
Extracting and optimizing formally verified code
for systems programming

Eleftherios Ioannidis, Frans Kaashoek, and Nickolai Zeldovich

Massachusetts Institute of Technology
elefthei@mit.edu

Abstract. MCQC is a compiler for extracting verified systems programs
to low-level assembly, with no runtime or garbage collection requirements
and an emphasis on performance. MCQC targets the Gallina functional
language used in the Coq proof assistant. MCQC translates pure and
recursive functions into C++17, while compiling monadic effectful func-
tions to imperative C++ system calls. With a few memory and per-
formance optimizations, MCQC combines verifiability with memory and
runtime performance. By handling effectful and pure functions separately
MCQC can generate executable verified code directly from Gallina, re-
ducing the effort of implementing and executing verified systems.

Keywords: Formal Verification · Functional Compiler · Extraction · Systems

1 Introduction

The formal verification of computer systems has been a continuous subject of
research over the last decade, with verified file systems [5][1], kernels [11][15], dis-
tributed systems [24] and cryptographic algorithms [9][4]. Formal proofs about
programs are developed in a dependently-typed language [25], inside a mecha-
nized proof-assistant, like Coq [25] [3]. Coq has its own programming language,
Gallina which together with the proof-language Ltac enable the development of
formally verified algorithms. The compilation and execution of formally verified
software written in Gallina, for systems programming with side-effects and an
emphasis on performance, is the focus of this paper.

1.1 The problem of code generation

The functional, dependent nature of Gallina makes it difficult to execute outside
Coq. There are a few roadblocks to generating performant, effectful code from
Gallina, which must be addressed:

1. Coq relies on a runtime system (RTS) and garbage collection (GC) for mem-
ory management, which makes it hard to execute verified code on bare hard-
ware (OS, embedded systems, firmware etc).

2 E. Ioannidis et al.

2. Integral and bitfield types are inductively defined in Coq and they do not fit
into CPU registers, making the performance overhead of executing Gallina
prohibitive.

3. Gallina is completely pure and it cannot generate any observable effects.
4. The performance of dynamic memory datastructures such as lists, maps and

trees, suffers during extraction. Coq passes arguments by value, which leads
to excessive copying and a dependence on GC.

There are currently two approaches to generating formally verified, exe-
cutable code and they each address a subset of the issues stated above; by verified
compilation of deep embeddings and by extraction of shallow embeddings [2][18].
The first method requires advanced knowledge of programming language theory
and involves defining, proving and compiling an embedded Domain Specific Lan-
guage (eDSL) inside Coq, with varying degrees of proof automation available.

This paper focuses on the second approach of shallow embeddings and intro-
duces the Monadic Coq Compiler (MCQC), a compiler for Gallina by means of
extraction using C++17 as an intermediate representation. C++17 is a suitable
intermediate language as it offers parametric polymorphism through templates,
algebraic datatypes (ADTs) through variants and GC through smart pointers.
The output C++17 can be compiled by any modern C compiler with no external
dependencies. We chose the clang C compiler [16] for MCQC.

1.2 Previous work

The CertiCoq compiler [2] implements Coq’s language inside the Coq proof-
assistant, allowing for the verified compilation of Gallina. However, CertiCoq
depends on a runtime GC and cannot generate static, stand-alone assembly. The
Œuf verified extractor [21] reifies Gallina into an abstract syntax tree (AST) that
it then translates to CompCert’s intermediate representation [17] but does not
target full Gallina, only a small subset of it relevant to reactive systems. The
Fiat compiler does verified compilation of an eDSL down to static C but is only
applicable to the domain of cryptographic algorithms [10].

1.3 Contributions

MCQC is a compiler, a library of native bitfield types and an IO library for inter-
acting with the real world. The MCQC native library is modeled after the Coq
standard library and obeys the same semantics, while offering fast, native com-
putations. MCQC supports pure functional programming and effectful monadic
IO operations, similar to the Haskell IO monad. Although side-effects cannot
be executed inside Coq, they are compiled to real system calls by MCQC and
executed by the underlying OS.

Using MCQC we have successfully compiled multiple types and functions
from Coq’s standard library. We have also written a proof-of-concept web appli-
cation for online payments, with the web server written in Gallina and compiled
to C++17 and the client written in Gallina and compiled to Webassembly. In

Extracting and optimizing formally verified code for systems programming 3

both cases, a minimal amount of boilerplate code and proofs was required, while
MCQC made it possible to write and test verified client and server code without
leaving the Coq proof-assistant.

MCQC has some limitations compared to Gallina executed inside Coq. MCQC
cannot generate code for Gallina typeclass instances, as typeclasses offer a model
for ad-hoc polmorphism more general than C++ templates [23]. MCQC has
limited multi-threading support. As part of Proc MCQC implements spawn :
∀T, (T → unit) → T → proc unit which can execute functions with no return
values in parallel via std::future. To support parallel execution with return
types, a promises interface would be more effective [19] in the future. Finally,
the library of base types in C++17 is not formally verified. To ensure correct-
ness with respect to the Coq standard library, a property-based testing suite is
used [6].

2 Design

This section covers the most interesting part of the design; the full design is
described in a master thesis [12]. MCQC is a compiler and a library of base types
and system calls in C++17. The compiler is written in Haskell and accepts as
input Gallina abstract syntax trees (AST) in a JSON format, extracted by the
Coq JSON extraction plugin (Coq-8.5.1). MCQC compiles the Gallina AST to
C++17 which then clang compiles to assembly [16] and links with the library,
as shown in Fig. 1.

Fig. 1: MCQC block diagram. Coq files are the input, MCQC generates C++17
code and clang compiles it and links with the base type library to produce
an executable. The white box is the input Gallina program, green boxes show
imported libraries and yellow boxes show auto-generated files.

The input Gallina AST is described by an input grammar which is defined
in the MCQC thesis [12] and is the starting point for MCQC. The top level
structure is a Module, which contains multiple top-level Declarations. Gallina

4 E. Ioannidis et al.

declarations can be either inductive types, type aliases, named fixpoints or named
expressions. MCQC breaks the compilation process into five stages; type infer-
ence, base semantics, algebraic datatypes, monadic effects and pretty-printing
C++17.

2.1 Type inference

Coq extraction transforms dependently typed Gallina to a simpler Hindley-
Milner (HM) language similar to ML [8]. Type inference starts at each func-
tion declaration, which is always guaranteed to be well-typed by Coq prior to
extraction. Each binder is added to the local context as a constraint and those
constraints are solved while traversing the AST by standard HM type infer-
ence [8].

The C++17 type system does not have support for function types. MCQC
preserves function types until the pretty-printing stage, when they are trans-
formed to C++ templates. We chose function templates over std::function as
clang will inline functional arguments when they are passed as templates, offer-
ing better performance for higher-order functions. In addition, MCQC adds a
type annotation in the return type with the std::invoke result t template
function, to help clang type resolution [14].

2.2 Base semantics

Using Coq’s standard library of base types can have a significant performance
overhead as Coq defines base types inductively. MCQC substitutes slow Coq
base types with their corresponding C++17 native, safe types. More details on
safety of the base type library can be found in the MCQC thesis [12]. Base types
are always passed by value in MCQC and conversely, ADTs are always passed
by smart pointer.

Pattern matching in Coq corresponds to the polymorphic high-order function
match in C++17, which is implemented differently for each type as seen in
Fig. 2. As native types are succeptible to weak typing MCQC strengthens the
C++17 type system with template metaprogramming (TMP) as seen is Fig. 2.
A substitution failure at std::enable if t means the function will quietly
disappear at clang compile-time without errors, a pattern known in C++ as
SFINAE (Substituition Failure Is Not An Error) [14].

2.3 Algebraic Data types (ADTs)

MCQC transforms Coq ADT definitions, like lists, trees etc, to a reference-
counted, pointer datastructure in C++17. Sum types are transformed to tagged-
unions implemented by std::variant [7] and product types are implemented
by C structs. The combination of sums and products allows MCQC to define any
algebraic data type in C++17 [20]. Finally, pattern-matching for those types is
auto-generated as the polymorphic, high-order match function. ADTs are passed

Extracting and optimizing formally verified code for systems programming 5

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

// Nat type alias for bitvector type
using nat = unsigned int;

// Pattern matching on nat
template<typename F0, typename FS,

typename = enable_if_t<CallableWith<F0>>,
typename = enable_if_t<CallableWith<FS, nat>>>

constexpr auto match(nat a, F0 f, FS g) {
switch(a) {
case 0: return f(); // Call 0 clause
default: return g(a-1); // Call S clause
}

}

Fixpoint fib(n: nat) :=
match n with

| 0 => 1
| S sm =>
match sm with

| 0 => 1
| S m =>

(fib m) + (fib sm)
end

end.

nat fib(nat n) {
return match(n,

[=]() { return 1; },
[=](nat sm) { return match(sm,

[=]() { return 1; },
[=](nat m) {

return add(fib(m), fib(sm));
});

});
}

Fig. 2: Compiling the fibonacci function on the left in C++17, on the right.
The shaded box surrounds Coq and C++17 boilerplate code for natural numbers.
The definitions are almost isomorphic, except for overflow exceptions in native
types which are safely detected and propagated to the caller.

by smart pointer, a reference counted pointer that requires no GC, implemented
via std::shared ptr. An example of generating a pointer list from the ADT
list definition in Coq can be seen in Fig. 3 and more details on ADT generation
can be found in the MCQC thesis [12].

2.4 Monadic effects (Proc)

Coq is so pure it has no way of interacting with the underlying OS in an effectful
way. MCQC offers an interface for effectful computations by means of monadic
composition with the Proc monad, similar to the Haskell IO monad [13]. Effectful
monads in Gallina elaborate to imperative-style C++ statements, as shown in
Fig. 4. An example of generating an implementation for the cat utility is shown
in Fig. 4.

2.5 Pretty-print C++17

In order to apply transformations and finally pretty-print C++17, MCQC trans-
forms the input Coq AST to an intermediate representation closer to C++17.
Going from that representation to a .cpp file is a matter of implementing a
Wadler/Leijen prettyprinter [22].

6 E. Ioannidis et al.

Inductive list (T:Type) : Type :=
| nil : list T
| cons : T -> list T -> list T.

template<class T>
struct Coq_nil {};
// Forward declarations
template<class T>
struct Coq_cons;
template<class T>
// Reference counted tagged-union
using list = std::shared_ptr<

std::variant<Coq_nil<T>, Coq_cons<T>>>;

template<class T>
struct Coq_cons {

T a;
list<T> b;

};

// Pattern match
template<class T, class U, class V>
auto match(list<T> self, U f, V g) {

return std::visit(*self, overloaded {
[=](Coq_nil<T> _) { return f(); },
[=](Coq_cons<T> _) { return g(_.a, _.b); }

});
}

Fig. 3: Polymorphic list definition in Coq, MCQC generates the pointer data
structure on the right, as well as match to deconstruct it.

(** Filedescriptor type *)
Definition fd := nat.

(** Effect composition *)
Inductive proc: Type -> Type :=
| open : string -> proc fd
| read: fd -> proc string
| close : fd -> proc unit
| print : string -> proc unit
(** Monad *)
| ret: forall T, T -> proc T
| bind: forall T T',

proc T
-> (T -> proc T')
-> proc T'.

Notation "p1 >>= p2" :=
(bind p1 p2).

// Filedescriptor type
using fd = nat;

static proc<fd> open(string s) {
if (int o = sys::open(FWD(s).c_str(), O_RDWR) {

return static_cast<fd>(o);
}
throw IOException("File not found");

}
static proc<string> read(fd f, nat size) {

auto dp = string(size, '\0');
sys::read(f, &(dp[0]), sizeof(char)*size);
return dp;

}
static proc<void> close(fd f) {

if(sys::close(f)) {
throw IOException("Could not close file");

}
}
static proc<void> print(string s) {

std::cout << s << std::endl;
}

Definition cat (path fn: string):=
open (path ++ "/" ++ fn) >>=

(fun f => read f >>=
(fun data => close f >>=
(fun _ => print data >>=

(fun _ => ret unit)))).

proc<void> cat(string path, string fn) {
fd f = open(append(path, append("/", fn)));
string data = read(f);
close(f);
print(data);

}

Fig. 4: The cat UNIX utility that displays a text file. Instances of proc are
translated to imperative C++ system calls. The shaded box surrounds Coq and
C++17 boilerplate code, part of the MCQC library.

Extracting and optimizing formally verified code for systems programming 7

3 Implementation and evaluation

In this section we present the runtime properties and performance of programs
compiled with MCQC. The three questions we try to answer are; can we link
verified and unverified code to create end-to-end applications, can we get get
better memory performance than extracted Haskell and can we get runtime
performance comparable to Haskell compiled with GHC.

MCQC is open source under an MIT license and can be found here https:

//github.com/mit-pdos/mcqc. MCQC is implemented in 1800 lines of Haskell
and 600 lines of C++17 code for the base type and proc library.

3.1 Linking verified applications

In order to demonstrate MCQC’s capabilities we have developed a demo web
application for payments, the verified Zoobar server. The design and implementa-
tion details of the Zoobar server is presented in full detail in the mcqc thesis [12].
The Zoobar server demonstrates the ease of linking code compiled with MCQC,
as both the server and client were built and proven in Coq and extracted to
C++17 before linking with the HTTP libraries. The proof effort required for
proving the transaction logic is minimal and focuses on the code that is most
important. With the Zoobar demo we demonstrate a hybrid approach to verifi-
cation, by combining verified logic with unverified trusted code.

3.2 Benchmarks

MCQC compares fairly well against GHC in terms of run-time performance
and total memory used. The execution time of MCQC programs is on average
14.8% faster than GHC programs, as seen in Fig. 5a. MCQC reduces the memory
footprint of executing verified programs by 66.25% on average compared to GHC,
as seen in Fig. 5b.

We compare the performance of C++17 code generated with MCQC against
Haskell code extracted from Coq with native types to ensure the comparison is
fair. The clang-7.0 compiler compiles generated C++17 and GHC-8.4.4 compiles
extracted Haskell. More details on the hardware and profiling tools used can be
found in the MCQC thesis [12].

The results in Fig. 5 show MCQC extracted code performs with consider-
ably less memory compared to Haskell and at comparable run-time. Tail-call
optimization is supproted in clang so it is supported in MCQC, even across pat-
tern matching. For fact, we see no heap or stack usage which confirms TCO
has optimized recursion away. Finally, in algorithms that rely on GC we show
that MCQC uses less memory compared to Haskell and in most cases, MCQC
is faster.

https://github.com/mit-pdos/mcqc
https://github.com/mit-pdos/mcqc

8 E. Ioannidis et al.

(a) Run-time in logarithmic scale.
(b) Memory; shared libraries, heap and stack.

Fig. 5: Performance and memory benchmarks for four Coq programs compiled
with MCQC versus GHC. Increasing values for N were used for calculating
Fig. 5a and only the highest value N was used for memory benchmarks.

4 Conclusion

We have presented the MCQC compiler, a novel approach to generating exe-
cutable formally verified code directly from the Gallina functional specification.
Code compiled with MCQC has a TCB comparable to standard Coq extraction
mechanisms [18]. The MCQC TCB includes the clang compiler and MCQC itself,
as well as the base types library. Coq extraction to Haskell and Ocaml includes
the compiler and runtime in the TCB, which MCQC does not. We hope to see
MCQC used as part of the Coq ecosystem, for the execution of formally verified
code without scraping the full stack.

References

1. Amani, S., Hixon, A., Chen, Z., Rizkallah, C., Chubb, P., O’Connor, L., Beeren,
J., Nagashima, Y., Lim, J., Sewell, T., et al.: Cogent: Verifying high-assurance file
system implementations. ACM SIGOPS Operating Systems Review 50(2), 175–
188 (2016)

2. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O.S., Sozeau, M., Weaver, M.: Certicoq: A verified compiler for coq. In: The Third
International Workshop on Coq for Programming Languages (CoqPL) (2017)

3. Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.C., Gimenez, E., Herbe-
lin, H., Huet, G., Munoz, C., Murthy, C., et al.: The Coq proof assistant reference
manual: Version 6.1. Ph.D. thesis, Inria (1997)

4. Bhargavan, K., Bond, B., Delignat-Lavaud, A., Fournet, C., Hawblitzel, C., Hritcu,
C., Ishtiaq, S., Kohlweiss, M., Leino, R., Lorch, J., et al.: Everest: Towards a
verified, drop-in replacement of https. In: LIPIcs-Leibniz International Proceedings
in Informatics. vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

Extracting and optimizing formally verified code for systems programming 9

5. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the fscq file system. In: Proceedings of the
25th Symposium on Operating Systems Principles. pp. 18–37. ACM (2015)

6. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. Acm sigplan notices 46(4), 53–64 (2011)

7. Cock, D.: Bitfields and tagged unions in c: Verification through automatic gener-
ation. VERIFY 8, 44–55 (2008)

8. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. pp. 207–212. ACM (1982)

9. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic-with proofs, without compromises. In: Simple High-
Level Code for Cryptographic Arithmetic-With Proofs, Without Compromises.
p. 0. IEEE

10. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic-with proofs, without compromises. In: Simple High-
Level Code for Cryptographic Arithmetic-With Proofs, Without Compromises.
p. 0. IEEE

11. Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: Certikos: a certified kernel
for secure cloud computing. In: Proceedings of the Second Asia-Pacific Workshop
on Systems. p. 3. ACM (2011)

12. Ioannidis, E.: Extracting and optimizing low-level bytecode from high-level verified
coq (2019)

13. Jones, S.P., Hall, C., Hammond, K., Partain, W., Wadler, P.: The glasgow haskell
compiler: a technical overview. In: Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference. vol. 93 (1993)

14. Josuttis, N.M.: C++ Templates: The Complete Guide. Addison-Wesley Profes-
sional (2003)

15. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: sel4: Formal verification
of an os kernel. In: Proceedings of the ACM SIGOPS 22nd symposium on Oper-
ating systems principles. pp. 207–220. ACM (2009)

16. Lattner, C.: Llvm and clang: Next generation compiler technology. In: The BSD
Conference. pp. 1–2 (2008)

17. Leroy, X., et al.: The compcert verified compiler. Documentation and user’s man-
ual. INRIA Paris-Rocquencourt (2012)

18. Letouzey, P.: Extraction in coq: An overview. In: Conference on Computability in
Europe. pp. 359–369. Springer (2008)

19. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems, vol. 23. ACM (1988)

20. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism
for haskell. ACM Sigplan Notices 45(11), 37–48 (2010)

21. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: minimiz-
ing the coq extraction tcb. In: Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs. pp. 172–185. ACM (2018)

22. Wadler, P.: A prettier printer. The Fun of Programming, Cornerstones of Com-
puting pp. 223–243 (2003)

23. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. pp. 60–76. ACM (1989)

10 E. Ioannidis et al.

24. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., An-
derson, T.: Verdi: a framework for implementing and formally verifying distributed
systems. In: ACM SIGPLAN Notices. vol. 50, pp. 357–368. ACM (2015)

25. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 214–227. ACM (1999)

	Extracting and optimizing formally verified code for systems programming

