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ABSTRACT
CPHASH is a concurrent hash table for multicore processors.
CPHASH partitions its table across the caches of cores and uses mes-
sage passing to transfer lookups/inserts to a partition. CPHASH’s
message passing avoids the need for locks, pipelines batches of
asynchronous messages, and packs multiple messages into a sin-
gle cache line transfer. Experiments on a 80-core machine with 2
hardware threads per core show that CPHASH has ∼ 1.6× higher
throughput than a hash table implemented using fine-grained locks.
An analysis shows that CPHASH wins because it experiences fewer
cache misses and its cache misses are less expensive, because of less
contention for the on-chip interconnect and DRAM. CPSERVER,
a key/value cache server using CPHASH, achieves ∼ 5% higher
throughput than a key/value cache server that uses a hash table with
fine-grained locks, but both achieve better throughput and scalabil-
ity than MEMCACHED. Finally, the throughput of CPHASH and
CPSERVER scales near-linearly with the number of cores.

1 INTRODUCTION
Hash tables are heavily used data structures in servers. This paper
focuses on fixed-size hash tables that support eviction of its elements
using a Least Recently Used (LRU) list. Such hash tables are a
good way to implement a key/value cache. A popular distributed
application that uses a key/value cache is MEMCACHED [16]. MEM-
CACHED is an in-memory cache for Web applications that store data,
page rendering results, and other information that can be cached
and is expensive to recalculate. As the number of cores in server
machines increases, it is important to understand how to design hash
tables that can perform and scale well on multi-core machines.

This paper explores designing and implementing a scalable hash
table by minimizing cache movement. In a multi-core processor,
each core has its own cache and perhaps a few caches shared by
adjacent cores. The cache-coherence protocol transfers cache lines
between caches to ensure memory coherence. Fetching lines from
memory or from other cores’ caches is expensive, varying from one
order to two order of magnitude in latency, compared to an L1 fetch.
If several cores in turn acquire a lock that protects a data item, and
then update the data item, the cache hardware may send several
hardware messages to move the lock, the data item, and to invalidate
cached copies. If the computation on a data item is small, it may
be less expensive to send a software message to a core which is
responsible for the data item, and to perform the computation at the
responsible core. This approach will result in cache-line transfers
from the source core to the destination core to transfer the software
message, but no cache-line transfers for the lock, the data, and
potentially fewer hardware invalidation messages.

To understand when this message-passing approach might be ben-
eficial in the context of multicore machines, this paper introduces a
new hash table, which we call CPHASH. Instead of having each core
access any part of a hash table, CPHASH partitions the hash table
into partitions and assign a partition to the L1/L2 cache of a particu-
lar core. CPHASH uses message passing to pass the lookup/insert
operation to the core that is assigned the partition needed for that
particular operation, instead of running the lookup/insert operation
locally and fetching the hash table entry and the lock that protects

that entry. CPHASH uses an asynchronous message passing pro-
tocol, allowing CPHASH to batch messages. Batching increases
parallelism: when a server is busy, a client can continue computing
and add messages to a batch. Furthermore, batching allows packing
multiple messages in a single cache line, which reduce the number
of cache lines transferred.

To evaluate CPHASH we implemented it on a 80-core Intel ma-
chine with 2 hardware threads per core. The implementation uses 80
hardware threads that serve hash-table operations and 80 hardware
threads that issue operations. For comparison, we also implemented
an optimized hash table with fine-grained locking, which we call
LOCKHASH. LOCKHASH uses 160 hardware threads that perform
hash-table operations on a 4,096-way partitioned hash tables to
avoid lock contention. The 80 CPHASH server threads achieve 1.6×
higher throughput than the 160 LOCKHASH hardware threads. The
better performance is because CPHASH experiences 1.5 fewer L3
caches misses and the 3 L3 misses that CPHASH experiences are
less expensive. This is because CPHASH has no locks and has bet-
ter locality, which reduce the contention for the interconnect and
DRAM. CPHASH’s design also allows it to scale near-linearly to
more cores than LOCKHASH.

To understand the value of CPHASH in an application, this paper
introduces a MEMCACHED-style key/value cache server, which we
call CPSERVER, which uses CPHASH as its hash table. We compare
the performance of CPSERVER to the performance of a key/value
cache using LOCKHASH, and against MEMCACHED. We observe
that the servers based on CPHASH and LOCKHASH scale and per-
form better than MEMCACHED. In our servers, the hash table lookup
is only 30% of the total computation that the server performs to pro-
cess a request arriving over a TCP connection. CPHASH reduces
that by 17% compared to LOCKHASH.

The main contributions of the paper as follows: 1) CPHASH, a
scalable, high-performance concurrent hash table that reduce cache-
line movement by partitioning the hash table across L1/L2 caches
of cores and uses message passing to perform inserts and lookups
on a partition; 2) a detailed experimental evaluation (in terms of
cache lines moved) explaining under what conditions and why
CPHASH can perform better; and 3) a demonstration of CPHASH
in a MEMCACHED-style application, including a performance com-
parison with MEMCACHED.

The remainder of this paper is structured as follows. Section 2
describes the related work. Section 3 describes CPHASH’s design.
Section 4 describes design and protocol of CPSERVER. Section 5 de-
tails our implementation of CPHASH. Section 6 evaluates CPHASH
and a fine-grained locking hash table on microbenchmarks. Sec-
tion 7 evaluates the scalability and performance of CPHASH in an
application and compares its performance to MEMCACHED. In Sec-
tion 8 we discuss future plans for CPHASH. Section 9 summarizes
our conclusions.

2 RELATED WORK
CPHASH has a unique design in that it is a shared-memory hash
table that uses message passing to reduce cache-coherence traffic.
There are many concurrent shared-memory designs for hash tables,
including ones that are based on RCU, yet allow for dynamic resiz-

1



ing [25]. There are also many distributed designs such as Chord [21]
or MEMCACHED [16] based on message passing. MEMCACHED
clients often choose one of several partitioned MEMCACHED servers
to insert or look up a key, based on the key’s hash, and the same
idea of partitioning MEMCACHED has been applied within a single
machine to avoid contention on the single lock protecting MEM-
CACHED’s state [3]. We are unaware, however, of a design of a
hash table design that partitions the table across the L1/L2 caches of
cores and uses software message passing on a cache-coherent shared-
memory multicore machine to reduce hardware cache-coherence
traffic, combined with an evaluation investigating when this ap-
proach works.

Flat combining [13] has some of the same advantages as mes-
sage passing through shared memory. Cores post operations to a
publication list and the holder of the global lock processes all the
posted operations. This way when multiple threads are competing
for the global lock only one of them has to acquire it; others can just
schedule their operation and wait for the result. CPHASH achieves
similar properties by using message passing. Furthermore, it can
exploit asynchronous message passing to increase concurrency, and
has no notion of a global lock. Finally, flat combining hasn’t been
applied to hash tables.

Many different techniques to optimize use of caches on multi-core
chips exist. Thread clustering [24] dynamically clusters threads with
their data on to a core and its associated cache. Chen et al. [11]
investigate two schedulers that attempt to schedule threads that share
a working set on the same core so that they share the core’s cache
and reduce DRAM references. Several researchers have used page
coloring to attempt to partition on-chip caches between simultaneous
executing applications [12, 15, 20, 23, 27]. Chakraborty et al. [9]
propose computation spreading, which uses hardware-based migra-
tion to execute chunks of code from different threads on the same
core to reduce i-cache misses. These techniques migrate threads
or chunks of code, while CPHASH uses message passing to invoke
remote operations and to reduce cache-coherence traffic.

CPHASH attempts to execute computation close to data so that the
coherence protocol doesn’t have to move the data, and was inspired
by computation migration in distributed shared memory systems
such as MCRL [14] and Olden [8], remote method invocation in
parallel programming languages such as Cool [10] and Orca [2], and
the O2 scheduler [6]. CPHASH isn’t as general as these computation-
migration systems, but applies the idea to a single data structure that
is widely used in server applications and investigates whether this
approach works for multicore processors.

Several researchers place OS services on particular cores and
invoke them with messages. Corey [5] can dedicate a core to han-
dling a particular network device and its associated data structures.
Mogul et al. optimize some cores for energy-efficient execution of
OS code [17]. Suleman et al. put critical sections on fast cores [22].
Barrelfish [19] and fos [26] treat cores as independent nodes that
communicate using message passing. CPHASH’s message passing
implementation is more similar in approach to lightweight RPC on
the Firefly multiprocessor [4] than Barrelfish’s implementation on
Intel’s SCC [18], which is not cache-coherent. At a higher level,
CPHASH is a specific example of combining advantages of shared-
memory and message passing, within a single data structure. From
this perspective, the main contribution of the paper is the details of
the CPHASH design and when this approach works when applied to
hash tables.

3 CPHASH DESIGN
Figure 1 provides a top-level view of CPHASH’s design. CPHASH
splits a hash table into several independent parts, which we call

Key/Value Store Partition Key/Value Store Partition . . . Key/Value Store Partition

Server Thread Server Thread Server Thread. . .

Memory

Client Thread Client Thread Client Thread. . .

CPU

Figure 1: Overview of the CPHASH design.

partitions. CPHASH uses a simple hash function to assign each
possible key to a partition. Each partition has a designated server
thread that is responsible for all operations on keys that belong to it.
CPHASH pin each server thread to its hardware thread. Applications
use CPHASH by having client threads that communicate with the
server threads and send operations using message passing (via shared
memory). Server threads return results to the client threads also
using message passing.

The main goal of CPHASH’s design is to minimize cache-line
transfers to the ones necessary for sending/receiving messages, and
for delivering the data needed by the application. The rest of the sec-
tion describes how CPHASH achieves this goal in detail. Section 3.1
describes a partition. Sections 3.2 and 3.3 describe server and client
threads, respectively. Section 3.4 describes the message-passing
design, including batching and packing.

3.1 Partitions
CPHASH has one partition for each hardware thread that runs a
server thread. Every partition in CPHASH is a separate hash table.
Figure 2 shows the partition data structure. Each partition contains
a bucket array. Each bucket is a linked list. Keys are placed into
different buckets based on a hash function that maps a key to a
specific bucket. Each partition also has an LRU linked list that holds
elements in the least recently used order. CPHASH uses the LRU
list to determine which elements to evict from a partition when there
is not enough space left to insert new elements. Because only a
single server uses a partition, no locks are necessary to protect the
partition’s hash table, the buckets in that table, and the partition’s
LRU list. Furthermore, the partition data structures will stay in the
local cache, because they are read and written from only one core.

Each hash table element consists of two parts: a header, which
fits in a single cache line and is typically stored in the server thread’s
cache, and the value, which fits in zero or more cache lines following
the header, and is directly accessed by client threads, thereby loading
it into client thread caches. The header consists of the key, the
reference count, the size of the value (in bytes), and doubly-linked-
list pointers for the bucket and for the LRU list to allow eviction.
CPHASH’s current implementation limits keys to 60-bit integer
numbers; however, this can easily be extended to support any key
size. In CPHASH all partitions are of equal size for simplicity. If
needed, partitions can be implemented to have different sizes using
more advanced memory management and data eviction algorithms.
Section 8 discusses both extensions.

The ideal size for a partition is such that a partition can fit in the
L1/L2 cache of a core, with some overflow into its shared L3 cache.
On our test machine with 80 cores, hash table sizes up to about
80× 256KB+ 8× 30MB = 260MB see the best performance im-
provement, at which point CPHASH starts being limited by DRAM
performance.
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Figure 2: Partition data structures in CPHASH.

3.2 Server Threads
Each server thread performs the operations for its partition. The
server thread continuously loops over the message queues of each
client checking for new requests. When a request arrives, the server
thread performs the requested operation and sends its result back to
the client.

CPHASH supports two types of operations: Lookup and
Insert. In the case of a Lookup, the message contains the re-
quested key. If a key/value pair with the given key is found in the
partition, then the server thread updates the head of the partition’s
LRU list and return the pointer to the value to the client thread;
otherwise, the server returns a null pointer.

Performing an Insert operation is slightly more complicated.
CPHASH is non-intrusive and supports arbitrary length values; thus,
for an insert operation memory must be allocated for the value and
the value must be copied into the allocated memory. It is conve-
nient to allocate memory in the server thread since each server is
responsible for a single partition and so CPHASH can use a standard
single-threaded memory allocator. However, performing the actual
data copying in the server thread is a bad design since for large
values it wipes out the local hardware cache of the server core. Thus,
in CPHASH the space allocation is done in the server thread and the
actual data copying is performed in the client thread.

Thus, to perform an Insert operation, the server must receive
the key and the size of the data. The server thread allocates size
bytes of memory and removes the existing key/value pair with the
given key (if it exists) from the partition, to avoid having duplicate
keys for two different elements. The allocated space is marked as
“NOT READY” and will not be used until it is marked as “READY”.
The client receives the pointer, copies the data to the location pointed
by the given pointer, and marks that space as “READY”, by sending
a special Ready message to the server.

When a server thread evicts or deletes an element from the hash
table, the memory allocated for the evicted value must be freed so
that it can be reused for new elements. It is incorrect for a server
thread to just free the allocated memory when it evicts or deletes
an element. The problem is that if a client requests a Lookup
for some element and receives the pointer to its value, and then
the server threads evicts the element from the hash table before
the client is done reading its value, the client will have a dangling
pointer pointing to memory that might have been reallocated to a
new value. To resolve this issue, CPHASH counts references to an
element. Each element in the hash table has a reference count. Every
time a client requests a Lookup of an element, the server thread
increases the element’s reference count. When the client is done
with the item, it decreases the reference count of the element, by

sending a Decref message to the server. Once the reference count
reaches zero, the server thread frees the element’s memory.

3.3 Client Threads
Applications have client threads that communicate with the server
threads to perform operations. An example of a client thread in
an application is the client thread in CPSERVER’s implementation.
The client threads in CPSERVER gather operations from TCP con-
nections, route them to the appropriate server threads, gather the
results, and send them back to the correct TCP connections. Section
4 describes CPSERVER’s implementation in more detail. Client
threads do not necessarily have to be pinned to a specific hardware
thread but, to achieve the highest performance in message passing,
it is best to keep the client threads attached to a specific hardware
thread.

3.4 Message passing
The design so far arranges that client and server threads can mostly
run out of their local caches. The main remaining challenge is
a design for messaging passing that minimizes cache-line trans-
fers. CPHASH addresses this challenges in two ways: 1) the de-
sign introduces few cache-line transfers per message and 2) the
design attempts to hide the cost of these few transfers by allow-
ing client threads to overlap computation with communication to
server threads. As a result, as we will see in Section 6, CPHASH
incurs about 1.5 cache misses, on average, to send and receive two
messages per operation.

CPHASH implements message passing between the client and
server threads using pre-allocated circular buffers in shared memory.
For each server and client pair there are two arrays of buffers—
one for each direction of communication. Another possible way to
implement message passing is to use a single buffer per client/server
pair, which our original design did; this is more efficient but it allows
for less concurrency. Figure 3 gives graphical representation for
both designs.

In the single buffer implementation, space is allocated for each
client/server pair and when a client want to send a request to a
server, it writes the message to the buffer and waits for the server to
respond. When the server is done processing the message, it updates
the shared location with the result.

The implementation of an array of buffers consists of the follow-
ing: a data buffer array, a read index, a write index, and a temporary
write index. When the producer wants to add data to the buffer, it
first makes sure that the read index is large enough compared to the
temporary write index so that no unread data will be overwritten.
Then it writes data to buffer and updates the temporary write index.
When the temporary write index is sufficiently larger than the write
index, the producer flushes the buffer by changing the write index to
the temporary write index.

To read data, the consumer waits until the read index is less than
the write index, then it proceeds to read the buffered data and update
the read index. The read index, write index and temporary write
index are aligned in memory to avoid false sharing. To decrease the
number of cache misses when reading or writing buffers, the client
threads flush the buffer when the whole cache line is full and the
server threads update the read index after they are done reading all
the operations in a cache line. In the common case, the temporary
write index lives in the producer’s cache, the read index and write
index are shared by the producer and consumer (updated whenever
an entire cache line worth of messages is produced or consumed),
and the cache lines comprising the buffer array are also transferred
from producer to consumer.

There are two major benefits to using arrays of buffers instead of
single buffers. The first advantage is improved parallelism. With an
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Figure 3: Two message-passing designs.

array of buffers, the client can just queue the requests to the servers;
thus, even if the server is busy, the client can continue working and
schedule operations for other servers. This way all the servers can
stay busy most of the time, allowing applications to achieve better
performance.

The second reason is decreased overhead for message passing.
With a single buffer, for every message received, the server expe-
riences a cache miss; however, since a cache line can hold several
messages (in our test machines a cache line is 64 bytes), with batch-
ing and packing the server can receive several messages using only
a singe cache miss.

There are some downsides to using arrays of buffers instead of
the single buffers. The array implementation requires having extra
indices to enable the server and the client to know how much data has
been written and how much has been read. Maintaining these indices
introduces extra performance overhead that a single buffer does not
have. Thus, if the client sends requests to the server at a slow rate,
a single buffer outperforms the array implementation. However, if
the client has a batch of requests that it needs to complete, batching
will be an advantage. Our target applications are bottlenecked by
the performance of the hash table, and have no shortage of requests;
therefore, buffering is a better design choice for message passing.

4 KEY/VALUE CACHE SERVERS

To demonstrate the benefits of CPHASH in an application, we devel-
oped CPSERVER, a MEMCACHED-style Key/Value Cache Server,
which uses CPHASH to implement its hash table. For comparison,
we also implemented a version of this server in a shared-memory
style using fine-grained locking. Section 6 compares these two
implementations with MEMCACHED.

4.1 CPSERVER

Figure 4 shows the design of CPSERVER. CPSERVER has server
and client threads as described in Section 3. TCP clients on client
machines connect to CPSERVER using TCP connections. A client
thread monitors TCP connections assigned to it and gathers as many
requests as possible to perform them in a single batch. Then, a client
thread passes the batch of requests to the appropriate server threads
using message passing. After the server thread is done and the client
thread receives the results, the client thread writes back those results
to the appropriate TCP connections.

The CPSERVER also has an additional thread that accepts new
connections. When a connection is made, it is assigned to a client
thread with the smallest number of current active connections. The
load balancer could be more advanced for work loads in which the
traffic on different connections differ significantly.

Key/Value Store Partition Key/Value Store Partition . . . Key/Value Store Partition

Server Thread Server Thread Server Thread. . .

Memory

Client Thread Client Thread Client Thread. . .

CPU

TCP Client TCP Client TCP Client TCP Client TCP Client TCP Client. . .

TCP Connections

Key/Value Store Server

TCP Connections

Figure 4: Overview of the CPSERVER design.

CPSERVER uses a simple binary protocol with two message
types:

LOOKUP With the LOOKUP request the TCP client asks the
server to try to find a key/value pair in the hash table such
that the key matches the hash key field from the request. If
the requested key/value pair is found in the hash table, then
the server returns the size of the value, along that many bytes
containing the actual value. Otherwise, the server returns a
response with a size field of zero.

INSERT With the INSERT request the TCP client asks the server
to insert a new key/value pair in the hash table. The hash
key field is the key to be inserted. The size field is the size
of the value to be inserted in the hash table. The INSERT
request header is followed by size number of bytes which
contain the value to be inserted. The server silently performs
INSERT requests and returns no response.

4.2 LOCKSERVER
To evaluate the performance and scalability of CPHASH, we created
LOCKSERVER, which does not use message passing. It supports the
same protocol, but uses a shared-memory style hash table, which we
name LOCKHASH, with fine-grained locks. To make the comparison
fair, LOCKHASH also has n LRU lists instead of 1 global one, by
dividing the hash table into n partitions. Each partition is protected
by a lock to protect the LRU list for that partition. The client
threads of LOCKSERVER process queries by first acquiring the lock
for the appropriate partition, then performing the query, updating
the LRU list and, finally, releasing the lock. LOCKSERVER also
supports a random eviction policy, in which case it acquires a per-
bucket lock instead of a per-partition lock to perform all operations.
Overall, LOCKHASH and LOCKSERVER are also highly optimized
to minimize the amount of cache lines transferred, subject to the
design constraints of the lock-based approach.

5 IMPLEMENTATION
We have implemented CPHASH, LOCKHASH, CPSERVER, and
LOCKSERVER in a common C/C++ framework on Linux. Both
of the hash tables implement the same API, allowing the same
benchmark or TCP server to drive either hash table. Furthermore,
both CPHASH and LOCKHASH use the same code for implementing
a single hash table partition; the only difference is that LOCKHASH
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acquires a lock to perform an operation on a partition, and CPHASH
uses message-passing to send the request to the appropriate server
thread. The total implementation is approximately 4,400 lines of
code.

To precisely evaluate performance, we developed a 500-line C++
profiling library that uses rdtsc and rdpmc to access the hard-
ware timestamp counter and performance counters. To access per-
formance counters from user-space, we use a 300-line Linux kernel
module.

To avoid bottlenecks in the Linux TCP stack and network driver
from limiting the throughput of our TCP servers and clients, we use
Intel’s ixgbe Linux driver, and route its interrupts to 64 different
cores, along with other patches described by Boyd-Wickizer et al [7].

6 PERFORMANCE EVALUATION

In this section we discuss the performance results that we achieved
using CPHASH, and compare it to the performance achieved by the
LOCKHASH design. To evaluate hash table performance, we created
a simple benchmark that generates random queries and performs
them on the hash table. A single query can be either a LOOKUP or
an INSERT operation. The INSERT operation consists of inserting
key/value pairs such that the key is a random 64-bit number and the
value is the same as the key (8 bytes). The benchmark is configured
using several parameters:

• Number of client hardware threads that are issuing queries.

• Number of partitions (which, for CPHASH, is also the number
of server hardware threads).

• Working set size of queries issued by clients, in bytes (i.e.,
amount of memory required to store all values inserted by
clients). This corresponds to the number of distinct keys used
by clients.

• Maximum hash table size in bytes (meaningful values range
from 0× to 1× the working set size).

• Ratio of INSERT queries.

• Size of batch.

We first evaluate the overall performance of CPHASH under
several representative workloads, then explore in detail the reason
for the performance differences between CPHASH and LOCKHASH,
and finally study how other parameters affect the performance of
CPHASH relative to LOCKHASH.

We use an 80-core Intel machine for our evaluation. This machine
has eight sockets, each containing a 10-core Intel E7-8870 processor.
All processors are clocked at 2.4 GHz, have a 256 KB L2 cache per
core, and a 30 MB L3 cache shared by all 10 cores in a single socket.
Each of the cores supports two hardware threads (Hyperthreading
in Intel terminology). Each socket has two DRAM controllers, and
each controller is connected to two 8 GB DDR3 1333 MHz DIMMs,
for a total of 256 GB of DRAM.

Although we report results from an Intel system, we have also
evaluated CPHASH and LOCKHASH on a 48-core AMD system
(also consisting of eight sockets). The performance results on the
AMD system are similar, but we focus on the Intel results in this
paper both for space reasons, and because the Intel machine has
more cores and hardware threads.

6.1 Overall performance
To evaluate the overall performance of CPHASH relative to its lock-
ing counterpart, LOCKHASH, we measure the throughput of both
hash tables over a range of working set sizes. Other parameters are
fixed constants for this experiment, as follows. Clients issue a mix
of 30% INSERT and 70% LOOKUP queries. The maximum hash
table size is equal to the entire working set. We run 109 queries for
each configuration, and report the throughput achieved during that
run.

For CPHASH, we use 80 client threads, 80 partitions, and 80
server threads. The client and server threads run on the first and
second hardware threads of each of the 80 cores, respectively. This
allows server threads to use the L2 cache space of each core, since
client threads have a relatively small working set size. Each client
maintains a pipeline of 1,000 outstanding requests across all servers;
similar throughput is observed for batch sizes between 512 and
8,192. Larger batch sizes overflow queues between client and server
threads, and smaller batch sizes lead to client threads waiting for
server replies.

For LOCKHASH, we run 160 client threads, one on each of the 160
hardware threads. We use 4,096 partitions to avoid lock contention,
which we experimentally determined to be optimal: a smaller num-
ber of partitions incurs lower throughput due to lock contention, and
a larger number of partitions does not increase throughput.

Figure 5 shows the results of this experiment. For small working
set sizes, LOCKHASH performs poorly because the number of dis-
tinct keys is less than the number of partitions (4,096), leading to
lock contention. In the middle of the working set range (256 KB–
128 MB), CPHASH consistently out-performs LOCKHASH by a
factor of 1.6× to 2×. With working sizes of 256 MB or greater,
the size of the hash table exceeds the aggregate capacity of all CPU
caches, and the performance of CPHASH starts to degrade as the
CPUs are forced to incur slower DRAM access costs. At large work-
ing sets, such as 4 GB to the right of the graph, the performance of
both CPHASH and LOCKHASH converges and is limited by DRAM.
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Figure 5: Throughput of CPHASH and LOCKHASH over a range of
working set sizes.

6.2 Detailed breakdown
To understand the precise reasons why CPHASH is faster than LOCK-
HASH, we now examine where time is spent in both hash tables
under the 1 MB working set configuration from the previous section.

With CPHASH, a single operation takes an average of 1,126
clock cycles, as measured on the client thread (including time spent
waiting for the server thread). CPHASH’s server threads spend
59% of the time processing INSERT and LOOKUP operations; the
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rest of the time is spent polling idle buffers. A single INSERT
or LOOKUP operation typically translates into two messages to
a server thread: one message to allocate space or look up a key,
and a second message to release the reference count on the result
(if found). Server threads spend an average of 336 clock cycles
handling each message. However, even though the server threads
are idle for 41% of the time, reducing the number of server threads
leads to a reduction in throughput for two reasons: as server thread
utilization goes up, the average wait time for clients increases, and
the L2 caches on cores with two client threads (as opposed to one
client and one server thread) are underutilized.

With LOCKHASH, a single operation takes an average of 3,664
clock cycles to execute (note that, while this time is 3.25× the
CPHASH operation latency, LOCKHASH has twice as many client
threads issuing operations, resulting in 1.63× lower throughput).
Even though LOCKHASH is slower than CPHASH, it is still highly
optimized, and all of the operations and cache misses it incurs are
necessary by its design.

The increased latency of operations under LOCKHASH is due to
two factors. First, LOCKHASH performs more memory accesses that
miss in L2 and L3 caches (due to shared data structures), and second,
the memory misses incurred by LOCKHASH are more expensive
than those incurred by CPHASH (due to higher contention on the
memory system). Figure 6 summarizes the cache misses observed
on average for one operation under both CPHASH and LOCKHASH,
and Figure 7 further breaks down the causes for the cache misses.
The overall latency of an operation under LOCKHASH is less than
the sum of cache miss latencies due to out-of-order execution and
pipelining.

CPHASH CPHASH LOCKHASHclient server
Cycles per op. 1,126 cycles 672 cycles 3,664 cycles
# of L2 misses 1.0 misses 2.5 misses 2.4 misses
L2 miss cost 64 cycles 170 cycles
# of L3 misses 1.9 misses 1.2 misses 4.6 misses
L3 miss cost 381 cycles 1,421 cycles

Figure 6: Performance of a single hash table operation under CPHASH
and LOCKHASH, including the total cycles spent per operation, the num-
ber of cache misses incurred for each operation, and the average latency
for each such miss. “L2 miss” indicates memory accesses that missed
in the local L2 cache, but hit in the shared L3 cache or a neighbor’s L2
cache on the same socket. “L3 miss” indicates memory accesses that
missed in the local L3 cache, and went to DRAM or another socket.

Design Function L2 misses L3 misses

LOCKHASH

Spinlock acquire 0.1 0.9
Hash table traversal 2.0 2.4
Hash table insert 0.4 1.2
Total 2.4 4.6
Send messages 0.1 0.5

CPHASH Receive responses 0.5 0.4
client thread Access data 0.4 0.9

Total 1.0 1.9
Receive messages 1.4 0.4

CPHASH Send responses 0.4 0.4
server thread Execute message 0.7 0.4

Total 2.5 1.2

Figure 7: Detailed breakdown of cache misses in CPHASH and LOCK-
HASH for an average operation, with a 1 MB working set size, 1 MB
hash table capacity, LRU eviction, and an INSERT ratio of 0.3. Ev-
ery operation performs a hash table traversal, and an average operation
performs 0.3 hash table inserts.

As can be seen in the detailed cache miss breakdown in Figure 7,
CPHASH incurs about 1.5 cache misses, on average, to send and
receive two messages per operation. This is achieved through batch-
ing: CPHASH can place eight lookup messages (consisting of an
8-byte key), or four insert messages (consisting of an 8-byte key and
an 8-byte value pointer) into a single 64-byte cache line. CPHASH
also incurs additional cache misses to access the data (either to read
it for lookup, or to modify it for insert), since CPHASH servers
return pointers to values rather than copying the data directly.

LOCKHASH spends the bulk of its cache misses on hash table
traversal, even though the hash table is configured to store an average
of one element per bucket. A hash table that was more dense (i.e.,
had more elements per bucket on average) would see more significant
performance improvements with CPHASH over LOCKHASH.

In LOCKHASH, each operation incurs the cost of acquiring the
lock. CPHASH’s idea of batching could, in principle, also be applied
to a lock-based design, by batching multiple operations into a single
lock acquisition and LRU update. However, LOCKHASH has a larger
number of partitions (4,096) compared to CPHASH (80), in order to
avoid partition lock contention. As a result, effective batching for
LOCKHASH would require a larger number of concurrent operations,
in order to accumulate multiple operations for each of the 4,096
partitions. On the other hand, CPHASH can batch requests to just
80 distinct server threads. Batched locking would also not be able to
achieve the locality of accesses to hash table structures observed in
CPHASH.

LOCKHASH uses a spinlock to protect each hash table partition
from concurrent access. Although the spinlock is not scalable, it per-
forms better than a scalable lock. For example, Anderson’s scalable
lock [1] requires a constant two cache misses to acquire the lock,
and one more cache miss to release. In contrast, an uncontended
spinlock requires one cache miss to acquire and no cache misses
to release. Contended spinlocks can become expensive, but even
contended scalable locks need to be avoided (e.g., by increasing the
number of partitions) to maintain good performance.

6.3 Effect of LRU
As described above, one of the reasons why CPHASH wins over
LOCKHASH is due to the fact that CPHASH servers can keep LRU
pointers stored in their local cache, as opposed to LOCKHASH which
must incur cache misses to update LRU pointers. To evaluate the
importance of LRU to CPHASH, Figure 8 reports the throughput of
CPHASH and LOCKHASH for the same configuration and range of
working set sizes as before, except with a random eviction policy
instead of LRU (this configuration also avoids maintaining any LRU
data structures). As can be seen from the figure, the relative per-
formance benefit of CPHASH is less, but still significant (1.45× at
4 MB). With a random eviction policy, CPHASH client threads incur
the same number of cache misses per operation, but LOCKHASH
threads incur fewer misses (a total of 1.2 L2 misses and 3.6 L3
misses at 1 MB), which accounts for the performance improvement
of LOCKHASH. CPHASH server threads also incur fewer misses
due to not having to maintain LRU pointers, but this does not af-
fect CPHASH throughput because it was not bottlenecked by server
threads.

6.4 Effect of eviction and write ratio
To understand how CPHASH performs with a different mix of
queries, this sub-section explores the effect of eviction (i.e., a work-
ing set that exceeds the capacity of the hash table), and the effect of
the fraction of INSERT queries on the performance of CPHASH and
LOCKHASH.

Figure 9 illustrates the throughput for a range of total hash table
capacities for a workload with a 128 MB working set size (using
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Figure 8: Throughput of CPHASH and LOCKHASH over a range of
working set sizes with a random eviction policy instead of LRU.
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Figure 9: Throughput of CPHASH and LOCKHASH over a range of
hash table capacities, for a 128 MB working set size.

LRU and a 0.3 ratio of INSERT operations). The throughput of
both hash table implementations goes up as the total hash table
capacity is reduced, because a larger fraction of the hash table fits in
the processor caches, and a larger fraction of LOOKUP responses
are null. However, CPHASH maintains a consistent throughput
advantage over LOCKHASH for all hash table capacities.

Figure 10 illustrates the throughput for a range of ratios of IN-
SERT operations, using a 128 MB working set size, 128 MB hash
table capacity, and LRU eviction policy. A higher fraction of IN-
SERT operations reduces throughput, because INSERT operations
are more expensive to process: they require first looking up the given
key in a hash table, evicting it if already present, and then inserting a
new element. In the degenerate case of zero INSERT operations, the
hash table is noticeably faster because the hash table remains empty
and none of the LOOKUP operations succeed. This illustrates that
CPHASH’s performance advantage is not sensitive to the ratio of
INSERT requests.

6.5 Effect of additional cores and threads
To understand how well our hash table designs scale with the number
of cores, we measured their throughput when running with different
numbers of cores on our experimental machine. Since our machine
is not fully symmetric (e.g., some cores share a single L3 cache),
we only varied the number of sockets: either all of the cores and
hardware threads in a given socket were in use, or none of them
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Figure 10: Throughput of CPHASH and LOCKHASH over a range of
fractions of INSERT operations, for a 128 MB working set size and hash
table capacity.
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Figure 11: Throughput of CPHASH and LOCKHASH on a varying
number of hardware threads.

were. We configured our benchmark to use a 1 MB working set size,
1 MB hash table capacity, 30% INSERT fraction, and LRU eviction
scheme.

Figure 11 shows the per-socket throughput of CPHASH and
LOCKHASH for varying numbers of sockets (each of which has 20
hardware threads). On the left side of the graph, both CPHASH and
LOCKHASH perform better on a single socket than on a multi-socket
configuration. This is because cache misses within a single socket
are less expensive. As the number of cores increases past one socket,
the throughput of LOCKHASH degrades, because cache misses in-
curred by LOCKHASH become increasingly more expensive. On the
other hand, CPHASH scales better with the number of cores past one
socket, since it incurs fewer expensive cache misses between cores.
Infact, CPHASH scales near-linearly with the number of cores past
one socket.

On smaller numbers of cores, CPHASH is slightly slower than
LOCKHASH—since the aggregate capacity of caches across all cores
is not significantly greater than the cache capacity accessible from a
single core—but its throughput advantage grows with the number of
cores.

Finally, all of the benchmarks so far have exploited both of the hy-
perthreads on each core of our experimental machine. To understand
the extent to which our two different hash tables benefit from hard-
ware multi-threading, we measure their throughput in three different
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configurations. The first is using both hardware threads in each of
the 80 cores, in 8 sockets. The second is using both hardware threads
in just 40 of the cores, in 4 sockets. The third is using only one of
the hardware threads in each of the 80 cores, in 8 sockets. Figure 12
summarizes the results of this experiment, for a 1 MB working set
workload with 1 MB hash table capacity and LRU eviction.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

160 t on 80 c 80 t on 80 c 80 t on 40 c

T
hr

ou
gh

pu
t (

qu
er

ie
s 

/ s
ec

on
d)

CPHash
LockHash

Figure 12: Throughput of CPHASH and LOCKHASH in three different
configurations of hardware threads (t) and cores (c).

As can be seen from this experiment, both LOCKHASH and
CPHASH perform better when using hardware threads that are shar-
ing a core, on a smaller number of sockets, and worse when using
hardware threads each with a dedicated core, on a larger number
of sockets. The reason is that both hash table implementations are
sensitive to the cost of transferring cache lines between hardware
threads, and having the hardware threads run within fewer sockets
(where each socket has a shared L3 cache) reduces this latency.

In the 160 thread / 80 core configuration, LOCKHASH gains
little additional throughput compared to the 80 thread / 80 core
configuration, because it is already bottlenecked by the socket’s
aggregate memory access throughput. On the other hand, CPHASH’s
fewer cache misses allow it to take advantage of the additional
hardware threads without being bottlenecked by the socket’s memory
subsystem.

6.6 Discussion
The experimental results show that CPHASH is scalable and provides
increased throughput, especially when the hash table meta data fits
in the server cores’ combined hardware caches. When the hash
table meta data is much larger than the combined caches, CPHASH
still provides benefits through batching and caching the common
partition data (such as an LRU list). Furthermore, the results show
that the benefits are attributable to CPHASH’s design: there are no
cache line transfers per operation for locks, and CPHASH avoids
additional cache line transfers because it has better locality; the core
that processes the request has all the metadata in its local cache.

As the number of cores grows in future processors, we expect the
aggregate cache space across all of the cores to similarly increase,
thereby extending the range of working set sizes for which CPHASH
provides a performance improvement over LOCKHASH. Further-
more, in future processors, the number of DRAM interfaces per core
will fewer, because more cores will be packed on a single core, and
thus taking advantage of local caches will be even more important.

7 APPLICATION PERFORMANCE
To evaluate CPHASH in an application, we measure the performance
of CPHASH and LOCKHASH in a simple key-value cache server

with a TCP interface, which we call CPSERVER and LOCKSERVER
respectively. This server spends about 30% of its time performing
hash table operations (for most workload parameters), and spends
the other 70% of the time receiving queries and sending responses
over TCP. Thus, if CPHASH improved the performance of hash
table operations by 1.6× (as we saw in the microbenchmarks from
the previous section), this would translate into a 11% performance
improvement for the overall application.

To benchmark CPSERVER and LOCKSERVER, we use a 48-core
AMD machine to generate load by issuing queries over a TCP con-
nection. The server runs on the same Intel machine as above, and
the two machines are connected with a 10 Gbps Ethernet link. In all
experiments, the server machines (and not the client machines) are
the bottleneck.

Figure 13 shows the throughput of CPSERVER and LOCKSERVER
for a range of working set sizes (with a matching hash table capac-
ity, LRU eviction, and 30% INSERT rate). CPSERVER is about
5% faster than LOCKSERVER (out of a maximum possible 11%).
CPSERVER does not achieve an 11% speedup because TCP con-
nection processing increases cache pressure and interconnect traffic,
making cache misses for CPHASH more frequent and more expen-
sive.
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Figure 13: Throughput of CPSERVER and LOCKSERVER over a range
of working set sizes.

To ensure that CPSERVER and LOCKSERVER achieve competi-
tive absolute performance, we compare their throughput with that of
MEMCACHED. Since MEMCACHED uses a single lock to protect its
state, we ran a separate, independent instance of MEMCACHED on
every core, and configured the client to partition the key space across
these multiple MEMCACHED instances. As shown in Figure 14, the
results indicate that even this partitioned MEMCACHED configura-
tion is significantly slower than both CPSERVER and LOCKSERVER.
We only measured the performance of MEMCACHED to 10 cores,
using one hardware thread per core, since MEMCACHED does not
benefit from hardware multi-threading, and achieves even lower
throughput on multiple sockets. Overall, this result suggests that the
performance of CPSERVER and LOCKSERVER is competitive. Note
that LOCKSERVER achieves better performance than CPSERVER for
low number cores but that CPSERVER outperforms LOCKSERVER
for larger number of cores, as shown above.

8 FUTURE WORK
We would like to improve the CPHASH implementation in two ways:
dynamically changing the number of server threads and supporting
keys with different lengths.
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Figure 14: Throughput of CPSERVER, LOCKSERVER, and MEM-
CACHED for a range of cores (using one hardware thread per core),
with a 128 MB working set and hash table capacity.

8.1 Dynamic Adjusting of the Server Threads
The current implementation dedicates a fixed number of cores to run
server threads. A better approach would be to have an algorithm
that dynamically decides on how many cores to use for the server
threads, depending on the workload. Such dynamic adjustment of
the server threads would make it possible to use fewer cores when
the workload is small, making it possible to run other services on
the same machine when there is not much load on the hash table.

Dynamic adjustment of the server threads could also provide
higher performance. If the CPU resources needed by the client
threads to generate the queries is less than the resources needed by
the server threads to complete the queries, then it is better to dedicate
more cores to run the server threads than to the client threads. On
the other hand, if the client threads need more CPU resources to
generate the queries, it is better to dedicate fewer cores to run the
server threads and use more cores for the client threads. In our
experiments we chose statically the number of servers and clients
threads that resulted in the best performance.

8.2 Handling Any Size Keys
The current implementation supports only 60-bit hash keys, which
can easily be extended to any size keys without modifying
CPSERVER. The main idea to support any size keys is to use on
INSERT the 60-bit hash of the given key as a hash key and store
both the key and the value together as a value. Then to perform
the LOOKUP of a certain key, CPHASH would first calculate the
hash key and lookup the value associated with it. If such a value
exists it would contain both the key string and the value string in
it. Then before returning the value CPHASH would compare the
key string to the actual key that the client wanted to lookup, and, if
there is a match, return the value. If the key strings do not match,
this would mean a hash collision since their hash values match but
the strings itself do not. In this case, CPHASH would just return
that the value was not found; since CPHASH is a cache, this doesn’t
violate correctness. Furthermore, the chance of a collision with 60
bit-keys is very small, especially considering the fact that the hash
table is stored in memory; it cannot have more than several billion
elements.

9 CONCLUSION
This paper introduced CPHASH, a scalable, concurrent hash table
for key/value caches. Unlike traditional shared-memory implemen-
tation using locking, CPHASH partitions the hash table across server

cores, and clients perform operations on a partition by sending a
message through shared memory to the right partition. The message
system provides asynchronous message passing to increase paral-
lelism between clients and servers, and packs multiple messages
in a single cache-line to reduce cache-line transfers. Experiments
with CPHASH and an optimized fine-grained locking implementa-
tion, LOCKHASH, show that CPHASH achieves 1.6× to 2× higher
throughput, because it has 1.5 fewer L3 misses per operation and the
3 misses CPHASH experiences are less expensive. These improve-
ments are attributable to the design of CPHASH, which avoids locks
and has better locality. CPHASH also scales better to larger number
cores than LOCKHASH. Experiments with CPHASH and LOCK-
HASH in a MEMCACHED-like application show that both CPHASH
and LOCKHASH-based servers are faster and scale better than MEM-
CACHED, and that CPSERVER outperforms LOCKSERVER by 5% at
160 hardware threads.
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