
Aardvark: A Concurrent Authenticated Dictionary
with Short Proofs

Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin, Nickolai Zeldovich
Algorand, Inc.

{derek,yossi,sergey,leo,nickolai}@algorand.com

Abstract—We design Aardvark, a novel authenticated dictio-
nary backed by vector commitments with short proofs. Aardvark
guarantees the integrity of outsourced data by providing proofs
for lookups and modifications, even when the servers storing the
data are untrusted. To support high-throughput, highly-parallel
applications, Aardvark includes a versioning mechanism that
allows the dictionary to accept stale proofs for a limited time.

We apply Aardvark to the problem of decoupling storage
from transaction verification in cryptocurrencies. Here network-
ing resources are at a premium and transmission of long proofs
can easily become the dominant cost, with multiple users reading
and writing concurrently.

We implement Aardvark and evaluate it as a standalone au-
thenticated dictionary. We show that Aardvark saves substantial
storage resources while incurring limited extra bandwidth and
processing costs.

I. INTRODUCTION

Ensuring the integrity of vast record collections constitutes
a key problem in computer security. In 1991, Blum et al.
[3] described a scenario where a trustworthy computer exe-
cutes programs on data that resides in untrusted storage. To
prevent the untrusted storage from tampering with the data,
they introduced a data structure, now known as a two-party
authenticated dictionary [12], [18], which allows the trusted
computer to ensure the correctness of accesses and changes
to data. The computer stores only a small commitment to the
data. Using proofs provided by the untrusted storage for each
read or write operation, the computer can verify correctness
of every read and correctly update its commitment for every
write.

Today, with the ubiquity of distributed systems that process
large amounts of data, it has become attractive to decouple
trust in the correctness of updates from the cost of backing
storage itself. Cryptocurrencies are one pertinent system. Here,
any user can send money to another user by submitting a
transaction over the records kept by the system. Validators
authenticate these transactions, check their validity against the
system records, serialize them using a fault-tolerant protocol,
and update the system records to reflect the transactions. There
have been several proposals to make validators stateless —
i.e., enable validators to verify transactions and update records
without storing the records themselves. In these proposals,
the validators store and update only a small commitment
to the records, while untrusted archives back their physical
storage. Each transaction comes with a proof of validity of the
necessary read and write operations.

This paper presents Aardvark, an authenticated dictionary
which enables such a division of labor and, in particular,

scales up to many users and many transactions per second.
Aardvark supports highly-distributed applications where many
untrusted clients concurrently execute transactional read and
write operations (such as in a cryptocurrency). This deploy-
ment environment raises several key problems.

First, network bandwidth is at a premium because transac-
tions must be observed by many machines, and transmitting
proofs required by each transaction over the network becomes
a bottleneck to high throughput. Aardvark introduces a novel
data structure backed by a pairing-based vector commitment
scheme where all proofs are roughly 10× shorter than standard
Merkle-tree commitment schemes. This data structure is the
first of its kind that supports a true authenticated dictionary
interface; specifically, by explicitly tracking gaps in the dictio-
nary’s key space, Aardvark enables short proofs both of key
membership and of key nonmembership.

Second, the ability for untrusted clients to allocate and
deallocate storage raises the need for efficient garbage col-
lection. Aardvark’s enforces tight upper bounds on resource
use even under adversarial access patterns. Aardvark supports
quick reclamation of deallocated space by decoupling the log-
ical ordering of keys in the dictionary, which expedites proofs
of nonmembership, from their ordering in commitments, which
eagerly compacts data into contiguous vectors.

Third, scaling to many users requires the system to be-
have well under a substantial amount of concurrency. When
the dictionary’s state changes, the commitments also change,
invalidating proofs for transactions. Executing transactions
with old proofs requires updating the proofs against the new
commitment, which involves a non-trivial computational cost
in pairing-based vector commitment schemes. This cost must
be paid for every pending transaction and is highest when the
system is under a maximal load, exacerbating the problem.
Instead of attempting to reduce these costs, Aardvark avoids
them entirely through a new versioning mechanism for the
dictionary. This mechanism enables the system to efficiently
check stale proofs against an old dictionary state by supporting
copy-on-write semantics, implemented through small deltas on
the dictionary keys.

Contributions To summarize, this document establishes the
following contributions.

1) An authenticated dictionary, backed by vector com-
mitments, which may be efficiently used to prove key
nonmembership and possesses tight upper-bounds on
excess resource use even under adversarial access
patterns (§V).

2) A versioning mechanism for this dictionary, so that
it supports concurrent transaction execution (§VI).

3) An implementation of our design and an evaluation
of its performance as a standalone authenticated dic-
tionary showing that it is practical (§VII).

II. RELATED WORK

We provide context for the design of Aardvark by compar-
ing it to (1) other authenticated dictionaries and (2) to other
storage systems which support stateless cryptocurrencies.

Authenticated Dictionaries. Most constructions of authenti-
cated dictionaries [12], [18], [20] are based on some variant
of the Merkle hash tree [15]. (There are exceptions that
require verifiers to keep secrets from the untrusted storage—
e.g., [19]; we do not consider them here, as cryptocurrency
validators are public and thus cannot be trusted with secrets.)
Such constructions add substantial network bandwidth costs
to the cryptocurrency, which may become a bottleneck in
transaction throughput [9]. Merkle proofs at 128-bit security
for an authenticated dictionary of just 100 000 entries are over
a half a kilobyte in size. In contrast, a small transaction (e.g.,
transferring money in a cryptocurrency) may be as short as
100B , so proofs using Merkle trees impose a bandwidth
overhead of over 10x if the transaction involves accessing two
keys in the dictionary (e.g., source and destination accounts
in the cryptocurrency context). As the number of keys in
the dictionary grows, this overhead increases; for a billion
accounts, the overhead becomes about 20x.

Boneh, Bünz, and Fisch [5, Sections 5.4, 6.1] propose the
first authenticated dictionaries that require no verifier secrets
and do not use Merkle trees; instead, they rely on factoring-
based (or class-group-based) accumulators and vector com-
mitments. They also suggest (but do not investigate the costs
of) using such dictionaries to implement stateless clients.
The proof length in their construction is over 1KB and thus
comparable to Merkle trees (at 128-bit security). Moreover,
to avoid computationally expensive modular exponentiations
(with exponents of length at least 16,384), it is necessary to
store and update two accumulators, thus doubling the proof
length. However, it is possible to batch proofs for multiple
operations into a single constant-size proof.

Aardvark is the first system that uses pairing-based vector
commitment schemes to build authenticated dictionaries. A
vector commitment (introduced in [7], [14]) implements an
authenticated array. Aardvark uses pairing-based vector com-
mitments of Libert and Yung [14]. At 128-bit security, proofs
in this scheme take up only 48B regardless of the number of
keys, or 10×–20× less than Merkle proofs, and comparable to
the size of a transaction. We are able to retain these short
proofs in Aardvark. We should note that all pairing-based
vector commitment schemes have public parameters (needed
by provers and verifiers) that require trusted generation and
are at least linear in the size of the vector. Thus, Aardvark
also requires public parameters; however, we avoid linear-
size public parameters in Aardvark by storing data as multiple
shorter vectors (as a result, our commitment is not constant-
size—instead, there is a tradeoff between commitment size
and public-parameter size). We note that multiple proofs in

Aardvark can be aggregated into a single constant-size proof,
as shown in [13].

Stateless cryptocurrency validation. Cryptocurrency designs
can be broadly grouped into two models: unspent transaction
outputs (UTXO) model and account-based model.

In the UTXO model, the state of the system at a given time
is characterized by a set (namely, the set of transaction outputs
that have not yet been used as inputs to new transactions). To
allow for stateless validation in such a design, one needs a
cryptographic accumulator (which is an authenticated version
of the dynamic set data structure). Designs based on Merkle
trees were proposed for this purpose in a number of works
[6], [8], [11], [17], [16], [23], [24], [26]. Like Merkle-based
authenticated dictionaries, Merkle-based accumulators suffer
from the proof length problem, although [11] proposes some
optimizations based on proof aggregation and local caching of
the tree nodes (thus adding some state back to the clients).
Some other cryptographic accumulators are suitable as well;
a discussion of options is available in [10]. In particular, a
design based on groups of unknown order (such RSA and
class groups) is proposed in [5, Section 6.1] (each proof in
this design is over 1KB, but it allows for aggregating proofs
for multiple transactions).

In contrast to the UTXO model, in the account-based
model, the state of the system at a given time is characterized
by a map (dictionary) from account identifiers to account
states. As already mentioned, such authenticated dictionaries
are designed and proposed for cryptocurrency uses in [20] and
[5], but required relatively long proofs and were not evaluated
in detail in the context of a cryptocurrency.

The most detailed and elegant design of an account-
based cryptocurrency with stateless validation called EDRAX
is provided by Chepurnoy et al. [8]. EDRAX assigns sequential
integers as account identifiers, thus simplifying the neces-
sary data structure from an authenticated dictionary to an
authenticated array. This simplification enables EDRAX to use
vector commitments directly. Because EDRAX represents the
entire state of the system as a single vector, it has to handle
the problem of linear-sized public parameters for pairing-
based vector commitments. It does so by designing a vector
commitment scheme in which only logarithmic-sized pieces
of public parameters are needed for various operations; these
are provided at the right time by the right parties. Tomescu et
al. [25] improve this vector commitment, achieving constant-
size proofs and requiring only constant-size portions of the
public parameters for the relevant operations (moreover, these
portions are verifiable, thus reducing the need for additional
interaction); they also refine the overall system design.

In order to assign sequential identifiers, EDRAX requires
every new user to register via an initialization transaction. In
particular, in order to send money to a user, the sender needs
to make sure the user is registered first, in order to learn that
user’s identifier. The number of sequential identifiers, and thus
initialization transactions, is limited; it thus becomes necessary
to prevent denial-of-service attacks by multiple initialization
transactions (see [25, Section 4.2.4] for possible approaches).
By using authenticated dictionaries rather than authenticated
arrays, Aardvark able to avoid this initialization transaction.

2

T1

T4

T2

T3

T1 T2 T3 T4

Fig. 1. Aardvark’s architecture. On the left, untrusted clients issue transactions
in an arbitrary order. These transactions are serialized and given to Aardvark
on the right, which is composed of reliable validators and unreliable archives.
Note that the serialization order of the transactions is the same for both
validators and archives.

In particular, in Aardvark it is possible to transact with keys
that have not yet registered with the system.

Unlike Aardvark, EDRAX does not address versioning that
is necessary because a transaction’s proof is obsoleted by
blocks produced between the time the transaction gets issued
and the time it is being processed. There are other design
differences between Aardvark and EDRAX: unlike Aardvark,
EDRAX has every account holder keep track of their own
proof; and, relying on the additive homomorphism of vector
commitments, EDRAX does not require proofs for the state
of a recipient account (this works for simple transactions that
add a fixed numerical amount to a balance, but not for more
complex transactions).

III. OVERVIEW

Aardvark is a dictionary, that is, a data structure that
associates keys to values. Clients interact with Aardvark by
issuing operations against the dictionary to read the value
associated with a key, associate a new value to a key, or to
disassociate a key from any value. All operations are grouped
into atomic units called transactions, which are defined below.

Aardvark assumes that clients issue these transactions to
some serialization service, which assigns a unique sequence
number to each transaction. One example of such a service is
a fault-tolerant protocol executed by validators of a cryptocur-
rency. Aardvark then executes transactions in order of their
sequence number. If a transaction succeeds, it results in an
updated dictionary state.

Servers in Aardvark are partitioned into two groups: valida-
tors and archives. Validators have access to a limited amount of
durable, transactional storage but are mostly trusted to execute
the transaction faithfully.1 In contrast, archives have access
to substantial amounts of storage but may deviate arbitrarily
from correct behavior. For instance, an archive machine may
lose power and fail to respond to queries, or it might be

1Not all validators need to be trusted for correctness. Applications such as
a cryptocurrency may execute a fault-tolerant protocol that resists a fraction
of misbehaving validators.

compromised by an attacker and produce malicious responses.
This system architecture is illustrated in Figure 1.

A. Goals

Under these assumptions, Aardvark attempts to achieve the
following goals.

• Correctness: All successful transactions, when exe-
cuted, result in an updated dictionary state consistent
with the operations’ semantics. No operation in any
unsuccessful transaction is executed.

• Transaction Serialization: When a transaction exe-
cutes, it observes the effects of all successful transac-
tions preceding it in the serialization order and none
of the effects of all transactions following it.

• Expressiveness: Transactions are expressive enough to
support the requirements of the calling application.

• Performance: Many transactions may be executed at
high throughput.

• Efficiency: Transactions are executed without inordi-
nate resource overheads.
◦ Storage: Validators benefit from substantial

reductions in storage costs. Even under adver-
sarial modification patterns, storage costs for a
validator should be upper-bounded by a fixed,
small, and constant fraction of the size of all
key-value mappings.

◦ Network: Additions to transaction size are
small.

◦ Computational: Few additional computational
costs are required to process transactions. Pro-
cessing costs may be parallelized.

• Archive Independence: Clients can choose to monitor
keys in lieu of trusting an archive for availability.
Clients may issue transactions which exclusively inter-
act with monitored keys even if all archives are faulty.

B. Transactions

Clients interact with the dictionary by submitting trans-
actions, which are sequences of operations guaranteed to be
atomic. In particular, Aardvark guarantees that if a transaction
is executed, either all operations execute, or none do. All
transactions are of the following form:

Transaction({k1, k2, . . . , km},
[op1, op2, . . . , opn])

Specifically, a transaction specifies a set of m keys and a
list of n operations. A key is a bitstring which identifies a
single record. The list of operations represents a deterministic
program which may contain the following special operations
for interacting with the system state:

Get(ki)→ v

Put(ki, v)

Delete(ki)

Assert(cond)

3

Get returns the value associated with the given key in the key-
value store, and Put associates a new value with a key in the
key-value store, overwriting any old value. Delete removes a
key from the store. Any key passed to Get, Put, or Delete
must be in the key set specified by the transaction. The Assert
operation, parameterized by a boolean condition, causes the
entire transaction to fail if its condition is not met.

On intitialization, users specify a default value for the key-
value store. If a key is absent from the store, Get returns that
default value.

For example, suppose alice and bob denote keys for two
cryptocurrency balances, which have a default value of 0. Then
a transfer of p units of money from alice to bob may be
implemented through the following transaction, in pseudocode:

with Transaction(alice , bob) as txn:
a = txn.Get(alice)
b = txn.Get(bob)
txn.Assert(a >= p)
if a-p == 0:

txn.Delete(a)
else:

txn.Put(a, a-p)
txn.Put(b, b-p)

C. System Design

Operations in Aardvark must be carried out by valida-
tors, but the actual account data is backed by archives. For
validators to correctly execute their operations, they must re-
ceive appropriate transaction contexts from the archives. Since
archives may be compromised, validators must authenticate
these contexts. It follows that transaction operations involving
Aardvark keys map directly to validator operations with an
extra untrusted context argument σ:

Get(k, σk)→ v

Put(k, v, σk)

Delete(k, v, σk, σ
∗
k)

(Delete requires more context than Get or Put, which we ex-
plain in §V.) Likewise, archives must generate these contexts,
and Aardvark requires them to implement the interface

Read(k)→ σk
ReadPred(k)→ σ∗k

Finally, Aardvark grants clients the ability to monitor keys so
that they can continue performing transactions on them even
if no archives function correctly. This operation consists of
a single functionality, SyncContext, which updates a piece of
context given an update to the dictionary state.

To explain the design of Aardvark, this paper proceeds
in two phases. First, §V explains how Get, Put, and Delete
are implemented on validators given a particular snapshot of
the dictionary state, in order to illustrate how the dictionary
maintains its invariants given a single transaction. Second,
§VI explains how the system executes multiple transactions
concurrently; in particular, it develops a versioning scheme for
the dictionary and describes how archives and clients produce
proofs against different snapshots of the dictionary state.

Before we describe the details of our implementation, we
first review the cryptographic primitives available to us in
vector commitments.

IV. BACKGROUND: VECTOR COMMITMENTS

A vector commitment (introduced in [14] and formalized
in [7]) cryptographically commits to an array V of data, of size
fixed at initialization. The Commit procedure produces a short
value c out of V . Given V and an array index i, it is possible
to produce a proof ρ that the ith entry in the array is vi. This
proof can be verified against c. The binding property of the
commitment ensures that it is computationally infeasible prove
any other value than vi. When a value in V change, both the
commitment and the proofs for all values can be efficiently
updated. We now provide a more formal description.

A. Interface

The following summarizes the black-box interface we
expect of a vector commitment scheme:

ParamGen(B)→ pp

Commit(pp, V)→ c

Open(pp, V, i)→ vi, ρ

Verify(pp, c, i, v̄i, ρ)→ ok
CommitUpdate(pp, c, (i, vi, v

′
i))→ c′

ProofUpdate(pp, ρ, j, (i, vi, v
′
i))→ ρ′

ParamGen generates parameters that can be used to commit
an array of size B. These parameters must be generated by
a trusted procedure (for example, through multiparty com-
putation) that does not reveal the secrets used. One set of
parameters can be used for multiple arrays of size B each.

Commit creates a cryptographic commitment to an B-
sized vector of variable-length data.2 Commit is deterministic:
if v1 and v2 are two B-sized vectors and v1 = v2, then
Commit(v1) = Commit(v2). We rely on the determinism of
Commit to optimize proof generation.

Open (like Commit, deterministic) creates a cryptographic
proof that a particular vector element vi (present at index
i < B in the vector v) is committed to in Commit(V). Verify
checks that a proof is valid.

CommitUpdate returns Commit(V ′), where V ′ is obtained
from V by changing the ith entry to v′i. Similarly, ProofUpdate
returns the cryptographic proof Open(pp, V ′, j) for element j
in this V ′. Note that CommitUpdate and ProofUpdate do not
require knowledge of V , unlike Commit and Open.

B. Vector Commitments of Libert and Yung

As stated before, our particular choice of commitment is
motivated by our efficiency requirements. In particular, band-
width costs are one factor that limit system throughput. We use
vector commitments from [14]. They have the smallest known
proofs: only 48 bytes for 128-bit security, or about an order of
magnitude shorter than Merkle proofs for reasonable data sizes

2Variable-length data can always be converted to fixed-length by hashing
before applying Commit.

4

TABLE I. LIBERT-YUNG VECTOR COMMITMENT EFFICIENCY

Operation Latency

Commit 36ms

Open 36ms

Verify 2.8ms

CommitUpdate 200µs

ProofUpdate 200µs

and security parameters. Moreover, as shown by Gorbunov et
al. [13], multiple proofs (even for different commitments) can
be aggregated into a single 48-byte value and can be verified
at once.

These vector comments do, however, require, parameters
pp that are linear in B (see [13, Section 4.1] for a discussion
of how such parameters can be generated).

Another important cost on the critical path is the computa-
tional overhead of interacting with proofs. While the proof
generation work is done by untrusted archives and can be
divided amongst many untrusted machines (e.g., on some cloud
provider with cheap storage), proof verification must be done
by all validators, so it lies on the critical path.

To manage computational costs, Aardvark must allow proof
verification to execute in parallel on independent threads and
minimize the number of required verification operations. We
take advantage of lazy execution and batching of operations
to further mitigate costs. We refer the reader to §VI for these
techniques.

Our scheme may trade off its storage savings against
computational overhead by tuning B. We set B = 1000.
Note that verification time does not vary in B, but all other
operations do.

Efficiency. To provide context and motivation for the rest
of Aardvark’s design, we benchmark key operations in our
implementation of these vector commitments on a c5.metal
Amazon EC2 machine with B = 1000. Table I provides an
overview of these costs.

V. AUTHENTICATED DICTIONARY DESIGN

Aardvark maintains an authenticated mapping from keys,
which are arbitrary bitstrings, to the values associated with
those keys. The space of possible bitstrings of any given size
is exponentially large in the key size and thus much bigger
than the size of the mappings. To leverage the compactness of
vector commitments, data must be contiguously packed. As a
result, we must find an efficient encoding of the dictionary’s
mapping in arrays.

One direct approach for maintaining such a mapping is
storing all (key, value) entries in an arbitrary order in arrays of
size B each (recall that B is the vector size parameter specified
in IV-A). To prove that a key is associated with a given value,
the prover runs Open on the relevant array and index, proving
the (key, value) map entry. Modifying the value associated
with a given key involves simply running CommitUpdate. Less
obvious is how a prover shows that a key does not exist. What
if the prover lies about a key’s absence in a mapping? If we
solve this problem, we can also ensure that every key appears

at most once, because as part of the insertion proof, the prover
would show that the key is absent from the dictionary before
insertion.

At a high level, Aardvark achieves this invariant by utiliz-
ing two distinct orderings for the key-value pairs. First, Aard-
vark commits to its keys in an arbitrary sequential ordering of
keys in the slots of the length-B vectors. Because this ordering
is arbitrary, we can always insert to the tail end of the last
vector, and easily compactify upon delete, thus minimizing
both the number of cryptographic operations and the overhead
of empty space. Second, Aardvark commits to an independent
lexicographic ordering of its keys, allowing a prover to show
that a key does not exist in the dictionary. We do so by storing,
with each key, its lexicographic successor.

Initialization. Our dictionary is initialized with vector com-
mitment parameters, as specified in the previous section. The
dictionary is parameterized with a bucket size B, which
is similarly fixed at initialization. In addition, it must be
initialized with a single key and value, as it must maintain
the internal invariant that at least one key is present at any
time.3

A. Contiguous Slot Packing

One challenge of implementing our dictionary is that users
may wish to insert many arbitrary keys and then later remove
these keys. Aardvark must efficiently scale up and down
relative to these modifications, which could be adversarial in
nature. We propose an allocation scheme for Aardvark which
guarantees a limited worst-case overhead regardless of access
pattern.

To effectively store an arbitrary distribution of keys in a
sparse representation, our dictionary hashes each key-value
pair and places these hashes into consecutive slots. These
slots are partitioned into contiguous buckets of size B. Each
bucket holds B slots; the lth bucket holds items in the range
[Bl,Bl +B). We will denote the data in lth bucket by D[l].

For each l, archives store D[l], while validators store
Commit(D[l]). Validators also store the total size of the
dictionary, s. Let D denote the sequence of all D[l], and define
the dictionary digest to be the sequence of all commitments to
all buckets. To modify a single slot, an archive computes the
absolute index of the slot in the slot ordering, along with the
proof of the slot’s current value at that index. This data allows
validator to modify the slot in place:

db is a handle for validator storage
db.commits[l] fetches commitment l
i is the index of the slot
old is the old slot value
new is the old slot value
pf is a vector proof for old at i
def slot_write(db, i, old , new , pf):

bucket , off = i/B, i%B # floor division
c0 = db.commits[bucket]
if not Verify(c0, off , old , pf):

raise Exception("proof is invalid")
c1 = CommitUpdate(c0, (off , old , new))
db.commits[bucket] = c1

3In a general setting, this invariant may be achieved by adding a sentinel
key to the dictionary which is never deleted.

5

A = Slot(key=“aardvark”, val=2, next=“cat”)

C = Slot(key=“cat”, val=3, next=“dog”)

B{A, B, C}

Put(“banana”, 5)

A = Slot(key=“aardvark”, val=2, next=“banana”)

B = Slot(key=“banana”, val=5, next=“cat”)

C = Slot(key=“cat”, val=3, next=“dog”)

{A, C} AC

AC

Fig. 2. Key insertion in Aardvark consists of the following steps. (1) The key
is inserted into the last slot of the dictionary. (2) Its predecessor is verified, and
the new slot’s next pointer is attached to the predecessor’s next pointer. (3)
Its predecessor’s next pointer is updated to the inserted key. Observe that
the operations shown here require only one update operation on a vector
commitment (updating the predecessor’s next pointer) since the tail is stored
by validators and not committed to.

To enforce tight bounds on the space overhead of the
dictionary, Aardvark’s packing scheme maintains the following
invariant: all validators must store at most ds/Be vector
commitments plus a small, constant overhead cost. When a
new element is inserted into the dictionary, it is added to the
last slot in the dictionary (at s); when an element is deleted
from the dictionary, it is overwritten with the element at the
last slot (at s), and the last slot is cleared from the dictionary:

db.size is the total number of slots
def slot_append(db, new):

if db.size%B == 0:
db.commits.append(Commit ([new]))
return

bucket , off = db.size/B, db.size%B
c0 = db.commits[bucket]
c1 = CommitUpdate(c0, (off , 0, new))
db.commits[bucket] = c1

slot_s is the slot at index s=db.size
pf_s is a vector proof for slot_s at s
def slot_truncate(db, i, old , pf,

slot_s , pf_s):
bucket_l , off_l = db.size/B, db.size%B
c_l = db.commits[bucket_l]
if not Verify(c_l , off_l , slot_s , pf_s):

raise Exception("proof(s) is invalid")
bucket , off = i/B, i%B
db.size = db.size - 1
if db.size%B == 0:

db.commits.pop(-1) # drop last item
if not Verify(c0, off , old , pf):

raise Exception("proof(i) is invalid")
c0 = db.commits[bucket]
c1 = CommitUpdate(c0, (off , old , slot_s))
db.commits[bucket] = c1

B. Authenticating Reads and Writes

To prove that a key is associated with a particular value,
an archive locates that key in its bucket and computes a proof
of that key’s existence with Open. For validators, overwriting
that key is straightforward: invoke CommitUpdate on the old
commitment to that bucket, using the new value along with
the key and the old value, which are contained in the proof of
membership for that operation:

val is the value to be written
ctx contains the context for the key
ctx.index contains the key’s index
ctx.slot contains the slot at ctx.index
ctx.pf proves that ctx.slot is at ctx.index
def Put_modify(db, val , ctx):

old = ctx.slot
new = ctx.slot
new.val = val
slot_write(db, ctx.index , old , new ,

ctx.pf)

We now come to the lexicographic ordering. Proving that
a key does not exist in the dictionary involves adding an
extra field next to each value in the dictionary. This field is
committed in the buckets along with the rest of the value. For
any key k, nextk holds the successor of that key, denoted succ,
which is defined as follows:

1) If k is the only key in the dictionary, succ(k) = k.
2) If k is the largest key in the dictionary, succ(k) is the

smallest key in the dictionary.
3) Otherwise, succ(k) is the smallest key in the dictio-

nary larger than k.

To prove that a key does not exist in the dictionary, an
archive locates the key’s predecessor. The predecessor of a
key k is defined as the largest key in the dictionary which is
smaller than k in lexicographic ordering, with the exception
that the largest key in the dictionary is the predecessor of the
smallest key in the dictionary and all keys smaller than that
key. The archive then proves nonexistence of key k by proving
that its predecessor key k′ exists and that k is the predecessor
of succ(k).

Given this data structure, a creation proof for a key k
involves the proof of its predecessor’s membership. Creating
a mapping for k given its predecessor k′ involves setting
nextk ← succ(k′) and then nextk′ ← k, or as follows:

key is the key to be inserted
pred_ctx holds the context for pred(key)
def Put_create(db, key , val , pred_ctx):

old_pred = pred_ctx.slot
new_pred = pred_ctx.slot
new_last = Slot(key=key , val=val ,

next=pred.slot.next)
new_pred.slot.next = key
slot_append(db, new_last)
slot_write(db, pred_ctx.index , old_pred ,

new_pred , pred_ctx.pf)

Now, we can write the following implementation of Put:

db.pred finds a key’s predecessor
def Put(db, key , val , ctx):

if ctx.slot.key == key:

6

Put_modify(db, val , ctx)
elif ctx.slot.key == db.pred(key):

Put_create(db, key , val , ctx)
else:

raise Exception("invalid ctx")

A deletion proof for a key k involves both the proof of k′s
existence and the proof of its predecessor’s value. Removing
k given its predecessor k′ involves setting nextk′ ← nextk and
deleting the slot of k. This gives us the following implemen-
tation of Delete:

last_ctx holds the context for the last slot
def Delete(db, pf, pred_ctx , last_ctx):

if pred_ctx.slot.next != pf.slot.key:
raise Exception("invalid pred_ctx")

old_pred = pred_ctx.slot
new_pred = pred_ctx.slot
new_pred.slot.next = pf.slot.next
slot_write(db, pred_ctx.index , old_pred ,

new_pred , pred_ctx.pf)
slot_truncate(db, pf.index , pf.slot ,

last_ctx.slot , last_ctx.pf)

For completeness, we present the implementation of Get:

def verify_ctx(db, ctx):
i, val , pf = ctx.index , ctx.slot , ctx.pf
bucket , off = i/B, i%B # floor division
c0 = db.commits[bucket]
if not Verify(c0, off , val , pf):

raise Exception("proof is invalid")

db.zero_value () returns a value denoting an
absent key
def Get(db, key , ctx):

verify_ctx(db, ctx)
if ctx.slot.key == key:

return ctx.slot.value
else:

return db.zero_value ()

C. Amortizing Cryptographic Overhead

At any point, the last bucket in the dictionary may be not
be completely filled. We call this bucket the tail bucket, and it
exists whenever s is not a multiple of B. Aardvark applies two
optimizations on the tail bucket to reduce the cost of creation
and deletion operations.

To reduce the cost of creation operations, the vector which
backs the tail bucket is not committed to but instead stored
directly on all validators. As a result, operations which modify
the tail bucket, which include all key insertion operations,
do not need to run CommitUpdate on the corresponding
commitment.

To reduce the cost of deletion operations, slot deletions
from the tail bucket are applied lazily. Validators clear the
last slot of the dictionary by decrementing s. Once the last
item has been deleted from a tail bucket, and a subsequent
deletion request must be processed, the new tail bucket must
be initialized, which involves a single full decommitment to
the bucket.

Because the bandwidth cost of a single decommitment is
relatively high but amortizes well over time, validators cache

the preimages of some suffix of the buckets in a tail cache and
synchronize this cache in the background. If a validator lacks
the preimage to a tail bucket, it refuses subsequent deletion
requests until it can resynchronize.

Validators forget old buckets as creation operations accu-
mulate, and they request buckets from archives as deletion
operations accumulate. To reduce thrashing when creations
and deletions happen frequently across a bucket boundary,
validators maintain a minimum tail cache size of L but a
maximum tail cache size of 2L.

VI. CONCURRENT TRANSACTION PROCESSING

The dictionary design described previously allows archives
to create proofs authenticating an update from some version
of the dictionary to a subsequent version. By definition, the
dictionary state changes with the commitment of every (read-
write) transaction, invalidating proofs against an older state.

For a slow system, deploying the authenticated dictionary
described above is relatively straightforward: for every key
updated by a transaction, a corresponding proof is provided
that authenticates the update. Since state changes so slowly,
it is feasible for a user to recompute invalidated proofs every
time a new transaction is confirmed.

However, this design fails to fulfill the needs of high-
throughput systems. With the same deployment of our au-
thenticated dictionary, proofs may be invalidated much more
quickly, requiring either archives or users to constantly re-
compute and resubmit proofs. This problem worsens when
the system is under heavy load, as the buildup of pending
transactions further compounds the cost of recomputing proofs.
Moreover, an attacker may degrade service to a key by
constantly making small modifications to the bucket-neighbors
of a key, invalidating the old proofs held by the user. Unfortu-
nately, ProofUpdate operations are relatively slow in a pairing
context (see Table I): updating a single proof requires around
two hundred microseconds.

Thus, for the authenticated dictionary to be deployed prac-
tically, a versioning system must exist. The dictionary should
accept transactions with stale proofs even while concurrent
operations modify state referenced by that transaction.

Aardvark addresses this problem by eliminating the need to
update proofs entirely on the critical path.4 Instead, Aardvark
relies on two main modifications to standard transaction pro-
cessing to achieve dictionary versioning. First, when construct-
ing a transaction, users declare the minimum and maximum
sequence numbers which the transaction may be executed with,
and all proofs attached to the transaction refer to the state of
the dictionary as of the minimum sequence number. Proofs
are valid so long as they are executed at a sequence number
between the minimum and maximum numbers (inclusive), and
the difference between these sequence numbers must be at
most the maximum transaction lifetime τ of the system, which
is a global constant set when Aardvark is initialized. Second,
all validators hold the dictionary digest not as of the most
recent transaction number, but instead as of the system state
τ transactions ago. For each transaction between the oldest

4The only need for ProofUpdate is for archive-free operations, as specified
in §VI-E.

7

state and the newest state, validators maintain a single delta
on the state (one for each transaction). For each key modified
by the transaction, this delta contains both the old value and
the updated value of that key.

These two modifications allow validators to efficiently au-
thenticate transactions with varying minimum sequence num-
bers. Because the difference between minimum and maximum
sequence numbers is bounded, any transaction that is seen
by a validator is either expired, or it must be no more
than τ transactions old. Given a transaction no more than τ
transactions old, a validator may use its in-memory deltas to
either authenticate the freshness of a proof, or it will invalidate
the proof because it observed a more recent change to key state.
Since each validator holds τ transactions’ worth of updates, it
must have seen all such recent changes.

Choosing τ . The choice of τ trades off between the dic-
tionary’s asynchronicity and the amount of extra overheads
for validators in maintaining the cache. A very small value
of τ reduces cache overheads. However, when the dictionary
is under heavy load, a client’s transaction may expire before
it is executed, forcing the client to update the proof before
resubmitting the transaction. A larger value of τ allows old
transaction proofs to be accepted by the system for a longer
period of time, reducing this extra work when the system is
congested.

A. Key-Value Pair and Proof Versioning

Aardvark implements its cache of in-memory deltas as
follows. First, for every slot modified by a transaction, Aard-
vark holds slot deltas, which contain both the old value and
the new value of the slot within a hash table, keyed by
slot indexes. Second, for every key that was modified by a
transaction, Aardvark maintains key deltas, which contain the
both the old and the new versions of a value corresponding
to a given key. Third, for every bucket that was modified
by every transaction, validators in Aardvark maintain vector
commitment deltas (abbreviated VC deltas), which include the
old value and new value of every vector commitment to that
bucket. Validators also cache a variety of auxiliary state such
as the net change in the number of keys and deferred updates
to the tail bucket.

Under a versioning system, Aardvark validators can iden-
tify when a particular key-value pair given by a proof is stale
and update these pair to their latest state. Each of the proofs
used for Get, Put, or Delete is either a proof corresponding to
a key or a proof corresponding to its predecessor. These proofs
are created via a pair of operations supported by archives Read
and ReadPred (as described in the previous section):

db is a handle for archive storage
db.version is the latest snapshot version
db.deltas is a list of key deltas
db.slots is the list of key slots
tau is the maximum transaction lifetime
def LookupSlotAtIndex(db, index):

version = db.version + tau
slot affected recently?
while version >= db.version:

delta = db.deltas[version]
if index in delta.slots:

yes; last update in deltas

return delta.slots[index].new
version = version - 1

no; last update on disk
return db.slot_at_index(index)

def LookupIndexOfKey(db, key):
version = db.version + tau
key affected recently?
while version >= db.version:

delta = db.deltas[version]
if key in delta.old:

if key not in delta.new:
raise Exception("key deleted")

yes; index in slot delta
return search(delta.slots , key)

version = version - 1
no; index on disk
return db.index_of_key(key)

search_pred searches a delta for the
predecessor of a key
def LookupPredOfKey(db, key):

version = db.version + tau
pred(key) affected recently?
while version >= db.version:

delta = db.deltas[version]
pred , i = delta.search_pred(key)
if pred.next = key:

yes; delta contains pred(key)
return i

version = version - 1
no; pred(key) on disk
return db.pred_of_key(key)

def ComputeContext(db, index):
vector = []
i = index/B # floor division
top = i + B
while i < top:

slot = LookupSlotAtIndex(db, i)
vector.append(slot)
i = i + 1

return Context(index=index ,
version=db.version ,
slot=vector[index],
pf=Open(vector , index))

def Read(db, key):
index = LookupIndexOfKey(db, key)
return ComputeContext(db, index)

def ReadPred(db, key):
index = LookupPredOfKey(db, key)
return ComputeContext(db, index)

To execute a transaction, validators first execute each Get
operation either with a proof of membership or nonmember-
ship:

db is a handle for verifier storage
db.version is the latest snapshot version
def LookupVC(db, version , bucket):

bucket affected recently?
while version >= db.version:

delta = db.deltas[version]
if bucket in delta.vcs:

commitment is in VC deltas
return delta.vcs[bucket]

8

Disk Memory

🐏

Slots (archive-only)
Key Value Next

“aardvark” 2 “cat”
“cat” 3 “dog”

“kite” 13 “lemon”
… … …

Commitments
Bucket VC

0 0x1A2B3…
1 0x5D6E7…
… …

Recent Transactions
Op Key Value Version

Modify “cat” 3 16
Create “banana” 5 17
Delete “kite” 18

Tail: []
VC: 0: 0x1A2B3… → 0xD9C8B7…
Key: “cat”: 3 → 8

Tail: [append “banana”]
VC: 3: 0xFEED… → 0x01BAA…
Key: “banana”: 0 → 5

Tail: [truncate “kite”]
VC: 2: 0x3581… → 0x321FE…
Key: “kite”: 21 → 0

(1) Get(“aardvark”, proof=(val=2, index=1, vers.=17)) → 2

(2) Get(“walrus”, proof=(val=5, index=3, vers.=18)) → 34

(3) Get(“cat”, proof=(val=3, index=0, vers.=12)) → 8

Version: 15

Version: 16

Version: 17

Version: 18

(3)

(1)

(2)

Fig. 3. Versioning in Aardvark with τ = 3. For the first read, Get(“aardvark”), neither the key itself nor its bucket has been modified recently, so the archive’s
proof is guaranteed to be valid for the vector commitment on the validator’s disk. For the second read, Get(“walrus”), the value itself has not been modified
recently; however, a deletion operation relocated it. Its proof, which was created after deletion occurred, will be present in a VC delta. For the third read,
Get(“cat”), the value was modified recently, so the proof is unnecessary; as a result, the dictionary can simply look up the value present in the key delta.

version = version - 1
commitment is on disk
return db.lookup_vc(bucket)

ctx is a versioned context for the key
delta.modified checks whether the delta
modified the key
delta.new holds the new value for a key ,
if one exists
def Get(db, key , ctx):

key affected recently?
version = db.version + tau
while version >= db.version:

delta = db.deltas[version]
if delta.modified(key):

if key in delta.new:
key was created/modified
return delta.new[key]

key was deleted
return db.zero_value ()

version = version - 1
no: must find first vector commitment
before ctx.version
bucket = ctx.slot.index/B
vc = LookupVC(db, ctx.version , bucket)
if not Verify(vc, ctx.index ,

ctx.slot , ctx.pf):
raise Exception("Proof invalid")

if ctx.slot.key == key:
return ctx.value

return db.zero_value ()

Then, with the updated values, they execute Put and Delete
(which additionally expects a key’s predecessor). These oper-
ations are executed as described previously, except that queries
on the current state also traverse the list of deltas.

If a transaction succeeds, validators then compute a new set

of deltas on the slots, keys, and vector commitments affected
by that transaction, saving the transaction to disk. Once news
of a successful transaction arrives at archives and validators,
they apply the latest set of vector commitment updates to state
on disk (and archives apply slot updates) and then forget the
earliest set of deltas. Here, updates are sorted by a consistent
ordering so that any validators which execute transactions in
the same order arrive at the same sequence of digests.

B. Transaction Expressiveness

Our choice of versioning scheme allows Aardvark trans-
actions to be fairly expressive. Aardvark transactions can
implement atomic changes to values such as addition and
subtraction, which may be useful for operations such as
transfers in a cryptocurrency.

At the same time, our versioning scheme also imposes
some limitations within a transaction. For instance, all keys
must be determined ahead of time and before a client’s initial
query to an archive. Aardvark does not optimally support
transactions where the choice of one key is dynamic within the
transaction. For instance, if an application relies on Aardvark
keys to store the nodes of a tree, a transaction which modifies
some attribute of a node’s parent will be invalidated by an
interleaving transaction which modifies the same node’s parent.

C. Consistent Proof Validation

In certain applications (such as cryptocurrencies) it is
critical for all validators to be in agreement about accepting
or rejecting a transaction, as transactions that are seen to be
valid by some validators but not others will cause the state of
the system to diverge.

9

The design described above supports consistent lookups
with a small modification: searches for a key in some delta
must stop τ transaction numbers prior to the current version.
So long as τ is consistently known across all validators, this
procedure will return consistent results across all validators
who see the same latest transaction number.

D. Block Batching

To reduce the in-memory overhead of maintaining deltas
and the cost of searching deltas for keys, Aardvark supports
batching transactions into blocks. Once a block of transactions
has been committed, Aardvark merges all deltas in the same
block. With a block-commit optimization, versions (and τ)
may refer to block sequence numbers, as opposed to trans-
action sequence numbers, so as to expedite the application of
deltas.

Blocks in Aardvark naturally fit with batching optimiza-
tions at higher application layers. Moreover, deltas in Aardvark
can be made to be hierarchical, so that arbitrary sub-blocks of
transactions may be atomically applied to Aardvark state.

E. Archive-free Operations

The dictionary design presented above relies on archives
for availability: if the archives go down or refuse to serve
a user, the user cannot perform all operations. However, with
small modifications, certain operations may be decoupled from
archives, which allows the system to continue operating even
if all archives go down. We call these operations archive-free
operations.5

Specifically, consider a client which does not store the
entire state of the dictionary but does observe all authenticated
operations to that dictionary. Suppose that this client possesses
a correct proof of that key’s value (or a proof of its absence)
against some dictionary D. Then every time the dictionary is
updated to a new state D′ with that update, the client can
maintain the freshness of this proof by applying the update to
it via SyncContext.

At a high level, SyncContext is implemented as follows. If
a client has a current context for a key-value pair, it can update
this context when it observes an update to the dictionary. An
update to the context involves one of: overwriting (or deleting)
the value, overwriting the value of another key belonging to
the same bucket, or moving the key into a previously-deleted
key’s slot. Since all three cases require the presentation of the
old contexts of the key’s possibly-new bucket, as well as the
corresponding deltas, any user following the key’s updates will
have an updated context after either a Put or a Delete operation
by calling ProofUpdate on the vector proof. (If the key itself
is deleted, then proof of the key’s predecessor given by the
Delete operation proves that the key is mapped to the zero
value as of the new dictionary state.)

Given this observation, any client that maintains fresh
proofs of a key and/or its predecessor can issue arbitrary
valid Get, Put, or Delete operations without ever consulting

5One additional practical benefit of archive-free operations is that they
reduce steady-state computational load on archives. These savings can be
especially significant scaled over user base, as Open involves a non-trivial
computation (§IV).

an archive. All of these operations will generally execute on
a validator, even if all archives are down. Moreover, this
operation only needs to be issued once every τ sequence
numbers pass (as opposed to once per transaction).

There is one exception: at a certain point, a validator
may run out of its tail cache because too many deletions
have happened. In that case, no subsequent deletions may be
executed because the tail cannot be moved to fill new slots.

VII. EVALUATION

Our evaluation intends to answer the following questions:

• Storage Savings: How much disk space does an Aard-
vark validator require compared to the archive, which
stores all data?

• Bandwidth Costs: How large are Aardvark’s proofs?
What additional networking overhead is introduced by
Aardvark?

• System Throughput: What are the processing costs
required to sustain a given level of system throughput
for both validators and archives? How parallelizable
are these costs?

We give closed-form expressions for storage and band-
width costs. For computation costs, we present an empirical
evaluation on a prototype implementation of Aardvark. This
implementation is available at https://github.com/algorand/
aardvark-prototype.

A. Storage and Bandwidth Analysis

Storage Savings. Aardvark requires archives to store all
records in the database. If s is the number of key-value pairs,
and |k| is the size of a key, and |v| is the size of a value, the
archival storage cost for the database is

SA = s(|k|+ |v|).

We emphasize that in the absence of Aardvark or some other
authenticated storage mechanism, this is the storage cost which
would be incurred by every validator.

In Aardvark, validators must store a commitment to a
bucket every B records. Validators must also store the records
in the tail bucket, and all records for all buckets in its cache.
This cache is at most 2L buckets large (and at least L
buckets small, unless the database is less than L buckets large).
Moreover, validators must store the last τ transaction blocks to
process proofs up to τ blocks stale. If the size of an encoded
transaction block is |T | and the size of a vector commitment is
|c|, this means that the validator storage cost for the database
is upper bounded as follows:

SV < ds/Be|c|+ (2L+ 1)(|k|+ |v|)B + τ |T |.

A natural choice for 2L is a small multiple of |T |
B|t| , which

allows validators to execute several blocks of continuous
deletion requests regardless of the availability of archives.
If |T ||t| = 10, then a value of 2L = 30 is sufficient. Even
if blocks are confirmed very quickly (e.g., once a second),
setting τ = 1000 allows clients a considerable amount of
concurrency (e.g., proofs remain valid for fifteen minutes).

10

https://github.com/algorand/aardvark-prototype
https://github.com/algorand/aardvark-prototype

As a result, because the last two terms in the equation above
are fairly small (around 1GB), we can drop them from an
asymptotic comparison of costs between a validator and an
archive. Therefore, as s grows large, the ratio between a
validator’s cost and an archive’s cost in the limit is

SV
SA
→ B(|k|+ |v|)

|c|
.

As described in §IV, |c| = 48 bytes in our particular commit-
ment scheme. Choosing a value such as B = 1000 for keys of
size |k| = 32 bytes gives Aardvark validators a savings factor
of more than 1000×; we note this savings factor increases with
the size of |v|.

Bandwidth Costs. The bandwidth costs of a transaction con-
sist of the cost of transmitting the transaction plus the costs
of transmitting the values for each key in the transaction’s key
set and the proofs of their correctness. Thus, for each key we
transmit |k| + |v| + |ρ| bytes (because we also transmit the
successor key). Recall that one proof of key nonmembership
is required to insert a new key, one proof of key membership
is required to modify ane existing key, and two proofs of key
membership are required to delete a key. If an transaction is
|t| bytes long, a proof is |ρ| bytes long , and a transaction
creates n1 keys, modifies n2 keys, and deletes n3 keys, then
the number of bytes transmitted is

(n1 + n2 + 2n3)(|k|+ |v|+ |ρ|) + |t|.

Recall that proofs in Aardvark are composed of a version
number and an index in the dictionary’s slot ordering, in
addition to a 48-byte vector commitment proof (see §IV),
which means that a size of |ρ| = 64 bytes is sufficient for
a proof corresponding to a paritcular key. With |k| = 32 and
|v| = 8, this corresponds to roughly 100 bytes of overhead per
transaction per Put operation and 200 per Delete operation.

As compared to transaction size, proof overhead is greatest
for small transactions that read and write many keys and
least for large transactions that read and write few keys. Note
that transactions include the key set read and written by the
transaction, which also contributes to transaction size.

Note that by aggregating proofs, we can transmit only a
single proof, which halves the marginal overhead to roughly
50 additional bytes per transaction per key, plus a fixed cost of
transmitting the aggregated proof. Applications where systems
involve operations on many different keys benefit substantially
from aggregation.

B. System Throughput

We implement our vector commitment scheme in Rust [2],
using a pairing library for algebraic operations [1]. (More
recent implementation of pairings (such as [21] and [22]) are
likely to provide a noticeable speed-up to our benchmarks.)
We call into this code from a Go program which implements
Aardvark’s versioned dictionary.

For crash-safety we use a SQLite database operating under
the serializable isolation level . We store in the database vector
commitments, recent transactions, and, for archives, key slots.
To minimize the effect of I/O latency costs, we use an in-
memory database to hold vector commitments on validators
and key slots on archives.

TABLE II. TRANSACTION PROCESSING TIME (SECONDS)

Scenario Machine Role Cores Median Min Max

10,000 Put (modify) Archive 1 440 438 441

10,000 Put (create) Archive 1 437 436 438

10,000 Delete Archive 1 875 871 878

100,000 Put (modify) Validator 1 359 334 371

100,000 Put (create) Validator 1 383 359 427

100,000 Delete Validator 1 722 688 770

100,000 Put (modify) Validator 32 53 48 53

100,000 Put (create) Validator 32 79 75 83

100,000 Delete Validator 32 118 115 122

To evaluate the computational overhead of Aardvark, which
involves transaction validation, we examine the effects of sim-
ple transactions which execute either a single Put or a single
Delete operation. We separate Put operations into two cases:
(1) Put operations that create a new key in the dictionary, which
require proofs of nonmembership, and (2) Put operations
that modify an existing key in the dictionary, which require
proofs of nonmembership. For Delete operations, we pass in
bucket preimages as they are needed for vector decommitment.
Moreover, we do not aggregate proofs for deletion operations
but instead transmit both proofs separately. We benchmark
each of these three cases separately and independently.

Each key is a 32-byte random bitstring, and each value is
an unsigned integer v = 8 bytes in size. For each operation, we
pick its key at random from the set of keys (or we generate a
random 32-byte string for Put transactions which create keys).

We set the maximum transaction lifetime to τ = 10 blocks.
We pick the first valid block number t0 uniformly at random
between block numbers b and b − τ and its last valid block
number between b and t0 + τ (where b is the current block
number).

We place |T | = 10000 transactions in each block. Put trans-
actions are |t| = 105 bytes in size, while Delete transactions
are |t| = 87 bytes in size. Before running each workload,
we pre-populate the dictionary with 1 million random key-
value pairs and generate τ + 2 = 12 blocks, each with 10 000
transactions of the same type, in order to pre-populate the in-
memory deltas and reach steady state.

We conduct our experiment on a c5.metal Amazon EC2
machine and use numactl to restrict the physical CPUs avail-
able to the system.

To exclude networking latency costs, we benchmark a
single archive and a single validator separately.

Table II summarizes our results.

Validator Throughput. Validators perform cryptographic
proof verification in parallel and verify proofs on all trans-
actions, even those which only affect recently-modified keys,
in order to simulate worst-case performance. For a validator,
we pre-generate 100 000 transactions, partition them into 10
blocks, and then issue the entire block to the validator. We
measure the time taken to validate and apply transactions in
each block. We run three trials for each configuration of 1, 2,
4, 8, 16, and 32 cores, and we plot the results in Figure 4.

11

1 2 4 8 16 32
Hardware Parallelism (cores)

100

200

300

400

500

600

700

800
Ti

m
e

to
 V

al
id

at
e

10
0,

00
0

Tr
an

sa
ct

io
ns

 (s
ec

on
ds

) Put (create)
Put (modify)
Delete

Fig. 4. Scaling of Aardvark relative to number of cores, along with error bars
showing the maximum and minimum time taken to validate and apply 100 000
transactions. Adding cores improves performance of proof verification, which
is extremely parallel, but updating commitments must still be done in order.
We leave batch commitment updates to future work.

Our experiments show that validation requires about thirty
seconds of CPU time for blocks filled with Put transactions
and over a minute of CPU time for blocks filled with Delete
transactions. Since proof verification is expensive, and Delete
transactions require two proof verifications while Put trans-
actions require one (in addition to verification of tail slots),
processing blocks filled with Delete transactions require twice
as much processing time.

Parallelization is beneficial to system throughput, but only
up to a point; adding cores yields diminishing returns. In-
creasing from 1 to 32 cores increases throughput by a factor
between 4 and 8. Parallelization produces limited gains for a
few reasons. First, because transactions must be serialized, in
the worst case, each transaction must be processed in order,
one after another. Second, processing all the deltas in each
block incurs a fixed cost as the deltas are reconciled with the
stable storage. Third, although proof verification is completely
parallelized, commitment updates are serialized in our experi-
ments (we did not parallelize commitment updates). Although
some degree of parallelism is possible here, an adversary could
cause many modifications to affect different indexes of a single
bucket, forcing serialization of these updates.

Archive Throughput. Since archival operations are trivially
parallelizable, we evaluate archival workloads on a single core.
We deliver queries for 10 000 transactions to a single archive
and request from it the appropriate proof for each transaction.
We run three trials for each workload and plot the results in
Figure 5.

Recall that a Put operation which modifies a key requires
executing Read, a Put operation which creates a new key
requires executing ReadPred, and a Delete operation requires
one call to each operation. Our evaluation shows that executing
10 000 Put operations both take roughly the same amount
of time (around 7 minutes), while a Delete operation takes
roughly twice as much (around 14.5 minutes). This shows that
proofs of membership and nonmembership in Aardvark take

Put (modify) Put (create) Delete
Operation

0

200

400

600

800

Ti
m

e
to

 C
re

at
e

Pr
oo

fs
 fo

r 1
0,

00
0

Tr
an

sa
ct

io
ns

 (s
ec

on
ds

)

Fig. 5. Time taken by archives to create proofs for 10 000 transactions.
Put operations take roughly the same amount of time, regardless of whether
they create a new key or modify an existing one. Delete operations require
executing both Read and ReadPred, so producing a proof takes twice as long.
Note that error bars are present on the figure but are barely visible, as we saw
little variability across trials.

roughly the same amount of time as they are dominated by the
cost of creating the cryptographic proof as opposed to other
costs.

VIII. CONCLUSION

This paper presents Aardvark, an authenticated dictionary
suitable for high-throughput, distributed applications. We show
that it is possible to create practical authenticated dictio-
naries with short proofs of membership and nonmembership
from pairing-based vector commitments while enforcing tight
bounds on extra resource use. We develop a a versioning
scheme that enables us to completely ignore expensive proof
update costs while supporting concurrent transaction execu-
tion. Our evaluation shows that remaining costs reside in
proof verification and in updating vector commitments, which
benefits greatly from a limited amount of multiprocessing.

ACKNOWLEDGMENT

The authors would like to thank Hoeteck Wee and Adam
Suhl for their valuable assistance with the analysis and imple-
mentation of vector commitments. The authors would also like
to thank Alin Tomescu for useful discussion on the paper’s
motivation and David Lazar for feedback on a draft of this
document.

REFERENCES

[1] Algorand, “Pairing plus library,” 2020, https://github.com/algorand/
pairing-plus.

[2] ——, “Source code for pointproofs,” 2020, https://github.com/algorand/
pointproofs.

[3] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor,
“Checking the correctness of memories,” in 32nd Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico,
1-4 October 1991. IEEE Computer Society, 1991, pp. 90–
99, later appears as [4], which is available at http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991. [Online]. Available:
http://dx.doi.org/10.1109/SFCS.1991.185352

12

https://github.com/algorand/pairing-plus
https://github.com/algorand/pairing-plus
https://github.com/algorand/pointproofs
https://github.com/algorand/pointproofs
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://dx.doi.org/10.1109/SFCS.1991.185352

[4] ——, “Checking the correctness of memories,” Algorithmica, vol. 12,
no. 2/3, pp. 225–244, 1994, available at http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.29.2991. [Online]. Available: http:
//dx.doi.org/10.1007/BF01185212

[5] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for
accumulators with applications to iops and stateless blockchains,”
pp. 561–586, 2019. [Online]. Available: https://doi.org/10.1007/
978-3-030-26948-7 20

[6] V. Buterin, “The stateless client concept,” 2017, https://ethresear.ch/t/
the-stateless-client-concept/172.

[7] D. Catalano and D. Fiore, “Vector commitments and their applications,”
in Public-Key Cryptography - PKC 2013 - 16th International
Conference on Practice and Theory in Public-Key Cryptography, Nara,
Japan, February 26 - March 1, 2013. Proceedings, ser. Lecture Notes
in Computer Science, K. Kurosawa and G. Hanaoka, Eds., vol. 7778.
Springer, 2013, pp. 55–72, available at http://eprint.iacr.org/2011/495.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36362-7 5

[8] A. Chepurnoy, C. Papamanthou, S. Srinivasan, and Y. Zhang, “Edrax: A
cryptocurrency with stateless transaction validation,” Cryptology ePrint
Archive, Report 2018/968, 2018, https://eprint.iacr.org/2018/968.

[9] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, and E. Gün, “On scaling decentralized
blockchains,” in Proc. 3rd Workshop on Bitcoin and Blockchain Re-
search, 2016.

[10] J. Drake, “Accumulators, scalability of UTXO blockchains,
and data availability,” 2017, https://ethresear.ch/t/
accumulators-scalability-of-utxo-blockchains-and-data-availability/
176.

[11] T. Dryja, “Utreexo: A dynamic hash-based accumulator optimized for
the bitcoin UTXO set,” IACR Cryptol. ePrint Arch., vol. 2019, p. 611,
2019. [Online]. Available: https://eprint.iacr.org/2019/611

[12] M. T. Goodrich, M. Shin, R. Tamassia, and W. H. Winsborough,
“Authenticated dictionaries for fresh attribute credentials,” in Trust
Management, First International Conference, iTrust 2003, Heraklion,
Crete, Greece, May 28-30, 2002, Proceedings, ser. Lecture Notes in
Computer Science, P. Nixon and S. Terzis, Eds., vol. 2692. Springer,
2003, pp. 332–347, available at http://cs.brown.edu/cgc/stms/papers/
itrust2003.pdf.

[13] S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang, “Pointproofs:
Aggregating proofs for multiple vector commitments,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 419, 2020. [Online]. Available: https:
//eprint.iacr.org/2020/419

[14] B. Libert and M. Yung, “Concise mercurial vector commitments
and independent zero-knowledge sets with short proofs,” in Theory
of Cryptography, 7th Theory of Cryptography Conference, TCC
2010, Zurich, Switzerland, February 9-11, 2010. Proceedings,
ser. Lecture Notes in Computer Science, D. Micciancio, Ed.,
vol. 5978. Springer, 2010, pp. 499–517. [Online]. Available:
https://doi.org/10.1007/978-3-642-11799-2 30

[15] R. C. Merkle, “A certified digital signature,” in Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, ser. Lecture Notes in Computer Science, G. Brassard,
Ed., vol. 435. Springer, 1989, pp. 218–238, available at http:
//www.merkle.com/papers/Certified1979.pdf. [Online]. Available: http:
//dx.doi.org/10.1007/0-387-34805-0 21

[16] A. Miller, “Storing UTXOs in a balanced Merkle tree (zero-
trust nodes with O(1)-storage),” 2012, https://bitcointalk.org/index.php?
topic=101734.msg1117428.

[17] A. Miller, M. Hicks, J. Katz, and E. Shi, “Authenticated data
structures, generically,” in The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, S. Jagannathan and P. Sewell,
Eds. ACM, 2014, pp. 411–424, project page and full version
at http://amiller.github.io/lambda-auth/paper.html. [Online]. Available:
http://doi.acm.org/10.1145/2535838.2535851

[18] C. Papamanthou and R. Tamassia, “Time and space efficient
algorithms for two-party authenticated data structures,” in Information
and Communications Security, 9th International Conference, ICICS
2007, Zhengzhou, China, December 12-15, 2007, Proceedings, ser.
Lecture Notes in Computer Science, S. Qing, H. Imai, and

G. Wang, Eds., vol. 4861. Springer, 2007, pp. 1–15, available
at http://www.ece.umd.edu/∼cpap/published/cpap-rt-07.pdf. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-77048-0 1

[19] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated
hash tables based on cryptographic accumulators,” Algorithmica,
vol. 74, no. 2, pp. 664–712, 2016. [Online]. Available: http:
//dx.doi.org/10.1007/s00453-014-9968-3

[20] L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov,
“Improving authenticated dynamic dictionaries, with applications
to cryptocurrencies,” in Financial Cryptography and Data Security
- 21st International Conference, FC 2017, Sliema, Malta, April
3-7, 2017, Revised Selected Papers, ser. Lecture Notes in Computer
Science, A. Kiayias, Ed., vol. 10322. Springer, 2017, pp. 376–392.
[Online]. Available: https://doi.org/10.1007/978-3-319-70972-7 21

[21] SCIPR-Lab, “Zexe,” 2020, https://github.com/scipr-lab/zexe.
[22] Supranational, “blst,” 2020, https://github.com/supranational/blst.
[23] P. Todd, “Making UTXO set growth irrelevant with low-latency

delayed TXO commitments,” 2016, https://petertodd.org/2016/
delayed-txo-commitments.

[24] P. Todd, G. Maxwell, and O. Andreev, “Reducing utxo: users send par-
ent transactions with their merkle branches,” 2013, https://bitcointalk.
org/index.php?topic=314467.

[25] A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovra-
tovich, “Aggregatable subvector commitments for stateless cryptocur-
rencies,” Cryptology ePrint Archive, Report 2020/527, 2020, https:
//eprint.iacr.org/2020/527, to appear in SCN 2020.

[26] B. White, “A theory for lightweight cryptocurrency ledgers,”
2015, available at https://github.com/bitemyapp/ledgertheory/blob/
master/lightcrypto.pdf (see also code at https://github.com/bitemyapp/
ledgertheory).

13

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://dx.doi.org/10.1007/BF01185212
http://dx.doi.org/10.1007/BF01185212
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
http://eprint.iacr.org/2011/495
http://dx.doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2018/968
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://eprint.iacr.org/2019/611
http://cs.brown.edu/cgc/stms/papers/itrust2003.pdf
http://cs.brown.edu/cgc/stms/papers/itrust2003.pdf
https://eprint.iacr.org/2020/419
https://eprint.iacr.org/2020/419
https://doi.org/10.1007/978-3-642-11799-2_30
http://www.merkle.com/papers/Certified1979.pdf
http://www.merkle.com/papers/Certified1979.pdf
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/0-387-34805-0_21
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://bitcointalk.org/index.php?topic=101734.msg1117428
http://amiller.github.io/lambda-auth/paper.html
http://doi.acm.org/10.1145/2535838.2535851
http://www.ece.umd.edu/~cpap/published/cpap-rt-07.pdf
http://dx.doi.org/10.1007/978-3-540-77048-0_1
http://dx.doi.org/10.1007/s00453-014-9968-3
http://dx.doi.org/10.1007/s00453-014-9968-3
https://doi.org/10.1007/978-3-319-70972-7_21
https://github.com/scipr-lab/zexe
https://github.com/supranational/blst
https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
https://bitcointalk.org/index.php?topic=314467
https://bitcointalk.org/index.php?topic=314467
https://eprint.iacr.org/2020/527
https://eprint.iacr.org/2020/527
https://github.com/bitemyapp/ledgertheory/blob/master/lightcrypto.pdf
https://github.com/bitemyapp/ledgertheory/blob/master/lightcrypto.pdf
https://github.com/bitemyapp/ledgertheory
https://github.com/bitemyapp/ledgertheory

	Introduction
	Related Work
	Overview
	Goals
	Transactions
	System Design

	Background: Vector Commitments
	Interface
	Vector Commitments of Libert and Yung

	Authenticated Dictionary Design
	Contiguous Slot Packing
	Authenticating Reads and Writes
	Amortizing Cryptographic Overhead

	Concurrent Transaction Processing
	Key-Value Pair and Proof Versioning
	Transaction Expressiveness
	Consistent Proof Validation
	Block Batching
	Archive-free Operations

	Evaluation
	Storage and Bandwidth Analysis
	System Throughput

	Conclusion
	References

