
Aardvark: An Asynchronous Authenticated Dictionary
with Applications to Account-based Cryptocurrencies

Derek Leung
MIT CSAIL∗

Yossi Gilad
Hebrew University of Jerusalem

Sergey Gorbunov
University of Waterloo

Leonid Reyzin
Boston University

Nickolai Zeldovich
MIT CSAIL

Abstract
We design Aardvark, a novel authenticated dictionary with
short proofs of correctness for lookups and modifications. Our
design reduces storage requirements for transaction validation
in cryptocurrencies by outsourcing data from validators to
untrusted servers, which supply proofs of correctness of this
data as needed. In this setting, short proofs are particularly
important because proofs are distributed to many validators,
and the transmission of long proofs can easily dominate costs.

A proof for a piece of data in an authenticated dictionary
may change whenever any (even unrelated) data changes. This
presents a problem for concurrent issuance of cryptocurrency
transactions, as proofs become stale. To solve this problem,
Aardvark employs a versioning mechanism to safely accept
stale proofs for a limited time.

On a dictionary with 100 million keys, operation proof sizes
are about 1KB in a Merkle Tree versus 100–200B in Aardvark.
Our evaluation shows that a 32-core validator processes 1492–
2941 operations per second, saving about 800× in storage
costs relative to maintaining the entire state.

1 Introduction

Ensuring the integrity of vast record collections is a fundamen-
tal problem in computer security. In 1991, Blum et al. [10]
described a scenario where a trustworthy computer executes
programs on data in untrusted storage. To prevent the storage
from tampering with the data, they introduced a data structure,
now known as a two-party authenticated dictionary [24, 37],
which allows the trusted computer to ensure data integrity by
storing a small commitment to the data. When the computer
reads from the data, it requires the untrusted storage to pro-
vide a proof guaranteeing correctness; this proof is verified
using the commitment. On writes, the computer also receives
a proof and, using the proof and the current commitment,
computes the new commitment to the modified data.

∗The authors completed much of this work at Algorand, Inc.

Authenticated data structures have been proposed for dra-
matically reducing storage costs in cryptocurrencies [12, 15,
33,47,50]. In a cryptocurrency, any user can submit a transac-
tion (such as sending money to another user). Transactions get
distributed to numerous validators, who run a fault-tolerant
protocol to authenticate them, check their validity against the
system’s current state (e.g., to prevent overspending), and se-
rialize them. In the typical deployment, each stores the entire
state of the system in order to validate transactions.

We present Aardvark, an authenticated dictionary for cryp-
tocurrencies that substantially reduces validator storage (to en-
able so-called stateless validation). Aardvark supports many
validators and many concurrently-issued transactions per sec-
ond. We specifically target account-based cryptocurrencies
(e.g., Ethereum [51], Coda [13], Algorand [22]), which main-
tain a dictionary that maps account identifiers (e.g., public
keys) to account data (e.g., balances). Our design solves sev-
eral key challenges present in this environment.

First, network bandwidth is at a premium because transac-
tions and their proofs must be observed by many validators.
Supporting short proofs is a particular challenge. In Aardvark,
proofs are roughly 10× shorter than in typical Merkle-tree-
based authenticated data structures because its design is based
on pairing-based vector commitments with the shortest known
proofs. Vector commitments do not provide a dictionary inter-
face (instead, they provide authenticated fixed-length arrays),
so much of our work involves building a dictionary interface
from this more limited functionality.

Second, the ability of untrusted clients to issue transactions
requires the data structure to remain efficient no matter how
it is used. Aardvark enforces tight upper bounds on resource
use even under adversarial access patterns.

Third, multiple clients may issue transactions concurrently,
but validators must order them in a sequence, which presents
a problem for the validity of the proofs. For example, sup-
pose that one user issues a transaction that modifies a record,
and then another user issues a separate transaction before the
validators process the first transaction. If both transactions
operate on the same record, then once the first transaction is

processed, the data present in the second transaction becomes
stale. Moreover, even if both transactions access different
records, the proofs present in the second transaction may be
invalidated after the first transaction is processed since a proof
may depend on the entire dictionary state. Recomputing or
updating proofs as they become outdated while a transaction
is queued up (as suggested, for example, by [15]) can lead
to congestion collapse: more transactions will be queued up
when the system is under heavy load, causing the system to
slow down further as it updates the proofs of these enqueued
transactions. Instead of attempting to reduce these costs, Aard-
vark avoids them entirely by versioning the dictionary. This
mechanism enables the system to safely and efficiently check
stale proofs against an old dictionary state by maintaining a
small cache of recent modifications.

Contributions. We present the following contributions.

1. An authenticated dictionary, backed by vector commit-
ments, which possesses tight upper-bounds on excess
resource use even under adversarial access patterns (§5).

2. A versioning mechanism for this dictionary, so that it
supports concurrent transaction issuance (§6).

3. Techniques to improve the dictionary’s availability (§7).
4. An implementation of our design, integrated into the stor-

age backend of a cryptocurrency, and its evaluation (§8).
5. A rigorous definition and security analysis of the sound-

ness and completeness properties of our versioned au-
thenticated dictionary (§3.2 and Appendix A).

We survey related work next (§2), present an overview of
the system’s architecture (§3), review vector commitments
(§4), and then describe our contributions in detail.

2 Related Work

Our work focuses on short proofs since bandwidth is often a
bottleneck for transaction throughput in cryptocurrencies [18].
We focus on concrete gains in efficiency, working towards
making stateless validation practical for a high-throughput
cryptocurrency: proof sizes are comparable to transaction
sizes (100–200B per operation), validator storage costs are
reduced by a large constant fraction (800×) regardless of
adversarial behavior, and computational costs on the critical
path are mostly parallelizable and allow a 32-core machine to
process more than 1000 operations per second (§8).

Stateless validation trades validator storage for bandwidth
(taken up by proofs) and computation (required for proving
and verifying). These tradeoffs do not reduce aggregate sys-
tem costs in all settings. We now survey prior work, which
targets various other points on the tradeoff curve.

Related work in the UTXO Model. Cryptocurrencies that
work in the UTXO model organize information around trans-
actions rather than around accounts. The state of the system at

a given time is characterized by a set: namely, the set of trans-
action outputs that have not yet been used as inputs to new
transactions. Thus, each transaction needs to reference a prior
transaction and, for stateless validation, provide proof that
this prior transaction’s output has not yet been used. Stateless
validation in such designs requires an authenticated version
of the dynamic set data structure (often called a dynamic ac-
cumulator). There have been many proposals to utilize some
version of the Merkle hash tree [32] for this purpose — see,
for example, [17, 21, 33, 45, 46].

Merkle-tree-based constructions add substantial network
bandwidth costs to the cryptocurrency, which may become
a bottleneck in transaction throughput [18]. For example,
Merkle proofs at 128-bit security for a dynamic set of 100
million entries, the approximate size of the Bitcoin UTXO
set as of the time of writing, are about 1KB in size (the exact
number depends on the underlying tree structure used). In
contrast, a small transaction (e.g., transferring money in a
cryptocurrency) may be as short as 100B, so proofs using
Merkle trees impose a bandwidth overhead of 10x. On the
other hand, Merkle proofs are fast to produce and verify.

To mitigate the problem of long proofs, [21] proposes some
optimizations based on proof aggregation and local caching
of the tree nodes, adding some state back to the clients. Other
cryptographic accumulators are suitable as well; a discussion
of options is available in [20]. In particular, a design based
on groups of unknown order (such RSA and class groups) is
proposed in [12, §6.1]. (Each proof in this design is over 1KB,
but it allows for aggregating proofs for multiple transactions.)
Related work in the Account-Based Model. Because
account-based cryptocurrencies maintain a mapping of ac-
counts (usually identified by public keys) to account data
(such as balances), it is natural to use authenticated dictionar-
ies to reduce the client state. Most constructions of authenti-
cated dictionaries [15, 24, 34, 37, 40, 50] are based on some
variant of Merkle trees [32] and also suffer from the problem
of long proofs, imposing 10–20× bandwidth overhead for a
simple transaction that involves accessing two keys in the
dictionary (e.g., source and destination accounts).

Some constructions of authenticated dictionaries that are
not based on Merkle trees are static, without provisions for
efficient updates to the data (e.g., [27]). Some early dynamic
constructions not based on Merkle trees (e.g., [39] and [19,
§4]) require the verifier to keep secrets from the prover to
prevent the prover from cheating.1 Thus, they are not suitable
for cryptocurrency applications, as cryptocurrency validators
are public and thus cannot be trusted with secrets.

Concerto [4] defers verification to the end, incurring a
linear cost (in the dictionary size) once instead of small costs
all the time. This approach is not suitable for cryptocurrencies
as transactions need to be processed in real time.

1To be exact, [39] can work without verifier secrets, but dictionary updates
become computationally expensive if proof sizes are kept small (on the order
of seconds per update for proof sizes under 1KB per [39, Tables 2 and 3]).

Boneh, Bünz, and Fisch [12, §5.4, §6.1] propose the first
authenticated dictionaries that require no verifier secrets and
do not use Merkle trees; instead, they rely on factoring-based
(or class-group-based) accumulators and vector commitments.
They also suggest (but do not investigate the costs of) using
such dictionaries to implement stateless validation. The proof
length in their construction is over 1KB and thus comparable
to Merkle trees (at 128-bit security). However, it is possible to
batch proofs for multiple operations into a single constant-size
proof. Follow-up works [1, 49] improve various dimensions
of [12] in important ways, adding functionality and efficiency;
however, the proofs are still over 500 bytes long.

Tomescu et al. [48] address a somewhat different problem
of append-only authenticated sets and dictionaries using bilin-
ear pairings; their proofs (for different operations than simple
reads and writes) are a few kilobytes in length for reasonable
security parameters and number of accounts.

An elegant solution called EDRAX that avoids authenti-
cated dictionaries was proposed by Chepurnoy et al. [17].
EDRAX assigns sequential integers (indices into an array) as
account identifiers, thus simplifying the necessary data struc-
ture from an authenticated dictionary to a vector commitment.
The approach adds complexity around new account registra-
tion: instead of simply issuing a transaction that sends money
to a new public key (as in Aardvark), EDRAX requires every
new public key to register via an initialization transaction
(preventing the use of this transaction as a denial-of-service
vector is discussed in [47, §4.2.4]). Other transactions to this
public key must know the index and cannot be processed un-
til this registration happens; at the same time, registration is
computationally expensive, as we discuss later in this section.

Public Parameters and Commitment Size. Some pairing-
based vector commitment schemes require a trusted set of
public parameters. In known pairing-based vector commit-
ments, these parameters are at least proportional to the vector
length. EDRAX (and its improvement [47]) requires public
parameters that are proportional to the number of accounts
in the system because all the data is stored as a single vector.
In contrast, Aardvark uses multiple vectors (which share the
same parameters). This approach avoids an a priori bound on
the number of accounts in the system and does not require
lengthy parameter generation. However, Aardvark’s valida-
tors need to store multiple vector commitments instead of just
one. For reasonable vector lengths, this allows validators to
store a small fraction of the total state.

Shrinking Long Proofs Generically with SNARKs. Any
long proof for any authenticated data structure can, in princi-
ple, be shrunk to constant size by an application of succinct
non-interactive arguments of knowledge (SNARKs), which
are general-purpose tools that can apply to any computation.

Current state-of-the-art SNARKs [26] have proofs that are
quite short—just three points on a pairing-friendly elliptic
curve, or about 144 bytes for 128-bit security. This approach

is taken in Zcash [8] for UTXO-based cryptocurrencies (note
that Zcash has privacy as its primary goal, which introduces
additional complexity into the design). EDRAX [17] suggests
it for account-based cryptocurrencies. SNARK verification
is quite efficient, requiring a number of elliptic curve point
multiplications proportional to the size of the statement be-
ing proven and just one product of three elliptic curve pair-
ings [26, Tables 1 and 2]. The drawback of SNARK-based
approaches is in the cost of proving. Computing a SNARK is
time-consuming. For example, a SNARK for the (admittedly
complex) statement proving a Zcash transaction is reported
to take 3s [9, §1], and a SNARK for the vector commitment
proof of EDRAX is reported to take 77s [36]. (See §8.1 for a
more detailed comparison of Aardvark and EDRAX).

With the advantages of near-constant verification time, sev-
eral proposals (often called “Rollups”) batch multiple transac-
tions together in a single proof (e.g., see [16, 23, 31]). While
providing significant savings in verifier time, such proposals
incur high prover latency because a prover must collect many
transactions before producing a proof, and the per-transaction
proving costs are on the order of a second [28, Fig. 7] and
hard to parallelize.

SNARKs are an active research area, and SNARK-based ap-
proaches for stateless validation are likely to improve, poten-
tially outperforming Aardvark in some settings. In particular,
Ozdemir et al. report [35, Fig. 6] that a single Merkle proof
(when a hash function is chosen to be particularly SNARK-
friendly) can be converted into a SNARK in about 100ms.

Who supplies the proofs? Any approach to stateless vali-
dation must address the question of who is responsible for
maintaining the outsourced data and supplying the proofs
necessary for each transaction. We reiterate that proofs are
not static: even if a user’s account data does not change, the
proof of correctness of that data changes as other accounts
change (and cause the commitment to change).

Zcash and EDRAX require users to store proofs and keep
them fresh by synchronizing them against the cryptocur-
rency’s transactions. Implicitly, clients depend on untrusted
storage, as if they miss an intervening transaction while of-
fline, they must obtain it from the storage to catch up.

This design presents problems for new account registration
in EDRAX described earlier. There is no one to keep a proof
up to date for an index that is not yet attached to an account.
A new user must either compute this proof by reading every
transaction from the beginning or rely on a server who knows
the entire current vector to provide the proof [36]. Either way,
the cost is at least linear in the number of accounts. Aardvark’s
approach of using multiple short vector commitments may
also be applied to EDRAX to reduce this cost.

Since EDRAX is based on vector commitments with long
public parameters (proportional to the number of accounts
in the system), an important feature of EDRAX’s design is
ensuring that each user needs only a small subset of the public
parameters to synchronize a proof. Tomescu et al. [47] im-

prove this vector commitment, achieving constant-size proofs
and requiring only constant-size portions of the public param-
eters for the relevant operations.

A disadvantage of this approach in the account-based
model is that it limits the kinds of changes a transaction can
cause to the recipient account. A sender of the transaction
cannot supply a proof for the state of the recipient’s account
(neither the old one nor the updated one), which means that the
only modifications to the recipient account that can be made
by a transaction are ones that do not require knowledge of the
account state. Modifying a committed state without knowing
it requires some kind of homomorphism of the commitments.
EDRAX relies on the additive homomorphism of its vector
commitments to enable the addition of funds to an account
with unknown state, so a transaction can do nothing but add
funds to the recipient. Thus, more sophisticated operations
(e.g., smart contracts) are not supported. Similarly, UTXO-
based Zcash can only give a recipient a transaction output,
rather than modify the recipient’s state in a more general way.

In contrast, Aardvark outsources the problem of computing
and supplying the proofs to untrusted archival nodes. This
design enables us to have arbitrary updates to account infor-
mation of both senders and recipients.

Out-of-order transaction processing and stale proofs. Re-
call that transactions are issued asynchronously and then or-
dered by the cryptocurrency consensus mechanism. Since
the correctness of account data changes as other accounts
change, the proofs may become stale by the time transactions
with proofs reach a validator. Mechanisms for handling stale
proofs are necessary for ensuring that transactions do not get
rejected unnecessarily, which may severely limit the cryp-
tocurrency’s throughput—especially if the time to compute
and transmit the proofs is significant. At the same, these mech-
anisms cannot be too permissive because they must prevent
double-spending. Thus, validators cannot simply accept an
account state authenticated by a stale proof, even if it is valid
with respect to a recent commitment value, because the state
could have changed since the proof was issued.

Most related work does not address this problem, instead
assuming that the proofs reach the validators before becom-
ing obsolete (e.g., [17] and [8, §8.3.2]). Aardvark’s caching
mechanism addresses this problem (§6).

3 Overview

In a cryptocurrency, a collection of validators jointly main-
tain the state. The current state is defined by a well-known
(“genesis”) initial state modified by a sequence of atomic
transactions. Clients submit transactions, and the validators
execute a protocol to verify these transactions and append
them to the sequence if they are valid. This protocol is de-
signed to ensure consensus, so that all validators agree on the
same public sequence of transactions. Transactions are called

confirmed when they are appended to this sequence.
In order to decide whether to accept a transaction, the val-

idators need to know the current state of the system. For
instance, if Alice issues a transaction that spends more money
than she has, the validators must reject this transaction; in
order to do that, they need to know Alice’s current balance.

Aardvark enables the validators to use the system state
without requiring them to store it. Instead, untrusted archives
maintain this state, while validators maintain only a small
commitment that evolves with the state. To issue a transaction,
a client queries an archive for data related to the transaction.
The archive returns the data and authenticating information
called a context2. The client submits the transaction, along
with the data and the contexts, to the validators, who check the
data and the contexts against the commitments and verify the
transaction. Once this transaction is confirmed, the validators
use the contexts to update their commitments, and archives
update their copies of the system state.

Note that if a transaction T is issued at state s1 and comes
with contexts that correspond to s1, other transactions may be
confirmed after s1 but before the validators get to processing
T . At the time the validators process T , their commitments
may correspond to some later state s2. In order to process
T , validators must be able to use contexts from s1 in order
to validate T and update their commitments (which corre-
spond to s2) based on the results of T once T is confirmed.
Aardvark addresses this challenge of out-of-order transaction
processing, as long as no more than τ transactions have been
confirmed between s1 and s2 (where τ is a system parameter).
System Components. Our system is built on vector commit-
ments, described in §4. We first implement our basic dictio-
nary operations (Get, Put, and Delete below) using vectors
(§5). We next enable Aardvark to execute transactions out
of order by developing a versioning scheme for the dictio-
nary (§6). We then introduce a mechanism for Aardvark to
continue providing service even if archives fail (§7).

3.1 Transaction Interface
Aardvark presents a dictionary interface which associates keys
(account identifiers) with values (account balances and other
information). In a transaction, clients interact with the state
by issuing a sequence of operations against the dictionary to
read and modify the key-value mappings.

Specifically, Aardvark supports the following operations:
Get, Put, and Delete. Get(k) returns the value v associated
with the key k or a special value which denotes that k is
absent. Put(k,v) associates a new value v with k, overwriting
any old value. Delete(k) disassociates k from any value.

In Aardvark either all of a transaction’s operations execute,
or none do. A transaction specifies a set of keys (a bitstring

2We use the word “contexts” instead of “proofs” for the authenticated
dictionary in order to avoid confusion with the proofs in the underlying vector
commitments. Vector commitment proofs are elements of contexts.

which identifies a single value) and a list of operations which
involve those keys. All keys referenced by a transaction must
be specified up front. In particular, operations such as dynamic
key reads are unsupported. (See §6.3 for more details.)

Let alice and bob denote keys for two balances. (For
simplicity, assume Get returns 0 for a missing key.) Then
a transfer of p units of money from alice to bob may be
implemented via a transaction, in pseudocode.

with Transaction(alice, bob) as txn:
a = txn.Get(alice)
b = txn.Get(bob)
assert a >= p
if a-p == 0:

txn.Delete(alice)
else:

txn.Put(alice, a-p)
txn.Put(bob, b+p)

If the validators were to store the system state, they would
have enough information to process the transaction. Since in
Aardvark they do not, the client asks archives to provide con-
texts for every dictionary operation in the transaction. Given
a key and an operation, the archive computes the context σ.
For every dictionary operation in the transaction, the client
supplies the context obtained from an archive.

3.2 Security
The cryptocurrency depends on a proportion (e.g., a majority)
of validators to faithfully conform to the rules of its protocol.
Aardvark assumes that these same validators also follow its
protocol. In contrast, the archives and clients are allowed to
arbitrarily deviate from correct behavior.

Aardvark aims to provide functionality identical to that of
a ideal dictionary with respect to a computationally-bound
adversary. This functionality manifests itself in Aardvark
in two ways: soundness and completeness. Here we state
these properties informally and motivate their correctness.
Appendix A formalizes and proves them.

Soundness. The effect of every transaction for a validator
is the same as it would be if the validator had large persis-
tent storage and stored the entire state on its own, without
any archives. This property is precisely specified in §A.1.2.
At a high level, this property is guaranteed by induction, as
follows. The commitment initially reflects the genesis state
by design. If the commitment reflects the current state, then
a validator will accept transactions only with correct data
and will update its commitment to correctly reflect the new
state. We formalize this proof, which relies on the security of
underlying vector commitments, in §A.3.

Completeness. A validator will accept a transaction as long
as it includes correct contexts from the archives, and not too
many other transactions have been confirmed since these con-

texts were created. This property is precisely specified in
§A.1.1 and is evident by inspection of our design.

3.3 Availability

Aardvark operates in an environment where clients and
archives may be malicious. Two aspects of Aardvark’s design
allow it to provide availability in such scenarios.

Efficiency under adversarial transactions. Under adversar-
ial modification patterns, storage cost for validators is upper-
bounded by a small fraction of the state size, which allows
the system to charge storage fees to prevent denial-of-service
attacks. Specifically, the cryptocurrency may require that each
account holds a fixed minimum balance so that such an attack
would require a substantial, ongoing investment. §8 evaluates
this upper bound analytically.

Archive-free operation. Even if no archive functions cor-
rectly, clients can monitor the public transaction sequence to
maintain a current context for any given key. §7 describes
how clients synchronize their contexts without interacting
with archives.

4 Background: Vector Commitments

To explain vector commitments, we recall hash functions. A
cryptographic hash function H , given an input X , produces
h = H (X). Because it is infeasible to find another X ′ ̸= X
such that h = H (X ′), we can say that h is a “commitment” to
X : the storage of X can be outsourced to an untrusted server as
long as we retain h. We can verify the data that the untrusted
server sends us by comparing its hash value to h.

Vector commitments can be viewed as generalizations of
cryptographic hash functions. A vector commitment scheme
can commit to not just one input X , but an entire array V of
data: the Commit procedure produces a short commitment c
to the vector V . Unlike a mere hash function, a vector com-
mitment scheme allows anyone who knows c to verify not
only the entire V , but also individual elements V [i] without
seeing other elements if given a proof πi, where πi is pro-
duced by someone who knows V . Commitments and proofs
are efficiently updatable when one value changes.

We first describe the interface and security properties re-
quired of a vector commitment scheme, and then we discuss
the specific vector commitment scheme we use.

4.1 Interface and Security Properties

We consider schemes which fix the array size at parameter-
generation time,3 with the following black-box interface.

3There are vector commitment schemes that do not require this, but they
are not efficient enough for our purposes.

ParamGen(B)→ pp
Commitpp(V)→ c

Openpp(V, i)→ vi,π

Verifypp(c, i,vi,π)→ ok/⊥
CommitUpdatepp(c,(i,vi,v′i))→ c′

ProofUpdatepp(π, j,(i,vi,v′i))→ π
′

ParamGen generates parameters pp that can be used to
commit to an array of size B. These parameters must be gener-
ated by a trusted procedure (for example, through multiparty
computation) that does not reveal the secrets used. One set
of parameters can be used for multiple arrays, each of size B.
These parameters pp are used by all other algorithms; we will
omit the subscript pp when it does not cause ambiguity.

Commit creates a cryptographic commitment to an B-
length vector of variable-length data.4 Commit is determin-
istic: if v1 and v2 are two B-sized vectors and v1 = v2, then
Commit(v1) = Commit(v2). We rely on the determinism of
Commit to ensure that validator state is consistent.

Open creates a cryptographic proof that a particular vector
element vi (present at index i<B in the vector v) is committed
to in Commit(V). Verify checks that a proof is valid.

CommitUpdate returns Commit(V ′), where V ′ is obtained
from V by changing the ith entry from vi to v′i. Similarly,
ProofUpdate returns the proof Open(V ′, j) for element j in
this V ′. Note that CommitUpdate and ProofUpdate require
only one element of V , unlike Commit and Open.

The binding property of the commitment5 ensures that it is
computationally infeasible to prove that any value other than
vi is at index i.6

4.2 Specific Choice: Vector Commitments of
Libert and Yung

The specific choice of the underlying vector commitment is
not crucial for Aardvark, as long as a commitment can be
efficiently updated when one element in the vector changes.
However, as stated before, our particular choice of commit-
ment is motivated by our efficiency requirements. In par-
ticular, bandwidth costs are one factor that limits system
throughput. We use vector commitments from Libert and
Yung [30]. They have the smallest known proofs: only 48
bytes for 128-bit security, or about an order of magnitude
shorter than Merkle proofs for reasonable data sizes and secu-
rity parameters. Moreover, as shown by Gorbunov et al. [25],

4Variable-length data can always be converted to fixed-length data by
hashing before applying Commit.

5Aardvark does not require a hiding property from the commitment
scheme since the backing data stored by archives is public.

6Technically, we need binding to hold only when c was honestly produced;
however, many vector commitment schemes ensure stronger binding, namely
even when c is produced by the adversary.

multiple proofs (even for different commitments) can be ag-
gregated into a single 48-byte value and can be verified at
once. They rely on pairing-based cryptography, which has
seen adoption and deployment in the last decade [41].

These vector commitments require public parameters pp
linear in B. (See [25, §4.1] for a discussion of how such
parameters can be generated.) Commitments and proofs both
take time linear in B to create and constant time to update (see
Table 3), while verification runs in constant time but requires
evaluation of a relatively expensive pairing. §8.1 evaluates our
choice of vector commitments against those used by EDRAX.

These considerations affect our design. First, the choice
of B allows Aardvark to trade off storage savings against
computational overhead. Increasing B reduces storage costs
by a constant factor and increases proof generation costs by a
constant factor.

Second, verification costs remain relatively high and are not
mitigated by scaling down B. While the proof generation work
is done by untrusted archives and can be divided amongst
many untrusted machines (e.g., on some cloud provider with
cheap storage), proof verification must be done by the val-
idator, so it lies on the critical path. Thus, to manage com-
putational costs, Aardvark must allow proof verification to
execute in parallel on independent threads and minimize the
number of required verification operations.

5 Authenticated Dictionary Design

Aardvark maintains an authenticated mapping from keys,
which are arbitrary bitstrings, to their values. Since vector
commitments provide an array interface, we must find an ef-
ficient encoding of the dictionary’s mapping in arrays. Our
approach for maintaining such a mapping is storing all key-
value pairs in an arbitrary order in arrays of size B (recall from
§4.1 that B is the vector size). To prove that a key is associ-
ated with a given value, the prover runs Open on any index
containing the key-value pair, which produces a correct result
if the key appears exactly once in the dictionary. Modifying
the value for a key involves running CommitUpdate.

Less obvious is how a prover shows that a key does not
exist. What if the prover lies about a key’s absence in a map-
ping? If we solve this problem, we can also ensure that every
key appears at most once, because as part of the insertion
proof, the prover would show that the key is absent from the
dictionary before insertion.

Aardvark achieves this invariant by using two distinct or-
derings for the key-value pairs. First, Aardvark commits to
the pairs in an arbitrary sequential ordering in the slots of
the length-B vectors. Because this ordering is arbitrary, we
can always append to the end of the last vector. By eagerly
compacting the vector upon deletion, we minimize both the
number of cryptographic operations and the amount of empty
space. Second, Aardvark commits to an independent lexico-
graphic ordering of its keys, allowing proofs of a key’s ab-

sence from the dictionary. We do so by storing each key with
its lexicographic successor. In this way, Aardvark commits to
a linked list of keys in ascending lexicographic order.

Specifically, each slot contains a triplet (k,v,succ(k)).
Given the set of all keys, we define the successor function
succ(k) for any key k as follows:

1. If k is the largest key in the dictionary, succ(k) is the
smallest key in the dictionary.

2. Otherwise, succ(k) is the smallest key in the dictionary
larger than k.

We can define a key’s predecessor in a similar way.
Proving that k maps to v involves opening the vector

commitment at the index containing the slot (k,v,succ(k)).
Proving that k is absent from the dictionary involves open-
ing the vector commitment at the index containing the slot
(k0,v0,succ(k0)), where k0 ̸= k and succ(k) = succ(k0).

Initialization. Our dictionary is initialized with vector com-
mitment parameters parameterized with a bucket size B, as
specified in the previous section. In addition, it is initialized
with a single key and value, as it must maintain the internal
invariant that at least one key is present at any time.7 The
validator must compute the initial commitment value, as it
cannot trust the archives to compute it correctly.

5.1 Contiguous Slot Packing
One challenge of implementing our dictionary is that users
may wish to insert many arbitrary keys and then later re-
move these keys. Aardvark must efficiently scale up and down
relative to these modifications, which could be adversarial
in nature. Our allocation scheme for Aardvark guarantees a
bounded worst-case storage cost regardless of access pattern.

Aardvark’s slots are grouped consecutively into buckets of
size B: the ℓth bucket holds hashes of slots numbered [Bℓ,Bℓ+
B). Denote the data in the ℓth bucket as D[ℓ]. For each ℓ,
archives store D[ℓ], while the validator stores Commit(D[ℓ]).
The validator also stores the total size of the dictionary, s. Let
D denote the sequence of all D[ℓ], and define the dictionary
commitment to be the sequence of all vector commitments to
all buckets and the value s.

To modify a slot, an archive computes the absolute index of
the slot in the slot ordering, along with the proof of the slot’s
current value at that index. This data allows the validator to
modify the slot in place.

def slot_write(db: handle, i: index,
old: slot, new: slot):

bucket, offset = i/B, i%B
c0 = db.get_commit(bucket)
c1 = CommitUpdate(c0, (offset, old, new))
db.set_commit(bucket, c1)

7This may be achieved with a sentinel key which is never deleted.

A = Slot(key=“aardvark”, val=2, next=“cat”)
C = Slot(key=“cat”, val=3, next=“dog”)

{A,C}

Put(“bear”, 5)

A = Slot(key=“aardvark”, val=2, next=“bear”)
B = Slot(key=“bear”, val=5, next=“cat”)
C = Slot(key=“cat”, val=3, next=“dog”)

{A,B,C} A 2 C 5BA BC

A 2 C 5BA C

Figure 1: Key insertion in Aardvark consists of the following
steps. (1) The key is inserted into the last slot of the dictionary.
(2) Its predecessor is verified, and the new slot’s next pointer is
attached to the predecessor’s next pointer. (3) Its predecessor’s
next pointer is updated to the inserted key. Observe that the
operations shown here require only one update operation on a
vector commitment (updating the predecessor’s next pointer)
since the tail is stored by the validator and not committed to.

To enforce tight bounds on the dictionary’s space overhead,
Aardvark’s packing scheme maintains an invariant: the val-
idator stores at most ⌈s/B⌉ vector commitments plus a small,
constant amount of metadata. When a new element is inserted,
it is added to the last slot in the dictionary (at s).

def slot_append(db: handle, new: slot):
s = db.size() + 1
db.set_size(s)
if s%B == 1:

db.push_commit(Commit([new]))
return

bucket, offset = s/B, s%B
c0 = db.get_commit(bucket)
zeros is the bit "0" repeated 256 times
c1 = CommitUpdate(c0, (offset, zeros, new))
db.set_commit(bucket, c1)

Similarly, when an element is deleted, it is overwritten with
the element at the last slot (at s), and the last slot is cleared.

5.2 Authenticating Reads and Writes
To prove that a key k is associated with a particular value,
an archive locates that key’s slot and computes a proof of
its membership with Open. Then, the archive transmits the
slot, its index, and its proof to the validator as a context ob-
ject. For a validator, reassigning the key to a new value is
straightforward given its context: validate the context, use the
index to locate the slot, and overwrite the slot with its new
value. Updating the slot is implemented by slot_write, and
context verification entails executing Verify.

def verify_ctx(db: handle, ctx: context):
i, val, pf = ctx.index, ctx.slot, ctx.pf
bucket, off = i/B, i%B
c0 = db.get_commit(bucket)
return Verify(c0, off, val, pf)

Proving that a key does not exist in the dictionary is similar, ex-
cept that the archive proves the existence of the predecessor’s
slot. Thus, Get is simply implemented by checking which of
these cases we are in.

Inserting a mapping for a new key k involves appending to
the last bucket a slot which holds k and its value v. Moreover,
we preserve the lexicographic ordering of the keys, similar
to a linked-list insertion, which requires the context of k’s
predecessor. Thus, Put may be implemented as follows.

def Put(db: handle, key: key, val: value,
ctx: context):

assert verify_ctx(db, ctx)
assert ctx.slot.key <= key < ctx.slot.next
if ctx.slot.key == key:

old, new = ctx.slot, ctx.slot
new.val = val
slot_write(db, ctx.index, old, new)
return

new_last = Slot(key=key, val=val,
next=ctx.slot.next)

slot_append(db, new_last)
old_pred, new_pred = ctx.slot, ctx.slot
new_pred.slot.next = key
slot_write(db, ctx.index,

old_pred, new_pred)

Finally, Delete is the inverse of Put and requires three con-
texts: that of k itself, that of its predecessor (for the linked-list
deletion), and that of the dictionary’s last slot with respect to
the sequential order (since deleting a key involves overwriting
its slot’s contents with the contents of the last slot).

5.3 Tail Operations
Insertion and deletion operations both affect the tail bucket,
the last bucket in the dictionary. By batching cryptographic
operations to this bucket, Aardvark reduces the cost of main-
taining its commitment and obviates the need for slot inser-
tions and deletions to provide a context for the last slot.

Specifically, no commitment to the tail bucket is maintained.
Put operations appending slots do not cause the immediate
creation of a new vector commitment. Instead, the new slots
are stored directly on the validator until more than B slots
have accumulated, at which point the validator performs a
single Commit operation to generate the new commitment.

Similarly, for Delete operations, slots in the tail bucket with
no commitment are removed without CommitUpdate opera-
tions. Once no such slots remain, the validator decommits to

the entire bucket at once by obtaining the preimage of the
last commitment and executing a single Commit operation.
From here, the validator again stores the bucket slots in the
preimage without a commitment.

Because the bandwidth cost of a single decommitment is
relatively high but amortizes well over time, the validator
caches the preimages of some suffix of the buckets in a tail
cache and synchronizes this cache in the background. The val-
idator forgets old buckets as insertion operations accumulate,
and it requests buckets from archives as deletion operations
accumulate. If a validator lacks the preimage to a tail bucket,
it refuses to serve subsequent deletion requests until it can
resynchronize. To reduce thrashing when insertions alternate
with deletions, the validator maintains a minimum tail cache
size of L but a maximum tail cache size of 2L.

6 Out-of-order Transaction Processing

The dictionary design in §5 changes state on every commit-
ment of a write-containing transaction, invalidating proofs
against an older state. Specifically, executing a transaction
that writes to some bucket will invalidate proofs for any
concurrently-issued transaction which uses the same bucket.

In a high-throughput system, proofs may be invalidated
frequently, requiring either clients or archives to constantly
recompute and resubmit proofs for pending transactions. This
problem worsens under heavy load, as the buildup of pend-
ing transactions further increases the cost of recomputing
proofs. Moreover, an attacker may degrade service to a user
by constantly modifying their key’s bucket-neighbors, invali-
dating its old proofs. Unfortunately, our evaluation shows that
ProofUpdate is expensive for our vector commitments (§8.1).

Aardvark addresses this problem by entirely eliminating
the need to update stale proofs. Instead, Aardvark employs a
versioning system which allows it to accept a transaction with
stale proofs even while concurrent operations modify state
referenced by that transaction.

First, the validator assigns each transaction it executes a
sequence number, appending it to the sequence of completed
transactions. Applying each transaction sequentially produces
the current dictionary state. Thus, each prefix of this sequence
determines a single snapshot of the dictionary state at a partic-
ular sequence number, and the sequence numbers enumerate
the versions of the dictionary.

When issuing a transaction, clients declare the least version
t0 it may execute with. The contexts attached to the transaction
refer to the snapshot of the dictionary as of t0. The transaction
may not execute past version t0 + τ, where τ is the system’s
maximum transaction lifetime and is a global constant set at
initialization. A larger value of τ allows old transaction proofs
to be accepted by the system for a longer period of time. When
the dictionary is under heavy load, a client’s transaction may
expire before it is executed, forcing its contexts to be updated

before the transaction is resubmitted, so a larger τ reduces
this extra work when the system is congested.

Second, the validator holds the dictionary commitment not
as of the most recent version, but instead as of the base snap-
shot τ versions ago. For each transaction between the oldest
state and the newest state, the validator caches the changes
caused by the transaction, so a smaller τ reduces cache over-
heads. These changes modify the vector commitments over
the buckets, so the validator caches the modified vector com-
mitments as well. Thus the validator may validate proofs
against any snapshot up to τ versions old by checking them
against the cached modified vector commitments.

6.1 Completeness and Context Versioning
A client begins by querying an archive for the set of contexts
necessary to execute a transaction, which consists of either
Get, Put, or Delete operations. For each operation, the archive
returns the slots required by the validator, their indices in
the current version of the dictionary, and their openings with
respect to their containing buckets, along with the current
dictionary version t0. When a validator receives a transaction
along with contexts at some later version t ≥ t0, the valida-
tor must both determine the values of the slots relevant to
the transaction’s operations and also determine the changes
necessary to update its dictionary commitment.

First, the validator authenticates the contexts, checking that
they indeed correspond to slots which are valid at version t0.
This requires the validator to know the vector commitments as
of t0, since the archives opened the commitments with respect
to that version. Second, once the validator has slots correct
for t0, it updates these slots so that they are correct for t. This
requires the validator to know the updates which happened
between version t0 and version t. Once the validator has all
slots at version t, it can validate and execute the transaction,
which produces new updates to the current snapshot.

To achieve completeness, the validator must process proofs
for all versions t0 where t− τ≤ t0 ≤ t. Thus, the validator’s
commitments correspond to the base snapshot at version t−τ,
and the validator must store the last τ transactions. Whenever
the validator applies a new transaction to the state, it saves
the new transaction and marks the oldest transaction eligible
for deletion; old transactions are asynchronously applied to
the commitments before they are garbage-collected.

6.2 Caching
As mentioned previously, the validator must authenticate
proofs produced for any snapshot between version t− τ and
version t, which means it must compute the vector commit-
ment corresponding to that version. Because the validator
must eventually compute all vector commitments anyway in
order to update the commitments to the base snapshot, Aard-
vark maintains a cache of vector commitment deltas. This

cache contains, for each version t ′ between t−τ and t, the old
and new vector commitments corresponding to each bucket
modified by the transaction with sequence number t ′. This
cache enables the validator to authenticate proofs without
running CommitUpdate operations for each transaction.

Just as with vector commitments, the validator may also
similarly cache slot deltas and key deltas to speed up lookups
of slots (by index) and lookups of key-value pairs (by key),
respectively, by holding both the old and new values of these
slots and keys. Figure 2 illustrates how these caches enable a
validator to process operations in transactions.

Determinism. Aardvark requires that updates are determinis-
tic and that context verification is consistent across validators
so that they compute matching commitments, which is partic-
ularly important in a cryptocurrency. Updates are made con-
sistent by enforcing canonical orderings, such as by sorting
keys before applying deltas and by processing key insertions
and deletions in a well-defined order.

Block Batching. To reduce the in-memory overhead of main-
taining deltas and the cost of searching deltas for keys, Aard-
vark supports batching transactions into blocks. With a block-
commit optimization, versions (and τ) may refer to block
sequence numbers as opposed to transaction sequence num-
bers. Once a block of transactions is processed, Aardvark
merges all deltas in the block. By matching the block’s key
insertion operations with deletion operations, Aardvark re-
duces the total number of cryptographic operations required
and expedites queries and updates to the base snapshot.

6.3 Transaction Expressiveness
Our choice of versioning scheme allows Aardvark transac-
tions to be fairly expressive. For example, transactions ap-
plying commutative changes to values, such as the addition
or the maximum function, interleave nicely in Aardvark. At
the same time, authenticated dictionaries possess an inherent
limitation. All keys must be fixed once a context is created.

To illustrate, suppose that the value of a key k1 is another
key k2, and some transaction T executes Get(Get(k1)). T
has no way to compute the proof belonging to the key k2 =
Get(k1) because some other transaction may execute Put(k1)
after T is issued but before T is confirmed.

7 Archive-free Operations

The dictionary design presented above relies on archives for
availability: if the archives go down or refuse to serve a client,
the client cannot perform all operations. However, with small
modifications, most operations may be made archive-free:
they may be decoupled from archives, which allows them to
execute even if all archives are unavailable.8

8One additional benefit of archive-free operations is that they reduce
steady-state computational load on archives. This is significant when scaled

Key Value Next
“aardvark” 2 “cat”

“cat” 3 “dog”
“koala” 13 “lemur”

.

Slots (archive only)

Op Key Value Version
Modify “cat” 8 16
Create “bear” 5 17
Delete “koala” 18

.

Recent Operations

Bucket VC
0 0x1A2B...

1 0x3C4D...

2 0x5E6F...

.

Commitments

(1)
Storage

Version: 15

Tail: []
VC 0: 0x1A2B...→ 0xD9C8...
Key: “cat”: 3→ 8

Version: 16

(3)

Tail: [append “bear”]
VC 3: 0xFEED...→ 0xBAAA...
Key: “bear”: 0→ 5

Version: 17
Tail: [truncate “koala”]
VC 2: 0x5E6F...→ 0x3581...
Key: “koala”: 13→ 0

Version: 18

(2)

Memory

Figure 2: Three Gets in different Aardvark transactions (τ = 3): (1) Get(“aardvark”,σ = {val: 2, index: 1, version: 17})→ 2, (2)
Get(“walrus”,σ = {val: 5, index: 3, version: 18})→ 34, and (3), Get(“cat”,σ = {val: 3, index: 0, version: 12})→ 8. For (1),
neither the key itself nor its bucket has been modified recently, so the archive’s proof is guaranteed to be valid for the vector
commitment on the validator’s storage. For (2), the value itself has not been modified recently; however, a deletion operation
relocated it. Since its proof was created after relocation, the commitment is in a vector commitment delta. For (3), the value was
modified recently, so the proof is unnecessary; as a result, the dictionary can simply look up the value present in the key delta.

Specifically, consider a client which possesses a correct con-
text for some key k at version t and then observes dictionary’s
update to version t +1. An update to the client’s context must
either overwrite (or delete) k, modify a bucket-neighbor of
k, or move k into another slot (due to a Delete). In the first
case, a proof update is necessary only if k is deleted, where it
suffices for the client to store k’s predecessor’s context. The
second case corresponds to a simple ProofUpdate operation.
Finally, in the third case, the Delete operation contains the
context of the new slot, which the client can store.

Thus, a client that maintains fresh proofs of a key and/or
its predecessor can issue arbitrary valid Get, Put, or Delete
operations without consulting an archive. Moreover, proof
updates only need to be issued once every τ sequence numbers.
There is one exception: at a certain point, a validator may run
out of its tail cache because too many deletions have happened.
In that case, no subsequent deletions may be executed because
the tail cannot be moved to fill new slots.

8 Evaluation

Our evaluation answers the following questions:

• Vector Commitments: What are the performance charac-
teristics of our choice of vector commitments, and how
do they compare to alternatives?

• Storage Savings: How much storage does a validator
require compared to an archive, which stores all data?

• Bandwidth Costs: What additional networking overhead
do Aardvark’s contexts introduce?

• Processing Overhead: What are the processing costs
required of both validators and archives?

over the user base, as Open involves a non-trivial computation (§8.1).

Table 1: VC Operation Latency (mean ± SD µs)

Operation Aardvark
Merkle

Tree

EDRAX
w/o

SNARK

Commit 40262±129 1317±4 —

Open 40277±444 < 1 —

Verify 3707±10 9±0 3131±9

CommitUpdate 62±1 9±0 13±1

ProofUpdate 62±1 < 1 27±19

Table 2: VC Object Sizes (bytes)

Object
Aardvark
and [47]

Merkle
Tree

EDRAX
w/o

SNARK

EDRAX
w/

SNARK

Com. 48 32 64 64

Proof 48 320 640 192

We give closed-form expressions for storage and bandwidth
costs. For computation costs, we present an empirical eval-
uation on a prototype implementation, which is available at
https://github.com/derbear/aardvark-prototype.

8.1 Vector Commitments
We evaluate the operations in our implementation of vector
commitments, in a basic Merkle Tree, and in the implementa-
tion used in EDRAX, both with and without the SNARK [17,
§4.1]. We compare to the vector commitments of [47] analyt-

https://github.com/derbear/aardvark-prototype

Table 3: VC Curve Operations (scalar multiply, pairing)

Operation
Aardvark
and [47]

EDRAX
w/o

SNARK

EDRAX
w/

SNARK

Commit (O(B),0) (O(B),0) (O(B),0)

Open (O(B),0) (O(B),0) SNARK

Verify (O(1),2) (O(1), logB) (O(1),3)

CommitUpdate (O(1),0) (O(1),0) (O(1),0)

ProofUpdate (O(1),0) (O(logB),0) SNARK

ically, because no implementation is available.
We implement our vector commitment scheme in Rust [3],

using a pairing library for algebraic operations [2] (which
is a fork of Bowe’s library [14]).9 We compare our imple-
mentation against that of EDRAX [52]. Although EDRAX
presents an extension with SNARKs (§2), the implementation
is not available. Moreover, the implementation supports nei-
ther Commit nor Open, which EDRAX does not require since
clients incrementally update proofs and commitments.

We perform single-core microbenchmarks on a m5.metal
Amazon EC2 instance having a Intel Xeon Platinum 2.5GHz
CPU with sizes of 32KiB, 32KiB, and 1MiB for the L1, L2,
and L3 caches, respectively. To compute operation throughput,
we execute 100 iterations to warm up the machine state and
then perform 1000 measurements. We precompute powers
of base points in our vector commitments, the interior nodes
of the Merkle Tree, and the update public keys in EDRAX.
We set B = 1024, since EDRAX vector commitments support
vector sizes which are a power of two.

Tables 1 and 2 show the results of our microbenchmarks.
We do not provide operation latencies of EDRAX with a
SNARK in Table 1, because we did not implement the very
complex SNARK computation. We elaborate on those costs
here. CommitUpdate remains the same. According to [17,
§4.2], the cost of Verify is approximately 7ms. Understand-
ing the cost of ProofUpdate with a SNARK is more subtle,
because EDRAX requires updating every vector commitment
proof (one per client) whenever any data in the vector changes
but requires recomputing SNARKs only for the one proof (of
the sender account value) that must be sent with a transaction.
The cost of computing the SNARK is 77s [36], incurred by
the client only when submitting a transaction; at all other
times, ProofUpdate with a SNARK is the same as without.

The EDRAX implementation uses a different underlying
elliptic curve than Aardvark. Since curve operations are
roughly 5× faster on the EDRAX curve, the CommitUpdate
and ProofUpdate operations are also faster. However, Verify
times (without a SNARK) are roughly equivalent.

9More recent implementations of pairings [42, 43] are likely to provide a
noticeable speed-up to our benchmarks.

In particular, while Aardvark uses the BLS12-381 [6] ellip-
tic curve, EDRAX uses one of two BN curves [7] (depending
on the presence of SNARKs). However, the specific curve
used in the EDRAX implementation provides approximately
100 bits of security [5], which is less than the 128-bit security
provided by our curve.

To compare the constructions independently of the curve
choice, we count the number of both group and pairing opera-
tions in Aardvark and EDRAX in Table 3. (We also note that
the vector commitments of [47] perform similarly to Aard-
vark.) Our analysis shows that Verify, Open, and ProofUpdate
are slower in EDRAX’s commitments than in Aardvark’s.

8.2 Storage and Bandwidth Analysis

Storage Savings. Aardvark requires archives to store all
records in the database. If s is the number of key-value pairs,
and |k| is the size of a key, and |v| is the size of a value, the
archive storage cost for the database is

SA = s(|k|+ |v|).

In the absence of Aardvark or some other authenticated stor-
age mechanism, this is the storage cost which would be in-
curred by every validator.

In Aardvark, validators must store a commitment to a
bucket every B records. Validators must also store the records
in the tail bucket, and all records for all buckets in its cache.
This cache is at most 2L buckets large (and at least L buckets
small, unless the database is less than L buckets large). More-
over, validators must store the last τ transaction blocks to
process contexts up to τ blocks stale. If the size of an encoded
transaction block is |T | and the size of a vector commitment is
|c|, this means that the validator storage cost for the database
is upper bounded as follows:

SV < ⌈s/B⌉|c|+(2L+1)(|k|+ |v|)B+ τ|T |.

A natural choice for 2L is a small multiple of |T |B|t| , where
|t| is the size of a transaction, which allows validators to
execute several blocks of continuous deletion requests regard-
less of the availability of archives. If |T |B|t| = 10, then a value
of 2L = 30 is sufficient. Even if blocks are confirmed very
quickly (e.g., once a second), setting τ = 1000 allows clients
a considerable amount of concurrency (e.g., contexts remain
valid for fifteen minutes). As a result, because the last two
terms in the equation above are fairly small—around 1GB for
|T |= 1MB—we can drop them as s grows large. Therefore,
the ratio between a validator’s cost and an archive’s cost in
the limit is

SV

SA
→ B(|k|+ |v|)

|c|
.

As described in §4, |c|= 48 bytes in our particular commit-
ment scheme. Choosing a value such as B = 1000 for keys of

size |k|= 32 and values of size |v|= 8 bytes gives Aardvark
validators a savings factor of more than 800×; we note this
savings factor increases with the size of |v|.
Bandwidth Costs. The bandwidth costs of a transaction con-
sist of the cost of transmitting the transaction plus the costs
of transmitting the values for each key k in the transaction’s
key set and the corresponding contexts σk.

Regardless of whether a key k is present, σk includes k itself,
the value v it is mapped to, the key’s successor succ(k), the
key’s index in the sequential ordering i, the context’s version
number τ0 and the proof that results from opening the vector
commitment π. In addition, for contexts inserting a new k, the
transaction must also contain the key k itself, and contexts that
delete a key k include k twice (once in the slot itself and once
in the predecessor slot), so they may de-duplicate k. Finally,
deleting keys requires decommitting to entire buckets; with
amortization, a single net deletion requires decommitment
to one slot (but no proof). If the rest of the transaction data
(which contain its operations) are |t| bytes long, then the
number of bytes transmitted for a transaction inserting n1
keys, modifying n2 keys, and deleting n3 keys is

|t|+(3n1 +2n2 +3n3)|k|
+(n1 +n2 +2n3)(|v|+ |π|+ |i|+ |τ0|)
+max{n3−n1,0}(|k|+ |v|).

Recall that contexts in Aardvark are composed of a version
number and an index in the dictionary’s slot ordering, in ad-
dition to a 48-byte vector commitment proof (see §4), which
means that a size of |π|+ |i|+ |τ0|= 64 bytes is sufficient for
a context corresponding to a particular key. Since the cost of
transmitting the transaction in the first place was

|t|+(n1 +n2)(|k|+ |v|)+n3|k|.

we obtain, with |k|= 32 and |v|= 8, roughly 100B of overhead
per Put operation and 200B per Delete operation.

As compared to transaction size, context overhead is great-
est for small transactions that read and write many keys and
least for large transactions that read and write few keys. Note
that transactions include the key set read and written by the
transaction, which also contributes to transaction size.

Note that by aggregating proofs, we can transmit only a sin-
gle proof, which halves the marginal overhead to roughly 50
additional bytes per transaction per key, plus the fixed cost of
the aggregated proof. Applications where transactions access
many different keys benefit substantially from aggregation.

8.3 System Throughput
We perform an experimental evaluation of the computational
overhead of Aardvark. We replace the storage backend of
the Algorand cryptocurrency [22] with our open-sourced im-
plementation of Aardvark [29], and we benchmark single-
operation transactions involving a Put or Delete operation.

Table 4: Validator Processing Time for 100 000 Transactions
Scenario Cores Mean ± SD (s)

Put (modify) 1 342±14

Put (insert) 1 349±13

Delete 1 684±38

Put (modify) 32 34±1

Put (insert) 32 45±2

Delete 32 67±3

(Get involves processing similar to that of Put). We measure
completion times on an archive and a validator separately to
eliminate the effects of network latency.

We separate Put operations into two cases: (1) Put opera-
tions that insert a new key and (2) Put operations that modify
an existing key in the dictionary; this allows us to measure the
additional costs of updating key successors. For Delete oper-
ations, we pass in bucket preimages as they are needed for
vector decommitment. We do not aggregate proofs for dele-
tion operations but instead transmit both proofs separately.

We generate transactions as follows. Keys are 32 bytes
long and values are 8 bytes long. For Put transactions that
insert keys, the key is a random 32-byte string. For other
transactions, the key is picked at random from the current set
of keys. The maximum transaction lifetime is τ = 10 blocks.
The transaction’s least valid block sequence number is chosen
uniformly at random between b and b− τ. Put transactions
are 105 bytes in size, while Delete transactions are 87 bytes.

The dictionary is initialized with 1 million random key-
value pairs, corresponding to a total state size of 47 MB.10

Before running each workload, we execute τ+2 = 12 blocks,
each with 10 000 transactions of the same type, in order to
reach steady-state behavior.

We conduct our experiment on a c5.metal Amazon EC2
instance having a Intel Xeon Platinum 3.0GHz CPU, using
numactl to restrict the physical CPUs available to the system.
We call into our Rust implementation of the vector commit-
ment scheme from our dictionary implementation, written
in Go. We store commitments, recent transactions, and (for
archives) slots in an in-memory SQLite database to reduce
the effect of I/O latency costs in our measurements.

Validator Throughput. We pre-generate 100 000 transac-
tions, partition them evenly into 10 blocks, and then issue each
block to a validator. Validators perform cryptographic proof
verification in parallel and verify proofs on all transactions—
even those which only affect recently-modified keys—to sim-
ulate worst-case performance. We measure the time taken
to validate and apply transactions in each block. We run ten

10We expect measurements of computational overhead to generalize to
larger dictionaries as cryptographic costs constitute the main CPU bottleneck.

12 4 8 16 32
Hardware Parallelism (cores)

0

200

400

600

800
La

te
nc

y
(s

)

Put (modify)
Put (insert)
Delete

Figure 3: Scaling of Aardvark relative to number of cores.
Points represent the median times taken to apply 100 000
transactions batched into 10 blocks, while the error bars rep-
resent the minima and maxima. Adding cores improves per-
formance of proof verification, which is extremely parallel,
but updating commitments must still be done in order.

trials each for 1, 2, 4, 8, 16, and 32 cores. We summarize the
results in Table 4 and plot them in Figure 3.

Our experiments show that transaction validation for blocks
filled with Delete transactions take around twice as long as
blocks filled with Put transactions for existing keys, since
proof verification is expensive, and Delete transactions require
two proof verifications while Put transactions require one (in
addition to verification of tail slots).

Parallelization improves system throughput, but only up
to a point: increasing from 1 to 32 cores raises throughput
by only 8–10× for several reasons. First, in the worst case,
each transaction may affect the next, forcing serialization of
transaction processing. Second, processing all deltas in each
block incurs a fixed cost as the deltas are reconciled with
the stable storage. Third, although proof verification is com-
pletely parallelized, commitment updates are serialized in our
experiments (we did not parallelize commitment updates). Al-
though some parallelism is possible in the common case, an
adversary could cause many modifications to affect different
indexes of a single bucket, forcing serialization of these up-
dates in the worst case.11 As a result, while proof verification
costs dominate when few cores are available, the overhead
of updating slots and commitments becomes a bottleneck as
parallelization increases.

Archive Throughput. Since archive operations are trivially
parallelizable, we evaluate archive workloads on a single core.
In each trial, we query a single archive for contexts for 10 000
transactions. We run 10 trials for each workload, measuring
the throughput of context creation in each trial, and plot the
results in Figure 4.

Recall that a Put operation which modifies a key requires

11Batch commitment updates may improve performance in this worst case.
This optimization is absent from the prototype and is left to future work.

Put (modify) Put (insert) Delete
Operation

0

10

20

Th
ro

ug
hp

ut
 (o

p/
s)

Figure 4: Transaction contexts created per second on a single
archive with a single core. Put operations take roughly the
same amount of time, regardless of whether they insert a
new key or modify an existing one. Delete operations require
executing both Read and DeleteContext, so producing a proof
takes twice as long. This plot shows the median throughput,
with error bars denoting the maxima and minima.

looking up its context, a Put operation which inserts a new key
requires looking up its predecessor’s context, and a Delete op-
eration requires one of each lookup. Our evaluation shows that
a single-core archive serves around 12.8 Delete and around
22.1 Put requests per second, regardless of whether a key is
inserted or not. This shows that proofs of membership and
nonmembership in Aardvark take roughly the same amount
of time as they are dominated by the cost of creating the
cryptographic proof, as opposed to other costs.

9 Conclusion

This paper presents Aardvark, an authenticated dictionary suit-
able for high-throughput, distributed applications. We show
that it is possible to create authenticated dictionaries with
short proofs of membership and nonmembership from pairing-
based vector commitments while enforcing tight bounds on
extra resource use. We develop a versioning scheme that en-
ables us to completely ignore expensive proof update costs
while supporting concurrent transaction execution. Our evalu-
ation shows that remaining costs reside in proof verification
and in updating vector commitments and are partially ad-
dressed by parallelism.

Acknowledgments

The authors would like to thank Hoeteck Wee and Adam Suhl
for their assistance with the analysis and implementation of
vector commitments and Alin Tomescu for discussion on the
paper’s motivation and the security model. Yossi Gilad was
supported by the Hebrew University cybersecurity research
center, the Alon fellowship, and Mobileye. This material is
based upon work supported by the National Science Founda-
tion Graduate Research Fellowship under Grant No. 1745302.

References

[1] Shashank Agrawal and Srinivasan Raghuraman. Kvac:
Key-value commitments for blockchains and beyond. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT
2020, pages 839–869, Cham, 2020. Springer Interna-
tional Publishing.

[2] Algorand. Pairing plus library, 2020. https://github.
com/algorand/pairing-plus.

[3] Algorand. Source code for pointproofs, 2020. https:
//github.com/algorand/pointproofs.

[4] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald
Kossmann, Pingfan Meng, Vineet Pandey, and Ravi Ra-
mamurthy. Concerto: A high concurrency key-value
store with integrity. In Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu, editors, SIG-
MOD 2017, pages 251–266. ACM, 2017.

[5] Razvan Barbulescu and Sylvain Duquesne. Updating
key size estimations for pairings. Journal of Cryptology,
32:1298–1336, 2019.

[6] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott.
Constructing elliptic curves with prescribed embed-
ding degrees. In Stelvio Cimato, Giuseppe Persiano,
and Clemente Galdi, editors, Security in Communica-
tion Networks, pages 257–267, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[7] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-
friendly elliptic curves of prime order. In Bart Pre-
neel and Stafford Tavares, editors, Selected Areas in
Cryptography, pages 319–331, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[8] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In SP 2014, Berkeley, CA, USA, May 18-21,
2014, pages 459–474. IEEE Computer Society, 2014.

[9] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Pri-
vacy aspects and subliminal channels in zcash. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, CCS 2019, London, UK,
November 11-15, 2019, pages 1795–1811. ACM, 2019.

[10] Manuel Blum, William S. Evans, Peter Gemmell, Sam-
path Kannan, and Moni Naor. Checking the correct-
ness of memories. In FOCS 1991, San Juan, Puerto
Rico, 1-4 October 1991, pages 90–99. IEEE Computer
Society, 1991. Later appears as [11], which is avail-
able at http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.29.2991.

[11] Manuel Blum, William S. Evans, Peter Gemmell, Sam-
path Kannan, and Moni Naor. Checking the correct-
ness of memories. Algorithmica, 12(2/3):225–244,
1994. Available at http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.29.2991.

[12] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching
techniques for accumulators with applications to iops
and stateless blockchains. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part I, vol-
ume 11692 of LNCS, pages 561–586. Springer, 2019.

[13] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and
Evan Shapiro. Coda: Decentralized cryptocurrency at
scale. IACR Cryptol. ePrint Arch., 2020:352, 2020.

[14] Sean Bowe. pairing, 2019. https://github.com/
zkcrypto/pairing.

[15] Vitalik Buterin. The stateless client concept,
2017. https://ethresear.ch/t/the-stateless-
client-concept/172.

[16] Vitalik Buterin. An incomplete guide to rollups,
2021. https://vitalik.ca/general/2021/01/05/
rollup.html.

[17] Alexander Chepurnoy, Charalampos Papamanthou,
Shravan Srinivasan, and Yupeng Zhang. Edrax: A cryp-
tocurrency with stateless transaction validation. Cryp-
tology ePrint Archive, Report 2018/968, 2018.

[18] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe
Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Pra-
teek Saxena, Elaine Shi, and Emin Gün. On scaling
decentralized blockchains. In Proc. 3rd Workshop on
Bitcoin and Blockchain Research, 2016.

[19] Scott A. Crosby and Dan S. Wallach. Super-efficient ag-
gregating history-independent persistent authenticated
dictionaries. In Michael Backes and Peng Ning, editors,
ESORICS 2009, volume 5789 of LNCS, pages 671–688.
Springer, 2009.

[20] Justin Drake. Accumulators, scalability of UTXO
blockchains, and data availability. https://
ethresear.ch/t/accumulators-scalability-of-
utxo-blockchains-and-data-availability/176,
2017.

[21] Thaddeus Dryja. Utreexo: A dynamic hash-based ac-
cumulator optimized for the bitcoin UTXO set. IACR
Cryptol. ePrint Arch., 2019:611, 2019.

[22] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In SOSP 2017,
Shanghai, China, October 28-31, 2017, pages 51–68.
ACM, 2017.

https://github.com/algorand/pairing-plus
https://github.com/algorand/pairing-plus
https://github.com/algorand/pointproofs
https://github.com/algorand/pointproofs
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
https://github.com/zkcrypto/pairing
https://github.com/zkcrypto/pairing
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176
https://ethresear.ch/t/accumulators-scalability-of-utxo-blockchains-and-data-availability/176

[23] Alex Gluchowski. Introducing zkSync: the
missing link to mass adoption of Ethereum.
https://medium.com/matter-labs/introducing-
zk-sync-the-missing-link-to-mass-adoption-
of-ethereum-14c9cea83f58.

[24] Michael T. Goodrich, Michael Shin, Roberto Tamas-
sia, and William H. Winsborough. Authenticated
dictionaries for fresh attribute credentials. In Paddy
Nixon and Sotirios Terzis, editors, Trust Management,
First International Conference, iTrust 2003, Heraklion,
Crete, Greece, May 28-30, 2002, Proceedings, volume
2692 of LNCS, pages 332–347. Springer, 2003. Avail-
able at http://cs.brown.edu/cgc/stms/papers/
itrust2003.pdf.

[25] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and
Zhenfei Zhang. Pointproofs: Aggregating proofs for
multiple vector commitments. IACR Cryptol. ePrint
Arch., 2020:419, 2020.

[26] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 305–326. Springer, 2016.

[27] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Masayuki Abe, editor, ASIACRYPT
2010, volume 6477 of LNCS, pages 177–194. Springer,
2010.

[28] Jonathan Lee, Kirill Nikitin, and Srinath T. V. Setty.
Replicated state machines without replicated execution.
In SP 2020, pages 119–134. IEEE, 2020.

[29] Derek Leung, Leonid Reyzin, and Nickolai Zeldovich.
Aardvark prototype artifact, 2020. https://github.
com/derbear/aardvark-prototype.

[30] Benoît Libert and Moti Yung. Concise mercurial vec-
tor commitments and independent zero-knowledge sets
with short proofs. In Daniele Micciancio, editor, TCC
2010, volume 5978 of LNCS, pages 499–517. Springer,
2010.

[31] Loopring: zkRollup exchange and payment protocol.
https://loopring.org/.

[32] Ralph C. Merkle. A certified digital signature. In Gilles
Brassard, editor, CRYPTO ’89, volume 435 of LNCS,
pages 218–238. Springer, 1989. Available at http://
www.merkle.com/papers/Certified1979.pdf.

[33] Andrew Miller. Storing UTXOs in a balanced
Merkle tree (zero-trust nodes with O(1)-storage),
2012. https://bitcointalk.org/index.php?
topic=101734.msg1117428.

[34] Andrew Miller, Michael Hicks, Jonathan Katz, and
Elaine Shi. Authenticated data structures, generically. In
Suresh Jagannathan and Peter Sewell, editors, POPL ’14,
pages 411–424. ACM, 2014. Project page and full ver-
sion at http://amiller.github.io/lambda-auth/
paper.html.

[35] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan
Boneh. Scaling verifiable computation using efficient
set accumulators. In Srdjan Capkun and Franziska Roes-
ner, editors, USENIX Security 2020, August 12-14, 2020,
pages 2075–2092. USENIX Association, 2020.

[36] Babis Papamanthou. Private Communication.

[37] Charalampos Papamanthou and Roberto Tamassia.
Time and space efficient algorithms for two-party
authenticated data structures. In Sihan Qing,
Hideki Imai, and Guilin Wang, editors, ICICS 2007,
Zhengzhou, China, December 12-15, 2007, Proceed-
ings, volume 4861 of LNCS, pages 1–15. Springer,
2007. Available at http://www.ece.umd.edu/~cpap/
published/cpap-rt-07.pdf.

[38] Charalampos Papamanthou, Roberto Tamassia, and
Nikos Triandopoulos. Optimal verification of operations
on dynamic sets. In Phillip Rogaway, editor, CRYPTO
2011, volume 6841 of LNCS, pages 91–110. Springer,
2011.

[39] Charalampos Papamanthou, Roberto Tamassia, and
Nikos Triandopoulos. Authenticated hash tables
based on cryptographic accumulators. Algorithmica,
74(2):664–712, 2016.

[40] Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy,
and Sasha Ivanov. Improving authenticated dynamic
dictionaries, with applications to cryptocurrencies. In
Aggelos Kiayias, editor, FC 2017, volume 10322 of
LNCS, pages 376–392. Springer, 2017.

[41] Y. Sakemi, T. Kobayashi, T. Saito, and
R. Wahby. Pairing-friendly curves. IETF Draft,
https://tools.ietf.org/id/draft-irtf-
cfrg-pairing-friendly-curves-07.xml#
applications-of-pairing-based-cryptography.

[42] SCIPR-Lab. Zexe, 2020. https://github.com/
scipr-lab/zexe.

[43] Supranational. blst, 2020. https://github.com/
supranational/blst.

[44] Roberto Tamassia and Nikos Triandopoulos. Certifi-
cation and authentication of data structures. In Al-
berto H. F. Laender and Laks V. S. Lakshmanan, editors,
AMW 2010, volume 619 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2010.

https://medium.com/matter-labs/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
https://medium.com/matter-labs/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
https://medium.com/matter-labs/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
http://cs.brown.edu/cgc/stms/papers/itrust2003.pdf
http://cs.brown.edu/cgc/stms/papers/itrust2003.pdf
https://github.com/derbear/aardvark-prototype
https://github.com/derbear/aardvark-prototype
http://www.merkle.com/papers/Certified1979.pdf
http://www.merkle.com/papers/Certified1979.pdf
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://bitcointalk.org/index.php?topic=101734.msg1117428
http://amiller.github.io/lambda-auth/paper.html
http://amiller.github.io/lambda-auth/paper.html
http://www.ece.umd.edu/~cpap/published/cpap-rt-07.pdf
http://www.ece.umd.edu/~cpap/published/cpap-rt-07.pdf
https://tools.ietf.org/id/draft-irtf-cfrg-pairing-friendly-curves-07.xml#applications-of-pairing-based-cryptography
https://tools.ietf.org/id/draft-irtf-cfrg-pairing-friendly-curves-07.xml#applications-of-pairing-based-cryptography
https://tools.ietf.org/id/draft-irtf-cfrg-pairing-friendly-curves-07.xml#applications-of-pairing-based-cryptography
https://github.com/scipr-lab/zexe
https://github.com/scipr-lab/zexe
https://github.com/supranational/blst
https://github.com/supranational/blst

[45] Peter Todd. Making UTXO set growth irrele-
vant with low-latency delayed TXO commitments,
2016. https://petertodd.org/2016/delayed-
txo-commitments.

[46] Peter Todd, Gregory Maxwell, and Oleg Andreev. Re-
ducing utxo: users send parent transactions with their
merkle branches. https://bitcointalk.org/index.
php?topic=314467, 2013.

[47] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin
Drake, Dankrad Feist, and Dmitry Khovratovich. Aggre-
gatable subvector commitments for stateless cryptocur-
rencies. In Clemente Galdi and Vladimir Kolesnikov,
editors, SCN 2020, Amalfi, Italy, September 14-16, 2020,
Proceedings, volume 12238 of LNCS, pages 45–64.
Springer, 2020.

[48] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopou-
los, Charalampos Papamanthou, Nikos Triandopoulos,
and Srinivas Devadas. Transparency logs via append-
only authenticated dictionaries. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, CCS 2019, pages 1299–1316. ACM, 2019.

[49] Alin Tomescu, Yu Xia, and Zachary Newman. Au-
thenticated dictionaries with cross-incremental proof
(dis)aggregation. IACR Cryptol. ePrint Arch.,
2020:1239, 2020.

[50] Bill White. A theory for lightweight cryp-
tocurrency ledgers. Available at https:
//github.com/bitemyapp/ledgertheory/blob/
master/lightcrypto.pdf (see also code at
https://github.com/bitemyapp/ledgertheory),
2015.

[51] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1–32, 2014.

[52] Yupeng Zhang. vector commitment scheme with effi-
cient updates, 2019. https://github.com/starzyp/
vcs.

A Security Analysis

Agrawal and Raghuraman [1] define security of key-value
commitments, which are very similar in functionality to our
authenticated dictionaries. To define security, we first gener-
alize their notion of key binding [1, §3.2] and then apply the
generalization to Aardvark.

Aardvark operations, which are Get,Put, and Delete, differ
from those by Agrawal and Raghuraman, which are Insert and
Update. Instead of a piecemeal approach of simply replacing
these operations in the authenticated dictionary definition,

we follow the approach of [38, 39, 44] and define a generic
authenticated data structure for any set of operations, which
encompasses different possible dictionary interfaces as well
as other data structures with completely different interfaces
(e.g., range queries, searching by rank). After defining the
generic data structure, we specialize it to Aardvark, using a
map instead of Agrawal and Raghuraman’s set of tuples, and
defining both Put and Delete in terms of a map update.

A.1 General Authenticated Data Structure
Definitions

Let F : S ×O×X → S ×Y denote an ideal data structure
functionality. (“Ideal” refers to the data structure when it be-
haves as expected, without any adversarial, or even accidental,
deviation.) Here S is the set of ideal states of some data struc-
ture, with some initial state sinit ∈ S , which supports a set
of operations identified by a set of operation codes (or op-
codes) O. Given a state and input from the set X , an operation
produces a new state and an output in the set Y .

We now turn to the authenticated (“real”, as opposed to
“ideal”) data structure that implements F . Let ∆ : N→ N be
a delay function parameter (which will determine the exact
definition of completeness). Recall that an authenticated data
structure involves a prover and verifier. The prover (e.g., the
Aardvark archive) holds a large real state drawn from some
set W , and a verifier (e.g., the Aardvark validator) holds a
small commitment drawn from some set C∆. The verifier’s
objective is to maintain its commitment c ∈C∆ given reads
from and writes to the data structure, and the prover enables
the verifier to do this by producing a context σ12 drawn from
some set of contexts Σ.

We wish to model an application (e.g., a cryptocurrency) in
which the order that the prover produces operation contexts
may differ from the order that verifiers execute operations. In
particular, because some parts of the operation will be fixed
(e.g., a dictionary key) and some parts will be variable (e.g.,
the value the key is mapped to at some point in time), we
decompose the input X into a static component Xstatic and a
dynamic component Xdynamic (i.e., X = Xstatic×Xdynamic).

For the prover, define two functions. P∆ :W∆×O×Xstatic→
Σ is a proof generation function which consumes a real state,
opcode, and static input and produces a context for the oper-
ation. G : W ×O×X →W is the corresponding real update
function which mutates the real state.

Let Init be some probabilistic algorithm, which runs in time
polynomial with respect to a security parameter λ ∈ N, such
that Init(λ) = (cinit,winit,pp), where cinit ∈ C∆ is an initial
commitment, winit ∈W is an initial state, and pp are public
parameters for the authenticated data structure.

12Contexts provide all the information necessary to compute the result
of the operation and update the commitment. They in particular include
information that is traditionally thought of as a proof.

https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments
https://bitcointalk.org/index.php?topic=314467
https://bitcointalk.org/index.php?topic=314467
https://github.com/bitemyapp/ledgertheory/blob/master/lightcrypto.pdf
https://github.com/bitemyapp/ledgertheory/blob/master/lightcrypto.pdf
https://github.com/bitemyapp/ledgertheory/blob/master/lightcrypto.pdf
https://github.com/bitemyapp/ledgertheory
https://github.com/starzyp/vcs
https://github.com/starzyp/vcs

Define Vpp : C∆×O×Xstatic×Σ→{0,1} to be a verifica-
tion algorithm which maps a (commitment, opcode, input,
context) tuple to a bit indicating whether the context is valid,
given some fixed initial parameters.

Define the commitment update function FV,pp : C∆×O×
X×Σ→C∆×Y to be an algorithm which maps (commitment,
opcode, input, context) tuples to (commitment, output) pairs.

A.1.1 Completeness

1. Let (cinit,winit,pp)← Init(λ)
2. Set s := sinit, c := cinit, w := winit, i := 0.
3. Repeat indefinitely:

(a) Set wi := w.
(b) Pick any arbitrary o ∈ O, x = (xs,xd) ∈ X , and

j := {0,1, . . . ,∆(i)} nondeterministically. Set σ :=
P(wi− j,o,xs).

(c) If Vpp(c,o,xs,σ) = 0, output FAIL and halt.
(d) Set (s,y) := F (s,o,x), (c, ȳ) = F(c,o,x,σ), w :=

G(w,o,x), and i := i+1

We say that F satisfies ∆-synchronous completeness for
some ∆ if for all nondeterministic choices in the algorithm
above, the algorithm never outputs FAIL. It is natural to say
that synchronous completeness corresponds to ∆(n) = 0 and
asynchronous completeness corresponds to ∆(n) = n.

A.1.2 Soundness

Define A to be an adversary, which is some probabilistic
process that runs in time polynomial in λ. Define GF ,λ,A to
be the value returned by the following algorithm.

1. Let (cinit,winit,pp)← Init(λ)
2. Set c := cinit, s := sinit.
3. For some number of iterations polynomial in λ, do the

following in a loop:

(a) Query A to get (o,x,σ) ← A(pp,λ) where o ∈
O,x = (xs,xd) ∈ X ,σ ∈ Σ.

(b) Set (s′,y) := F (s,o,x) and set (c′, ȳ) =
F(c,o,x,σ).

(c) If Vpp(c,o,xs,σ) = 1 and y ̸= ȳ, output FAIL and
halt.

(d) If Vpp(c,o,xs,σ) = 1, set c := c′ and s := s′.

4. Output OK and halt.

We say that F is a secure implementation of F if for all
such A , Pr[GF ,λ,A = FAIL] is negligible in λ.

Note that our notion of soundness assumes that cinit is gen-
erated correctly. In an alternative scenario where A generates
cinit, this notion would demand that A cannot cause the verifier
to accept two operations with contradictory outcomes. Our
application does not consider adversarially-generated com-
mitments as the validator knows the correct cinit and updates
this commitment itself after every operation.

A.2 Ideal Dictionary Definition

Now we specialize our general definition to a dictionary.
Let K be a set of keys and V be a set of values. Let ⊥ be

a sentinel value denoting absence with ⊥ /∈ K and ⊥ /∈ V .
Denote V⊥ = V ∪{⊥}.

Define M : K → V⊥ to be the dictionary map from K to
V⊥. Let S = M . Define the empty dictionary to be mempty ∈
M where m(k) =⊥ for all k ∈K .

Call read a read opcode and write a write opcode. Let
O = {read,write}. An invocation of Get(k) corresponds to
the functionality F (m, read,(k,⊥)). Observe that since ⊥
denotes absence, Put(k,v) for any m and v ̸=⊥ corresponds
to the functionality F (m,write,(k,v)); likewise, Delete(k)
corresponds to F (m,write,(k,⊥)).

Define F as follows on the ideal state m ∈ M , opcode
o ∈ O, and the input (k,v) ∈K ×V⊥.

• F (m, read,(k,⊥)) = (m,m(k)).
• F (m,write,(k,v)) = (m′,⊥), where m′(k) = v and

m′(k′) = m(k′) for all k′ ̸= k.

In this scenario, Xstatic = K and Xdynamic = Y = V⊥.
To simplify our analysis, we analyze the security of Aard-

vark with respect to the operations and not transactions. Given
a secure dictionary of operations with a verification algorithm
V and update function G, we can define a corresponding se-
cure transactional dictionary with a verification algorithm V ′

and update function G′ where G′ is the composition of G over
each operation in the transaction and V ′ returns 1 if and only
if V returned 1 for each intermediate state in the composition.

A.3 Security of Aardvark

Theorem 1. Let F be implemented by Aardvark, C∆ be the
set of validator states, and Σ be the corresponding operation
contexts, with Init as the function which creates initial vec-
tor commitment parameters (§4) and cinit = Commit(mempty).
Then the Aardvark implementation of an ideal dictionary sat-
isfies soundness and τ-synchronous completeness.

Completeness follows from the argument presented in §6.
To show that soundness holds, consider the Aardvark rep-

resentation of the ideal data structure m, which we call a
snapshot. While m simply maps keys to values, the snapshot
represents this map as a vector ē of slots, with each slot con-
taining a key, a value, and the successor key. We argue that
two invariants hold after every operation: the current snap-
shot faithfully represents the current m, and validators hold
commitments to the past τ snapshots.

These invariants are sufficient to show that soundness holds.
Indeed, in order to win, A must output some (o,(k,v),σ) such
that both Vpp(c,o,k,σ) = 1 and F(c,o,(k,v),σ) outputs some
ȳ inconsistent with F , implying o = read and ȳ ̸= m(k).

The context σ must be for a snapshot ē′ that is no more
than τ operations old. By the binding property of the vec-
tor commitment, σ will contain the correct slot information
for k for ē′, or else Verify (which gets correct inputs because
the validator has the correct commitment to ē′ by the second
invariant) will reject with all but negligible probability.13 Be-
cause the validator stores the past τ operations, the validator
can then correctly compute slot information for k according to
the current snapshot which, by the first invariant, gives m(k).
This contradicts ȳ ̸= m(k).

To argue that the invariants hold, we need to reason about
how operations change m, the snapshot, and the validator
state. In §A.3.2 we prove that after each operation the valida-
tor continues holding commitments to the past τ snapshots.
Intuitively, the security of vector commitments ensures that
the context σ corresponds to correct slot information, and
therefore the vector commitments will be updated by the val-
idator to faithfully commit to the new snapshot.

In §A.3.3, we argue, based on data structure design, that
the snapshots continue to faithfully represent the ideal map m
after every operation. In particular, we show the existence of
a function that maps each snapshot to a single m, and which
respects updates performed by write.

A.3.1 Modeling Validator Behavior

We begin by more precisely describing the (abstract) behavior
of Aardvark.

Let ei = (ki,vi,k′i) for some ki,k′i ∈K ,vi ∈V be a slot, and
ē = e0, . . . ,eS−1 be the snapshot. We assume that the initial
snapshot consists of a single slot (⊥,⊥,⊥), where ⊥ is a
sentinel key which is the greater than every key.

We define a commitment to a snapshot to be the
list c̄ = c0, . . . ,c⌈S/B⌉−1 that commits to ē, where c j =
Commit(e jB, . . . ,emin((j+1)B−1,S)) (the last vector is padded
to length B with zero-slots).

We say that a Aardvark operation is the tuple γ =
(o,(k,v),σ). For any operation γ, we define the function
A(ē,γ) = ē′, which applies the operation γ to the snapshot
ē and produces a new snapshot ē′, in the same way as defined
by Aardvark (§5).

A.3.2 Validators are Bound to Snapshots

Lemma 1. After t operations, the validators hold commit-
ments to the past min(t,τ) snapshots, as well as min(t,τ)
most recent operations, with all but negligible probability.

Proof. We prove the lemma by induction on t.
The base case holds by design, so consider the inductive

hypothesis. Any operation γ for a key k must come with a
context relative to a snapshot ēt ′ with t− τ ≤ t ′ ≤ t, or else

13Formally, if A can cause the validator to accept inaccurate information,
A can be used to violate the binding property of the vector commitment in
polynomial time by running the transactions from the beginning.

the validator will reject. By the binding property of the vector
commitment, the context will contain accurate information on
the slot that holds k (and its predecessor in case of deletes) for
the snapshot ēt ′ , or else the vector commitment verification
algorithm (which gets correct inputs by the inductive hypoth-
esis, because the validator has correct c̄t ′) will reject with all
but negligible probability. If the validator rejects the operation
then neither the snapshot nor the validator state changes, and
the inductive case holds.

If the validator accepts the operation, it will use
CommitUpdate to compute the new commitment for the snap-
shot ēt+1. Because the validator has the information relevant
to the operation from ēt ′ and all the operations that happened
since t ′, the validator can correctly compute the difference
between the latest snapshot ēt and the new snapshot ēt+1 pro-
duced by the operation. By the correctness of CommitUpdate,
the validator will compute the correct commitment to this new
snapshot, and the inductive case holds.

A.3.3 Snapshots Encode the Ideal Map

The second invariant we must show is that snapshots encode
the ideal map in a manner consistent with read and write
operations. Since read changes neither the snapshot nor the
map, we focus only on write. We define a snapshot ē to be
well-formed if the following conditions hold.

• For any k, a triple (k,v1,succ(k)) appears in ē at most
once.

• If k ̸=⊥ and (k,v,k′)∈ ē, v ̸=⊥. In other words, all keys
(not the sentinel key ⊥) which are in a slot are mapped
to a value which is not ⊥.

• For all (k,v,k′) ∈ ē, it is the case that k′ = succ(k) (rela-
tive to the list of keys in ē). In other words, the successor-
references in ē form a valid circularly-linked list of keys.

From this definition, it follows that there exists a natural
decoding function D from well-formed snapshots to ideal
maps m. Namely, since for all slots (k,v,k′)∈ ē, (k,v) appears
uniquely, it follows that D defines the map m where m(k) = v
if (k,v) appears in ē and m(k) =⊥ otherwise.

We will now show that the invariant holds by induction.
The base case follows by our initialization. The inductive step
is given by the following lemma.

Lemma 2. Suppose ē is well-formed, D(ē) = m, and γ =
(write,(k,v),σ). Let ē′ = A(ē,γ). Let m′ be the map given
by m′(k) = v and m′(k′) = m(k′) for all k′ ̸= k. Then ē′ is
well-formed, and D(ē′) = m′.

Proof. The lemma follows by inspection of A (for the case of
v =⊥ and the case of v ̸=⊥) as defined in Section A.3.1.

	Introduction
	Related Work
	Overview
	Transaction Interface
	Security
	Availability

	Background: Vector Commitments
	Interface and Security Properties
	Specific Choice: Vector Commitments of Libert and Yung

	Authenticated Dictionary Design
	Contiguous Slot Packing
	Authenticating Reads and Writes
	Tail Operations

	Out-of-order Transaction Processing
	Completeness and Context Versioning
	Caching
	Transaction Expressiveness

	Archive-free Operations
	Evaluation
	Vector Commitments
	Storage and Bandwidth Analysis
	System Throughput

	Conclusion
	Security Analysis
	General Authenticated Data Structure Definitions
	Completeness
	Soundness

	Ideal Dictionary Definition
	Security of Aardvark
	Modeling Validator Behavior
	Validators are Bound to Snapshots
	Snapshots Encode the Ideal Map

