
Efficient patch-based auditing for web application vulnerabilities

Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich
MIT CSAIL

Abstract
POIROT is a system that, given a patch for a newly dis-
covered security vulnerability in a web application, helps
administrators detect past intrusions that exploited the
vulnerability. POIROT records all requests to the server
during normal operation, and given a patch, re-executes
requests using both patched and unpatched software, and
reports to the administrator any request that executes dif-
ferently in the two cases. A key challenge with this ap-
proach is the cost of re-executing all requests, and POIROT
introduces several techniques to reduce the time required
to audit past requests, including filtering requests based
on their control flow and memoization of intermediate
results across different requests.

A prototype of POIROT for PHP accurately detects at-
tacks on older versions of MediaWiki and HotCRP, given
subsequently released patches. POIROT’s techniques al-
low it to audit past requests 12–51× faster than the time it
took to originally execute the same requests, for patches
to code executed by every request, under a realistic Media-
Wiki workload.

1 Introduction
New security vulnerabilities are routinely discovered in
many web applications, and web application developers
frequently release patches for such bugs in their software.
Once an administrator learns about a new vulnerability
and applies a patch to prevent new attacks, the adminis-
trator may want to check whether anyone exploited the
bug before the patch was applied, in order to take any
necessary remedial measures. This check is important to
ensure that no data was leaked or that the attacker did not
leave any back doors for later intrusions, yet today this
check remains a mostly manual process.

As one example, consider the HotCRP conference man-
agement software [21], which recently had a information
disclosure bug that allowed paper authors to view a re-
viewer’s private comments meant only for program com-
mittee members [22]. After applying the patch for this
vulnerability, an administrator of a HotCRP site would
likely want to check if any comments were leaked as a
result of this bug. In order to do so, the administrator
would have to manually examine the patch to understand
what kinds of requests can trigger the vulnerability, and
then attempt to determine suspect requests by manually
poring over logs (such as HotCRP’s application-level log,

or Apache’s access log) or by writing a script to search
the logs for requests that match a specific pattern. This
process is error-prone, as the administrator may miss a
subtle way of triggering the vulnerability, and the logs
may have insufficient information to determine whether
this bug was exploited, making every request potentially
suspicious. For example, there is no single pattern that
an administrator could search for to find exploits of the
HotCRP bug mentioned above.

Manual auditing by the administrator may be an op-
tion for HotCRP sites with a small number of users, but
it is prohibitively expensive for large-scale web appli-
cations. Consider the recent vulnerability in Github—a
popular collaborative software development site—where
any user was able to overwrite any other user’s SSH pub-
lic key [27], and thus modify any software repository
hosted on Github. After Github administrators learned
about and patched the vulnerability, their goal was to de-
termine whether anyone had exploited this vulnerability
and possibly altered user data. Although the patch was
just a one-line change in source code, it was difficult to
determine who may have exploited this vulnerability in
the past. As a result, Github administrators disabled all
SSH public keys as a precaution, and required users to
re-confirm their keys [13]—an intrusive measure, yet one
that was necessary because of the lack of alternatives.

This paper presents POIROT, a system that can audit a
web application’s past requests and identify requests that
potentially exploited a vulnerability, given a patch that
fixes the vulnerability. POIROT focuses on vulnerabilities
in server-side application code, which includes seven of
the top ten web application vulnerabilities [29].

POIROT adopts the record-and-replay approach from
previous systems [9, 33], and records each request to the
web application during the application’s normal execu-
tion. When a patch is released, the administrator invokes
POIROT, which re-runs past requests on two versions of
the application source code—one with and one without
the patch—and compares the results. If the results are
the same (including any side-effects such as modifying
files or issuing SQL queries), POIROT concludes that the
request did not exploit the vulnerability. Conversely, if
the results differ, POIROT reports the request to the ad-
ministrator as a possible attack, along with a diff of the
results with and without the patch.

1

POIROT’s key contribution lies in performance. The
closest related work is Warp [9], which undoes the effects
of past attacks given a patch by re-executing every request
that touched a patched file. In the worst case, a developer
may patch code that is executed by every request, in which
case auditing several months worth of requests with Warp
would take yet another several months on production
servers. POIROT shows that it is possible to audit 1–2
orders of magnitude faster than simply re-running every
request, even for the challenging patches that modify code
executed by every request. POIROT’s design speeds up
auditing by leveraging three techniques, as follows.

First, POIROT performs control flow filtering to avoid
re-executing requests that did not invoke patched code.
To filter out these requests, POIROT records a control flow
trace of basic blocks executed by each request during
normal execution, and indexes them for efficient lookup.
For a given patch, POIROT computes the set of basic
blocks modified by the patch, and determines the set of
requests that executed those basic blocks. This allows
POIROT to skip many requests for patches that modify
rarely used code.

Second, POIROT optimizes the two re-executions of
each request—one with the patch and one without—by
performing function-level auditing. Each request is ini-
tially re-executed using one process. When a patched
function is invoked, POIROT forks the process into two,
executes the patched code in one process and the un-
patched code in another, and compares the results. If
the results don’t match, POIROT marks the request as
suspect and stops re-executing that request, and if the
results are identical, POIROT kills off one of the forked
processes and continues re-executing in the other pro-
cess. Function-level auditing improves performance since
forking is often cheaper than re-executing long runs of
common application code.

As an extension of function-level auditing, POIROT
terminates re-execution of a request if it can determine,
based on previously recorded control flow traces, that this
request will not invoke any patched functions for the rest
of its re-execution. We call this early termination.

Third, POIROT eliminates redundant computations—
identical instructions processing identical data—that are
the same across different requests, using a technique we
call memoized re-execution. POIROT keeps track of in-
termediate results while re-executing one request, and
reuses these results when re-executing subsequent re-
quests, instead of recomputing them. The remaining code
re-executed for subsequent requests can be thought of as
a dynamic slice for the patched code [3], and is often 1–2
orders of magnitude faster than re-executing the entire
request.

An evaluation of a POIROT prototype for PHP-based
applications with MediaWiki and HotCRP shows that

POIROT can accurately and efficiently detect past intru-
sions given a patch, and that the three techniques men-
tioned above are important to achieve good performance.
Out of 34 real MediaWiki security patches, POIROT takes
1,013 seconds to audit a patch in the worst case (when
the patch affects all requests) for a workload that takes
12,116 seconds to complete during normal execution. For
a realistic workload based on Wikipedia traces, POIROT
imposes 15% CPU overhead during normal execution
and requires 5 KB of storage per request, which amounts
to 3.3 GB per day for one server. Finally, POIROT has
no false negatives, and incurs no false positives for most
patches.

The rest of this paper is organized as follows. §2 starts
off with an overview of POIROT’s design and its workflow.
§3, §4, and §5 describe POIROT’s three key techniques
for minimizing re-execution. §6 discusses our prototype
implementation, and §7 evaluates it. §8 touches on some
of the limitations of POIROT. §9 compares POIROT with
related work, and §10 concludes.

2 Overview
To understand how POIROT helps an administrator au-
tomate the auditing process, suppose that some request
exploited the HotCRP vulnerability mentioned in the pre-
vious section, and saw confidential comments. When that
request is re-executed by POIROT, the HTTP response
with the patch applied will be different from that without
the patch (since the response will not contain the com-
ments), and the request will be flagged as suspect, leaving
the administrator to decide on the appropriate remedy. On
the other hand, requests that did not exploit the vulner-
ability will likely generate the same responses, and will
not be flagged as suspect. Similarly, in the Github sce-
nario mentioned earlier, an attack request that exploited
the vulnerability would issue an SQL query to modify the
victim’s public key. When the attack is re-executed on
patched code, the query will not be issued, and POIROT
will report the discrepancy to the administrator.

More precisely, given a patch fixing a vulnerability in
a web application, POIROT’s goal is to identify a minimal
set of requests that may have exploited the vulnerability.
Conceptually, POIROT re-runs each past request to the
web application twice—once each with the vulnerable and
the patched versions of the application’s source code—
and compares the results of these runs. If the results
are the same, the request is assumed to not exploit the
vulnerability; otherwise, POIROT adds the request to a list
of requests that may have exploited the vulnerability, to
be further audited by the administrator.

A request’s result in POIROT logically includes the
web server’s HTTP response, as well as any side effects
of request execution, such as changes to the file system
or queries issued to an SQL database. This ensures that

2

����
��������

�	
	�	��

���
��	
���

��������
���

�����������

��������
�
�������������� �����

������

��

�	
��

�������� �����������
����

����

���
��

��
����

���
��

��

 ��
��
�!
��
!�

������
��

 ��
��
�!
��
!�

������
��

"��
	#��

���������	
���
��������
� ����������������� �����������������

���������������������

������

Figure 1: Overview of POIROT’s design. Components introduced by POIROT are shaded. Solid lines, dotted lines, and dashed lines indicate
interactions during normal execution, indexing, and auditing stages, respectively.

POIROT will catch both attacks that altered server state
(e.g., modifying rows in a database), as well as attacks
that affect the server’s HTTP response.

POIROT consists of three phases of operation, as il-
lustrated in Figure 1: normal execution, indexing, and
auditing. The rest of this section describes these phases,
and explains the assumptions and limitations of POIROT.

2.1 Logging during normal execution
In order to rerun a past request in a web application,
POIROT needs to record the original inputs to the applica-
tion code that were used to handle the request. Addition-
ally, in order to perform control flow filtering, POIROT
must record the original control flow path of each request.

During the normal execution of a web application,
POIROT records four pieces of information about each
request to a log. First, it records the request’s URL, HTTP
headers, any POST data, and the CGI parameters (e.g.,
the client’s IP address). Second, it records the results of
non-deterministic function calls made during the request’s
execution, such as calls to functions that return the current
date or time, and functions that return a random number.
Third, it records the results of calls to functions that return
external data, such as calls to database functions. Finally,
it records a control flow trace of the application code, at
the level of basic blocks [5].

POIROT implements logging by extending the appli-
cation’s language runtime (e.g., PHP in our prototype
implementation) and by implementing a logging module
in the HTTP server.

It is up to the administrator to decide on how long to
store POIROT’s logs. For an application such as HotCRP,
it may make sense to store all logs from the time when
the conference starts, and audit every request if a vulnera-
bility is discovered. For a larger-scale web site, such as
Wikipedia, it may make sense to discard logs of old re-
quests at some point (e.g., after several months), although
POIROT would be unable to audit discarded requests for
possible attacks.

2.2 Indexing
The second step in POIROT’s auditing process is to build
an index from the logs recorded during normal execution.
The index contains two data structures, as follows.

The first data structure, called the basic block index,
maps each basic block to the set of requests that exe-
cuted that basic block, and is generated from the control
flow traces recorded during normal execution. This data
structure is used by POIROT’s control flow filtering to effi-
ciently locate candidate requests for re-execution given a
set of basic blocks that have been affected by a patch.

The second data structure, called the function call table,
is a count of the number of times each request invoked
each function in the application, and is also generated
based on the control flow traces recorded during normal
execution. This data structure is used to implement the
early termination optimization.

POIROT’s indexing step can be performed on any ma-
chine, and simply requires access to the application source
code as well as the control flow traces. Performing the
indexing step before auditing (described next) both speeds
up the auditing step and avoids having to re-generate these
data structures for multiple audit operations.

2.3 Auditing
When a patch for a newly discovered security vulnera-
bility is released, an administrator can invoke POIROT’s
auditing phase and supply the patch to POIROT. POIROT’s
auditing code requires access to the original log of re-
quests, as well as to the index. POIROT first performs
control flow filtering to filter out requests that did not
invoke the patched code, and then uses function-level au-
diting and memoized re-execution to efficiently re-execute
requests that did invoke the patched code. To ensure re-
quests execute in the same way during auditing as they
did during the original execution, POIROT uses the log
to replay the original inputs (such as the URL and POST
data), as well as the results of any non-deterministic func-
tions and external I/O (e.g., SQL queries) that the applica-
tion invoked. Note that POIROT does not require a past

3

snapshot of the database for re-executing requests: if the
application issues a different SQL query during request
re-execution—for which POIROT’s log does not contain a
recorded result—POIROT flags the request as a potential
attack and stops re-executing that request. POIROT per-
forms re-execution by modifying the language runtime
(e.g., the PHP interpreter in our prototype), as we will
describe later.

Once re-execution finishes, POIROT provides the ad-
ministrator with a list of suspect requests that executed
differently with the patched code than they did with the
unpatched code, for further examination.

2.4 Limitations and assumptions
POIROT is designed to detect attacks that exploit bugs in a
web application’s code. Consequently, POIROT assumes
that adversaries do not subvert the language interpreter,
the web server, or the OS kernel. An adversary that vi-
olates this assumption would be able to alter POIROT’s
logs to hide the attack.

POIROT assumes that the vulnerability being audited
is correctly fixed by the security patch used for auditing.
Under this assumption, POIROT incurs no false negatives.
However, POIROT can incur false positives because it
treats any change in application output as an indication of
a possible attack. For example, if POIROT failed to record
some non-determinism during a request’s original execu-
tion, re-executing the request could change the request’s
output and cause POIROT to flag it, even if the request did
not exploit the patched vulnerability.

POIROT works best with patches that do not change
program behavior aside from fixing a security vulnera-
bility. Patches that both fix security bugs and introduce
new features, or that significantly modify the application
in order to fix a vulnerability, could generate false posi-
tives. For example, if a patch issues a new database query,
POIROT flags every request executing the patched code
as a possible attack. Extending POIROT to snapshot the
database state during original execution, and restore it
during request re-execution (as in Warp [9]) would likely
prevent these false positives.

POIROT’s design focuses on high performance auditing.
Once POIROT flags a request as suspicious, an adminis-
trator familiar with the application must manually inspect
that request to determine the appropriate course of action.
POIROT can be combined with a system like Warp [9] to
undo the effects of suspicious requests. The problem of
helping administrators understand the impact of a suspi-
cious request is left to future work.

POIROT’s prototype is built for PHP; PHP’s single-
threaded nature and its higher-level primitives (e.g., string
operations) simplified the prototype’s implementation.
We believe it is straightforward to extend POIROT to other
scripting languages such as Python and Ruby; however,

extending POIROT to low-level bytecode such as x86
poses some challenges, which we discuss in §8.

POIROT’s prototype assumes the application is never
upgraded. We discuss this limitation further in §8.

3 Control flow filtering
POIROT’s control flow filtering involves three steps. First,
during normal execution, POIROT logs a control flow trace
of each request to a log file. Second, during indexing,
POIROT computes the set of basic blocks executed by
each request. Third, when presented with a patch to audit,
POIROT computes the set of basic blocks affected by that
patch, and filters out requests that did not execute any
of the affected basic blocks, since they could not have
possibly exploited the vulnerability in the affected basic
blocks. As an optimization, POIROT builds an index that
maps basic blocks to the set of requests that executed that
basic block, which helps speed up the process of locating
all requests affected by a patch.

POIROT performs control flow filtering at the granular-
ity of basic blocks because filtering at a coarser granularity
(e.g., at function granularity) can result in fewer requests
being filtered out, reducing the effectiveness of filtering.
Furthermore, control flow traces at the granularity of basic
blocks are also needed for memoized re-execution (§5).

The rest of this section describes POIROT’s control flow
filtering in more detail.

3.1 Recording control flow
In order to implement control flow filtering, POIROT
needs to know which application code was executed by
each request during original execution. POIROT records
the request’s control flow trace, which is a log of every
bytecode instruction that caused a control flow transfer.
For example, our prototype implements control flow fil-
tering at the level of instructions in the PHP interpreter
(called “oplines”), and our prototype modifies the PHP
runtime to record branch instructions, function calls, and
returns from function calls. For each instruction that
caused a control flow transfer, POIROT records the in-
struction’s opcode, the address of that instruction, and the
address of the jump target.

Recording control flow traces across multiple requests
requires a persistent way of referring to bytecode in-
structions. PHP translates application source code to
bytecode instructions at runtime, and does not provide
a standard way of naming the instructions. In order to
refer to specific instructions in the application, POIROT
names each instruction using a 〈func,count〉 tuple, where
func identifies the function containing the instruction,
and count is the position of the instruction from the start
of the translated function (in terms of the number of
bytecode instructions). Functions, in turn, are named
as 〈filename,classname, funcname〉.

4

3.2 Determining the executed basic blocks
During the indexing phase, POIROT uses the log recorded
above to reconstruct the set of basic blocks executed by
each request. To reduce overhead during normal execu-
tion, POIROT does not log branches that were not taken.
As a result, two adjacent control flow transfers in the log
may span n basic blocks, where the branches at the end
of the first n−1 basic blocks were not taken.

To compute the set of basic blocks executed by a given
request, POIROT first computes the sequence of basic
blocks within each function, by translating the applica-
tion’s source code into bytecode instructions and analyz-
ing the control flow graph in that function. Then, for
each pair of adjacent control flow transfers A and B in
the request’s log, POIROT adds the sequence of basic
blocks between the jump target of A’s instruction and the
address of B’s instruction to the set of basic blocks exe-
cuted by that request. To consistently name basic blocks
across requests, POIROT refers to basic blocks by the first
instruction of that basic block.

3.3 Determining the patched basic blocks
Once the administrator provides a patch to POIROT in
the auditing phase, POIROT must determine the set of
requests to re-execute. To filter out requests that were not
affected by a given patch, POIROT must determine which
basic blocks are affected by a change to the application’s
source code, and which basic blocks are unchanged. In
general, deciding program equivalence is a hard prob-
lem. POIROT simplifies the problem in two ways. First,
POIROT determines which functions were modified by a
patch. Second, POIROT generates control flow graphs for
the modified functions,1 with and without the patch, and
compares the basic blocks in the control flow graph start-
ing from the function entry point. If the basic blocks differ,
POIROT flags the basic block from the unpatched code
as “affected.” If the basic blocks are the same, POIROT
marks the basic block from the unpatched code as “un-
changed,” and recursively compares any successor basic
blocks, avoiding loops in the control flow graph.

3.4 Indexing
To avoid re-computing the set of basic blocks executed
by each request across multiple audit operations, and to
reduce the user latency for auditing, POIROT caches this
information in an index for efficient lookup. POIROT’s
index contains a mapping from basic blocks (named by
the first bytecode instruction in the basic block) to the
set of requests that executed that basic block. By using
the index, POIROT can perform control flow filtering by
computing just the set of basic blocks affected by a patch,
and looking up these basic blocks in the index.

1PHP has no computed jumps within a function, making it possible
to statically construct control flow graphs for a function.

����������
�����	�
��� �(a)

����������
�����	�
��� �(b)

����������
�����	�
��� �(c)

Figure 2: Three refinements of request re-execution: (a) naïve, (b)
function-level auditing, and (c) early termination. Thick lines indicate
execution of unmodified application code, dotted lines indicate execution
of the original code for patched functions, and dashed lines indicate
execution of new code for patched functions. A question mark indicates
comparison of executions for auditing.

The index is generated asynchronously, after the con-
trol flow trace for a request has been logged, to avoid
increasing request processing latency. The index is shared
by all subsequent audit operations. In principle, the index
(and the recorded control flow traces for past requests)
may need to be updated to reflect new execution paths
taken by patched code, after each patch is applied in turn,
if the administrator wants to audit the cumulative effect
of executing all of the applied patches. Our current pro-
totype does not update the control flow traces for past
requests after auditing.

4 Function-level auditing
After POIROT’s auditing phase uses control flow filtering
to compute the set of requests affected by the patch, it
re-executes each of those requests twice—once with and
once without the patch applied—in order to compare their
outputs. A naïve approach of this technique is shown in
Figure 2(a). However, the only code that differs between
the two executions comes from the patched functions; the
rest of the code invoked by the two executions is the same.
For example, suppose an application developer patched
a bug in an access control function that is invoked by a
particular request. All the code executed by that request
before the access control function will be the same both
with and without the patch applied. Moreover, if the
patched function returns the same result and has the same
side-effects as the unpatched function, then all the code
executed after the function is also going to be the same
both with and without the patch.

To avoid executing the common code twice, POIROT
implements function-level auditing, as illustrated in Fig-
ure 2(b). Function-level auditing starts executing each
request in a single process. Whenever the application
code invokes a function that was modified in the patch,
POIROT forks the process, and invokes the patched func-
tion in one process and the unpatched function in the

5

other process. Once the functions return in both pro-
cesses, POIROT terminates the child fork, and compares
the results and side-effects of executing the function in
the two forks, as we describe in §4.1. If the results and
side-effects are identical, POIROT continues executing
common application code. Otherwise, POIROT flags the
request as suspect, since the request’s execution may have
been affected by the patch.

Comparing the results of each patched function invo-
cation, as in POIROT’s function-level auditing, can lead
to more false positives than comparing the output of the
entire application. This is because the application may
produce the same output even if a patched function pro-
duces a different return value or has different side-effects
with or without the patch. For example, some request may
have invoked a patched function, and obtained a different
return value from the patched function, but this return
value did not affect the eventual HTTP response. These
extra false positives can be eliminated by doing full re-
execution on the suspect list, and comparing application-
level responses, after the faster forked re-execution filters
out the benign requests. Our PHP prototype does not im-
plement this additional step, as none of our experiments
observed such false positives.

4.1 Comparing results and side-effects
A key challenge for function-level auditing is to compare
the results and side-effects of invoking an individual func-
tion, rather than comparing the final HTTP response of
the entire application. To do this, POIROT tracks three
kinds of results of a function invocation: HTTP output,
calls to external I/O functions (such as invoking an SQL
query), and writes to shared objects, which are objects
not local to the function.

To handle HTTP output, POIROT buffers any output
during function execution. When the function returns,
POIROT compares the outputs of the two executions.

To handle external I/O functions, POIROT logs the ar-
guments and return values for all external I/O function
calls during normal execution. When an external I/O func-
tion is invoked during re-execution (in either of the two
forks), POIROT checks that the arguments are the same
as during the original execution. If so, POIROT supplies
the previously recorded return value in response. Other-
wise, POIROT declares the request suspect and terminates
re-execution.

To handle writes to shared objects, POIROT tracks the
set of shared objects that are potentially accessed by the
patched function. Initially, the shared object set includes
the function’s reference arguments and object arguments.
The function’s eventual return value is also added to the
shared object set, unless POIROT determines that the caller
ignores the function’s return value (by examining the
caller’s bytecode instructions). To catch accesses to global

variables, POIROT intercepts PHP opcodes for accessing
a global variable by name, and adds any such object being
accessed to the shared object set.

When the function returns, POIROT serializes all ob-
jects in the shared object set, and checks that their se-
rialized representations are the same between the two
runs. If not, it flags the request as suspect and terminates
re-execution. POIROT recursively serializes objects that
point to other objects, and records loops between objects,
to ensure that it can compare arbitrary data structures.

4.2 Early termination
If a patch just modifies a function that executes early in
the application, re-executing the rest of the application
code after the patched function has already returned is
not necessary. To avoid re-executing such code, POIROT
implements an early termination optimization, as shown
in Figure 2(c). Early termination stops re-execution after
the last invocation of a patched function returns.

To determine when a request invokes its last patched
function, POIROT uses the request’s recorded control flow
trace to count the number of times each request invoked
each function. As an optimization, the indexing phase
builds a function call table storing these counts.

5 Memoized re-execution
Many requests to a web application execute similar code.
For example, if two requests access the same Wiki page
in Wikipedia, or the same paper in HotCRP, the computa-
tions performed by the two requests are likely to be simi-
lar. To avoid recomputing the same intermediate results
across a group of similar requests, POIROT constructs, at
audit time, a template that memoizes any intermediate
results that are identical across requests in that group. Of
course, no two requests are entirely identical: they may
differ in some small ways from one another, such as hav-
ing a different client IP address or a different timestamp
in the HTTP headers. To capture the small differences
between requests, POIROT’s templates have template vari-
ables which act as template inputs for these differences.
POIROT can use a template to quickly re-execute a re-
quest by plugging in that request’s template variables (i.e.,
unique parameters) and running the template.

Memoizing identical computations across requests re-
quires addressing two challenges. First, locating identical
computations—sequences of identical instructions that
process identical data—across requests is a hard problem.
Even if two requests invoke the same function with the
same arguments, that function may read global variables
or shared objects; if these variables or objects differ be-
tween the two invocations, the function will perform a
different computation, and it would be incorrect to mem-
oize its results. Similarly, a function can have side effects
other than its return value. For instance, a function can

6

modify a global variable or modify an object whose refer-
ence was passed as an argument. Memoizing the results
of a function requires also memoizing side effects.

Second, POIROT’s templates must interleave memo-
ized results of identical computations with re-execution
of code that depends on template variables. For example,
consider the patch for a simple PHP program shown in
Figure 3, and suppose the web server received three re-
quests, shown in Figure 4. The value of $s computed on
lines 7, 8, and 9 is the same across all three requests, but
line 10 generates a different value of $s for every request,
and thus must be re-executed for each of the three requests.
This is complicated by the fact that memoized and non-
memoized computations may have control flow depen-
dencies on each other. For instance, what should POIROT
do if it also received a request for /script.php?q=foo,
which does not pass the if check on line 5?

POIROT’s approach to addressing these two challenges
leverages control flow tracing during normal execution.
In particular, POIROT builds up templates from groups
of requests that had identical control flow traces, even if
their inputs differed, such as the three requests shown in
Figure 4. By considering requests with identical control
flow, POIROT avoids having to locate identical computa-
tions in two arbitrary executions. Instead, POIROT’s task
is reduced to finding instructions that processed the same
data in all requests with identical control flow traces, in
which case their results can be memoized in the template.
Moreover, by grouping requests that share control flow,
POIROT simplifies the problem of separating memoized
computations from computations that depend on template
variables, since there can be no control flow dependencies.

More precisely, POIROT’s memoized re-execution first
groups requests that have the same control flow trace into
a control flow group. POIROT then builds up a template
for that group of requests, which consists of two parts:
first, a sequence of bytecode instructions that produces the
same result as the original application, when executing
any request from the control flow group, and second, a
set of memoized intermediate results that are identical
for all requests in the control flow group, used by the
instructions in the template. Due to memoization, the
number of instructions in a template is often 1–2 orders
of magnitude shorter than the entire application (§7).

The rest of this section explains how POIROT gener-
ates a template for a group of requests with identical
control flow, and how that template is used to efficiently
re-execute each request in the group.

5.1 Template generation
To generate a template, POIROT needs to locate instruc-
tions that processed the same data in all requests, and
memoize their results. A naïve approach is to execute
every request, and compare the inputs and outputs of ev-

1 function name($nm) {
2 - return $nm;
2 + return htmlspecialchars($nm);
3 }
4

5 if ($_GET[’q’] == ’test’) {
6 $nm = ucfirst($_GET[’name’]);
7 $s = "Script ";
8 $s .= $_SERVER[’SCRIPT_URL’];
9 $s .= " says hello ";
10 $s .= name($nm);
11 echo $s;
12 }

Figure 3: Patch for an example application, fixing a cross-site
scripting vulnerability that can be exploited by invoking this PHP
script as /script.php?q=test&name=<script>..</script>. The
ucfirst() function makes the first character of its argument uppercase.

1 /script.php?q=test&name=alice
2 /script.php?q=test&name=bob
3 /script.php?q=test&name=<script>..</script>

Figure 4: URLs of three requests that fall into the same control flow
group, based on the code from Figure 3.

Line Op Bytecode instruction

5 1 FETCH_R $0 ← ’_GET’
5 2 FETCH_DIM_R $1 ← $0, ’q’
5 3 IS_EQUAL ∼2 ← $1, ’test’
5 4 JMPZ ∼2 →20
6 5 FETCH_R $3 ← ’_GET’
6 6 ? FETCH_DIM_R $4 ← $3, ’name’
6 7 ? SEND_VAR $4
6 8 ? DO_FCALL $5 ← ’ucfirst’
6 9 ? ASSIGN !0 ← $5
7 10 ASSIGN !1 ← ’Script ’
8 11 FETCH_R $8 ← ’_SERVER’
8 12 FETCH_DIM_R $9 ← $8, ’SCRIPT_URL’
8 13 ASSIGN_CONCAT !1 ← !1, $9
9 14 ASSIGN_CONCAT !1 ← !1, ’ says hello ’

10 15 ? SEND_VAR !0
10 16 ? DO_FCALL $12 ← ’name’
10 17 ASSIGN_CONCAT !1 ← !1, $12
11 18 ECHO !1
12 19 JMP →20
13 20 RETURN 1

Figure 5: PHP bytecode instructions for lines 5–12 in Figure 3. The
line column refers to source lines from Figure 3 and the op column
refers to bytecode op numbers, used in control transfer instructions. A ?
indicates instructions that are part of a template for the three requests
shown in Figure 4 when auditing the patch in Figure 3.

7

ery instruction to find ones that are common across all
requests. However, this defeats the point of memoized
re-execution, since it requires re-executing every request.

To efficiently locate common instruction patterns,
POIROT performs a taint-based dependency analysis [25],
building on the observation that the computations per-
formed by an application for a given request are typically
related to the inputs provided by that request. Specifically,
POIROT considers the inputs for all of the requests that
share a particular control flow trace: each GET and POST
parameter, CGI parameters (such as requested URL and
the client’s IP address), and stored sessions. In PHP, these
inputs appear as special variables, called “superglobals”,
such as $_GET and $_SERVER. POIROT then determines
which of these inputs are common across all requests in
the group (and thus computations depending purely on
those inputs can be memoized), and which inputs differ
in at least one request (and thus cannot be memoized).
Inputs in the latter set are called template variables. For
instance, for the three requests shown in Figure 4, the
GET parameter name is a template variable, but the GET
parameter q is not.

To generate the template, POIROT chooses an arbitrary
request from the group, and executes it while performing
dependency analysis at the level of bytecode instructions;
we describe the details of POIROT’s dependency tracking
mechanism in §5.2. POIROT initially marks all template
variable values as “tainted”, to help build up the sequence
of instructions that depend on the template variables and
thus may compute different results for different requests
in the group. Any instructions that read tainted inputs are
added to the template’s instruction sequence, and their
outputs are marked tainted as well. If an instruction is
added to the template but some of its input operands are
not tainted, the current values of those operands are serial-
ized, and the operand in the instruction is replaced with a
reference to the serialized object, such as the $3 operand
of instruction 6 in Figure 5. This implements memoiza-
tion of identical computations. Instructions that have no
tainted inputs, as well as any control flow instructions
(jumps, calls, and returns), are not added to the template.

For example, consider the PHP bytecode instructions
shown in Figure 5. Instructions 1–5 do not read any
tainted inputs, and do not get added to the template. In-
structions 6–9 depend on the tainted $_GET[‘name’]
template variable, and are added to the template. Instruc-
tions 10–14 again do not read any tainted inputs, and do
not get added to the template. Finally, instructions 15 and
16 are tainted, and get added to the template, for a total of
6 template instructions.

When POIROT’s template generation encounters an
invocation of one of the functions being audited, it marks
the start and end of the function invocation in the template,
to help audit these function invocations later on, as we

will describe in §5.3. If the recorded control flow trace
indicates that there will not be any more invocations of
patched functions, template generation stops. Going back
to Figure 5, template generation stops after instruction
16, because there are no subsequent calls to the patched
name() function.

5.2 Dependency tracking
In order to determine the precise set of instructions that de-
pend on template variables, POIROT performs dependency
analysis while generating each template at audit time. In
particular, POIROT keeps track of a fine-grained “taint”
flag for each distinct memory location in the application.
The taint flag indicates whether the current value of that
memory location depends on any of the template variables
(which are the only memory locations initially marked
as tainted). The value of any untainted memory location
can be safely memoized, since its value cannot change if
the template is used to execute a different request with
a different value for one of the template variables. In
the PHP runtime, this corresponds to tracking a “taint”
flag for every zval, including stack locations, temporary
variables, individual elements in an array or object, etc.

POIROT computes the taint status of each bytecode
instruction executed during template generation. If any
of the instruction’s operands is flagged as tainted, the
instruction is said to be tainted, and is added to the tem-
plate. The instruction’s taint status is used to set the taint
flag of all output operands. For example, instruction 6 in
Figure 5 reads a template variable $_GET[‘name’]; as
a result, it is added to the template and its output $4 is
marked tainted. On the other hand, instruction 12 reads
$_SERVER[‘SCRIPT_URL’], which is not tainted; as a
result, its output $9 is marked as non-tainted.

A template contains only the tainted instructions, which
are a subset of the total instructions executed during a
request. The output of executing the template instructions
for a request is a subset of the output of fully re-executing
a request. It is sufficient for POIROT to use the output of
template instructions for auditing because the output of
non-tainted instructions would be the same in both the
patched and unpatched executions.

POIROT’s taint tracking code knows the input and out-
put operands for all PHP bytecode instructions. However,
PHP also includes several C functions (e.g., string manip-
ulation functions), which appear as a single instruction
at the bytecode level (e.g., instruction 8 in Figure 5). To
avoid having to know the behavior of each of those func-
tions, POIROT assumes that such functions do not access
global variables that are not explicitly passed to them
as arguments. Given that assumption, POIROT conserva-
tively estimates that each C function depends on all of its
input arguments, and writes to its return value, reference
arguments, and object arguments. We encountered one

8

function that violates our assumption about not affecting
global state: the header() function used to set HTTP
response headers. POIROT special-cases this function.

5.3 Template re-execution
Once a template for a control flow group is generated,
POIROT uses the template to execute every request in that
control flow group. To invoke the template for a particu-
lar request, POIROT assigns the template variables (e.g.,
$_GET[‘name’] in Figure 5) with the values from that re-
quest, and invokes the template bytecode. In the example
of Figure 5, this would involve re-executing instructions
6–9 and 15–16. When the template bytecode comes to
an invocation of a patched function (e.g., instruction 16
in Figure 5), POIROT performs function-level auditing,
as described in §4, to audit the execution of this func-
tion for this particular request. Once the function returns,
POIROT compares the results of the function between the
two versions (with and without the patch), and assuming
no differences appear, POIROT continues executing the
template’s bytecode instructions.

In principle, it should be possible to use memoized re-
execution to reduce the number of bytecode instructions
executed inside the patched function as well. We chose
a simpler approach, where the entire patched function is
re-executed for auditing, mostly to reduce the complexity
of our prototype. Most patched functions are short com-
pared to the number of instructions executed in the entire
application, allowing us to gain the bulk of the benefit by
focusing on instructions outside of the patched functions.

5.4 Collapsing control flow groups
The efficiency of memoized re-execution depends on the
number of requests that can be aggregated into a single
control flow group. Even though the cost of template gen-
eration is higher than the cost of re-executing a single re-
quest, that cost is offset by the much shorter re-execution
time of all other requests in that control flow group.

Building on the early termination optimization from
§4.2, we observe that the only part of the control flow trace
that matters for grouping is the trace up to the return from
the last invocation of a patched function. Instructions
executed after that point are not re-executed due to early
termination. Thus, two requests whose control flow traces
differ only after the last invocation of a patched function
can be grouped together for memoized re-execution.

POIROT uses this observation to implement control flow
group collapsing. Given a patch, POIROT first locates the
last invocation of a patched function in each control flow
group, and then coalesces control flow groups that share
the same control flow prefix up to the last invocation
of a patched function in each trace. This optimization
generates larger control flow groups, and thus amortizes
the cost of template generation over a larger number of
similar requests.

Component Lines of code

PHP runtime logger / replayer 9,400 lines of C
Indexer 300 lines of Python
Audit controller 1,200 lines of Python
Control flow filter tool 4,800 lines of Python

Table 1: Lines of code for components of the POIROT prototype.

6 Implementation
We implemented a prototype of POIROT for PHP. Ta-
ble 1 shows the lines of code for the different components
of our prototype. We modified the PHP language run-
time to implement POIROT’s logging and re-execution.
The rest of the POIROT components are implemented in
Python. The indexer and control flow filter tool use the
PHP Vulcan Logic Dumper [28] to translate PHP source
code into PHP bytecode in an easy-to-process format, and
use that to identify executed and patched basic blocks
during control flow filtering.

In order to perform efficient re-execution, POIROT as-
sumes that all patched code resides in functions. However,
PHP also supports “global code,” which does not reside in
any function and is executed when a script is loaded. This
causes function-level auditing to execute all of the appli-
cation code twice, since the “patched function”, namely,
the global code, returns only at the end of the script. This
can be avoided by refactoring the patched global code
into a new function that’s invoked once from the global
code. We performed this refactoring manually for one
patch when evaluating POIROT.

POIROT’s control flow filtering does not support PHP’s
reflection API. For example, if a patch adds a new func-
tion that was looked up during the original execution of a
request (and did not get executed because it did not exist),
control flow filtering would miss that request, and not
re-execute it. Supporting reflection would require logging
calls to the reflection API, and re-executing requests that
reflected on modified functions or classes. We did not
find this necessary for the applications we evaluated.

7 Evaluation
Our evaluation aims to support the following hypotheses:

• POIROT incurs low runtime overhead (§7.2).

• POIROT detects exploits of real vulnerabilities with
few false positives (§7.3).

• Even for challenging patches that affect every request,
POIROT can audit much faster than either naïve re-
execution or the closest related system, Warp (§7.4).

• POIROT’s techniques are important for performance
(§7.5).

9

Workload # CFG Latency Thruput Per-request overheads
increase reduction Log space Index space Indexing time

Single URL (1k) 5 13.8% 10.3% 4.95 KB 0.06 KB 12.3 msec
Unique URLs (1k) 238 14.9% 20.4% 21.32 KB 1.79 KB 28.9 msec
Wikipedia (10k) 499 14.1% 16.9% 6.72 KB 4.12 KB 3.5 msec
Wikipedia (100k) 834 14.1% 15.3% 5.12 KB 0.23 KB 0.8 msec

Table 2: POIROT’s logging and indexing overhead during normal execution for different workloads. The CFG column shows the number of control
flow groups. Storage overheads measure the size of compressed logs and indexes. For comparison with the last column, the average request execution
time during normal execution is 120 msec.

Using a realistic MediaWiki workload and a synthetic
HotCRP workload, we show that POIROT’s auditing per-
formance is 24–133× that of naïve re-execution, and an
additional factor of ∼ 5× faster than Warp (due to Warp’s
overheads compared to naïve). POIROT catches exploits
of real vulnerabilities, with only one patch out of 34 in
MediaWiki (and none out of four in HotCRP) causing
false positives.

7.1 Experimental setup
The test applications used for these experiments were
MediaWiki [24], a popular Wiki application that also runs
the Wikipedia site, and HotCRP, a popular web-based
conference management system. All experiments ran on a
3.07 GHz Intel Core i7-950 machine with 12 GB of RAM.
Since the POIROT prototype is currently single-threaded
(although in principle the design has lots of parallelism),
we used only one core in all experiments.

To obtain a realistic workload, we derived our Media-
Wiki workload from a real Wikipedia trace [31]. That
trace is a 10% sample of the 25.6 billion requests to
Wikipedia’s ∼20 million unique Wiki pages during a
four-month period in 2007. As we did not have time to
run the entire four-month trace, we downsampled it to
100k requests. To maintain the same distribution of re-
quests in our workload as in the Wikipedia trace, we chose
1k Wikipedia Wiki pages and synthesized a workload of
100k requests to them, with the same Zipf distribution as
in the Wikipedia trace. This new workload has an average
of 100 requests per Wiki page, which is more challenging
for POIROT than the Wikipedia workload (1k requests per
Wiki page), since memoized re-execution works better
when more requests have identical control flow traces.

As the Wikipedia database is several terabytes in size,
we used the database of the smaller Wikimedia Labs
site [1] for our experiments, and mapped the URLs of
Wikipedia Wiki pages in our workload to the URLs of
Wikimedia Labs Wiki pages. Finally, for privacy reasons,
the trace we used did not contain user-specific informa-
tion such as client IP addresses; to simulate requests by
multiple users in the workload, we assigned random val-
ues for the client IP address and the user-agent HTTP
headers.

7.2 Normal execution overheads
To illustrate POIROT’s overhead during normal execution,
we used several workloads; the results are shown in Ta-
ble 2. The single URL workload has 1k requests to the
same URL, the unique URLs workload has one request to
each of the 1k unique URLs in the Wikipedia workload,
and the Wikipedia 10k and 100k workloads contain 10k
and 100k requests respectively, synthesized as above.

The results demonstrate that POIROT’s logging in-
creases average request latency by about 14%, reduces the
throughput of normal execution by 10–20%, and POIROT
logs require 21 KB per request in the worst case, when
all URLs are distinct. POIROT’s storage overhead drops
considerably for workloads with more common requests,
because the log size primarily depends on the number of
unique control flow groups. We expect that log sizes for
the full Wikipedia trace [31] would be even smaller, since
it has an order of magnitude more common requests than
our 100k workload.

Table 2 additionally reports the time taken by POIROT’s
indexing, even though it can be executed at a later time
on a separate machine. The indexer takes 1–29 msec
per request, and the index file size is 0.06–4.12 KB per
request. As with normal execution, indexing time and stor-
age requirements drop for workloads with more common
requests. This is because most of the indexing overhead
lies in indexing control flow traces, and common requests
often have identical control flow traces.

7.3 Detecting attacks
We evaluated how well POIROT detects exploits of
patched vulnerabilities by using previously discovered
vulnerabilities in our two applications, MediaWiki and
HotCRP. Using MediaWiki helps compare POIROT to
Warp, the closest related work, and we used the same
five vulnerabilities evaluated by Warp’s authors. The real
Wikipedia trace [31] did not contain any attack requests
for these vulnerabilities, so we constructed exploits for
all five vulnerabilities, and added these requests to our
100k workload. Table 3 shows the results of auditing this
workload with POIROT. POIROT can detect all the attacks
detected by Warp, and has no false positives for four out
of the five attacks. For the clickjacking vulnerability, the

10

CVE Description Detected? False +ves

2009-4589 Stored XSS � 0
2009-0737 Reflected XSS � 0
2010-1150 CSRF � 0
2004-2186 SQL injection � 0
2011-0003 Clickjacking � 100%

Table 3: Detection of exploits and false positives incurred by POIROT
for the five MediaWiki vulnerabilities handled by Warp.

CVE POIROT Naïve Warp
Req Time (s) # Req Time (s) # Req Time (s)

2011-4360 100k 267 100k 23,900 100k ∼121,000
2011-0537 100k 269 100k 23,700 100k ∼121,000
2011-0003 100k 989 100k 25,100 100k ∼121,000
2007-1055 100k 1,013 100k 24,300 100k ∼121,000
2007-0894 100k 236 100k 31,500 100k ∼121,000

12 cases (?) 0 0.03–0.11 100k ∼25,000 100k ∼121,000

17 cases (†) 0 0.02–0.19 100k ∼25,000 0 ε

? 2011-1766, 2010-1647, 2011-1765, 2011-1587, 2011-1580, 2011-1578,
2008-5688, 2008-5249, 2011-1579, 2011-0047, 2010-1189, 2008-4408.

† 2011-4361, 2010-2789, 2010-2788, 2010-2787, 2010-1648, 2010-1190,
2010-1150, 2009-4589, 2009-0737, 2008-5687, 2008-5252, 2008-5250,
2008-1318, 2008-0460, 2007-4828, 2007-0788, 2004-2186.

Table 4: POIROT’s auditing performance with 34 patches for MediaWiki
vulnerabilities, compared with the performance of the naïve re-execution
scheme and Warp’s estimated performance for the same patches (esti-
mated to be 10× the original execution time, based on results from [9]).
ε for Warp indicates the cost of accessing its index, which was not
reported in the Warp paper. Naïve results are measured only for the top
5 patches; its performance would be similar for the 29 other patches.

patch adds an extra X-Frame-Options HTTP response
header. This modifies the output of every request, caus-
ing POIROT to flag each request as suspect. Extending
POIROT to include the browser (as in Warp) would likely
prevent these false positives. Additionally, POIROT incurs
no false positives for 29 other patches shown in Table 4.

To show that POIROT can detect information disclosure
vulnerabilities in HotCRP, we constructed exploits for
four recent vulnerabilities, including the comment dis-
closure vulnerability mentioned in §1, and interspersed
attack requests among a synthetic 200-user workload con-
sisting of user creation, user login, paper submissions, etc.
Table 5 shows the results. POIROT is able to detect all
four attacks with no false positives.

7.4 Auditing performance
To show POIROT’s auditing performance, we used
POIROT to audit the Wikipedia 100k workload for 34
real MediaWiki security patches, released between 2004
and 2011. We ported each patch to one of three major ver-
sions of MediaWiki released during this time period. We
ran the workload against the three MediaWiki versions,
which took an average of 12,116 seconds (3.4 hours) to

Patch D? F+ Description

f30eb4e5 � 0 Capability token lets users see restricted comments.
638966eb � 0 Chair can view an anonymous reviewer’s identity.
3ff7b049 � 0 Acceptance decisions visible to all PC members.
4fb7ddee � 0 Chair-only comments are exposed through search.

Table 5: POIROT detects information leak vulnerabilities in HotCRP,
found between April 2011 and April 2012. We exploited each vulnera-
bility and audited it with patches from HotCRP’s git repository (commit
hashes for each patch are shown in the “patch” column). “D?” indicates
whether POIROT detects the attack, and “F+” counts false positives.

execute during normal operation. POIROT’s indexing took
on average 79 seconds for this workload. We measured
the time taken by POIROT to audit all requests for these
patches, the time taken by a naïve scheme that simply
re-executes every request twice—with and without the
patch—and compares the outputs, and the time taken by
Warp, based on numbers reported by Chandra et al. [9].

Table 4 shows the results. For the bottom 29 out of 34
patches (85% of the vulnerabilities), POIROT’s control
flow filtering took less than 0.2 seconds to determine
that the patched code was not invoked by the workload
requests, thereby completing the audit within that time.
This is compared to the more than 6.5 hours needed to
audit using the naïve re-execution scheme.

POIROT audits the remaining five challenging patches,
which affect code executed by every request, 24–133×
faster than naïve re-execution (top 5 rows in Table 4).
This means that POIROT can audit 3.4 hours worth of
requests in ∼17 minutes in the worst case.

Our estimate of Warp’s performance, based on that
paper, is shown in the rightmost columns of Table 4.
Warp’s file-level filtering allows it to statically discard
some requests, although it is unable to filter out requests
for 12 patches that POIROT’s basic-block-level filtering
can. Moreover, when Warp re-executes requests, it is an
order of magnitude slower than normal execution, which
is a total of 2–3 orders of magnitude slower than POIROT
for the worst case patches; for our 3.4 hour workload,
Warp could take 1.4 days to audit all of the requests for
one patch.

7.5 Technique effectiveness
Control flow filtering allows POIROT to quickly filter out
unaffected requests (in under 0.2 seconds), as illustrated
by the bottom 29 patches in Table 4. As vulnerabilities
typically occur in rarely exercised code, we expect control
flow filtering to be highly effective in practice.

For the five challenging patches where re-execution
is necessary, function-level re-execution and early termi-
nation speed up re-execution, as shown in Table 6. The
“Func-level re-exec” column shows that it is 1.3–3.4×
faster than naïve re-execution, and the “early term. ops”
column shows that early termination executes a fraction

11

CVE Naïve Func-level # early # collapsed Collapse Template # template Memoized
re-exec (s) re-exec (s) term. ops CF groups time (s) gen. time (s) ops re-exec (s)

2011-4360 23,900 8,480 6,437 / ∼200k 4 / 844 31.0 2.10 289 234
2011-0537 23,700 18,900 4,801 / ∼200k 1 / 834 30.3 1.17 96 238
2011-0003 25,100 19,600 117,045 / ∼200k 589 / 834 30.5 395.00 5,427 563
2007-1055 24,300 7,150 5,571 / ∼200k 2 / 844 30.1 0.83 177 982
2007-0894 31,500 10,500 24,973 / ∼200k 18 / 844 30.4 9.90 1,085 196

Table 6: Performance of the POIROT replayer in re-executing all the 100k requests of the Wikipedia 100k workload, for the five patches shown
here. The workload has a total of 834 or 844 control flow groups, depending on the MediaWiki version to which the patch was ported. POIROT
incurs no false positives for four out of the five patches; it has 100% false positives for the patch 2011-0003, which fixes a clickjacking vulnerability.
The “naïve re-exec” column shows the time to audit all requests with full re-execution and the “func-level re-exec” column shows the time to audit
all requests with function-level re-execution and early termination. The “early term. ops” column shows the average number of PHP instructions
executed up to the last patched function call with early termination (§4.2) across all the control flow groups. The “collapsed CF groups” and “collapse
time”columns show the number of collapsed control flow groups and the time to perform collapsing of the control flow groups (§5.4), respectively.
The “template gen. time”, “template ops”, and “memoized re-exec” columns show the time taken to generate templates for all the control flow groups
in the workload, the average number of PHP instructions in the generated templates, and the time to re-execute the templates for all the requests,
respectively.

of the ∼200k total instructions. For the CVE-2011-0003
vulnerability, the patched function is invoked towards the
end of the request, making early termination less effective.

Memoized re-execution further reduces re-execution
time, as shown in Table 6. In particular, template collaps-
ing reduces the number of distinct templates from 834–
844 to 1–589 (“collapsed CF groups” column), thereby
reducing the amount of time spent in template genera-
tion (“template gen. time” column). Templates reduce the
number of PHP opcodes that must be re-executed by 22–
50×, compared to early termination, as illustrated by the
“template ops” column. For the CVE-2007-1055 vulnera-
bility, memoized re-execution time is high even though
it uses a single template (for its one control flow group);
this is because the patched function writes to many global
variables, making serialization for comparison expensive.

8 Discussion
Our prototype currently assumes the application source
code is static, but in practice, application source code
is upgraded over time. In order to audit past requests
that were executed on different versions of the soft-
ware, the patch being audited must be back-ported to
each of those software versions; this is already common
practice for large software projects such as MediaWiki.
From POIROT’s point of view, the indexes generated for
each version of the software must be kept separate, and
POIROT’s control flow filter must separately analyze the
basic blocks for each version. Finally, re-execution of a
request must use the source code originally used to run
that request (plus the backported patch for that version).

Although our prototype targets PHP web applications,
POIROT’s techniques should be equally applicable to web
applications in other scripting languages such as Python
and Ruby. However, when used with low-level bytecode,
such as x86 server programs, POIROT’s techniques may
be less effective due to the following reasons. First, for

x86 server applications such as Apache, recording all ba-
sic blocks for control flow filtering can impose ∼60%
overhead during normal execution [26]; it may be possi-
ble to reduce this overhead by profiling the application
and recording branches only along the uncommon paths.
Second, x86 applications can be multi-threaded, and the
non-determinism of thread interleaving can reduce the
effectiveness of generating templates for memoized re-
execution. Since servers such as Apache typically execute
each request in a single thread, independent of other re-
quests, it may be possible to record the execution of each
request’s thread as a separate control flow trace and use
that for memoization. Finally, memoized re-execution in
x86 applications may be less effective at finding many
requests that share the exact same control flow; for exam-
ple, string operations in assembly often iterate over all
characters in a string, whereas the same operations appear
as a single opcode in PHP, Python, and Ruby. One way
to apply memoized re-execution at a low level would be
to treat string operations as primitives.

Our prototype is currently single-threaded and it was
evaluated on a single-core machine. However, the design
of the POIROT replayer has lots of parallelism, and it is
straightforward to extend it to re-execute requests in paral-
lel. This can be used to significantly reduce auditing time,
perhaps taking advantage of cloud computing platforms
such as Amazon EC2.

9 Related work
This paper’s key contribution over prior work lies in the
techniques for achieving high auditing performance, par-
ticularly in efficiently re-executing many requests to audit
them for exploits of a security vulnerability. The rest of
this section explains the relation between POIROT and
prior work in more detail.

POIROT’s approach to auditing a system for intrusions
is based on comparing the execution of past requests us-

12

ing two versions of the code: one with a patch applied,
and one without. This approach is similar to delta ex-
ecution [30], Rad [33], Warp’s retroactive patching [9],
and TACHYON [23]. POIROT’s contributions lie in tech-
niques to improve the performance of this approach for
web applications: control flow filtering, function-level
auditing, early termination, and memoized re-execution.
Function-level auditing in particular is similar to delta
execution and Rad.

Past intrusion recovery systems explored several ap-
proaches to identify initial intrusions. Some relied on
the user for identification [7, 11, 14, 16, 19, 20], which
is both tedious for the user and is error-prone. Others
asked developers to specify vulnerability-specific predi-
cates [17] for each discovered vulnerability; this imposes
significant extra effort for developers. Finally, Warp [9]
and Rad [33] used the actual patch fixing a vulnerability
to identify intrusions, relieving the users and developers
of the burden of intrusion detection. Similar to Warp and
Rad, POIROT also uses the patch to identify intrusions.

Warp’s retroactive patching [9] used file-level depen-
dency tracking to determine requests that were affected
by a patch and required re-execution. However, in prac-
tice, file-level dependencies are too coarse-grained for
many patches: for example, Warp re-executes all requests
from our Wikipedia trace for about half of the patches
(§7). POIROT uses finer-grained basic-block-level filter-
ing, which filters out requests for many more patches.
POIROT also requires less intrusive changes than Warp:
it does not require any changes to the browser or the
database, and does not require re-execution to take place
on the production system.

POIROT’s memoized re-execution is similar to dynamic
slicing [3], which computes the set of instructions that
indirectly affected a given variable. Program slicing, and
dynamic slicing in particular, was proposed in the context
of helping developers debug a single program. POIROT
shows that similar techniques can be applied to locate and
memoize identical computations across multiple invoca-
tions of a program.

POIROT’s control flow filtering is similar to the prob-
lem of regression test selection [4, 6]: given a set of
regression tests and a modification to the program, iden-
tifying the regression tests that need to be re-run to test
the modified program. POIROT demonstrates that control
flow filtering works well for patch-based auditing under
a realistic workload, and further introduces additional
techniques (function-level auditing and memoized re-
execution) which significantly speed up the re-execution
of requests beyond static control flow filtering.

Khalek et al. [18] show that eliminating common setup
phases of unit tests in Java can speed up test execution,
similar to POIROT’s function-level auditing. However,
Khalek et al. require the programmer to define undo meth-

ods for all operations in a unit test, which places a signifi-
cant burden on the programmer that POIROT avoids.

Memoization has been used to speed up re-execution
of an application over slightly different inputs [2, 15, 32].
Though POIROT’s techniques can be extended to work for
that scenario as well, memoized re-execution in the cur-
rent design detects identical computations across different
executions of a program, and separates memoized compu-
tations from input-dependent computations, by grouping
requests according to their control flow traces.

POIROT’s dependency analysis is similar to taint track-
ing systems [12, 25]. A key distinction is that taint track-
ing systems are prone to “taint explosion” if taint is prop-
agated on all possible information flow paths, including
through control flow. As a result, taint tracking systems
often trade off precision for fewer false positives (i.e.,
needlessly tainted objects). POIROT addresses the prob-
lem of taint explosion through control flow by fixing the
control flow path for a group of requests, thereby avoiding
the need to consider control flow dependencies.

Dynamic dataflow analysis [10] and symbolic execu-
tion [8] have been used to generate constraints on a pro-
gram’s input that elicit a particular program execution.
These techniques are complementary to control flow filter-
ing and could be extended to apply to POIROT’s auditing.

10 Summary
This paper presented POIROT, a system that can audit
past requests in a web application for exploits of a newly
patched security vulnerability. POIROT incorporates three
techniques—control flow filtering, function-level auditing,
and memoized re-execution—to significantly speed up
auditing compared to previous systems that audit through
re-execution. POIROT is effective at detecting exploits of
real vulnerabilities in MediaWiki and HotCRP. POIROT’s
optimizations allow it to audit challenging patches, which
affect every request, 12–51× faster than the original exe-
cution time of those requests.

Acknowledgments
We thank David Terei for pointing us at prior work on self-
adjusting computation [2]. We also thank Eddie Kohler,
Neha Narula, Alex Pesterev, Jacob Strauss, Keith Win-
stein, Eugene Wu, the anonymous reviewers, and our
shepherd, Mike Dahlin, for helping improve this paper.
This research was partially supported by the DARPA
CRASH program (#N66001-10-2-4089), by NSF award
CNS-1053143, by Quanta, and by Google.

References
[1] Wikimedia labs database dump. http://dumps.wikimedia.
org/en_labswikimedia/20111228/, December 2011.

[2] U. Acar, A. Ahmed, and M. Blume. Imperative self-adjusting
computation. In Proceedings of the 35th ACM Symposium on

13

http://dumps.wikimedia.org/en_labswikimedia/20111228/
http://dumps.wikimedia.org/en_labswikimedia/20111228/

Principles of Programming Languages, San Francisco, CA, Jan-
uary 2008.

[3] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Pro-
ceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, pages 246–256, 1990.

[4] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London. Incre-
mental regression testing. In Proceedings of the IEEE Conference
on Software Maintenance, September 1993.

[5] F. E. Allen. Control flow analysis. In Proceedings of the Sympo-
sium on Compiler Optimization, 1970.

[6] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. Regression
test selection techniques: A survey. Informatica, 35(3):289–321,
October 2011.

[7] A. B. Brown and D. A. Patterson. Undo for operators: Building
an undoable e-mail store. In Proceedings of the 2003 USENIX
Annual Technical Conference, pages 1–14, San Antonio, TX, June
2003.

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. In Proceedings
of the 13th ACM Conference on Computer and Communications
Security, 2006.

[9] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich. Intru-
sion recovery for database-backed web applications. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP), pages 101–114, Cascais, Portugal, October 2011.

[10] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP), Brighton, UK, October
2005.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen. Re-
Virt: Enabling intrusion analysis through virtual-machine logging
and replay. In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 211–224, Boston,
MA, December 2002.

[12] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the
9th Symposium on Operating Systems Design and Implementation
(OSDI), Vancouver, Canada, October 2010.

[13] Github. SSH key audit. https://github.com/settings/ssh/
audit, 2012.

[14] A. Goel, K. Po, K. Farhadi, Z. Li, and E. D. Lara. The Taser
intrusion recovery system. In Proceedings of the 20th ACM Sym-
posium on Operating Systems Principles (SOSP), pages 163–176,
Brighton, UK, October 2005.

[15] P. J. Guo and D. Engler. Using automatic persistent memoization
to facilitate data analysis scripting. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, July
2011.

[16] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su. Back to the future:
A framework for automatic malware removal and system repair.
In 22nd Annual Computer Security Applications Conference (AC-
SAC), pages 257–268, December 2006.

[17] A. Joshi, S. King, G. Dunlap, and P. Chen. Detecting past and
present intrusions through vulnerability-specific predicates. In
Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP), pages 91–104, Brighton, UK, October 2005.

[18] S. A. Khalek and S. Khurshid. Efficiently running test suites
using abstract undo operations. IEEE International Symposium
on Software Reliability Engineering, pages 110–119, 2011.

[19] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. Intrusion
recovery using selective re-execution. In Proceedings of the 9th
Symposium on Operating Systems Design and Implementation
(OSDI), pages 89–104, Vancouver, Canada, October 2010.

[20] S. T. King and P. M. Chen. Backtracking intrusions. ACM Trans-
actions on Computer Systems, 23(1):51–76, February 2005.

[21] E. Kohler. Hot crap! In Proceedings of the Workshop on Organiz-
ing Workshops, Conferences, and Symposia for Computer Systems,
San Francisco, CA, April 2008.

[22] E. Kohler. Correct humiliating information
flow exposure of comments. http://www.read.
cs.ucla.edu/gitweb?p=hotcrp;a=commit;h=
f30eb4e52e91ab230944eebe8f31bf61e9783d3a, March
2012.

[23] M. Maurer and D. Brumley. TACHYON: Tandem execution for
efficient live patch testing. In Proceedings of the 21st Usenix
Security Symposium, Bellevue, WA, August 2012.

[24] MediaWiki. MediaWiki. http://www.mediawiki.org, 2012.

[25] J. Newsome and D. X. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2005.

[26] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: probabilistic replay with execution sketching on
multiprocessors. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), Big Sky, MT, October
2009.

[27] T. Preston-Werner. Public key security vulnerability and mitiga-
tion. https://github.com/blog/1068, March 2012.

[28] D. Rethans. Vulcan logic dumper. http://derickrethans.nl/
vld.php, 2009.

[29] The Open Web Application Security Project. OWASP top
10. http://owasptop10.googlecode.com/files/OWASP%
20Top%2010%20-%202010.pdf, 2010.

[30] J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation
with delta execution. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Washington, DC, March 2009.

[31] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Computer Networks, 53(11):
1830–1845, 2009.

[32] A. Vahdat and T. Anderson. Transparent result caching. In Pro-
ceedings of the 1998 USENIX Annual Technical Conference, New
Orleans, LA, June 1998.

[33] X. Wang, N. Zeldovich, and M. F. Kaashoek. Retroactive auditing.
In Proceedings of the 2nd Asia-Pacific Workshop on Systems,
Shanghai, China, July 2011. 5 pages.

14

https://github.com/settings/ssh/audit
https://github.com/settings/ssh/audit
http://www.read.cs.ucla.edu/gitweb?p=hotcrp;a=commit;h=f30eb4e52e91ab230944eebe8f31bf61e9783d3a
http://www.read.cs.ucla.edu/gitweb?p=hotcrp;a=commit;h=f30eb4e52e91ab230944eebe8f31bf61e9783d3a
http://www.read.cs.ucla.edu/gitweb?p=hotcrp;a=commit;h=f30eb4e52e91ab230944eebe8f31bf61e9783d3a
http://www.mediawiki.org
https://github.com/blog/1068
http://derickrethans.nl/vld.php
http://derickrethans.nl/vld.php
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf

	Introduction
	Overview
	Logging during normal execution
	Indexing
	Auditing
	Limitations and assumptions

	Control flow filtering
	Recording control flow
	Determining the executed basic blocks
	Determining the patched basic blocks
	Indexing

	Function-level auditing
	Comparing results and side-effects
	Early termination

	Memoized re-execution
	Template generation
	Dependency tracking
	Template re-execution
	Collapsing control flow groups

	Implementation
	Evaluation
	Experimental setup
	Normal execution overheads
	Detecting attacks
	Auditing performance
	Technique effectiveness

	Discussion
	Related work
	Summary

