
Recovering from intrusions in distributed systems with DARE

Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

DARE is a system that recovers system integrity after
intrusions that spread between machines in a distributed
system. DARE extends the rollback-and-reexecute recov-
ery model of Retro [14] to distributed system recovery
by solving the following challenges: tracking dependen-
cies across machines, repairing network connections,
minimizing distributed repair, and dealing with long-
running daemon processes. This paper describes an
early prototype of DARE, presents some preliminary
results, and discusses open problems.

1 INTRODUCTION

An adversary that compromises one machine in a dis-
tributed system, such as a cluster of servers, can often
leverage the trust between machines in that system to
compromise other machines as well [12]. Recovering
the integrity of these machines after an intrusion is often
a manual process for system administrators, and this pa-
per presents a system that helps administrators automate
intrusion recovery across machines.

To understand the steps involved in intrusion recovery,
consider a recent break-in at SourceForge, a source code
repository that hosts over 300K open source projects.
On January 26th, 2011, system administrators of Source-
Forge detected a targeted attack that infected multiple
machines in their network [9]. A key goal for the admin-
istrators was to determine whether any source code or
files hosted by SourceForge were modified by the attack,
and to restore their integrity, but to do that they needed
to first restore the integrity of their servers.

As a first step, SourceForge immediately locked down
possibly affected servers, and started investigating logs
of their services to determine the root cause of the at-
tack and the extent of the damage it caused. Two days

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys ’12, July 23–24, 2012, Seoul, S. Korea
Copyright 2012 ACM 978-1-4503-1669-9/12/07 . . . $15.00.

later, SourceForge decided to reset passwords of two
million accounts, due to evidence of attempts to sniff
user passwords, even though their administrators were
unable to determine whether the attempts were success-
ful [10]. Then, they validated project data such as source
commits and file releases, by comparing data of the com-
promised servers with the latest backup data before the
attack, and notified project owners if they detected sus-
picious changes. Finally, they restored services such as
SVN, file hosting, and project webspaces, to previously
working copies, by completely reinstalling servers. In
all, this recovery process required five days of effort by
the entire SourceForge team, during which time several
SourceForge services were unavailable.

This example shows that in today’s distributed sys-
tems, recovering from an attack that propagates across
machines is manual, tedious, and time-consuming.
Worse yet, there is no guarantee that the administra-
tor found all effects of the attack and recovered from
them. The SourceForge attack is not an isolated ex-
ample of these types of attacks; other such high-profile
attacks include Stuxnet [13] and the recent kernel.org
compromise [7]. Given that today’s systems are highly
interconnected, recovering from such distributed attacks
is an important problem. However, past work [12] does
not address intrusion recovery in a distributed system.

In this paper, we discuss the design of an early proto-
type of DARE,1 a system for recovering from an attack
that propagates across a distributed system, once an ad-
ministrator has identified the source of the attack. At
a high level, DARE adopts Retro’s [14] rollback-and-
reexecute approach to recovery, but additionally also
tracks dependency information across machines. Thus,
if an attack propagates to other machines, DARE auto-
matically initiates repair on them and eventually undoes
the effects of the attack on all the infected machines in
the system.

DARE’s distributed repair faces four challenges that
are not addressed by Retro. First, DARE needs to deter-
mine dependencies between events that occur on differ-

1DARE stands for Distributed Automatic REpair.

1

��������	
�

����

�����
���

�����

�������

��������

������

���	
��
�	�
��������

���
��

���	��

	��������	�	
� �����	�����	����

�����	���
��	

�����	�� �����	��!

���
��

�����	������
����
��
��������
��

��������

���

��

������������������������������

��������	
���������	
���������	
���������	
���������	
���������	
���������	
���������	
�

�����	�	
��"������
��

������

��#���
�

Figure 1: An overview of DARE’s design. Components introduced
by DARE are shaded. Components borrowed from Retro are striped.
During normal execution, the logger interposes on system calls and
logs them. The action history graph is generated from this logged
information. During repair, the distributed repair controller listens
for repair requests from the administrator locally or from remote
controllers, and uses its action history graph to perform repair on
the local machine and to invoke repair on remote controllers.

ent machines. Second, DARE needs to perform repair
on network connections by propagating repair across
machines. Third, DARE needs to minimize repair prop-
agation during distributed repair. Finally, DARE needs
to perform efficient repair on long-running server pro-
cesses.

In the rest of this paper, §2 gives an overview of
DARE, §3 describes how DARE solves the above chal-
lenges, §4 illustrates how DARE repairs a sample dis-
tributed attack, §5 and §6 present a preliminary imple-
mentation and results, §7 summarizes related work, §8
discusses open problems, and §9 concludes.

2 OVERVIEW

DARE consists of several components, shown in Fig-
ure 1. DARE’s operation consists of three phases: nor-
mal execution of the distributed system, detection of
an intrusion by an administrator, and distributed repair.
The rest of this section gives an overview of Retro, and
describes DARE’s phases of operation in more detail.

2.1 Background
Retro [14] is an intrusion recovery system that repairs a
single machine after a compromise by an adversary. It
undoes the changes by the adversary, while preserving
changes made by legitimate users. While the system

is running normally, Retro records information about
the system execution that it uses to build a detailed
dependency graph of the system’s execution, called an
action history graph. The recorded information allows
Retro to rollback the system state to a time in the past
and selectively re-execute individual actions.

The action history graph consists of two types of
objects: data objects, such as files, and actor objects,
such as processes. Each object has a set of checkpoints,
representing its state at various times. Each actor object
additionally consists of a set of actions, representing the
execution of that actor over some period of time. Each
action has dependencies from and to other objects in the
graph, representing the objects accessed and modified
by that action.

Once an administrator detects an intrusion and identi-
fies an attack action, Retro’s repair controller uses the
action history graph to perform repair by undoing the
attack action as well as all of its effects. It does so by
rolling back the direct effects of the attack action, skip-
ping the attack action, and re-executing subsequent legit-
imate actions with dependencies to or from the objects
affected by the attack. Retro separates the rollback-and-
reexecute logic, implemented by the repair controller,
from object- and action-specific logging, rollback, and
re-execution, implemented by repair managers.

2.2 Normal execution

During normal execution, each machine running DARE

constructs its own action history graph, by periodically
saving file snapshots, and recording information about
all system calls, including their arguments and return
values. For system calls that operate on a network con-
nection (e.g., send and recv), DARE records the con-
nection’s protocol and the source and destination IP
addresses and ports. DARE models the connection as
a socket data object that is present in the local action
history graphs of both the machines at either end of the
connection, and uses this recorded information about
the connection to name that socket data object.

For example, Figure 2 shows action history graphs
for a simplified version of the SourceForge attack. The
connect and send system calls on the gateway ma-
chine, and the accept and recv system calls on the
internal machine are modeled as actions writing to and
reading from the same socket data object. This socket
data object is present in both machines’ action history
graphs and connects them together. DARE inserts a sin-
gle checkpoint on the socket data object at connection

2

�����

����

�	�

��
�

������

��
�

����

����

�	�����

�	
�

�	
�

��

�������

����
�	���

����������

��	�
���

���	�

�	�
���

�����
�����	�

���������	������

��
��
�

�����
��

�������

�������

��������

�������

Figure 2: Action history graphs illustrating a simplified version of
the SourceForge attack. The attacker uses a compromised account to
log into sshd on the Internet-facing gateway, which spawns a shell.
The shell reads and writes to the log that was used by administrator
to later detect the attack. Finally, the attacker logs into an internal
machine over SSH using the same compromised account. Both
machines independently record their local action history graphs,
which are connected by the socket data object.

start (i.e., before the connect), and the data object can
be rolled back to this checkpoint during repair.

2.3 Repair

Each machine in the distributed system runs a DARE

repair controller, which listens on a well-known port for
repair requests from either the administrator or from a
remote machine, performs the requested repairs locally,
and initiates repair on remote machines as necessary.

Repair starts with an administrator detecting an in-
trusion and determining its source machine. DARE pro-
vides a GUI tool that an administrator can use to visu-
alize the global action history graph across the entire
distributed system. The administrator can use this tool
to find the intrusion point from the attack symptoms, in a
manner similar to BackTracker [15]. The administrator
can also use other intrusion detection techniques such
as retroactive auditing [17] and retroactive patching [8],
to find the attack. The rest of this paper does not discuss
intrusion detection further.

After finding the attack, the administrator invokes lo-
cal repair on the source machine’s controller by specify-
ing the attack action. The controller reboots the machine
to discard non-persistent state, and enters repair mode.

To undo the attack action, the controller first rolls
back objects modified by the action to a checkpoint be-
fore the attack. The controller then replaces the attack
action with a no-op in the action history graph, and uses
the action history graph to determine other actions poten-
tially affected by the attack. The controller re-executes
each of those affected actions by first rolling back the
action’s inputs and outputs to the correct version, and
then redoing the action. The controller repeats this pro-
cess of determining affected actions and re-executing
them until there are no more affected actions.

While a machine is undergoing repair, that machine
is not available for normal execution. Though this can
be inconvenient for users, it takes a potentially infected
machine offline and helps contain further damage due to
the attack spreading to other machines in the network.

When the controller on a machine has to redo a system
call on a network connection, it propagates repair to the
machine on the other end of the network connection,
using the repair controller API described in §3.2.

As repair progresses, the controllers on all the ma-
chines to which the attack propagated are included in
the repair process. Local repair happens simultaneously
on these controllers, and they coordinate with each other
before redoing system calls that operated on network
connections. By the end of the repair process, DARE

undoes all effects of the attack on the distributed system.

2.4 Assumptions
DARE makes several assumptions. First, we assume
that attacks compromise only user-level services and
that the attack does not tamper with the kernel, file
system, or DARE’s checkpoints and logs. Second, we
assume that the administrator can identify all external
attack actions. In particular, if an adversary steals a
user’s password or other credentials, our current design
assumes an administrator pinpoints all improper uses of
those credentials. Third, we assume that all the machines
in the distributed system have DARE installed, and that
the machines are under the same administrative domain,
so that they can initiate repair on each other. We discuss
how these assumptions may be relaxed in §8.

3 CHALLENGES ADDRESSED BY DARE

This section describes several challenges addressed by
DARE’s design in more detail.

3.1 Cross-machine dependencies
Propagating repair across machines in DARE requires
addressing two problems: precisely identifying the net-

3

work connection being repaired, and authenticating the
repair request.

Identifying the network connection being repaired
is complicated by the fact that source and destination
ports can be reused over time. To uniquely identify con-
nections, the DARE kernel module generates a random
token for every connection it initiates, and includes it
as a control option in the IP header of packets for that
connection. When accepting a connection, the kernel
module records the peer’s random token and similarly
includes it in all packets for that connection. During
repair, when one controller sends a repair request to an-
other controller, it includes the token in the request to
identify the network connection to repair.

If adding IP options is undesirable, DARE kernel mod-
ules can communicate tokens for a network connection
using an out-of-band channel. However, this incurs the
overhead of an extra network round trip.

Authenticating repair requests between machines is
important because an adversary may subvert an inse-
cure repair mechanism to compromise the system. Our
current design assumes that all of the machines are in
the same administrative domain, and uses a secret cryp-
tographic key, shared by all of the repair controllers,
to authenticate repair requests, along with a nonce to
ensure freshness.

3.2 Repairing network connections
During repair, the controller on a machine MA may need
to redo a system call A that operated on a network con-
nection (e.g., send). This requires redo of the entire
connection, and can result in repair on the machine MB

that is the other end of the connection.2 To support this,
each repair controller exports the following two API
calls that can be invoked by another repair controller;
these calls take the socket data object corresponding to
the connection, identified by the connection’s token, as
the argument.

First, rollback() instructs the controller to roll back
a specified socket data object to the single checkpoint be-
fore connection start, and start local redo on the actions
that operated on that data object. rollback returns af-
ter redo is started on the first action that operated on the
socket data object.

Second, a repair controller can send a done() mes-
sage to the controller at the other end of the connection,

2Assume that MA is the client and MB is the server for this
network connection (i.e., MA executed connect and MB executed
accept during connection setup.)

to indicate that repair on its local socket data object is
complete.

To redo the system call A on a network connection,
MA’s controller invokes rollback on MB’s controller
with the connection’s token as the argument. MB’s con-
troller initiates redo on the accept system call for that
connection, and acknowledges MA’s rollback request.
MA’s controller then re-executes the connect system
call, establishing the connection. MA and MB’s con-
trollers continue redo of subsequent system calls on that
connection, including A. Once repair is complete on the
connection (e.g., at connection close), the controllers
send done messages to each other.

3.3 Minimizing network replay

DARE borrows Retro’s idea of predicate checking; Retro
uses predicate checking to selectively re-execute only
the actions whose dependencies are semantically differ-
ent during repair. For example, if the attacker modified a
file that was later read by a process P, Retro may be able
to avoid re-executing P if the part of the file accessed by
P is the same before and after repair.

DARE performs predicate checking on network con-
nections to minimize distributed re-execution. For in-
stance, in the SourceForge attack, the attacker’s SSH
client could have performed a DNS lookup during orig-
inal execution. During repair, DARE can avoid re-
executing the lookup on the DNS server if the DNS
request was unchanged during repair.

One way to do predicate checking on a network con-
nection is to compare the system calls issued on the
connection during original execution with those issued
during repair. However, this is insufficient, as non-
determinism in the connection can cause the system
calls to differ, even though their net effect is the same.
For example, reduced network latency can cause one
recv system call during repair to receive data that was
originally received by multiple recv calls.

To solve this problem, DARE inserts a proxy predi-
cate checker actor object in between the process using
the network connection and the socket data object for
the connection. The predicate checker compares the
bytes sent by the process during repair with the bytes
sent during original execution. As long as they match,
the predicate checker replays the bytes received by the
process during original execution back to the process,
and repair is not initiated on the machine at the other
end of this connection. When they do not match, the

4

predicate check fails and the predicate checker initiates
repair on the remote machine.

3.4 Repairing long-lived daemons

When repairing a process, DARE’s repair controller re-
executes it from the beginning. Although this works well
for short-lived processes, many server processes in a dis-
tributed system, such as the SSH daemon, are long-lived
daemon processes. If a daemon process was involved in
an attack, repair would require re-executing the daemon
process from its beginning (typically the boot time of
the machine), which would be time-consuming.

One way to solve this problem is to periodically snap-
shot daemon processes using techniques developed for
application migration and virtualization [1, 2, 4, 16].
This allows DARE’s repair controller to roll back the
daemons to a snapshot just before the attack. However,
these snapshot mechanisms have significant runtime and
storage overhead during normal execution. For exam-
ple, a single snapshot of sshd using DMTCP [2] takes
0.6 sec and consumes 4 MB of disk space.

To avoid these overheads, we leverage the typical pat-
tern of network services, which enter a quiescent state
between servicing each request. For example, an SSH
daemon has a known “connection accepting” state after
servicing each request and spawning an SSH session.
A daemon in the quiescent state is equivalent to having
been restarted. Building on this intuition, DARE pro-
vides daemon developers with two options. First, the
developer can have the daemon restart itself periodically,
when it is in a quiescent state. This causes daemon pro-
cesses to be short-lived, and allows DARE to repair only
the particular daemon process that was the target of the
attack, limiting the amount of re-execution.

Restarting the daemon can incur a performance
penalty, and possibly lead to (brief) downtime. To ad-
dress this limitation, a second option provided by DARE

is a new mark_quiescent system call that the daemon
developer can use to indicate that the daemon is in a qui-
escent state. During normal execution, DARE’s logger
records invocations of this system call. If the daemon
needs to be repaired, DARE’s repair controller restarts
the daemon, but re-executes operations only from the
last quiescent state before the action being repaired. Al-
though this limits re-execution of operations before the
attack, the repair controller must still re-execute subse-
quent operations on the affected daemon process, be-
cause an adversary could have subverted the process and
the quiescent marks can no longer be trusted.

The quiescent marks can always be trusted in dae-
mons that follow a common pattern of forking a child
process to service each accepted connection; such dae-
mons do not process any data from the network in the
parent process, and thus cannot be compromised via the
accepted network connections. For daemons that follow
this pattern, the developer can additionally annotate the
mark_quiescent system call as trusted, indicating to
DARE that it can skip re-executing operations on the
daemon process following the next quiescent mark after
the action being repaired.

4 REPAIRING THE SOURCEFORGE ATTACK

To understand how DARE repairs from an intrusion in
a distributed system, consider a simplified version of
the SourceForge attack, where an attacker logs into the
gateway machine using a compromised user account,
and from there proceeds to log into an internal machine.
Figure 2 shows the action history graph for this attack.
Once the administrator identifies the intrusion and pin-
points the attacker’s entry point on the gateway machine,
DARE’s repair controller on the gateway machine rolls
back sshd and removes the attacker’s login action from
the action history graph. This causes the shell to not be
forked, and the connect to internal machine’s sshd and
the subsequent send to not be invoked. The gateway’s
controller proceeds to undo the connect and the send
system calls. It rolls back its local socket data object,
and invokes rollback on the internal machine’s con-
troller, which rolls back its own local socket data object.
The gateway’s controller undoes the connect and send
system calls, and sends a done message to the internal
machine’s controller indicating that repair on the socket
data object is done. The internal machine’s controller
then undoes the accept and recv system calls, which
subsequently leads to undoing the attacker’s ssh session
and all causal effects thereof. The repair controllers
continue the repair process until all effects of the attack
are undone on all the machines.

5 IMPLEMENTATION

We implemented an early prototype of DARE for Linux,
building on top of Retro. Figure 3 shows the number
of lines of code for different DARE components. The
DARE kernel module interposes on all system calls by
remapping the syscall table in the kernel, collects
system call information needed for dependency track-
ing, and sends them to the user-level DARE daemon via
relay-fs. The kernel module also implements the new

5

Component Lines of code

Logging kernel module 3,300 lines of C
AHG GUI tool 2,000 lines of Python
Repair controller, managers 5,300 lines of Python
System library managers 800 lines of C

Figure 3: Lines of code of different components of the DARE proto-
type.

mark_quiescent system call by overwriting an unused
system call in the syscall table. We implemented a
GUI tool that, given the recorded DARE logs from dif-
ferent machines, displays a global action history graph
by connecting local graphs from different machines.

6 EVALUATION

To evaluate our preliminary DARE design, we wanted to
show that it can recover from a distributed attack, and
that the techniques described in §3 reduce the amount
of re-execution.

For evaluation, we constructed a simplified version
of the SourceForge attack. The experimental setup con-
sists of two machines running Linux with DARE in-
stalled, corresponding to the gateway and internal ma-
chines in the SourceForge attack. The internal machine
runs a modified version of sshd that forks a separate
process to handle each accepted connection, and calls
mark_quiescent after it launches each SSH session.
The mark_quiescent is annotated as trusted.

Our test workload consists of 5 legitimate users using
ssh to log into the internal machine from the gateway
machine, followed by an attacker logging into the gate-
way machine and from there into the internal machine,
followed by another 5 legitimate user logins. Each SSH
session writes session information to an append-only
log file. This workload generates a total of 8,953 nodes
in the action history graphs of both the machines.

In our test workload, the administrator identifies the
attack by inspecting the action history graph using the
GUI tool, and initiates repair by identifying the at-
tacker’s login on the gateway machine. The repair con-
troller on the gateway machine initiates remote repair
on the internal machine.

We consider two scenarios. In the first scenario, sshd
lacks quiescent marking, in which case the internal ma-
chine’s repair controller restarts sshd from the begin-
ning, re-executes all the 10 legitimate user logins and
skips the attacker’s SSH session. In the second scenario,
sshd has quiescent marking, as described above. In this
case, the repair controller restarts sshd and re-executes

starting from the quiescent period before the attacker’s
SSH session: it skips the attacker’s session, and reruns
the writes to the log file by the subsequent 5 legitimate
user sessions. Repair with and without quiescent mark-
ing take 0.44 seconds and 3.7 seconds, respectively,
showing that quiescent marking works well in practice.

7 RELATED WORK

The two closest pieces of work related to DARE are
the Retro [14] and Warp [8] intrusion recovery systems,
which provide intrusion recovery for a single machine
and for web applications, respectively. DARE builds
on Retro’s rollback and re-execute approach to provide
intrusion recovery for a distributed system.

Existing intrusion detection [6, 15] and intrusion au-
diting systems [17] allow an administrator to detect com-
promises in a distributed system. The administrator can
use them in conjunction with DARE, and can use DARE

to recover from an attack once it has been identified by
one of these systems.

Past work on worm containment [11] limits the num-
ber of machines infected by an attack by automatically
detecting the attack, generating worm filters from in-
fected machines, and deploying the filters on uninfected
machines to prevent spread of the worm. However, the
infected machines still need to be repaired after the
attack. DARE can perform this repair and is thus com-
plementary to worm containment systems.

8 OPEN PROBLEMS

DARE does not currently track the re-use of stolen cre-
dentials by an adversary. This works fine for authenti-
cation schemes that are resilient to replay attacks, such
as authentication using a remote SSH agent or the in-
creasingly popular one-time password schemes like RSA
SecurID [5] and Google Authenticator [3]. However, tra-
ditional password authentication schemes are still prone
to replay attacks. For example, an adversary could break
into the system, steal a user’s password, and later use
that password to log into the system again. Such attacks
are difficult for DARE to handle because they involve
machines outside of DARE’s control. For credentials
that are easy to identify, such as SSH private keys or
Kerberos tickets, DARE could track access to and use
of credentials, and determine suspect uses of creden-
tials that were accessed during an attack. Passwords
are harder to identify, and would likely require the ad-
ministrator to help identify accounts whose passwords

6

have been compromised. Once stolen credentials are
identified, DARE can identify and undo suspect logins.

DARE assumes that all of the machines in the dis-
tributed system are under the same administrative do-
main. Extending DARE to repair between mutually dis-
trustful machines would require several changes. First,
the tokens exchanged during normal execution of net-
work system calls need to be cryptographically secure,
so that they cannot be forged in remote repair requests.
Second, each administrative domain needs to have a pol-
icy in place indicating what remote repair requests are
allowed. Finally, the two-phase rollback-and-reexecute
model may need to be replaced with a model where one
machine sends another machine a complete proposed
change to some past message.

DARE’s repair controller API handles repairs that can-
cel a network connection or modify the data that was
sent over the connection. Adding new network connec-
tions during repair requires naming the new connections
and adding them to the right point in the action his-
tory graph’s timeline, which DARE does not currently
support.

9 CONCLUSIONS

DARE helps system administrators recover system in-
tegrity after an attack that spreads between several
machines in a cluster. DARE uses Retro’s rollback-
and-reexecute approach to recover individual machines.
Across machines, DARE tracks dependencies by as-
signing unique tokens to network connections. DARE

propagates changes between repair controllers on each
machine during repair, and minimizes distributed re-
execution with predicate checking on network connec-
tions. Finally, DARE allows software developers to
annotate quiescent periods in their code to reduce re-
execution of long-lived processes. An initial prototype
of DARE can repair from a simplified version of the
SourceForge attack, and the above techniques reduce
the amount of re-execution necessary during repair.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback.
This research was partially supported by the DARPA
CRASH program (#N66001-10-2-4089), and by NSF
award CNS-1053143.

REFERENCES

[1] CryoPID - A Process Freezer for Linux. URL http:
//cryopid.berlios.de/.

[2] DMTCP: Distributed MultiThreaded CheckPointing.
URL http://dmtcp.sourceforge.net/.

[3] Google Authenticator - Two-step verfica-
tion. URL http://code.google.com/p/
google-authenticator/.

[4] OpenVZ Wiki Main Page. URL http://wiki.
openvz.org/Main_Page.

[5] RSA SecurID - Two-Factor Authentication, Secu-
rity Token. URL http://www.emc.com/security/
rsa-securid.htm.

[6] The snort intrusion detection system. URL http://
www.snort.org.

[7] kernel.org compromised, January 2011. URL http:
//lwn.net/Articles/457142/.

[8] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zel-
dovich. Intrusion recovery for database-backed web
applications. In Proc. of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), pages 101–114,
Cascais, Portugal, October 2011.

[9] Community Team. Sourceforge Attack: Full Re-
port, January 2011. URL http://sourceforge.net/
blog/sourceforge-attack-full-report.

[10] Community Team. SourceForge.net
passwords reset, January 2011. URL
http://sourceforge.net/blog/
sourceforge-net-global-password-reset.

[11] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante: End-
to-end containment of internet worms. In Proc. of the
20th ACM Symposium on Operating Systems Principles
(SOSP), pages 133–147, Brighton, UK, October 2005.

[12] J. Dunagan, A. X. Zheng, and D. R. Simon. Heat-
ray: Combating identity snowball attacks using machine
learning, combinatorial optimization and attack graphs.
In Proc. of the 22nd ACM Symposium on Operating
Systems Principles (SOSP), Big Sky, MT, October 2009.

[13] N. Falliere, Murchu, and E. Chien. W32.Stuxnet
Dossier. Symantec Security Response online report,
February 2011.

[14] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Intrusion recovery using selective re-execution. In Proc.
of the 9th Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, October
2010.

[15] S. T. King and P. M. Chen. Backtracking intrusions.
ACM Transactions on Computer Systems, 23(1):51–76,
February 2005.

[16] O. Laadan and S. E. Hallyn. Linux-CR: Transparent
application checkpoint-restart in Linux. In Proc. of the
12th Annual Linux Symposium, Ottawa, Canada, July
2010.

[17] X. Wang, N. Zeldovich, and M. F. Kaashoek. Retroac-
tive auditing. In Proc. of the 2nd Asia-Pacific Workshop
on Systems, Shanghai, China, July 2011.

7

http://cryopid.berlios.de/
http://cryopid.berlios.de/
http://dmtcp.sourceforge.net/
http://code.google.com/p/google-authenticator/
http://code.google.com/p/google-authenticator/
http://wiki.openvz.org/Main_Page
http://wiki.openvz.org/Main_Page
http://www.emc.com/security/rsa-securid.htm
http://www.emc.com/security/rsa-securid.htm
http://www.snort.org
http://www.snort.org
http://lwn.net/Articles/457142/
http://lwn.net/Articles/457142/
http://sourceforge.net/blog/sourceforge-attack-full-report
http://sourceforge.net/blog/sourceforge-attack-full-report
http://sourceforge.net/blog/sourceforge-net-global-password-reset
http://sourceforge.net/blog/sourceforge-net-global-password-reset

	Introduction
	Overview
	Background
	Normal execution
	Repair
	Assumptions

	Challenges addressed by Dare
	Cross-machine dependencies
	Repairing network connections
	Minimizing network replay
	Repairing long-lived daemons

	Repairing the SourceForge attack
	Implementation
	Evaluation
	Related work
	Open problems
	Conclusions

