographic
protocols and systems for private search on private data. These
techniques include symmetric searchable encryption [20, 21,
31, 35, 43, 47, 64, 65, 90, 116, 124, 125], their realization in
encrypted databases [42, 96, 97, 103, 104, 128], and related
systems [33, 34]. In contrast, Tiptoe allows private queries to
a public document corpus.

Tiptoe uses semantic embeddings to reduce the problem of
text (or image) search to that of private nearest-neighbor search.
Many prior works have constructed protocols for private
nearest-neighbor search, though these systems in general
require multiple non-colluding services [24, 59, 105, 122],
rely on computationally heavy cryptographic tools, which
practically limits the corpus to a few thousand entries [123,
139], or leak some information about the client’s query to the
server [12, 14, 115]. In contrast, Tiptoe requires only a single
infrastructure provider, searches over hundreds of millions of
documents, and leaks no infomation about the client’s query.

Some prior work also uses embeddings with homomorphic
encryption for text search [12] or image matching [38], al-
though these either leak information about the client’s query or
incur communication costs linear in the number of documents
and high computation costs (as much as three hours of compu-
tation with ten cores for 100 million records). A distinguishing
point is that some of these works [38,105,122,123] provide
two-sided privacy: they reveal little about the server’s data set
to the client, apart from the query result. Tiptoe, on the other
hand, assumes that the server’s data set is public.

Tiptoe uses clustering to implement nearest-neighbor-
search with few client-server round trips. The task of designing
a clustering-based index for private search is similar to that of
designing a (non-private) nearest-neighbor-search algorithm
optimized to minimize for disk accesses: both cases aim to
minimize the number of reads to the index [25, 61].

Tiptoe draws inspiration from non-private embedding-based
information-retrieval systems. Many such systems rely on
dense document representations and leverage approximate
nearest neighbors techniques to efficiently find the closest
documents [58, 71, 106,114]. An alternative approach uses a
sparse document representation, which can capture informa-
tion at the token level, such as the classic BM25 algorithm or
the newer SPLADE model [41, 69].



11 Conclusion
Tiptoe demonstrates that a client can search over hundreds of
millions of server-held documents at modest cost, while hiding
its query from the server. The key idea in Tiptoe is to use
semantic embeddings to reduce a complex problem (text/image
search) to a simple and crypto-friendly one (nearest-neighbor
search). We expect this technique may be broadly useful in
privacy-protecting systems.
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The contents of the appendix have not been peer-reviewed.

A Details on linearly homomorphic encryption
with preprocessing

As described in §6, Tiptoe implements both the ranking service
(§4) and the URL service (§5) using a linearly homomorphic
encryption scheme that simultaneously has high throughput
and compact ciphertexts. At a high level, this scheme consists
of two “layers” of encryption:
1. First, the client encrypts its message using a high-

throughput linearly homomorphic encryption scheme that
supports preprocessing, under a fresh secret key s.
We use the encryption scheme from SimplePIR [59], which
is based on the learning-with-errors assumption [115]. This
encryption scheme achieves high throughput by letting the
server preprocess the linear function that it applies to the
ciphertext; however, it has relatively large ciphertexts after
homomorphic evaluation.

2. Then, the client encrypts the secret key s with a second
linearly homomorphic encryption scheme that has compact
ciphertexts, again under a fresh secret key.
We use standard linearly homomorphic encryption from
ring learning-with-errors [77].

A.1 Syntax
Formally, a linearly homomorphic encryption scheme with
preprocessing is parameterized by dimensions ℓ, 𝑚 ∈ N,
plaintext modulus 𝑝 ∈ N, and key spaceK. The message space
is Z𝑚

𝑝 . The scheme then consists of the following algorithms,
which all take some public parameters as an implicit input:
Enc(sk, v) → 𝑐v. Given a secret key 𝑘 ∈ K and a message

vector v ∈ Z𝑚
𝑝 , output a ciphertext 𝑐v that encrypts the

message.
Preproc(M) → hintM. Preprocess a linear function, repre-

sented as a matrix M ∈ Zℓ×𝑚
𝑝 , and output a data structure

used for applying M to encrypted vectors.
Apply(M, hintM, 𝑐v) → 𝑐Mv. Given a linear function repre-

sented as a matrix M ∈ Zℓ×𝑚
𝑝 , a preprocessed hint hintM

for M, and a ciphertext 𝑐v encrypting a message vector
v ∈ Z𝑚

𝑝 , output a ciphertext 𝑐Mv encrypting the result of
the matrix-vector product M · v ∈ Zℓ

𝑝 .
Dec(sk, 𝑐Mv) → v. Given a secret key sk ∈ K and a ciphertext

𝑐Mv encrypting the matrix-vector product M·v ∈ Zℓ
𝑝 , output

the decrypted product M · v.
The correctness requirement is standard: encrypting a mes-

sage vector, applying a matrix to it under encryption, and
decrypting the resulting ciphertext yields the original mes-
sage with the same sequence of operations applied, except
with some small failure probability. Formally, we say that
the scheme has correctness error 𝛿 if, for all message vectors
v ∈ Z𝑚

𝑝 and all linear functions M ∈ Zℓ×𝑚
𝑝 , the following

probability is at least 1 − 𝛿:

Pr


(M · v) = Dec(sk, 𝑐Mv) :

sk←R K
𝑐v ← Enc(sk, v)

hintM ← Preproc(M)
𝑐Mv ← Apply(M, hintM, v)


.

We also demand that this encryption scheme satisfy the
standard notion of semantic security [52]. That is, for
all v0, v1 ∈ Z𝑚

𝑝 , and for sk ←R K, the following prob-
ability distributions are computationally indistinguishable:
{Enc(sk, v0)} ≈𝑐 {Enc(sk, v1)}.

A.2 Construction
Our construction is a modification of the SimplePIR linearly
homomorphic encryption scheme with preprocessing [59],
which is based on Regev encryption [115].

In that scheme, if M ∈ Zℓ×𝑚
𝑝 is the linear function that we

wish to apply to encrypted vectors:
• The preprocessing algorithm outputs a “hint” matrix H ∈
Zℓ×𝑛
𝑞 , on security parameter 𝑛 ≈ 2048 and ciphertext

modulus 𝑞. The hint matrix depends on the linear function
M.

• The “apply” algorithm outputs a vector c ∈ Zℓ
𝑞 .

• The decryption algorithm, on hint matrix H ∈ Zℓ×𝑛
𝑞 , secret

key s ∈ Z𝑛
𝑞 , and ciphertext c ∈ Zℓ

𝑞 computes 𝑓 (H · s − c),
where 𝑓 is a non-linear function.

A limitation of the SimplePIR encryption scheme is that the
decryptor must somehow obtain the large hint matrix H. In
Tiptoe, the hint matrix H depends on the search engine index
which means that: (1) H changes every time the search index
changes and (2) H is very large—a gigabyte or more.

To avoid the decryptor having to obtain the hint matrix H,
we tweak the SimplePIR encryption scheme to allow the
decryptor to “outsource” much of the work of decryption to
the evaluator. To do so, we make use of a second linearly ho-
momorphic encryption scheme (Enc2,Apply2,Dec2) whose
plaintext space is Z𝑛

𝑞 . We call this second scheme the “outer”
encryption scheme. (Here 𝑛 is the SimplePIR security param-
eter, i.e., the dimension of the SimplePIR decryption key.)
That is, the encryption scheme Enc2 encrypts vectors in Z𝑞

and allows adding vectors under encryption, and also scaling
an encrypted vector component-wise by a vector of constants.

We augment the SimplePIR encryption-scheme routines
(Enc,Preproc,Apply,Dec) as follows:
• Key generation. The augmented encryption scheme chooses

a fresh random secret key sk2 for the outer encryption
scheme Enc2, in addition to the SimplePIR secret key s.

• Enc(sk,m): The augmented encryption scheme takes as
input a secret key sk = (s, sk2), consisting of the SimplePIR
secret key s and a key sk2 for the outer encryption scheme
Enc2.



Let (𝑠1, . . . , 𝑠𝑛) = s ∈ Z𝑛
𝑞 be the components of the Sim-

plePIR secret key. In addition to outputting the SimplePIR
ciphertext c, the augmented encryption routine outputs 𝑛
ciphertexts (z1, . . . , z𝑛), where for all 𝑖 ∈ [𝑛], z𝑖 is an en-
cryption of 𝑛 copies of the 𝑖th component of the SimplePIR
secret key s:

z𝑖 ← Enc2 (sk, [𝑠𝑖 𝑠𝑖 𝑠𝑖 · · · 𝑠𝑖 𝑠𝑖]).

The z𝑖 values become part of the augmented ciphertext.
• Apply(M, hintM, 𝑐v): The Apply algorithm runs the Sim-

plePIR “apply” algorithm on the matrix M and the Sim-
plePIR component of the ciphertext 𝑐v. The result is a
vector c ∈ Zℓ

𝑞 .
The augmentedApply algorithm then runs the linear part of
the SimplePIR decryption operation under encryption. In
particular, the hint matrix hintM has dimension ℓ × 𝑛. The
apply algorithm considers each chunk of 𝑛 rows H ∈ Z𝑛×𝑛

𝑞

at a time.
For each chunk, using the vectors (z1, . . . , z𝑛)—which en-
crypt the SimplePIR secret key s—the augmented “apply”
algorithm computes H · s − c ∈ Z𝑛

𝑞 under the outer encryp-
tion scheme Enc2. This step uses the linear homomorphism
of the underlying encryption scheme Enc2.
The augmented apply algorithm then returns the resulting
Enc2 ciphertexts as 𝑐M·v. There are ⌈ℓ/𝑛⌉ such ciphertexts.

• Dec(sk, 𝑐M·v). The augmented decryption scheme uses the
secret key sk2 for the outer encryption scheme to decrypt
each of the ⌈ℓ/𝑛⌉ outer ciphertexts. The decryption routine
then applies the non-linear function 𝑓 (from SimplePIR
decryption) to each component of the resulting plaintexts.
We now sketch the properties that this augmented encryp-

tion scheme provides:
Correctness. Follows by construction. The output of the de-
cryption routine is exactly the output of the SimplePIR de-
cryption routine.
Security. The augmented ciphertexts consist of two sets of
ciphertexts, encrypted under independent keys. Semantic se-
curity thus follows directly from the security of the underlying
encryption schemes.
Ciphertext size. We instantiate the inner encryption scheme
with SimplePIR, which encrypts a dimension-𝑚 plaintext
vector to a dimension-𝑚 ciphertext vector, using a secret key
of dimension 𝑛. We instantiate the outer encryption scheme
with ring-LWE-based encryption, which encrypts a dimension-
𝑛 plaintext vector to a dimension-𝑂 (𝑛) ciphertext vector. Since
the augmented ciphertext consists of 𝑛 ring-LWE ciphertexts
(encrypting each entry of the SimplePIR secret key), plus one
SimplePIR ciphertext, the total ciphertext length is roughly
𝑚 + 𝑛2. In our setting, 𝑛 ≪ 𝑚.

After homomorphic evaluation, the ciphertext consists of
⌈ℓ/𝑛⌉ ring-LWE ciphertexts, each of dimension 𝑛. So the total
evaluated ciphertext size is roughly ℓ.

Computational cost. The SimplePIR Apply operation requires
roughly ℓ · 𝑚 ring operations, where the matrix M applied
to encrypted vectors has dimension ℓ × 𝑚. The augmented
scheme requires an additional ℓ · 𝑛 operations to perform the
decryption under encryption. The total computational cost
of Apply is then roughly ℓ · (𝑚 + 𝑛). Since 𝑚 ≫ 𝑛 in our
application, the computational cost roughly matches that of
SimplePIR.

A.3 Optimizations
Finally, we apply the following optimizations to reduce the
computation and communication costs of our encryption
scheme:
Reducing latency with tokens. We have the client build
and send its “outer” ciphertexts (z1, . . . , z𝑛) to the server
ahead of time, since they do not depend on the message
being encrypted. Then, the server computes H · s under the
outer encryption scheme Enc2 ahead of time, and returns it to
the user. With this optimization, the client only has to send
its original SimplePIR ciphertext, 𝑐v, to the server, and the
server only has to compute and respond with the output of the
SimplePIR Apply algorithm, c, on the latency-critical path.
We call the server’s offline reponse, which encrypts H · s, a
query “token”.
Using the same secret key for both services. We additionally
observe that we can use the same encryption (z1, . . . , z𝑛)
(which is the encryption of a Regev secret vector s under a
second encryption scheme Enc2) for both the ranking service
and the URL service, since each service uses independent
public parameters and this upload does not depend on the
message being encrypted. This optimization saves a factor
of 2× in the per-query upload that occurs ahead of time;
concretely, this saves roughly 30 MiB.
Dropping the lowest-order bits of the hint matrix. We
observe that the non-linear part of the SimplePIR decryption
routine, 𝑓 , performs a rounding step. Because of this rounding,
the lowest-order bits of each entry of the hint matrix H do not
actually affect the client’s output—they are always rounded
away. So, we have the server drop the lowest-order bits of each
entry of H, since the server does not need to compute over
them. This optimization saves a factor of roughly 2× in the
per-query, token generation work (on the server) and a factor
of 2× in the server-to-client token download.

B Details on private nearest-neighbor protocol
B.1 Fixed-precision embedding representation
To use the above linearly homomorphic encryption scheme
for embedding-based search, Tiptoe maps the floating-point
embedding values into the message space Z𝑝 .

To do so, Tiptoe first represents each embedding value
using 𝑏 bits of precision with a sign. That is, Tiptoe repre-
sents each real number 𝑥 ∈ [−1, 1] ∈ R as the Z𝑝 element



Figure 10: Tiptoe’s private nearest-neighbor protocol. The
protocol is parameterized by: a vector dimension 𝑑 ∈ N, a
number of vectors 𝑁 ∈ N, a number of clusters 𝐶 ∈ N, and a
linearly-homomorphic encryption scheme Enc with plaintext
modulus 𝑝 (defined in Appendix A).

Server’s input: A matrix M of 𝑁 row vectors in Z𝑑
𝑝 , arranged

into 𝐶 columns, one per cluster, and 𝑁/𝐶 rows. (Assume that
𝑁/𝐶 is an integer.)
Client’s input: A vector q ∈ Z𝑑

𝑝 and an index 𝑖∗ ∈ {1, . . . , 𝐶}.
Client’s output: The inner product of its vector q with each of
the 𝑁/𝐶 vectors in column 𝑖∗ of the server’s matrix M.
For simplicity, throughout the rest of our description of the
protocol, we say that the matrix M has dimension 𝑁/𝐶 by 𝑑𝐶.

Per-query protocol. Run when the client issues a new query.
1. Client query preparation.
• The client builds a vector q̃ ∈ Z𝑑𝐶

𝑝 , that is zero everywhere,
except that it contains the client’s query vector q ∈ Z𝑑

𝑝 in
place of the 𝑖∗th size-𝑑 block of zeros.

• The client encrypts q̃ using the linearly homomorphic en-
cryption scheme with a fresh secret key. The client sends
the resulting ciphertext Enc(q̃) to the server.

2. Server answer. The server receives the ciphertext Enc(q̃)
and applies the matrix M to it to obtain Enc(M · q̃), which the
server returns to the client.
3. Client reconstruction. The client receivesEnc(M·q̃) from the
server and decrypts it. Finally, the client outputs M · q̃ ∈ Z𝑁/𝐶 .

⌊
𝑥 · 2𝑏⌉. (Our text search embedding function occasionally

generates values outside of [−1, 1], and we simply clip these
to fall within [−1, 1] with no significant impact to search
quality.) Second, we associate the elements of Z𝑝 with the
set {− 𝑝

2 , . . . ,−1, 0, 1, . . . , 𝑝
2 }. We can then add and multiply

numbers in their Z𝑝 representation as long as the maxi-
mum possible value never grows larger than 𝑝/2 or smaller
than −𝑝/2. To compute inner products of 𝑑-dimensional
vectors under encryption, without “wrapping around” the
modulus, we need 𝑝/2 > 𝑑 · (2𝑏)2.

B.2 Private nearest-neighbor search protocol

We give a formal description of Tiptoe’s private nearest-
neighbor search protocol in Figure 10.

C Parameters for cryptographic protocols
We choose parameters to achieve 128-bit security and correct-
ness error roughly 2−40.

Learning-with-errors parameters. For the portion of our
encryption scheme based on LWE, we use the following
parameters for Regev-style secret-key encryption [115]:

• We take the ciphertext modulus to be 𝑞 = 264, so that we
can represent ciphertexts as unsigned 64-bit integers in
hardware.

• We set the secret dimension, 𝑛, to be 2 048. We sample
errors from the discrete Gaussian distribution with standard
deviation 𝜎 = 81 920, and sample the secret key from the
ternary distribution modulo 𝑞. This parameter choice guar-
antees 128-bit security for encrypted vectors of dimension
≤ 227 [6].

• Finally, we select a plaintext modulus 𝑝 such that (a) our
batch inner-product computation does not “wrap-around”
modulo 𝑝, and (b) our encryption scheme supports suffi-
ciently many homomorphic operations for the given data
set size. Concretely:
– For text search, we use plaintext modulus 𝑝 = 217, as

this avoids overflow in the inner-product computation
with embeddings of dimension 𝑑 = 192 consisting of
4-bit signed integers. This parameter setting in turn
supports up to 221 homomorphic additions with roughly
2−40 correctness-failure probability. With 𝑑 = 192, this
allows Tiptoe to scale to up to 𝐶 ≈ 10K clusters.

– For image search, we use plaintext modulus 𝑝 = 215, as
this avoids overflow in the inner-product computation
with normalized embeddings of dimension 𝑑 = 384
consisting of 4-bit signed integers. To achieve roughly
2−40 correctness-failure probability, the scheme can
now support up to 227 homomorphic additions. With
𝑑 = 384, this allows Tiptoe to scale to up to 𝐶 ≈ 350K
clusters.

For our private-information-retrieval scheme (§5), we take
the ciphertext modulus to be 𝑞 = 232 (as in the original
SimplePIR). We set the secret dimension to be 𝑛 = 1 408. We
use discrete Gaussian errors with standard deviation 𝜎 = 6.4
and ternary secrets to achieve 128-bit security for encrypted
vectors up to dimension 220 [6].
Ring learning-with-errors parameters. For the portion
of our encryption scheme based on RLWE, we use BFV
encryption [43] and we take:
• the security parameter, 𝑛, to be 2 048.
• the plaintext modulus, 𝑝, to be 65 537.
• the ciphertext modulus, 𝑞, to be a 38-bit prime.

Database dimensions. We set the dimensions of the matrix
M in Figures 3 and 10 to ensure that the cost of the first
“layer” of homomorphic encryption (which we implement
with SimplePIR) dominates the homomorphic evaluation cost.
Similarly, in the URL retrieval step, we “unbalance” the
dimensions of the database over which we run SimplePIR.
This parameter choice effectively sets the height of the matrix
M (or the SimplePIR database), which must be roughly 10×
as wide as it is tall. For text search, this implies that Tiptoe
has clusters of at most 50K documents and that batches of
compressed URLs do not exceed 40 KiB.



Scaling to larger database sizes. In §8.5, we estimate Tiptoe’s
performance scaling to larger database sizes. To do so, we use
the LWE parameters given in Tables 11 and 12. We use the
same RLWE parameters as previously, since the LWE lattice
dimension always remains at most 2 048.

D Security analysis

Syntax. A private-search scheme with query space 𝑄 ⊆
{0, 1}∗ is a two-party interactive protocol that takes place
between a client C and a server S, where:
• the client C takes as input a query string 𝑞 ∈ 𝑄, and
• the server S takes as input a dataset 𝐷 ∈ {0, 1}∗.

For an interactive algorithm S∗ and a query string 𝑞 ∈ 𝑄, let
ViewS∗ [C (𝑞)] denote S∗’s view of its interaction with C on
query input 𝑞.

Definition D.1 (Query privacy, restated). We say that a
private-search scheme (C,S) achieves query privacy if, for
all efficient adversaries S∗, and all query strings 𝑞0, 𝑞1 ∈ 𝑄,
the following probability distributions are computationally
indistinguishable in the implicit security parameter:

{ViewS∗ [C (𝑞0)]} 𝑐≈ {ViewS∗ [C (𝑞1)]}

Remark D.2 (Correctness). For typical cryptographic primi-
tives, we define both correctness and security. Since it is not
clear how to formally define correctness of an embedding-
based search, we rely on our empirical evaluation to show
correctness. The security properties of our scheme hold in the
precise formal sense of Definition D.1

We now prove that Tiptoe satisfies query privacy, in the
sense of Definition D.1. The Tiptoe client sends exactly two
messages during an execution of the search protocol:
1. During its interaction with the ranking service, the client

sends one ciphertext, encrypted using the linearly homo-
morphic encryption scheme of §6.

2. During its interaction with the URL service, the client
sends one encrypted query using the SimplePIR private-
information-retrieval scheme [59], optimized as in §6.

Both messages have fixed length and the client sends both of
these messages irrespective of the output of the server.
To complete the proof, we consider the following hybrid
distributions:
• 𝐻0: The server S∗’s view in the real interaction with C (𝑞0).

This is ViewS∗ [C (𝑞0)], by definition.
• 𝐻1: The same as 𝐻0 with the client’s first message replaced

with the first message that client C (𝑞1) would send.
• 𝐻2: The same as 𝐻1 with the client’s second message

replaced with the second message that client C (𝑞1) would
send. This is exactly ViewS∗ [C (𝑞1)], by definition.

Let A be any efficient algorithm and let 𝑞0, 𝑞1 ∈ 𝑄 be any
pair of queries. For 𝑖 ∈ {0, 1, 2}, let 𝑊𝑖 be the event that A
outputs 1 when fed a sample from distribution 𝐻𝑖 , defined
with respect to queries 𝑞0 and 𝑞1. Then, the advantage of
A at distinguishing ViewS∗ [C (𝑞0)] from ViewS∗ [C (𝑞1)] is
|Pr[𝑊0] − Pr[𝑊2] |. We now know that:
• |Pr[𝑊0] − Pr[𝑊1] | is negligible in the (implicit) security

parameter, by security of the linearly homomorphic en-
cryption scheme under the ring learning-with-errors as-
sumption.

• |Pr[𝑊1] − Pr[𝑊2] | is negligible in the (implicit) secu-
rity parameter, by security of the underlying private-
information-retrieval scheme under the ring learning-with-
errors assumption.

Therefore |Pr[𝑊0] − Pr[𝑊2] | is negligible, and we are done.



Upload dim. 𝑚: 213 214 215 216 217 218 219 220 221 222 223 224

Plaintext mod. 𝑝: 991 833 701 589 495 416 350 294 887 745 627 527
Lattice dim. 𝑛: 1408 1408 1408 1408 1408 1408 1408 1408 1608 1608 1608 1608
Error dev. 𝜎: 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 0.5 0.5 0.5 0.5

Table 11: Parameters for ciphertext modulus 𝑞 = 232 (used for URL retrieval step)

Upload dim. 𝑚: 213 214 215 216 217 218 219 220 221 222 223 224

Plaintext mod. 𝑝: 219 218 218 218 218 217 217 217 217 219 218 218

Lattice dim. 𝑛: 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048
Error dev. 𝜎: 81920 81920 81920 81920 81920 81920 81920 81920 81920 4096 4096 4096

Table 12: Parameters for ciphertext modulus 𝑞 = 264 (used for ranking step)

E Sample queries
E.1 Text search
We run queries from the MS MARCO document rank-
ing dev set over the documents in the text Common
Crawl C4 data set from 2019. We include the output of
all queries here: https://anonymfile.com/XPyAA/tiptoe-
msmarcoqueries.txt. We conservatively redact URLs that
might contain offensive language. Below we show the output
of 20 randomly sampled queries.
Q: what test are relvant for heart screenings

1. https://newyorkcardiac.com/best-heart-
palpitations-cardiac-doctor-nyc

2. http://cardiocppa.com/faq/?s=

3. https://bookinghawk.com/events/heartcare-clinic/
138/screening-at-mullingar-dental-monday-8th/

689

4. https://www.healthline.com/health/holter-
monitor-24h

5. http://www.shoshonehealth.com/departments/
respiratory-therapy-outpatient-services/

6. http://atlanticcardiologyonline.com/holter-
monitor/

7. https://cascadecardiology.com/our-services/
holter-monitor/

8. https://www.nhfriedbergfamilymedicine.org/our-
services/tests-and-procedures/cardiac-event-

monitors.aspx

9. http://a-fib.com/treatments-for-atrial-
fibrillation/diagnostic-tests-2/

10. https://www.faythclinic.com/24hours-holter-
study/

Q: what is the ige antibody

1. https://www.empr.com/home/news/new-sc-inj-for-
primary-immunodeficiency-approved/

2. http://centralparknaturopathic.com/allergy-
testing-and-treatment/

3. https://www.empr.com/home/news/drug-news/
hyqvia-launched-for-primary-immunodeficiency-

treatment/

4. http://www.rapidtest.com/index.php?i=Toxo-IgM-
ELISA-kit&id=103&cat=16

5. https://www.bio-rad-antibodies.com/protocol-ada-
elisa-anti-adalimumab-ige-antibody.html

6. https://spectrumhealth.testcatalog.org/show/
LAB1230099-1

7. http://www.diazyme.com/a-fetoprotein-afp-assay

8. https://www.hyqvia.com/about/how-hyqvia-works

9. https://www.viracor-eurofins.com/test-menu/
203529p-mold-precipitin-panel-iii/

10. https://www.abcam.com/goat-mouse-igg-hl-alexa-
fluor-750-ab175740.html

Q: foodborne trematodiases symptoms

1. https://bowenmedicalibrary.wordpress.com/2017/
04/04/foodborne-trematodiases/

2. http://daddyspestsolutions.com/2016/10/31/what-
kind-of-flies-transmit-diseases-to-humans/

3. https://healthsky.net/health-news/foods-that-
are-high-risk-of-causing-cysticercosis.html

4. https://westsidedognanny.com/category/illness/

5. https://m.petmd.com/reptile/conditions/skin/
c_rp_skin_shell_infections

6. http://www.worldhealthinfo.net/2016/10/beware-
here-are-10-horrifying-signs.html

7. https://totalrisksa.co.za/a-list-of-diseases-
you-should-be-aware-of-excursion

8. https://activities.timeout.com/en-us/tel-
\protect\penalty\z@aviv-l487/jerusalem-
business-class-tour-full-day-from-

tel-aviv-t20352/?referrer_view_id=
49ed3cf5b860e66f003a4cb4b9590004&referrer_view_position=
10

9. https://www.petra-trip.com/product/jewish-
jerusalem-3-days



10. http://levonatravel.com/jerusalem-dead-sea/

11. https://kenes-tours.com/tour/jerusalem-dead-
sea/

12. http://www.touryourway.com/safed-tour.html

13. https://www.cunard.com/en-us/shore-excursions/
ASH/glorious-jerusalem

Q: how long has earth been habitable

1. https://www.cnet.com/news/we-are-about-to-prove-
that-we-are-not-alone-in-the-universe/

2. http://www.modernmormonmen.com/2014/01/guest-
post-warnings-from-outer-space.html

3. https://gizmodo.com/why-that-100m-alien-
listening-project-may-be-a-waste-o-1719910237

4. https://uppyalf.wordpress.com/category/stuffed/

5. http://www.rationaloptimist.com/blog/did-life-
arrive-on-earth-as-microbes/

6. https://sciencesprings.wordpress.com/tag/are-we-
alone/

7. https://mattpomroy.com/2014/12/01/whats-the-
great-filter/

8. https://www.sevendaysvt.com/vermont/counting-
the-hours/Content?oid=2131252

9. https://blog.nationalgeographic.org/2010/12/29/
land-on-goldilocks-planet-for-sale-on-ebay/

10. https://www.astronomytrek.com/human-broadcasts-
have-reached-around-8500-stars/

Q: is the judicial branch of the un.

1. https://peacekeeping.un.org/en/justice

2. https://www.un.org/ruleoflaw/thematic-
areas/access-to-justice-and-rule-of-law-

institutions/

3. https://globalanticorruptionblog.com/2015/07/09/
guest-post-the-united-nations-post-conflict-

societies-and-whistleblower-protection-

understanding-the-connections/

4. https://police.un.org/en/un-police-reform

5. https://www.unric.org/en/peacekeeping/27026-
this-yearas-theme-upholding-the-rule-of-law

6. https://fba.se/sa-arbetar-vi/forskning/
publikationer/review-of-the-global-focal-point-

for-police-justice-and-corrections/

7. https://police.un.org/en/serious-and-organized-
crime

8. http://eprints.nottingham.ac.uk/13282/

9. https://clintonwhitehouse5.archives.gov/
textonly/library/hot_releases/

August_282000_1.html

10. https://cic.nyu.edu/publications/Review-of-the-
Global-Focal-Point-for-Police-Justice-and-

Corrections

Q: what is the most important solid dissolved in

ocean water?

1. https://poseidonsweb.com/twenty-things-water/

2. https://www.seaturtlecamp.com/the-properties-of-
seawater/

3. http://freebackgroundcheck.info/linkedkeys/
sea.new

4. https://allinonehighschool.com/ocean-water/

5. http://fishcreeksalmon.org/About-Water.htm

6. https://geo.libretexts.org/Bookshelves/Book%
3A_Physical_Geography_(Lenkeit-Meezan)/10%
3A_The_River_and_the_Sea/10.6%3A_The_Oceans

7. https://www.cencoos.org/data/parameters/oxygen

8. https://ultimate-animals.com/what-do-we-really-
know-about-the-ocean/

9. https://www.windows2universe.org/earth/Water/
ocean_chemistry.html&edu=elem

10. http://marinebio.net/marinescience/02ocean/
swcomposition.htm

Q: what is the lcd math

1. http://www.broadband.se/en/Products/Graphic-
Displays.htm

2. https://www.dnatechindia.com/jhd-402-40-2-green-
lcd-display.html

3. https://www.dnatechindia.com/buy-led-oled-
glcd-alpha-numeric-lcd-display-india/

alphanumeric-display-india/jhd-202-20-2-blue-

lcd-display.html

4. https://www.code-electrical.com/calculators.html

5. https://www.dnatechindia.com/jhd-162-16-2-green-
jumbo-lcd-display.html

6. http://www.8051projects.net/tags/nokia-3310-lcd-
pcb-layout

7. https://www.okaya.com/display-products/

8. https://makerstorage.com/index.php?id_product=
18&controller=product

9. https://gr.boschsecurity.com/el/
products_9/intrusionalarmsystems_13/

conettixcommunications_13/

conettixreceivergateway_11/

conettixd6100communicatio_5/

conettixd6100communicatio_5_23715

10. https://techtonics.in/product/128x64-graphic-
lcd-display-with-blue-backlight/

Q: what’s the establishment clause

1. https://scholarship.law.missouri.edu/facpubs/
162/

2. https://www.petropedia.com/definition/8962/



privileges-and-immunities-clause

3. https://www.examrace.com/Study-Material/
Political-Science/NCERT-Lectures/NCERT-Class-

8-Political-Science-Chapter-1-YouTube-Lecture-

Handouts.html

4. http://tandemproject.com/part2/article6/art6.htm

5. http://fathersunite.org/Constitution/10%20Most%
20Liberating%20Concepts%20of%20Constitutional%

20Law.html

6. https://www.countable.us/bills/sjres13-111

7. https://navneetspeaks.wordpress.com/2016/04/

8. https://mammat.us/2018/11/15/divine-rights/

9. http://www.thearda.com/internationalData/
countries/Country_246_8.asp

10. https://www.esquire.com/news-politics/politics/
a20517/evening-jemmy-3-18-14/

Q: the meaning of stinchcombe

1. https://www.webster-dictionary.org/definition/
scab

2. http://www.bibliomania.com/2/3/257/1205/23437/
2.html

3. https://ahdictionary.com/word/search.html?q=fret

4. https://www.wordunscrambler.net/word-meaning/
worm

5. https://1828.mshaffer.com/d/word/neck

6. https://webster-dictionary.org/definition/neck

7. http://www.rhymingnames.com/
firstname_40886_scottie.htm

8. https://www.niftyword.com/dictionary/chine/

9. http://www.bibliomania.com/2/3/257/1193/22100/
2.html

10. http://www.bibliomania.com/2/3/257/1211/24342/
1.html

Q: when and where does the glass castle take place

1. https://www.medievaltimes.com/about-medieval-
times/index.html

2. https://hardcoreitalians.blog/2018/01/04/the-
scaliger-sinking-castle-in-lake-garda-italy/

3. http://www.sobt.co.uk/2019/03/rothesay-
castle.html

4. https://www.bona.com/Bona-Professional/
References/Cultural/Butron-Castle-Spain/

5. http://www.nightsinthepast.com/star-castle-
hotel.html

6. https://www.ginosi.com/location/castelldefels-
-catalonia/castillo-de-castelldefels

7. https://www.airvuz.com/photo/The-forgotten-
fortless?id=5b8c40a7f4e80e673fa76bf0

8. http://finditinscotland.com/Scottish-Heartbeat-

The-Mag/Rothesay-Castle.html

9. https://www.andaluciaexplorer.com/2013/01/
monday-morning-photo-castillo-colomares.html

10. http://www.britainirelandcastles.com/Scotland/
Fife/St-Andrews-Castle.html

Q: what is coffee flour

1. https://www.caffeineinformer.com/caffeine-
content/coffee-flour

2. https://culinarycultureconnections.com/
collections/organic-agroforestry-coffee/

products/3-bags-of-cafe-apui

3. http://en.henri.cz/eshop/cafe-8/

4. https://lagomcoffee.com/pages/the-bean

5. https://whizolosophy.com/category/human-nature/
article-essay/coffee-love

6. http://kokilacoffee.com/

7. http://www.sharegoodstuffs.com/2012/03/15-
things-worth-knowing-about-coffee.html

8. https://www.londondrugs.com/lavazza/

9. http://www.neelbeverages.in/instant-coffee.html

10. https://www.kitanda.com/coffee

Q: largest snail in the world

1. http://www.shewsbury.com/2010/06/snail.html

2. https://www.mnn.com/earth-matters/animals/
photos/12-of-the-most-interesting-snails-in-

the-world/giant-african-snail

3. http://animalstime.com/pond-snail-facts/

4. https://seashellsbymillhill.com/2010/10/19/the-
mighty-florida-horse-conch/

5. https://aquaticarts.com/pages/orange-giant-
sulawesi-snail-care-guide

6. http://www.dalerogersammonite.com/collections/
marine-life/product/turittille/

7. https://www.lighttheearth.com/blog/gastropods

8. http://wrightsvillebeachscenictours.com/eco-
guides/carolina-shelling/north-carolina-

shelling-guide-nutmeg-2/

9. https://www.maldiver.net/giant-clam.html

10. https://www.dorsetwildlifetrust.org.uk/wildlife-
explorer/marine/sea-snails-and-sea-slugs/whelk

Q: disease caused by blood worms

1. https://www.factmonster.com/encyclopedia/
medicine/diseases/pathology/schistosomiasis

2. https://encyclopedia2.thefreedictionary.com/
schistosomiasis

3. https://aho.org/programmes/schistosomiasis-
programme/

4. https://www.eliminateschisto.org/fr/sur/



schistosomiasis

5. https://hyperleap.com/topic/
List_of_parasites_of_humans

6. https://www.frontiersin.org/research-topics/
7476/schistosomiasis-host-parasite-interactions

7. https://www.thesun.co.uk/news/6743224/parasitic-
worm-schistosomiasis-lays-eggs-human-organs-

europe/

8. https://www.rxlist.com/script/main/
art.asp?articlekey=5416

9. https://www.climate-policy-watcher.org/lake-
ecosystems/glossary-huw.html

10. https://theconversation.com/parasitic-flatworms-
affect-millions-in-developing-countries-but-

new-research-offers-hope-98780

Q: is home improvement interest deductible

1. https://armsairsoft.com/home-and-family/

2. https://armsairsoft.com/tips-for-home-
enhancement-house-equity-loan-funding/

3. http://homeimprovementtax.com/clearing-up-the-
confusion-surrounding-home-improvement-taxes/

4. https://paintmyrun.com/tips-for-house-
improvement-house-equity-loan-financing/

5. https://umasoudana.com/tips-for-home-
enhancement-house-equity-loan-financing/

6. http://www.dragonesdelsur.org/personal-a-
vehicle-without-placing-collateral.html

7. https://umasoudana.com/2019/04/03/

8. https://naadagam.com/tips-for-home-enhancement-
house-equity-loan-financing/

9. https://affiloguide.com/tips-for-home-
enhancement-house-equity-loan-funding/

10. http://www.philipmclean-architect.com/home-
enchancment-loan-or-personal-loan.html

Q: is burning sage evil

1. http://familiarterritory.us/2019/03/28/protect-
your-home-or-workspace/

2. https://www.west.coach/blog/saturday-grooves-
five-ways-to-stay-zen-when-surrounded-by-toxic-

energy

3. https://gorjana.com/pages/good-vibes-smudge-kit

4. https://www.housebeautiful.com/lifestyle/g3864/
oddest-moving-traditions/?thumbnails=

5. https://talesofapsychicjunkie.com/2018/07/14/
sage-why-you-cant-live-without-it/

6. https://www.revguimo.com/2017/12/ritual-
cleansing.html

7. http://wio.life/psychology/self-development/get-
negative-energy-out-of-your-home-with-these-4-

tricks

8. http://www.queentourmaline.com/slaydragons/

9. https://www.nadersgallery.com/2017/10/04/
timeless-ancient-techniques-for-giving-your-

home-good-energy/

10. https://www.inkedgoddesscreations.com/products/
mini-dragons-blood-sage-wand-for-cleansing-and-

power

Q: what does otg in a usb stands for

1. http://adapt-ip.com/products.html

2. https://www.techopedia.com/definition/10096/
wireless-universal-serial-bus-wireless-usb-

wusb

3. https://www.efun.top/ot-75002-lightning-otg-
network-adapter.html

4. http://gadgetsin.com/the-usb-3-0-hub-with-otg-
adapter.htm

5. http://www.spoutpals.com/6ft-readyplug-
usb-cable-for-lg-b470-phone-for-at-and-t-

data-computer-sync-charging-cable-6-feet-

sgfjrkcxq.html

6. http://www.icron.com/products/oem/usb-extenders/
lan/usb-2-0-rg2301n/

7. https://community.wicommfi.com/usb-3-0-usb-3-0-
wireless-adapter-work/

8. https://www.computerlanguage.com/
results.php?definition=wireless%20USB

9. http://www.ciudadwireless.com/
network_ubdo-25t_802-11abgn_outdoor_w-

dual_antenna_integrated-p-9287.html

10. https://www.speedguide.net/routers/tenda-d301-
wireless-n300-adsl2-router-3156

Q: the meaning of haploid cell

1. https://www.britannica.com/science/haploid-phase

2. http://affixes.org/jk/karyo-.html

3. https://guillaumeantzenberger.com/chapter-6-
terms

4. https://www.palaeontologyonline.com/glossary/m/
meiosis/

5. http://webster-dictionary.net/definition/
chromatin

6. http://www.sliderbase.com/spitem-842-1.html

7. http://academic.pgcc.edu/~kroberts/Lecture/
Chapter%207/euchromosome.html

8. http://www.phschool.com/science/biology_place/
biocoach/meiosis/overview.html

9. https://www.askdifference.com/nucleus-vs-nuclei/

10. https://rwguild.com/collections/sculptures-
decorative-art/products/casey-zablocki-



sculpture4

Q: how long before eagles get feathers

1. https://llarnold.smugmug.com/Galleries/
Feathered-Friends/Eagle-banding-Ottawa-Refuge-6

2. https://www.asa2fly.com/EAA-Young-Eagles-
W45.aspx

3. https://www.worldbirdsanctuary.org/education-
programs/eagle-flights/

4. https://www.justplaneadventures.com/aviation-
camp/

5. https://www.eagleswingszipline.com/safety/

6. http://www.birdtlc.org/blogv3/2008/04/golden-
eagle-release.html

7. https://notch.com/news/news-archive/

8. https://eaa35.org/?q=content/young-eagles

9. http://fifecoastandcountrysidetrust.co.uk/
news_archive_2013/sea-eagles-breed-in-fife-
_254.html

10. http://eaa1230.com/index.html


