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Abstract—Decentralized cryptocurrencies rely on participants
to keep track of the state of the system in order to verify new
transactions. As the number of users and transactions grows, this
requirement places a significant burden on the users, as they need
to download, verify, and store a large amount of data in order
to participate.

Vault is a new cryptocurrency designed to minimize these
storage and bootstrapping costs for participants. Vault builds on
Algorand’s proof-of-stake consensus protocol and uses several
techniques to achieve its goals. First, Vault decouples the storage
of recent transactions from the storage of account balances,
which enables Vault to delete old account state. Second, Vault
allows sharding state across participants in a way that preserves
strong security guarantees. Finally, Vault introduces the notion of
stamping certificates that allow a new client to catch up securely
and efficiently in a proof-of-stake system without having to verify
every single block.

Experiments with a prototype implementation of Vault’s data
structures shows that Vault reduces the bandwidth cost of joining
the network as a full client by 99.7% compared to Bitcoin
and 90.5% compared to Ethereum when downloading a ledger
containing 500 million transactions.

I. INTRODUCTION

Cryptocurrencies are a promising approach for decentralized
electronic payments, smart contracts, and other applications.
However, supporting a large number of users and transactions
will require cryptocurrencies to address two crucial and related
bottlenecks: storage (how much data every participant must
store) and bootstrapping (how much data every participant has
to download to join the system). For example, in Bitcoin [1],
a new client that wishes to join the network and verify that
it received the correct state must download about 150 GB of
data, as of January 2018 [2]. Storage and bootstrapping costs
are related because, in a decentralized design, existing nodes
must store enough state to help new nodes join the system.

Designing a cryptocurrency whose storage and bootstrap-
ping costs scale well with the number of users and transactions
is difficult due to several challenges.

First, a cryptocurrency must prevent double-spending—that
is, prevent a user from spending the same money twice or
issuing the same transaction multiple times. This is typically
done by keeping track of past transactions, but doing so is
incompatible with good scalability. For instance, Bitcoin stores
all past transactions, which does not scale well (costs grow
linearly with the number of transactions). As another example,
Ethereum [3] does not store all transactions, but instead keeps
track of the sequence number (“nonce”) of the last transaction
issued from a given account [4]. This nonce must be stored
even if the account has no remaining balance. As a result, this

does not scale well either (costs grow linearly with the number
of old accounts) and has caused problems for Ethereum,
when a smart contract inadvertently created many zero-balance
accounts [5], [6]. We measure the Ethereum ledger (§VII) and
find that 38% of Ethereum accounts have a balance of zero.

Second, a cryptocurrency relies on all participants to check
the validity of transactions. This requires the participants to
have enough state to validate those transactions. Storing all
account balances allows a participant to validate any transac-
tion, but requires storage space that grows with the number of
accounts. On the other hand, not storing all account balances
runs the risk of having fewer participants vet transactions.

Third, proof-of-stake systems, such as Algorand [7], can
provide high throughput and low latency for transactions.
However, such proof-of-stake systems are particularly chal-
lenging in terms of bootstrapping cost. Convincing a new
participant of the validity of a block in the blockchain requires
first convincing them of the balances (stakes) of all users in
an earlier block. Convincing a new user of the validity of the
latest block thus requires convincing them of the balances of
all users at all points in time, starting with the initial genesis
block.

Finally, an appealing way to reduce storage and boot-
strapping costs is to delegate the job of storing state and
certifying future states to a committee whose participants are
trusted in aggregate. However, existing systems that take this
approach [8], [9], [10] rely on long-standing committees that
are known to the adversary. As a result, an adversary may be
able to corrupt the committee members, leading to security or
availability attacks.

This paper presents Vault, a new cryptocurrency that ad-
dresses the storage and bootstrapping bottlenecks described
above. In particular, Vault reduces the bandwidth cost of
joining the network as a full client by 99.7% compared to
Bitcoin and 90.5% compared to Ethereum when downloading
a ledger containing 500 million transactions. Vault borrows the
underlying proof-of-stake consensus protocol from Algorand
and addresses the above challenges of storage and bootstrap-
ping costs using several techniques:

First, Vault decouples the tracking of account balances
from the tracking of double-spent transactions. Each Vault
transaction is valid for a bounded window of time, expressed
in terms of the position in the blockchain where the transaction
can appear. This allows Vault nodes to keep track of just the
transactions that appeared in recent blocks and to forget about
all older transactions. The account balance state, on the other
hand, is not directly tied to past transactions, and zero-balance



accounts can be safely evicted.
Second, Vault uses an adaptive sharding scheme that com-

bines three properties: (1) it allows sharding the account state
across nodes, so that each node does not need to store the state
of all accounts; (2) it allows all transactions to be validated by
all nodes, using a Merkle tree to store the balance information;
and (3) it adaptively caches upper layers of the Merkle tree so
that the bandwidth cost of transferring Merkle proofs grows
gradually with the number of accounts.

Finally, Vault introduces stamping certificates to reduce the
cost of convincing new users of a block’s validity. The insight
lies in trading off the liveness parameter used in selecting
a committee to construct the certificate of a new block [7],
[9].1 Vault augments existing certificates in Algorand with its
stamping certificates, which have a much lower probability
of liveness (e.g., in many cases, Vault fails to find enough
participants to construct a valid certificate) but requires fewer
participants to form the certificate (thus significantly reducing
their size) while still preserving the same safety guarantees
(i.e., an adversary still has a negligible probability of corrupt-
ing the system). Building an extra layer of stamping certificates
allows us to relax liveness for stamping without affecting
the liveness of transaction confirmation. Vault’s stamping
certificates are also generated in a way that allows new clients
to skip over many blocks in one verification step.

We implemented a prototype of Vault and used it to eval-
uate its design and individual techniques. The results show
that Vault’s storage and bootstrapping cost is 477 MB for
500 million transactions, compared to 5 GB for Ethereum
and 143 GB for Bitcoin. Individual microbenchmarks also
demonstrate that each of Vault’s techniques are important in
achieving its performance goals.

The contributions of this paper are:
• The design of Vault, a cryptocurrency that reduces stor-

age and bootstrapping costs by 10.5–301× compared to
Bitcoin and Ethereum and that allows sharding without
weakening security guarantees.

• Techniques for reducing storage costs in a cryptocur-
rency, including the decoupling of account balances
from double-spending detection and the adaptive sharding
scheme.

• The stamping certificate technique for reducing bootstrap-
ping costs in a proof-of-stake cryptocurrency.

• An evaluation of Vault’s design that demonstrates its low
storage and bootstrapping costs, as well as the importance
of individual techniques.

The rest of this paper is organized as follows. We describe
related work in §II. §III gives an overview of Vault’s design
and operation. The next three sections cover Vault’s tech-
niques in detail: §IV describes how Vault decouples account
state from recent transactions, §V describes Vault’s adaptive
sharding, and §VI describes Vault’s stamping certificates. §VII
evaluates Vault’s design and techniques, and §VIII concludes.

1Vault avoids the use of long-standing committees by using Algorand’s
cryptographic sortition and player-replaceable consensus.

II. RELATED WORK

Vault’s goal is to reduce the cost of storage and bootstrap-
ping in a cryptocurrency. There are two significant aspects to
this goal, corresponding to two broad classes of prior work.

The first is what we call the “width” of the ledger: how
much data does each participant need to store in order to
validate transactions (including detecting double-spending)? In
the case of Bitcoin, for example, the “width” is the set of
all past unspent transactions [1]. Techniques that address the
width of a ledger focus on managing the substantial storage
costs of keeping the history of all transactions on each client.

The second is what we call the “length” of the ledger:
how much data has to be transmitted to a new participant as
proof of the current state of the ledger? In Bitcoin’s case, the
proof consists of all block headers starting from the genesis
block, chained together by hashes in the block headers, as well
as all of the corresponding block contents (to prove which
transactions have or have not been spent yet). Techniques
addressing the length of the ledger typically allow clients to
skip entries when verifying block headers, which reduces the
total download cost.

Table I summarizes Vault’s characteristics and compares
them against other cryptocurrencies. Bitcoin and Ethereum fail
to provide any formal guarantees on the correctness of the
latest state. Permissioned cryptocurrencies like Stellar have
low bootstrapping cost but are vulnerable to an adversary
which compromises a quorum of permissioned nodes at any
point. A system combining OmniLedger and Chainiac lacks
single points of failure, but even then an adversary may
adaptively compromise a selected committee. Algorand pro-
vides strong security guarantees, but its bootstrapping costs
grow prohibitively quickly. Vault alone achieves cryptographic
security against an adversary that can adaptively compromise
users while scaling in both storage and bootstrapping costs.

A. Steady-State Savings: The “Width” Approach

Many cryptocurrencies observe that the transaction log
becomes impractical to store and to transmit over time. They
seek to reduce the size of this log, which both reduces the
amount of bandwidth needed to join the protocol (as a verifier)
and also the amount of storage needed to run the protocol.

Ethereum [3] supports the succinct summarization of ac-
count balances and other state into a short digest. In each
block, ledger writers use Patricia Merkle Trees [11] to commit
to the current set of balances. A Merkle Tree [12] allows a
party to efficiently produce proofs of an object’s membership
in some set. These Merkle “checkpoints” allow new clients to
obtain balance state from any untrusted node and then quickly
verify this state against a known Merkle root. To prevent
an attacker from replaying a transaction issued by a user,
the users embed a sequence number (called the transaction
nonce) in each transaction. Ethereum clients must track the
last nonce issued by each account in the balance tree, even
if the account is empty (i.e., its balance is 0); otherwise, an
old transaction could be replayed (e.g., if an empty account
receives a deposit in the future). As we note in §IV, this means



TABLE I
A COMPARISON OF VAULT TO OTHER CRYPTOCURRENCIES. UTXO REFERS TO UNSPENT TRANSACTION OUTPUTS; TX REFERS TO TRANSACTIONS.

System Execution State Proof Size Bootstrap Security

Bitcoin [1] UTXOs Headers + TXs Probabilistic (heaviest chain wins)

Ethereum [3] All accounts Headers + All accounts Probabilistic (heaviest chain wins)

Permissioned (e.g., Stellar [8]) Live accounts
Shards Majority of trust set’s signatures Cryptographic if majority never compromised; none otherwise

OmniLedger [10] + Chainiac [9] UTXOs
Shards

Headers+Certificates
Sparseness + UTXOs

Shards Cryptographic with static attacker; none with adaptive attacker

Algorand [7] UTXOs Headers + Certificates + TXs Cryptographic

Vault Live accounts
Shards

Headers+Certificates
Sparseness + Live accounts

Shards Cryptographic

that Ethereum’s storage cost grows with the number of all ac-
counts that ever existed, which leaves Ethereum vulnerable to
denial-of-service attacks that create many temporary accounts.
By decoupling account balances from tracking double-spent
transactions (§IV), Vault prevents storage costs from growing
with the number of old accounts. We believe that Vault’s
decoupling can be adopted by Ethereum to avoid unbounded
storage for old accounts.

OmniLedger [10] shards its ledger by users’ public keys,
running Byzantine agreement rounds on many ledgers in
parallel. OmniLedger performs load balancing across each
shard to improve throughput and reduce bandwidth and storage
costs proportional to the number of shards. Sharding allows
OmniLedger to scale horizontally under increased load. How-
ever, OmniLedger requires a long-standing committee to run
the PBFT [13] protocol to establish consensus on the ledger’s
state; this leaves it vulnerable to a strong adversary which may
quickly corrupt validators. Moreover, its shard size and thus
scalability is sensitive to the proportion of malicious users.
Vault’s adaptive sharding (§V) reduces the storage cost per
participant and remains secure against an adversary that can
quickly corrupt users, but its throughput per unit of bandwidth
cost does not increase with sharding.

An alternative approach to reduce the “width” of the ledger
is to issue fewer transactions on the ledger. The Lightning
Network [14] establishes payment channels between pairs of
users which supports many off-ledger transactions, relying on
incentives to prevent them from cheating. Participants in the
channel post amounts of their stake as collateral and then
exchange transactions off the ledger to record their debts. As a
result, by posting only two transactions on the Bitcoin ledger,
a pair of participants may process arbitrarily many off-ledger
transactions in a payment channel as long as it contains a
sufficient amount of capacity to absorb them. One advantage
of this scheme is that participants do not need to broadcast
transactions within a payment channel. However, it remains
difficult to generalize this scheme over non-pairwise payment
relationships, the amount of collateral that each participant
posts limits channel capacity, and its incentive scheme assumes
that participants always act to maximize their payout. In
Vault, participants store account balances and a set of recent
transactions. This storage cost depends on the total number of
accounts and not the transaction rate, thus obviating the need

for off-ledger transactions as a way of reducing storage cost.
MimbleWimble [15] uses an accumulator-like signature

sinking scheme to “compact” blocks together according to the
amount of work proved in the block header. Combined blocks
eliminate transaction outputs which have been spent, reducing
the state a verifier is required to download. Switching to a
balance-based scheme like Vault’s may allow MimbleWimble
to further increase its compaction savings by committing not
just to the set of unspent transactions but also to the current
set of balances.

B. Short Proofs of State: The “Length” Approach
Other cryptocurrencies focus more specifically on the band-

width costs of bootstrapping. They observe that a small
block header is often sufficient evidence of a block’s validity.
Therefore, they reduce the cost of verifying the block header
sequence by shortening it. This allows clients to efficiently
prove the validity of their state at any particular point in time.

Like Vault’s stamping certificates, Chainiac’s [9] Collective
Signing (CoSi) [16] scheme allows a committee of verifiers to
jointly produce a proof that a particular block is correct. As
in Vault, verifying committees for some block also certify the
correctness of blocks into the future; upon observing a block
confirmation, committees produce forward links to the block.
Since these links are arranged in a skiplist-like configuration,
they allow verifiers to quickly bootstrap to the current state.
However, Chainiac’s scheme is inherently vulnerable to an
adversary that can adaptively corrupt users because its com-
mittees are not secret. Sometime after the protocol designates
a committee, an adversary which compromises this committee
can forge a proof that a false view of the ledger is valid
and thus deceive new clients into accepting a bogus state.
Since the committees that produce Vault’s certificate signatures
are secretly selected and emit exactly one message, Vault’s
certificates resist attacks from adversaries that can adaptively
corrupt clients.

MimbleWimble also reduces the length of the ledger. Blocks
with more work supersede prior blocks with less work; since
an adversary must possess significant processing power to
attack these blocks, the proof of work requirements increase
the new verifiers’ confidence in these blocks. As in Bitcoin,
this approach does not produce a proof of blocks’ correctness,
since an adversary that controls the network can prevent a
user from ever observing the block with the largest amount of



work. Vault builds on Algorand for reaching consensus, which
ensures safety (no forks) even in the presence of network
partitions.

We observe that in a permissioned cryptocurrency, where a
supermajority of ledger writers are trusted, a signed checkpoint
suffices to convince a new verifier that the state is correct [13].
Stellar [8] can be thought of in similar terms, where a core
node will accept a checkpoint from nodes in its quorum
set. Vault targets a permissionless setting where users do not
configure trusted sets of known writers or trusted core nodes.
As a result, Vault authenticates checkpoint signatures using
cryptographic sortition, based on techniques from Algorand.

III. OVERVIEW

Vault is a permissionless, proof-of-stake cryptocurrency that
significantly reduces new client bootstrapping costs relative to
the state of the art by reducing both steady-state storage costs
and the sizes of proofs needed to verify the latest state.

A. Objectives

Suppose Alice is a new participant in Vault who holds the
correct genesis block. She wishes to catch up to the latest state
and contacts Bob, an existing participant (or perhaps a set of
participants). Vault should achieve the following main goals:
• Bootstrap Efficiency: If Bob is honest, he should be able

to convince Alice that his state is correct and deliver this
state using a minimal amount of bandwidth. Moreover,
once Alice synchronizes with the protocol, she should be
able to help other new clients catch up.

• Safety: If Bob is malicious, he should not be able to
convince Alice that any forged protocol state is correct.

• Storage Efficiency: Bob must store a small amount of data
to execute the Vault protocol correctly and to help Alice
join the network.

Our design also confers additional benefits:
• Charging for Storage: Adversaries that wish to inflate

the size of the protocol state must acquire a significant
amount of stake to do so.

• Availability: Vault continues to operate even when some
users disconnect from the network, despite sharding state
across clients.

B. Threat Model

Vault should achieve its goals even in the face of adversarial
conditions. However, many properties are unachievable given
an arbitrarily strong attacker [17]. We therefore limit the
attacker’s power with the following assumptions, inherited
from Algorand [7] (owing to the fact that Vault builds on
Algorand’s consensus protocol):
• Bounded Malicious Stake: At least some proportion h of

the stake in Vault is controlled by honest clients at any
time, where h > 2

3 . Stake sold off by any user counts
towards this threshold for some period d (e.g., 48 hours)
following the sale.

• Cryptographic Security: The adversary has high but
bounded computation power. In particular, the adversary
cannot break standard cryptographic assumptions.

• Adaptive Corruptions: The adversary may corrupt a par-
ticular user at any time (given that at no point it controls
more than 1− h of the stake in Vault).

• Weak Synchrony: At all times, the adversary may resched-
ule any message in a small window of time whose
duration is fixed in advance (e.g., lasting 20 seconds) and
drop a small number of these messages. In addition, the
adversary may introduce network partitions lasting for a
duration of at most b (e.g., 24 hours). During a network
partition, the adversary may arbitrarily reschedule or
drop any message. The minimum time between network
partitions is nontrivial (e.g., 4 hours).

C. Algorand Background

Vault’s consensus protocol is based on Algorand, which we
briefly review here. All users’ clients in Vault agree on an
ordered sequence of signed transactions, and this sequence
constitutes the cryptocurrency ledger. Vault is a permissionless
proof-of-stake system, meaning that any user’s client, iden-
tified by a cryptographic public key, may join the system,
and the client of any user holding any amount of money
may eventually be selected to append to the ledger. Honest
clients listen for proposed transactions and append recent valid
transactions to the ledger.

The frequency at which a user’s client is selected is pro-
portional to the user’s stake. Ledger writers batch sets of
transactions into blocks. Each block contains a block header,
which in turn contains a cryptographic commitment to the
transaction set. Block headers also contain the cryptographic
hash of the previous block in the ledger. Since block headers
are small, these hashes allow clients to quickly verify historical
transaction data.

Additionally, block headers contain a special pseudorandom
selection seed Q. Before a client proposes a block, it com-
putes Q in secret, so Q is unpredictable by the rest of the
network and partially resistant to adversarial manipulation.
As in Algorand, Vault uses Q to seed Verifiable Random
Functions (VRFs) [18] to implement cryptographic sortition.
Cryptographic sortition produces a sample of the users in
the system, weighted by the stake of their accounts. Each
client’s membership in the sample remains unknown to an
adversary until the client emits a message because a VRF
allows the client to compute this membership privately; since
VRFs produce a proof of their correctness, any other client
can verify this membership. To protect the system against
adversaries which corrupt a user after that user is selected,
clients sign their messages with ephemeral keys, which they
delete before transmission.

Vault uses a Byzantine agreement scheme which operates
in rounds. Each round, the protocol selects some block pro-
poser which assembles the transaction set and header form-
ing the block, which is broadcast via a peer-to-peer gossip
network [19]. Subsequently, the protocol selects a committee
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Fig. 1. An overview of the authenticated data structures used in Vault. In this figure, the objects each client stores locally on disk are outlined in solid black,
while the objects it may discard are outlined with faint dots. The triangles annotated with “$$” represent the sparse Merkle trees containing account balances,
while the bottom row of rectangles annotated with “H(tx)” represents the set of transaction hashes in each block. Both the transaction hash set and the
balance set are committed to in block headers (the row of rectangles in the middle of the figure); the commitments are represented as solid black dots. In
addition, each block header contains Q (i.e., the selection seed), which is computed pseudorandomly and seeded with the previous header’s Q-value. The top
row of rectangles and seals represent Vault’s small stamping certificates and large final certificates; we draw arrows to illustrate how a particular certificate
is verified by two block headers. Not shown is Vault’s adaptive sharding (§V).

which verifies the correctness of the block. To sample users
in a manner resistant to adversarial manipulation, committees
from round r are seeded with the value of Q from round r−1
and weighted by proofs of stake from round r − b.

Once clients become confident of a block’s confirmation,
Vault uses sortition to select a subset of clients to certify the
block by signing its receipt (i.e., Algorand’s “final” round).
The aggregation of these signatures past some secure thresh-
old, along with proofs of stake for each signature, forms a
final certificate which proves to any client that a block is
valid: the Byzantine agreement protocol guarantees that for
each round, at most one valid block (or an empty block if the
proposer misbehaves) reliably receives this certificate. Given
knowledge of only the genesis (i.e., the first) block, a new
client is convinced that the block from round n is correct
if a peer can produce n − 1 block headers and the n − 1
corresponding certificates of validity.

D. System Design

Figure 1 gives an overview of Vault’s data structures, which
are the key to Vault’s lower storage and bootstrapping costs.
The data structures are based around a chain of block headers,
shown in the middle of the figure. Each block header consists
of four elements: PREVBLOCK (the hash of the previous
block), Q (the seed for cryptographic sortition), TXROOT (a
Merkle tree commitment [12] to the list of transactions in the
block), and BALROOT (a sparse Merkle tree commitment [20]
to the balances of every user after applying the block’s
transactions).

Every block must follow certain rules in order to be con-
sidered valid:

1) Transactions in the block are not expired. Each trans-
action includes the first and last block number (in the
blockchain) where it can appear.

2) After all transactions in the block are executed, no
account ends up with a negative balance.

3) The transactions in the block have not been executed
before (i.e., have not appeared previously on the ledger).

4) BALROOT correctly reflects all users’ balances after
applying the block’s transactions to the previous block’s
balances.

In order to check that a new block follows these rules,
clients maintain two pieces of state, shown in solid black (as
opposed to grayed out) in the bottom half of Figure 1:
• The tree of account balances from the most recent block.

This allows a client to ensure that new transactions have
sufficient funds (rule 2), and to verify the correctness of
the new balance tree (rule 4).

• The lists of transactions from the last few blocks. This al-
lows a client to ensure that a transaction has not appeared
previously (rule 3), by checking that a new transaction
does not appear in any of the previous transaction lists.
To minimize the storage required by these lists, TXROOT
commits to a list of transaction hashes, rather than the
transactions themselves.
Clients can discard transaction lists older than a certain
threshold, corresponding to the maximum validity interval
of a transaction, which we denote Tmax. Transactions that
appeared more than Tmax blocks ago will be rejected by
rule 1 and need not be tracked explicitly.

§IV describes in more detail how clients check these rules
while using a minimal amount of storage. §V further describes
Vault’s adaptive sharding, which allows clients to store only a
subset of the balance tree. These techniques combine to reduce
the “width” of Vault’s ledger.

Vault uses Algorand’s consensus protocol to decide which
valid block will be next in Vault’s blockchain. The consensus
protocol produces a certificate confirming agreement on that
block, shown in the top half of Figure 1. These certificates
allow a new client to securely join the system and determine
which chain of blocks is authentic.

Each certificate consists of a set of signatures (of the block



header) by a committee of clients chosen pseudorandomly
using cryptographic sortition. In order to verify a certificate,
a new client must check that all of the signatures are valid
(which is straightforward) and check that the clients whose
signatures appear in the certificate were indeed members of the
committee chosen by cryptographic sortition (which requires
state). Verifying committee membership requires two pieces
of state: the sortition seed Q, used to randomize the selection,
and the balance tree at BALROOT, used to weigh clients by
how much money their users have.

In Algorand’s certificates, BALROOT comes from b blocks
ago, while Q comes from the immediately previous block.
This means that, in order to verify block n, the client must first
verify block n− 1, so that the client knows the correct Q for
verifying block n’s certificate. Furthermore, the committees
used for Algorand’s certificates are relatively large, so that
with high probability there are enough committee members to
form a certificate for each block. These certificates are shown
with a big rectangle at the top of Figure 1.

Vault introduces a second kind of certificate, called a
stamping certificate, which helps speed up bootstrapping. The
stamping certificate differs in two important ways. First, in-
stead of using Q from the immediately previous block, it uses
Q from b blocks ago (for security, BALROOT must be chosen
from b blocks before Q, so this means BALROOT now comes
from 2b blocks ago). This allows clients to “vault” forward
by b blocks at a time. Second, the stamping certificates use
a smaller committee size. This makes the certificate smaller
since it contains fewer signatures. The smaller rectangles at
the top of Figure 1 represent these stamping certificates, along
with the arrows reflecting the Q and BALROOT values needed
to verify them.

Vault sets parameters so that the stamping certificate is
just as hard for an adversary to forge as Algorand’s original
certificates. The trade-off, however, is that in some blocks,
there may not be enough committee members to form a valid
stamping certificate. To help new clients join the system, every
Vault client keeps the stamping certificates for approximately
every bth block since the start of the blockchain, along with
full Algorand-style certificates for the blocks since the last
stamping certificate. Other certificates are discarded (shown
as grayed out in Figure 1). §VI-B describes Vault’s stamping
certificates in more detail, which help Vault shrink the “length”
of its ledger.

IV. EFFICIENT DOUBLE-SPENDING DETECTION

This section describes Vault’s design for minimizing the
amount of storage required by a client to verify new trans-
actions. To understand the challenges in doing so, consider
the key problem faced by a cryptocurrency: double-spending.
Suppose Alice possesses a coin which she gives to both Bob
and Charlie. A secure cryptocurrency must reject one of these
transactions, as if both are accepted, Alice has double-spent
her coin.

In Bitcoin, each transaction has a set of inputs and outputs.
The inputs collect money from previous transactions’ outputs,

which can then be used by this transaction. The outputs define
where the money goes (e.g., some may now be spendable by
another user, and the rest remains with the same user). To
detect double-spending in this scheme, Bitcoin must determine
whether some output has been previously spent or not. Thus,
clients must store the set of all unspent transaction outputs.

A more space-efficient approach is to store the balance
associated with each user, rather than the set of unspent trans-
actions. For example, Ethereum follows this approach. The
cost savings from storing just the balances may be significant:
for instance, there are ten times as many transactions in Bitcoin
as there are addresses [21], [22].

Switching to a balance-based scheme introduces a subtle
problem with transaction replay. If Alice sends money to
Bob, Bob may attempt to re-execute the same transaction
twice. In Bitcoin’s design, this would be rejected, because
the transaction already spent its inputs. However, in a naı̈ve
design that tracked only account balances, this transaction still
appears to be valid (as long as Alice still has money in her
account), and an adversary may be able to re-execute it many
times to drain Alice’s account.

To distinguish between otherwise identical transactions,
Ethereum tags each account with a nonce, which acts as a
sequence number. When an account issues a transaction, it tags
the transaction with the account’s current nonce, and when this
transaction is processed, the account increments its nonce. The
transactions issued by an account must have sequential nonces.
Because of this design, Ethereum cannot delete accounts with
zero balance; all clients must track the nonces of old accounts
to prevent replay attacks, on the off chance that the account
will receive money in the future.

The storage of empty accounts significantly increases the
storage overhead of Ethereum. Our analysis of its ledger
shows that approximately one-third of all Ethereum addresses
have zero balance (§VII). Worse, the inability to garbage-
collect old accounts constitutes a serious denial-of-service
vulnerability: an adversary with a small amount of money may
excessively increase the cryptocurrency’s storage footprint by
creating many accounts. In fact, in 2016 an Ethereum user
inadvertently created many empty accounts (due to a bug
in Ethereum’s smart contract processing) [5], requiring the
Ethereum developers to issue a hard fork to clean up the
ledger [6].2

At a high level, Vault avoids the problem of storing empty
accounts by forcing transactions to expire. The rest of this
section describes Vault’s solution in more detail.

A. Transaction Expiration

All transactions in Vault contain the fields tissuance and
texpiry, which are round numbers delineating the validity of a
transaction: blocks older than tissuance or newer than texpiry

2Currently, Ethereum transaction fees are high enough to make such
attacks unlikely. However, proposed cryptocurrency designs like Algorand [7]
aim to support orders of magnitude more throughput, which would lead to
lower transaction fees, and which would in turn make such attacks worth
considering.



Alice→Bob:       $30
Issuance:       550
Expiry:       574
Nonce:           8

Alice

Fig. 2. The format of a Vault transaction from Alice to Bob. In addition to
the sender, receiver, and amount, the transaction contains tissuance, texpiry,
and a nonce. A valid transaction contains the sender’s digital signature.

may not contain the transaction. Moreover, we require that
0 ≤ texpiry − tissuance ≤ Tmax for some constant Tmax.
This way, a verifying client may detect the replaying of a
transaction simply by checking for its presence in the last
Tmax blocks. (Transactions still contain a nonce to distinguish
between otherwise identical transactions; however, this nonce
is ephemeral and needs not be stored.) As a result, clients
do not need to track account nonces and can delete empty
accounts from the balance tree. Figure 2 shows the format of
one transaction.

Requiring transaction lifetimes to be finite means that, if a
transaction fails to enter a block before it expires (e.g., because
its transaction fee was lower than the current clearing rate), the
issuer must reissue the transaction in order for the transaction
to be executed. On the other hand, the expiration time ensures
that old transactions that failed to enter a block when they
were originally issued cannot be re-entered into a block at a
much later time by an adversary; i.e., expiration bounds the
outstanding liabilities of an account.

The choice of Tmax affects two considerations. The first
is that clients must store the last Tmax blocks’ worth of
transactions to detect duplicates; a larger Tmax increases client
storage. (Clients can store transaction hashes instead of the
transactions themselves to reduce this cost.) The second is
that clients must reissue any transaction that fails to enter a
block within Tmax (if they still want to issue that transaction).
In our experiments, we set Tmax to the expected number of
blocks in 4 hours (which, based on Algorand’s throughput of
∼750 MB/hour [7], suggests at most a few hundred megabytes
of recent transactions); we believe this strikes a balance
between the two constraints.

B. Efficient Balance Commitments

To efficiently commit to the large set of balances in
BALROOT, Vault clients build Merkle trees [12] over these
sets. With a Merkle tree, clients may prove that some object
exists in a given set using a witness of size O(log n), where
n is the total number of objects in the set. This allows them
to efficiently construct proofs of stake. For example, for a
balance set containing 100 million accounts (4 GB of on-disk
storage), it suffices for a client to send 1 KB of data to prove
its stake against a 32-byte BALROOT in a block header. It is
important for the proofs of stake in Vault to be small since a
certificate may contain thousands of these proofs (see §VI).

For clients to verify the validity of BALROOT for a new
block, BALROOT must be deterministically constructed given

a set of balances. As a result, the Merkle leaves are sorted
before they are hashed together to create the root. Since a leaf
may be deleted when an account balance reaches 0, Vault uses
sparse Merkle trees [20] to perform balance commitments.
A sparse Merkle tree possesses the structure of a prefix trie,
which allows us to perform tree insertions and deletions with
a Merkle path witness of size O(log n).

In fact, a witness of size O(log n) is sufficient for a client to
securely update BALROOT without storing the corresponding
Merkle tree. We exploit this self-verifying property of Merkle
witnesses in §V.

V. SHARDING BALANCE STORAGE

As the number of accounts in Vault grows, the cost of
storing balances becomes the primary bottleneck. Concretely,
each account requires about 40 bytes (32 bytes for a public
key and 8 bytes for the balance). This means that if there were
100 million accounts, every Vault client would need to store
about 4 GB of data, which may be acceptable (e.g., it is less
than Bitcoin’s current storage cost). On the other hand, if Vault
grew to 10× or 100× more accounts, the storage cost would
likely be too high for many clients.

To address this problem, Vault implements sharding to split
the tree of balances across clients, pseudorandomly distributed
by the client user’s key. Sharding allows clients to deal with
large ledger sizes. As an extreme example, consider a system
with 100 billion accounts and 1 million online clients. Setting
the number of shards to 1,000 would require each client
to store approximately 4 GB of data (i.e., 1/1000th of the
balances), rather than the full 4 TB balance tree. Even with a
large number of shards in this example, every shard’s data
is held by about 1000 clients, ensuring a high degree of
availability.

One challenge in sharding is that fewer clients now have
the necessary data to verify any given new transaction. Ex-
isting proposals (like OmniLedger [10]) implement sharding
by restricting verifiers’ responsibility of preventing double-
spending attacks to their own shards. These proposals seem
attractive because they reduce not just storage costs but also
bandwidth and latency costs, allowing the system to scale
throughput arbitrarily. Unfortunately, such schemes are vulner-
able to adversaries which control a fraction of the currency.
As shard size decreases, so do shards’ replication factors, and
as a result, transactions in a given shard are verified by a small
number of clients. An adversary may own a critical fraction
of the stake in a shard by chance, enabling it to control the
entire shard. Thus, these systems require an undesirable trade-
off between scaling and security, which in practice limits the
degree of sharding.

Vault’s design allows sharding without any reduction in
security because all clients retain the ability to verify all
transactions. The trade-off comes in terms of increased band-
width costs during normal operation (which may reduce the
maximum throughput): as we describe in the rest of this
section, with Vault’s adaptive sharding, each transaction must



include a partial Merkle proof, which grows proportionally
with the size of the balance tree.

A. Secure Shard Witnesses

Vault shards the tree of account balances into 2N pieces by
assigning an account to a shard according to the top N bits
of the account’s public key. A client stores a shard by storing
the balances for the accounts in that shard. Clients store the
shard(s) corresponding to their user’s public key(s). Clients
that join the network, or create a new account, download the
corresponding shards from existing peers.

The main challenge is to support sharding without a loss in
security by ensuring that all clients can verify all transactions.
Recall that the balance set is stored in a sparse Merkle tree
(§IV-B) whose root is committed to in the block header.
These trees support insertions, updates, and deletions with
witnesses of size O(log n). To allow a client to check the
validity of any transaction in a proposed block (even if that
transaction operates on accounts outside of this client’s shard),
Vault transactions include Merkle witnesses for the source and
destination accounts in the previous block’s BALROOT. Any
client that possesses the previous block’s BALROOT can use
the Merkle witnesses to confirm the source and destination
account balances and thus to verify the transaction.

Unfortunately, these witnesses increase transaction size. For
example, if the transaction size is 250 bytes (on par with
Bitcoin), and there are 100 billion accounts in the system,
a single Merkle witness will hold 37 sibling nodes in expecta-
tion, which is 1.2 KB. Two witnesses would introduce 2.4 KB
of overhead per transaction—almost an 11× increase. The next
subsection describes Vault’s approach for mitigating this cost.

Note that the inclusion of Merkle witnesses increases band-
width but not storage costs: since all blocks are certified by
an honest committee, verifiers discard the witnesses after they
recompute BALROOT. Thus, the trade-off applies only to the
bandwidth costs of broadcasting transactions during rounds.

B. Adaptive Sharding: Truncating Witnesses

To manage the overhead of larger witnesses, clients store
(in addition to their shards) an intermediate frontier that cuts
across the Merkle tree—roughly speaking, the subset of tree
nodes at some depth. Storing this frontier allows clients to
verify partial witnesses, which prove the path from a leaf node
to the frontier, rather than all the way to BALROOT. Figure 3
illustrates one such partial witness.

We can quantify the trade-off between transaction size
and the cost of storing the frontier. First, we observe that
moving the frontier up in the tree by one level (i.e., going
from the nodes in the frontier to their parents) increases the
length of a partial Merkle witness by a single sibling. Second,
moving the frontier up in the tree by one level halves its size.
Vault can thus tune the trade-off between the size of partial
Merkle witnesses in each transaction and the amount of storage
required for the frontier.

If the frontier lies in the dense region of the Merkle prefix
tree (i.e., towards the top of the tree), the shape of the frontier

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
Fig. 3. An illustration of a single Vault shard and the balance Merkle tree.
Dots in this image represent Merkle nodes, and the “$” symbols represent
account balances. The solid black dots and dark “$” symbols represent the
balances which are part of the shard (the shaded gray triangle), while those
in gray represent the parts of the tree which are not. The row of black dots in
the middle represent the frontier of Merkle nodes that is stored by all clients
regardless of shard assignment. The jagged line connecting one of these nodes
to an unstored leaf represents the Merkle witness necessary for performing a
balance update.

is simple: it involves all the Merkle nodes at a given level.
However, if the frontier lies near the leaves of the Merkle
prefix tree (i.e., near the bottom), a client cannot simply store
all the nodes at a given level, as the layers are larger than
the balance set itself (owing to the sparseness of the Merkle
tree). Instead, these frontiers assume a “jagged” shape; they
are defined as the nodes which sit at a fixed height from the
bottom of the tree.

To update a node in the frontier, it suffices for a client to
observe a witness and follow these two rules: (1) if the witness
increases the height of a frontier node, the client replaces
that frontier node with its children (which were present in
the witness); and (2) if the witness decreases the height of
a frontier node, the client replaces that frontier node with its
parent (if it did not previously store the parent). Note that
the length of the witness alone is sufficient for determining
whether an insertion, an update, or a deletion occurred.

By application of the coupon collector’s problem [23], we
see that if there are approximately n log n account balances,
then in expectation the last dense layer is of depth n. For
example, if there are 100 billion ≈ 237 accounts, then the
n = 32nd layer is the last dense one.

VI. SUCCINCT LEDGER CERTIFICATES

Bootstrapping a new client in a proof-of-stake cryptocur-
rency, such as Algorand, requires transferring a significant
amount of data to the new client. This is due to two factors.
First, the selection of each block depends on the state of the
system at the time the block was selected. For instance, as
mentioned in §III-C, the Algorand committee that forms the
final certificate of a block is selected based on the random seed
Q from the previous block. Thus, to verify the correctness of
block n, a new client must first verify the correctness of block
n−1 in order to obtain the correct Q value for verifying block
n. Second, in Algorand’s design, the certificate confirming a
block consists of a large number of signatures, reflecting the
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Fig. 4. Two optimizations used to reduce the bandwidth needed to prove validity of the latest state. In this figure, b = c = 3; as before, objects that clients
can discard are outlined with dots. The top figure depicts the basic ledger data structure without any optimization: a large final certificate authenticates each
block header, and each certificate depends on the Q value immediately before it and the proofs of stake b blocks ago. The next figure shows the additional
stamping certificate chain with the leapfrog optimization: each leapfrogging certificate depends on the value of Q from b blocks ago and the balances from
2b blocks ago (§VI-A). The bottom figure shows stamping committee optimization used to reduce the size of certificates (§VI-B). It illustrates the candidate,
Q-, and Bal-breadcrumbs which consist of a small stamping certificate and block header along with a tail of block headers. It shows the dense tail formed by
the large final certificates that prove validity of the current block. (The figure omits the frozen breadcrumbs, which are farther back in the chain.)

large committee size. This arrangement is shown at the top of
Figure 4.

Vault addresses this problem using a combination of two
techniques. First, Vault introduces a stamping certificate that
can be verified using state from b and 2b blocks ago rather
than the state from 1 block ago. This allows clients to
“leapfrog” by b blocks at a time instead of having to verify
every single block in the blockchain. Vault uses Algorand’s
cryptographic sortition to privately select a committee for
such stamping certificates in a way that does not reveal
the committee membership to an adversary in advance. This
ensures that an adversary cannot selectively corrupt members
of this committee to falsify a certificate. Certificate signatures
use ephemeral keys of each committee member, which are
deleted by each committee member before they broadcast
their signature. This is shown in the middle of Figure 4 and

described in more detail in §VI-A.
Second, Vault uses a smaller committee size to generate the

stamping certificates, which reduces the size of the certificates
themselves (since they contain fewer signatures).3 To ensure
that a smaller committee does not give the adversary a higher
probability of corrupting the committee, Vault requires a much
larger fraction of expected committee members to vote in
order for the stamping certificate to be valid. This means
that, with significant probability, the committee fails to gather
enough votes to form a stamping certificate. However, this is
acceptable because new clients have two fallback options: they
can either verify Algorand’s full certificate, or they can verify

3 Note that multi-signatures [24] would not significantly reduce the size of
the certificates since the certificate needs to include a proof of cryptographic
sortition (VRF) and a partial Merkle proof for each committee member whose
signature appears in the certificate, which cannot be aggregated away.



a stamping certificate for a later block and backtrack using
PREVBLOCK hashes in the block headers. This arrangement
is shown at the bottom of Figure 4 and described in §VI-B.

A. Leapfrog Protocol
To allow leapfrogging, Vault constructs a sortition commit-

tee for the stamping certificate of block n using the seed Q
from block n− c, where c ≥ 1 is some constant. For security,
the proof-of-stake balances must be selected from b blocks
before the seed Q, so they are chosen from block n− c− b.
Members of this committee wait for consensus on block n,
and once consensus is reached, they broadcast signatures
for that block (after deleting the corresponding ephemeral
signing key), along with proofs of their committee selection.
The set of these signatures forms the stamping certificate for
BlockHeadern.

As mentioned above, this committee is, in principle, known
as soon as block n − c has been agreed upon. However, the
committee is selected in private using cryptographic sortition,
and honest clients do not reveal their committee membership
until they vote for block n, which prevents an adversary from
adaptively compromising these committee members.

Now each certificate depends on two previous block head-
ers: Certificaten depends on Q from BlockHeadern−c and
BALROOT from BlockHeadern−c−b. Moreover, Certificaten
validates BlockHeadern, which itself contains the value of Q
used for Certificaten+c and the value of BALROOT used for
Certificaten+c+b.

To optimize for the case of a new client catching up on
a long sequence of blocks starting with the genesis block,
we set c = b, so that the client does not need to validate
separate blocks for Qs and BALROOTs. This reduces the
bootstrapping bandwidth by a factor of b, since a new client
needs to download and authenticate every bth block header
and certificate.

To ensure that any client can help a new peer bootstrap,
all clients store the block header and certificate for blocks
at positions that are a multiple of b. Additionally, to ensure
that the base case is true, the first 2b blocks in Vault are
predetermined to be empty. Finally, to quickly catch up after
momentarily disconnecting from the network, clients keep the
previous 2b block headers at all times.

Choosing b. Vault’s choice of b trades off the weak synchrony
assumption (i.e., partitions may not last for periods longer than
b) against d, the speed at which stake that is sold becomes
malicious. We briefly justify our choice of b below; we refer
the reader to Algorand’s security analysis [25] for a formal
treatment.

On the one hand, suppose the adversary partitions the
network for more than b blocks starting at round r′. Then
the adversary may manipulate its public keys at round r′ and
the value of Q at round r′+ b such that at round r′+ b+ 1, it
engineers a proposer along with a committee whose members
it wholly controls. In this way, the adversary gains total control
of the ledger. Therefore, b must be large enough to tolerate
complete partitions.

On the other hand, suppose a rich, honest user sells off
50% of the stake in Vault at round r′. A few rounds after the
user completes the sale, a poor adversary corrupts this user,
who by chance controls a supermajority of the committee at
round r′+b+1. Then again the adversary gains control of the
ledger. Although this adversary controls little of the system’s
current stake, it controls much of the system’s past stake. As
a result, b must be small enough to allow honest users to finish
participating in Vault after selling off their stake.

Since c introduces an extra delay to certificate creation, for
security we require that not b ≤ d but instead b+ c ≤ d, and
since we set c = b we require that 2b ≤ d. At Vault’s highest
level of throughput, 2b = d = 2880 corresponds to about two
days’ worth of blocks.

B. Stamping Committees

Algorand’s consensus protocol requires thousands or tens
of thousands of signatures to produce a final certificate for a
block. This threshold is very high because Algorand guaran-
tees a very low rate of failure in terms of liveness and safety.
A failure in liveness prevents a block from being confirmed,
while a failure in safety may produce a ledger fork.

As with final certificates, a stamping committee threshold
should be set sufficiently high such that an adversary cannot
gather the signatures required to trick a new client into
accepting a forged ledger fork with high probability. Since
adversaries know when they are selected for a leadership in
advance, and a certificate must be secure for all time, we must
keep a strict safety threshold.

Although we cannot relax safety, we can greatly relax the
liveness property. Suppose a new client has already verified
the block headers for blocks r and r + b, using stamping
certificates, but there was no stamping certificate produced
for block r+ 2b due to relaxed liveness requirements. If there
was a stamping certificate produced for block r + 2b− 1, the
new client can efficiently verify that stamping certificate and
block instead.

Specifically, the new client can ask an existing peer for
the headers of blocks r − 1 and r + b − 1 and efficiently
verify them by checking PREVBLOCK hashes in blocks r and
r+b respectively. Since headers are relatively small, this costs
the client little bandwidth. We use the term breadcrumb to
denote this chain of PREVBLOCK pointers from a stamping
certificate to an earlier block header. Figure 4’s bottom row
shows two such breadcrumbs: one that required backtracking
by one block (for BALROOT), and one that did not require
any backtracking (for Q).

If the stamping certificate at r+ 2b− 1 also failed to form,
Vault repeats this process to find the highest block below r+2b
that did have a stamping certificate. If no such block exists in a
b-block interval, Vault falls back to a full Algorand certificate.

While Q is usually unpredictable and random, an adversary
may introduce bias into its value during network partitions.
Given this bias, Vault requires a safety failure rate of 2−100

for both its final and stamping certificates. However, with a



relaxed liveness assumption, we can decrease certificate size
by at least an order of magnitude.

For example, with an honesty rate of h = 80%, a final
certificate requires a threshold of 7,400 signatures. If we
allow stamping certificates to fail to form 65% of the time,
then it suffices to have a threshold of 100 signatures (out
of a suitably smaller committee). Applying the stamping
optimizations allows clients in Vault to verify the latest block
header in a 10-year old ledger by downloading 365 MB or less.
Appendix §A analyzes stamping certificate size given other
settings of the honesty and liveness failure rates.

Given that stamping certificate creation may occasionally
fail, each breadcrumb must contain a small “tail” of block
headers which are required to certify the two subsequent
breadcrumbs produced at most b and 2b blocks ahead, re-
spectively. Since block headers are relatively small (less than
256 bytes), the cost of storage here is low (less than 1.3 MB for
b = 1440). As clients observe the confirmation of new blocks
and the successful creation of new stamping certificates, they
update their state so as to minimize the sizes of these tails.
Clients must also hold a dense tail of block headers and final
certificates at the end of the ledger for each block after the
last header for which a stamping certificate was produced.
Vault clients discard this dense tail whenever new stamping
certificates are successfully created.

Proof components. For completeness, we describe the com-
ponents of the proof sent to a new client to convince it that
the ledger state is valid, and we describe the invariants that
apply to each component of this proof. See Appendix §B for a
description of one algorithm which achieves these invariants.
• Dense tail: The set of all headers and full final certificates

since the candidate breadcrumb.
• Candidate breadcrumb: The breadcrumb with the last-

observed stamping certificate. The candidate breadcrumb
is tentative and may be overwritten by a “better” bread-
crumb (i.e., a more recent breadcrumb which makes
the candidate breadcrumb obsolete). This breadcrumb is
never more than b blocks ahead of the Q-breadcrumb.

• Q-breadcrumb: The breadcrumb with the stamping cer-
tificate immediately preceding the candidate breadcrumb.
This breadcrumb’s certificate has been fixed as no sub-
sequent certificate may be better than this. However, its
tail of block headers may not yet be trimmed.

• Bal-breadcrumb: The breadcrumb with the stamping cer-
tificate immediately preceding the Q-breadcrumb. Like
the Q-breadcrumb, its certificate is final and unchanging.
Moreover, its tail remains “minimal” as new certificates
are seen. In other words, it maintains the shortest tail such
that the following conditions are true:

1) It contains the block header needed to authenticate
the Q-breadcrumb’s certificate’s Q-value.

2) It contains the block header needed to authenticate
the candidate breadcrumb’s certificate’s proofs of
stake.

• Frozen breadcrumbs: The set of the rest of the bread-

crumbs. These breadcrumbs have finalized both their cer-
tificates and tails. This set expands and absorbs the Bal-
breadcrumb when the candidate breadcrumb “graduates”
into a Q-breadcrumb, which in turn “graduates” into a
Bal-breadcrumb.

VII. EVALUATION

The primary question that our evaluation attempts to answer
is, “How effective is Vault at reducing the bandwidth cost of
helping a new client join the network?” §VII-B presents the
results.

To understand why Vault achieves a reduction in bandwidth,
we further answer three questions targeted at each of Vault’s
techniques, as follows. Recall that two components contribute
to bootstrapping costs: the state needed to execute the protocol
and the bandwidth required to convince a new client that this
state is correct.
• Balance Pruning: How much does transaction expiration

reduce storage cost by? (§VII-C)
• Stamping Certificates: What are the cost savings of us-

ing Vault’s sparse sequence of stamping certificates for
bootstrapping? (§VII-D)

• Balance Sharding: What are the trade-offs involved in
sharding Vault’s balance sets? (§VII-E)

A. Experimental Setup

To answer the above questions, we implemented the data
structures needed to execute the Bitcoin, Ethereum, Algorand,
and Vault protocols. However, we have not integrated these
data structures into their respective systems. We vary trans-
action volumes between 50 and 500 million transactions, and
we fill all blocks with the maximum number of transactions
given some fixed block size. (As of February 2018, there are
around 300 million transactions in Bitcoin [21] and around 150
million transactions in Ethereum [26].) We ignore the storage
cost of auxiliary data structures required to efficiently update
a protocol’s state; for example, we do not implement database
indexes.

Algorand uses a transaction format similar to Bitcoin’s. We
consider only simple transactions with the form of one input
and two outputs (one to the receiver and the other to self).

The ratio of unique accounts to transactions on Ethereum is
around 15% [27], [26] as of January 1, 2018. Additionally, we
obtained the Ethereum ledger up to this date by synchronizing
a Parity [28], [29] Ethereum client (in fatdb mode). Our
analysis of the Ethereum state indicates that around 38% of
all accounts have no funds and no storage/contract data (i.e.,
only an address and a nonce). For Ethereum and Vault, we fix
the account creation rate at 15% and the churn rate at 38%.
Other than to count the number of empty accounts, we do not
consider the costs in Ethereum which result from per-account
data storage or from smart contracts.

We instantiate the following parameters both in Algorand
and in Vault:
• 80% of the stake in the system is honest (h = 0.8).
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Fig. 5. An end-to-end comparison of the bootstrapping costs of the Bitcoin,
Ethereum, Algorand, and Vault ledgers (with sharding factors of 1 and 1,000).
Compared to Bitcoin and Algorand, Vault and Ethereum reduce storage costs
by one to two orders of magnitude. Vault outperforms Ethereum at 150 million
transactions because it can delete old accounts. Sharding Vault with a factor
of 1,000 reduces the costs of storing balances to a negligible amount, and
the total storage cost remains low (below 500 MB) even with 500 million
transactions on the ledger. Note that the y-axis is logarithmic.

• Stake sold off by a later-corrupted user counts towards h
for d = 48 hours.

• Network partitions last for at most 2 days. (Recall that
during a network partition, an adversary may arbitrarily
reschedule and drop any message.) This implies that the
leapfrogging interval is b = 1440 rounds.

• The maximum transaction lifetime is Tmax = 4 hours.
This keeps the cost of storing the hashes of recent
transactions to the hundreds of megabytes.

• Stamping certificates fail to form at a rate of 65%. This
implies that a certificate contains Tstamping = 100 signa-
tures, and a stamping sortition produces τstamping = 120
committee members in expectation.

• The size of a block is 10 MB. (Lower block sizes are
possible; these increase throughput and reduce latency.)

We use S in the rest of this section to denote the number
of shards in Vault.

B. End-to-end Evaluation

Figure 5 presents the results of an end-to-end evaluation of
Bitcoin, Ethereum, Algorand, and Vault (with sharding factors
of S = 1 and S = 1000).

Algorand’s storage cost exceeds that of Bitcoin. Every trans-
action that Bitcoin stores must also be stored by Algorand.
In addition, being able to execute secure bootstrapping in
Algorand incurs an additional cost ranging from 4 to 47 GB,
growing linearly with the number of confirmed transactions in
the system.

Figure 5 shows clear gains in storing the set of account bal-
ances rather than the set of transactions. Vault and Ethereum,
which both store account balances, outperform Algorand and
Bitcoin by 1 to 2 orders of magnitude. This holds both
because the set of balances is much smaller than the set of
all transactions, and also because an individual balance entry
is smaller than a transaction itself. Given that we only consider
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Fig. 6. A comparison of steady-state storage costs between Vault and
Ethereum, given an account churn rate of 38%. Observe that the ability
to prune empty balances allows Vault to keep a smaller balance tree than
Ethereum past around 100 million transactions, even as Vault must pay the
cost of storing its recent transaction log.

simple transactions with one input and two outputs, we expect
more complex transactions to amplify this effect.

Moreover, we see that after 150 million transactions, Vault
begins to outperform Ethereum even without sharding. This
follows from the fact that Vault may delete accounts with no
balance, which reduces overall storage cost by about 38%.
However, before 150 million transactions, the cost of storing
the recent transaction log imposes a fixed cost. We note that
throttling the throughput of Vault or reducing Tmax can easily
decrease this cost.

Finally, we observe that sharding Vault reduces storage even
more significantly. However, sharding is no “free lunch”; it
increases the sizes of transactions and thus the steady-state
bandwidth cost of propagating them to the entire network
(§VII-E).

C. Balance Pruning

To evaluate the efficiency of Vault’s balance pruning tech-
nique, we compare the storage footprint of Vault’s balance set
(again sharded at factors of 1 and 1000) against Ethereum’s.
Since Vault also requires a log of the recent transaction history
to detect double-spending, we include these costs as well.

Figure 6 shows that the ability to prune the balance tree sig-
nificantly reduces the ledger’s storage costs at scale. Initially,
Vault clients must hold the past 9.6 million transaction hashes
to enforce transaction expiration, which costs around 307 MB
of overhead (if transaction expiration Tmax is set to correspond
to 4 hours). However, past 150 million transactions, holding
the set of account balances dominates the cost of detecting
double-spending. Since Ethereum clients cannot garbage col-
lect the 38% of empty accounts in their balance trees, they
must store these accounts in perpetuity.4 Maintaining a log of
recent transactions constitutes a constant storage cost, while

4 We speculate that the use of Ethereum’s smart contracts to program-
matically create temporary accounts only exacerbates this problem. Efficient
garbage collection implies cheap temporary account creation.
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Fig. 7. A comparison between the certificate chain sizes in both Vault and
Algorand. The proof size is 2—4 orders of magnitude smaller in Vault, and
its size does not exceed 1 GB up to 500 million transactions. Usually, the size
of this proof remains under 100 MB. In the plot, proof sizes cluster around
several bands, which correspond to the number of final certificates present in
the dense tail. The lowest band grows linearly with the number of stamping
certificates that were formed. Note that the y-axis is logarithmic.

the overhead of storing empty accounts grows linearly as the
system continually processes new transactions.

D. Stamping Certificates

Next, we evaluate how efficiently a client can prove the
validity of its state to a new peer. We measure the amount of
data transferred for the stamping certificate chain in Vault and
compare it against the data transferred for the final certificate
chain in Algorand. Since the creation of stamping certificates
in Vault is non-deterministic, we evaluate the amount of data
transferred using fine-grained steps on the x-axis (number of
transactions processed) to illustrate these effects.

Figure 7 reveals that the overhead of the certificate and
header storage cost becomes significant in Algorand. To catch
up to a ledger with 500 million transactions, a client must
download around 47 GB of data.

In contrast, Vault’s proofs are much smaller even though the
use of a balance-based ledger increases the size of certificates
(by including partial Merkle proofs); these proofs are almost
always less than 100 MB in size. Two factors decrease the size
of these proofs. First, the chain of certificates is much sparser.
On average, downloading an extra stamping certificate allows
a client to validate an additional b = 1440 blocks. Second,
each individual stamping certificate is small. Instead of 7,400
signatures, each certificate is made up of 100 signatures.

Finally, this experiment demonstrates that, without the
stamping certificate optimization, certificates would dominate
the data required for bootstrapping. A 3.4 GB state size for
balances matters little if 47 GB is necessary to prove its
validity. Reducing the proof overhead to less than 100 MB
allows Vault to securely bootstrap new clients with modest
bandwidth cost.

E. Balance Sharding

Under sharding, we would like to determine how decreasing
the overhead of storing the intermediate frontier in the balance
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Fig. 8. Cost of storing sharded account balances and transaction sizes
given some setting of the witness length. The tree here stores 10 billion
accounts, divided into S = 1000 shards. Increasing transaction size linearly
(i.e. extending the Merkle witness) enables clients to decrease their storage
overhead by a factor of 2, which illustrates an exponential relationship between
transaction size and storage cost. Note that the figure contains a shared x-axis
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transaction size.

tree (§V-B) increases the size of transactions. We fix the
number of accounts to be 10 billion and the number of shards
to be S = 1000. Figure 8 illustrates this interaction.

We see that shard size is not the limiting factor. With
S = 1000, each client stores only 10 million accounts per
shard, which costs less than 500 MB each. Instead, sharding
costs are dwarfed by the overhead of keeping the internal
Merkle nodes on the frontier that allow clients to verify
transactions in other shards without needing to receive the
entire Merkle path as part of the transaction. On the one
hand, all clients may simply store all leaf Merkle nodes, which
adds nothing to transaction overhead but also reduces storage
cost by only a small amount: storing the set of balance along
with the Merkle frontier costs each client almost 1 TB. On
the other hand, the exponential fanout of the sparse Merkle
tree provides diminishing returns on storing each subsequent
layer; extending the Merkle witness by one hash halves the
storage footprint of the Merkle nodes. Eventually, storage costs
converge to the size of a shard.

VIII. CONCLUSION

Vault is a new cryptocurrency designed to reduce storage
and bootstrapping costs. Vault achieves its goals using three
techniques: (1) transaction expiration, which helps Vault de-
couple storage of account balances from recent transactions,
and thus delete old account state; (2) adaptive sharding, which
allows Vault to securely distribute the storage of account bal-
ances across participants; and (3) stamping certificates, which
allow new clients to avoid verifying every single block header,
and which reduce the size of the certificate. Experiments
demonstrate that Vault achieves its goals, reducing the storage
and bootstrapping cost for 500 million transactions to 477 MB,
compared to 5 GB for Ethereum and 143 GB for Bitcoin.
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APPENDIX

A. Stamping certificate security analysis

Recall that the security of a certificate is equivalent to the
security of the committee that produced it. We first define two
desirable properties of certificates.

Definition. A certificate has a safety failure rate of fs if
for all committees produced by cryptographic sortition, the
probability that an adversary can obtain two distinct and
validating certificates for a given block is fs.

Definition. A certificate has a liveness failure rate of fl if
for all committees produced by cryptographic sortition, the
probability that the honest users fail to produce a certificate
for a given block is fl.

Vault’s stamping committees are secure if they satisfy the
properties of liveness and safety. In Vault’s stamping commit-
tees, an honest verifier does not release its signature until it
sees a block confirmation. Because confirmed blocks are fork-
safe, we are guaranteed that if one honest verifier sees a block,
all other honest verifiers have seen that block. Thus, we have
the following observation:

Theorem. In Vault, it suffices to have one honest signature in
a stamping certificate to prove that it is valid.

Now let Tstamping be the threshold of signatures needed
to produce a valid stamping certificate, and let τstamping be
the number of committee members elected in expectation
to produce this certificate. Moreover, let γ and β be the
actual number of honest and malicious users elected to some
committee. We can translate the theorem into two desirable
properties, as follows:

Corollary. For Vault to produce certificates with a safety
failure rate of fs and liveness failure rate of fl, we must set
τstamping as follows:

Pr[γ < Tstamping] ≤ fl (1)
Pr[β ≥ Tstamping] ≤ fs (2)

Suppose that the number of currency units in the system
is U . For simplicity, let each user in the system own one
unit of currency. If h is the proportion of honest users in the
system, τ is the expected number of selected users following
a cryptographic sortition, and U is arbitrarily large, we have
that the chance of sampling exactly k honest users is

Pr[γ = k] =
(hτ)k

k!
ehτ
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Fig. 9. Certificate sizes required to guarantee various liveness failure rates
for a fixed safety failure rate of 2−100, given assumptions on the amount of
honest stake in the system. Honesty assumptions have a significant effect on
certificate size, which in turn has a significant influence on the liveness failure
rate.

while the chance of sampling exactly k malicious users is

Pr[β = k] =
((1− h)τ)k

k!
ehτ .

(This analysis follows from the application of the binomial
theorem.)

From (Equation 1) and (Equation 2) it follows that the
following conditions must both hold:

Tstamping−1∑
k=0

(hτstamping)k

k!
ehτstamping ≤ fl (3)

∞∑
k=Tstamping

((1− h)τstamping)k

k!
e(1−h)τstamping ≤ fs (4)

Then it is evident that τstamping = 120, Tstamping = 100
satisfy these conditions with h = 0.8, fs = 2−100, fl = 0.65.

Figure 9 illustrates the effects of changing fl for various
values of h, fixing fs = 2−100.

B. Stamping certificate algorithm

In this appendix we provide an algorithm which maintains
the invariants required for a valid proof of the ledger’s latest
state.

All clients maintain a proof of the ledger’s latest block.
A client mutates its proof on observing two events from the
cryptocurrency network:
• When a client observes a block and a full final certificate,

it appends it to its dense tail.
• When a client observes a new stamping certificate later

than its candidate breadcrumb, it deletes the final certifi-
cates in its dense tail up to and including this certificate.
Moreover, it moves ownership of these block headers
to the new stamping certificate, which becomes the new
breadcrumb. Next,

– If the breadcrumb index is not more than b blocks
greater than the Q-breadcrumb, the client replaces
its candidate breadcrumb with the new breadcrumb,
transferring over the block headers of the tail.

– Otherwise, the client:
1) Freezes the Bal-breadcrumb, adding it to the set

of frozen breadcrumbs.
2) Sets the Q-breadcrumb as the new Bal-

breadcrumb. This breadcrumb’s tail becomes
trimmable.

3) Sets the candidate breadcrumb as the new Q-
breadcrumb. This breadcrumb’s position is now
optimal and fixed (assuming that stamping cer-
tificates are received in order).

4) Sets the new breadcrumb as the candidate bread-
crumb.

Finally, it “trims” the tail of the Bal-breadcrumb to keep
its length minimal.

We summarize these procedures in pseudocode below.

function ONBLOCKRECEIVE(block, finalCert)
balances.Apply(block.transactions)
denseTail.Append((block.header, finalCert))

end function
function ONSTAMPRECEIVE(stampCert)

if stampCert.index− b ≤ qBreadcrumb.index then
lastBreadcrumb.Update(stampCert, denseTail)

else
frozen.Append(balBreadcrumb)
balBreadcrumb ← qBreadcrumb
qBreadcrumb ← lastBreadcrumb
lastBreadcrumb ← Combine(stampCert, denseTail)

end if
denseTail.Clear()
balBreadcrumb.Trim(qBreadcrumb, lastBreadcrumb)

end function
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