
Compact Certificates of Collective Knowledge
Silvio Micali∗†, Leonid Reyzin∗‡, Georgios Vlachos§, Riad S. Wahby∗ ¶, Nickolai Zeldovich∗†

∗Algorand
†MIT CSAIL

‡Boston University
§Axelar
¶Stanford

silvio@algorand.com, reyzin@cs.bu.edu, georgios@axelar.network, rsw@cs.stanford.edu, nickolai@csail.mit.edu

Abstract—We introduce compact certificate schemes, which
allow any party to take a large number of signatures on a
message 𝑀 , by many signers of different weights, and compress
them to a much shorter certificate. This certificate convinces
the verifiers that signers with sufficient total weight signed 𝑀 ,
even though the verifier will not see—let alone verify—all of the
signatures. Thus, for example, a compact certificate can be used
to prove that parties who jointly have a sufficient total account
balance have attested to a given block in a blockchain.

After defining compact certificates, we demonstrate an effi-
cient compact certificate scheme. We then show how to imple-
ment such a scheme in a decentralized setting over an unreliable
network and in the presence of adversarial parties who wish to
disrupt certificate creation. Our evaluation shows that compact
certificates are 50–280× smaller and 300–4000× cheaper to verify
than a natural baseline approach.

I. Introduction
Suppose many people wish to attest to having witnessed an

important event. They could each sign an attestation message
𝑀 that has the relevant information about the event. The
resulting collection of signatures will constitute a certificate
of this event. This certificate, however, will be quite large and
will take a long time to verify. Our goal is to reduce the size
and verification time by combining multiple signatures into a
single compact certificate. Moreover, we want to ensure that,
even though each attestor has a signing public key, the verifier
will need access only to a small subset of these keys.
We generalize the above problem in two ways. First, we wish

to go beyond public keys and signatures to any NP statements
and their witnesses (provided as attestations); signatures are
then just a special case, with each NP statement comprising a
public key and the message 𝑀 . Second, our attestors are not
all equal; rather, they have assigned weights. Our goal is to
show that attestors with sufficient total weight have provided
witnesses to their corresponding NP statements.
Our first contribution is to define compact certificate

schemes in terms of their functionality and security in
Section III. Crucially, our definition ensures that the verifiers
never need to receive or store a linear amount of information:
they need neither all the NP statements nor all the weights,
but only a commitment to this information.
We then construct the first ever compact certificate scheme

in Section IV. Using our scheme, anyone in possession of
the signatures (more generally, NP witnesses) can reduce
the size of the attestations and the verification time from
linear to logarithmic in the total number of public keys (more

generally, NP statements). We prove the security of our scheme
in Section V-A and analyze its concrete security parameters
in Section V-B.
Compact certificates do not assume that all attestors have

provided their attestations. Some of the attestors may not have
witnessed the event, or may be off-line or dishonest. After
defining and constructing compact certificates, we consider
their use in situations when some attestors are honest and
some are adversarial. We consider two possible security goals
in such situations, both assuming some bound on the fraction
of adversarial attestors. The first, easier to achieve, goal, is to
produce a compact certificate guaranteeing that at least one
honest attestor testified to a given statement. However, even
honest attestors may have different views of what actually
happened. Thus, the second, more difficult, goal, is to produce
an incontrovertible certificate, i.e., to produce a compact
certificate guaranteeing that a majority of honest attestors
testified to the statement (and thus, if honest attestors are
assumed not to contradict themselves, it is impossible to
produce an incontrovertible certificate for a contradictory
statement, because any contradictory statement would get only
a minority of attestors). We analyze these goals in Section VI.
We then explore a specific application of compact certifi-

cates: certifying the current state in a blockchain that uses
stake-weighted voting (e.g., [8, 26, 27, 41],). The correctness
of a typical blockchain is difficult to verify: the verifier must
start with the genesis block and proceed forward one block at
a time, checking that each block was properly added according
to the rules of the specific blockchain. Instead, using a compact
certificate scheme, we can have blockchain participants sign
the current block after it has been decided upon, and collect
the signatures to form a compact certificate for this block. The
verifier will check that a sufficient total weight of participants
signed the current block. The weight of a signer, in this case,
could be the signer’s account balance or stake in the blockchain.
Assuming the adversary does not control a sufficient amount
of stake, we can be assured that the block was signed by at
least one honest participant and is thus correct.
The blockchain application presents additional challenges

beyond the construction of the compact certificate in a
standalone, centralized setting. A design needs to address
how determine who will collect the signatures, when to form
the certificate, how the signatures will be retransmitted in case
of network errors, and how retransmission will stop without

creating vulnerabilities to denial of service of attacks. We
address these challenges in Section VIII.
We implement our scheme and evaluate its performance

experimentally in Section VII. For one million attestors and
128-bit security, the cost of creating the certificate (excluding
the cost of verifying the attestations themselves) is about 6
seconds. Certificate size ranges from 120 kBytes to 650 kBytes
and verification cost ranges from 9 msec to 72 msec, depending
on the fraction of cooperating attestors. Compared to the naïve
approach of retrieving and verifying a large fraction of all
attestors’ signatures, compact certificates are roughly 50–280×
smaller and take roughly 300–4000× less time to verify.

A. Related Work

A variety of aggregate signatures (which compress signa-
tures of multiple signers on different messages) [1, 15, 16, 39,
40, 56, 63], multisignatures (which compress signatures of
multiple signers on the same message) [3–5, 11, 14, 17, 22,
24, 32, 33, 43, 46, 49, 55, 57, 64, 65], threshold signatures
(which allow multiple signers to coordinate producing a single
signature) [11, 14, 21, 28–31, 35–38, 48, 54, 67, 69] and
designs that combine their aspects (e.g., [2, 50]) can help
reduce signature size. However, all these approaches require
considerably more coordination than compact certificates.
First, consider aggregate signatures and multisignatures.

These schemes require special-purpose designs, in contrast
to compact certificates, which work with any underlying
signature scheme (and, more generally, with any NP statement).
Moreover, the verifier of aggregate signatures and multisigna-
tures needs to know all the public keys that participated in
the signing process, making sublinear-size certificates and/or
sublinear-time verification impossible.
Threshold signatures apply secure multi-party computation

to key generation and signing, and thus in principle work
with any signature scheme. In contrast to compact certificates,
however, they require the signers to coordinate (exchange mes-
sages) during key generation and, depending on the scheme,
also during computation. Moreover, a compact certificate
scheme can be used regardless of the number of attestors
who participated, while in a threshold signature scheme, the
minimum required number of signers is set at key generation
time and cannot be arbitrarily changed.
Finally, we emphasize that a compact certificate scheme

is designed to handle attestors of varying weights—a feature
generally not present in the aforementioned signature schemes.
And, of course, compact certificates can handle any NP
statement, not just a signature verification predicate.

II. Background

We assume familiarity with Merkle trees [58] and the
cryptographic modeling of hash functions as random oracles
[6]. All hash functions used in this paper—including those
used to build a Merkle tree—will be modeled as random
oracles (a reader interested in a detailed discussion of Merkle
trees built with random oracles may see [7, §2.2 and §3.1]).
We will denote the output length of a hash function by _.

A. Vector Commitments
Vector commitments (introduced in [23, 52]) provide a way

to commit to a list of values and then efficiently reveal only a
subset of those values. These commitments are binding, but not
hiding. Note that vector commitments with the properties listed
below can be provided by Merkle trees [58] (see Appendix A),
by algebraic techniques [12, 20, 23, 25, 42, 47, 51, 52, 70, 71],
or by polynomial commitments (introduced in [44]; see, e.g.,
[13, 19] for an overview) adapted to vectors per [42, Appx.
C].

Vector Commitment Functionality: A vector commitment
consists of three algorithms: Commit(𝐴) takes a list 𝐴

of values and produces a short output 𝐶; ComProve(𝑖, 𝐴)
produces a proof 𝜋𝑖; and ComVerify(𝐶, 𝑖, 𝑣, 𝜋𝑖) outputs True
if 𝐴[𝑖] = 𝑣 and 𝐶 and 𝜋𝑖 were correctly produced via Commit
and ComProve, respectively. Since there is no hiding property,
we assume these algorithms are deterministic.

Vector Commitment Security: In our application, we need
vector commitment security to hold only when the committer
is trusted (which is a weaker security goal than when 𝐶

can be computed adversarially). We thus assume that (under
appropriate cryptographic assumptions) vector commitments
provide the following security property: if 𝐶 was produced
correctly via Commit(𝐴) for some 𝐴, then no adversary
running in time 𝑡 on input 𝐴 has probability greater than
Inseccom (𝑡) of outputting (𝑖, 𝑣, 𝜋∗

𝑖
) such 𝐴[𝑖] ≠ 𝑣 but

ComVerify(𝐶, 𝑖, 𝑣, 𝜋∗
𝑖
) = True.

B. Non-interactive random oracle proofs of knowledge
As defined in [7, §2.3], a non-interactive random oracle

proof of knowledge (NIROPK) consists of two algorithms, a
prover P and a verifier V, which both have access to the same
oracle 𝜌 : {0, 1}∗ → {0, 1}_, chosen uniformly at random. Let
R be an NP relation with inputs x and witnesses w. P(x,w)
outputs a proof 𝜋 and V(x, 𝜋) outputs True (accept) or False
(reject).
The notion of proof of knowledge is defined by introducing

a probabilistic polynomial time knowledge extractor algorithm
E who extracts witnesses from an adversarial prover P̃. E is
allowed to run P̃ only as a black box (denoted EP̃), but may
respond to random oracle queries of P however E chooses
(i.e., to “program” the random oracle).

Definition 1 ([7]). A pair (P,V) is a NIROPK with knowl-
edge error 𝑒 for R if it satisfies the following:
• Completeness: if (x,w) ∈ R, then V(x,P(x,w)) = True.

• Proof of knowledge: there exists a knowledge extractor E
such that, for any x and adversary P̃ who with probability
𝛿 (computed over the random choice of 𝜌) outputs 𝜋 ac-
ceptable to V(x, 𝜋), EP̃ produces w such that (x,w) ∈ R
with probability 𝛿 − 𝑒.

III. Defining Compact Certificate Schemes
In this section, we define the syntax and security of compact

certificates schemes. Our definition is inspired by the definition
of a NIROPK system (Section II-B). We will, however, change

2

how the verifier obtains inputs (in contrast to NIROPK, some
inputs will be provided committed, and some will be provided
by the prover).
Let Rcompcert be an NP relation with two-part inputs (𝑥, 𝑦)

and witnesses 𝑤 (for example, for the signatures application, 𝑥
is the public key, 𝑦 is the message, and 𝑤 is the signature). By
definition of NP relations, there is a polynomial-time algorithm
that checks if ((𝑥, 𝑦), 𝑤) ∈ Rcompcert (for example, verifies the
signatures).
A compact certificate scheme for Rcompcert has two

participants, a prover P and a verifier V, who both
have access to the same oracle 𝜌 : {0, 1}∗ → {0, 1}_,
chosen uniformly at random. P is assumed to know a list
attestors of pairs (𝑥, weight). V is assumed to know the
vector commitment 𝐶attestors = Commit(attestors). P,
on input (attestors, 𝑦, witnesses, provenWeight),
produces a certificate cert. V, on input
(𝐶attestors, 𝑦, provenWeight, cert), outputs True (accept)
or False (reject). Note that V assumes that 𝐶attestors was
correctly generated; its remaining inputs may be adversarial.
We will say that the tuple

(attestors, 𝑦, witnesses, provenWeight)

is sufficiently weighty if∑︁
𝑖 : valid(𝑖)

attestors[𝑖] .weight > provenWeight ,

where

valid(𝑖) def=
(
(attestors[𝑖] .𝑥, 𝑦), witnesses[𝑖]

)
∈ Rcompcert .

Definition 2. A pair (P,V) constitutes a compact certificate
scheme with knowledge error 𝑒 if it satisfies the following:
• Compact Completeness. If

x = (attestors, 𝑦, witnesses, provenWeight)

is sufficiently weighty, then for cert = P(x),

V(Commit(attestors), 𝑦, provenWeight, cert) = True .

Moreover, the length of cert depends at most polylogarith-
mically on the length of the attestors list.

• Proof of Knowledge. There exists a knowledge extractor E
(as defined in Section II-B) such that, for any (attestors,
𝑦, provenWeight) and adversary P̃ who with probability
𝛿 (computed over the random choice of 𝜌) outputs cert
such that

V(Commit(attestors), 𝑦, provenWeight, cert) = True ,

E
P̃ produces witnesses such that

(attestors, 𝑦, witnesses, provenWeight)

is sufficiently weighty, with probability 𝛿 − 𝑒.

The knowledge error may be a function of the hash function
output length _ and the adversarial running time and number
of random oracle queries.

Note that multiple witnesses for a single attestor (e.g.,
multiple signatures by the same signer) will not count multiple
times, because the definition of sufficiently weighty given
above counts the weight of each attestor at most once.

IV. Our compact certificate scheme 𝑃compcert

We now give a concrete instantiation of a compact certificate
scheme (Section III), which we call 𝑃compcert. For concreteness
and ease of exposition, we will describe our scheme for the
language of digital signatures. That is, attestors is a list
of pairs (pk, weight), 𝑦 is a message 𝑀, and the compact
certificate establishes that the prover knows a sufficiently
weighty set of signatures on 𝑀. The case of other NP
languages is the same, mutatis mutandis.
The first idea of our scheme is to use techniques due

to Kilian [45] and Micali [59, 60]. In contrast to the CS
Proofs approach, which puts elements of a probabilistically
checkable proof in the leaves of a Merkle tree, in our scheme
the prover will associate each element of attestors (and the
corresponding signature, if known) with a leaf in a Merkle
tree. Applying a hash function (modeled as a random oracle)
to the root of this tree, the prover will determine which leaves
to reveal. The certificate cert will consist of the Merkle tree
root, the revealed leaves with their authenticating paths in the
Merkle tree (to convey the relevant signatures to the verifier),
and vector commitment proofs produced by ComProve to
convey the relevant public keys and weights.
This idea is insufficient by itself, however: we have not

described how the hash function picks which leaves to reveal.
The problem with picking leaves at random is that there could
be many low-weight leaves, and revealing those will do little to
convince the verifier; revealing leaves without signatures is also
unhelpful. The key ingredient of our scheme is a mechanism
for choosing which leaves to reveal that chooses among only
the attestors that produced signatures and in proportion to
their relative weight. Importantly, this mechanism has very
low cost and cannot be gamed by the adversary.
At a high level, this mechanism works as follows. Let

signedWeight represent the total weight of all attestors
who contribute an attestation. We will partition the range
from to 0 to signedWeight into subranges; there will be
one subrange for each contributing attestor, with the length
corresponding to the attestor’s weight. The endpoints of
each participating attestor’s subrange will be committed in
the corresponding Merkle leaf; subranges for attestors who
contribute no signature will be empty. The hash function,
when applied to the Merkle root, will determine a point in
the range from 0 to signedWeight, and the prover will have
to reveal the leaf whose subrange contains that point. Given
sufficiently many such reveals, the verifier will be convinced,
with high certainty, that a large fraction of the range is covered
by valid leaves, because each random choice made by the
hash function falls into a covered subrange. This implies (by
the security of the Merkle tree) that the prover must know
signatures for attestors corresponding to a large fraction of
signedWeight.

3

A surprising feature of this approach is that the verifier does
not need to check the correctness of the subranges claimed by
the prover—only that each individual revealed subrange is of
the correct length and equal to the weight of its attestor (and,
of course, that the attestor’s signature is valid). An adversarial
prover can arrange subranges however it pleases; in particular,
making subranges overlap only makes the adversary’s life
harder, because it becomes more difficult to cover the entire
range given the valid signatures in the adversary’s possession.
We are now ready to proceed with the details of the protocol.

We will assume Hashrange outputs (nearly) uniform values
between 0 and range, excluding range itself (formally, we
need to have a fresh random oracle for each value of range,
which can be accomplished by encoding range unambiguously
into the hash’s input). We will assume that V wants to achieve
knowledge error approximately 2−𝑘 for some 𝑘 , and that the
adversary runs in time at most 𝑡 and makes at most 𝑄 = 2𝑞
random oracle queries. These parameters determine how many
Merkle leaves cert will contain (see Section V-B).

A. P: Creating the certificate
A prover P who wishes to prove that elements of attestors

with total weight at least provenWeight have signed a
message 𝑀 runs the following algorithm:
1) Set signersList to empty and signedWeight to 0.

2) Obtain signatures of attestors until signedWeight >

provenWeight, where signedWeight is computed as
described immediately below.
For each signature obtained,

• Find the location 𝑖 of the attestor who created it in
the attestors list and verify that 𝑖 ∉ signersList
(otherwise reject this signature as a duplicate and continue).

• Verify the signature under attestors[𝑖] .pk. If verification
succeeds, set

signedWeight = signedWeight+attestors[𝑖] .weight

and add 𝑖 to signersList. Otherwise, reject this signature.
For reasons discussed below, higher signedWeight will
result in a smaller compact certificate, so it’s good to obtain
more. In fact, as discussed in Section IV-B, some verifiers
may choose to reject certificates that are too long, in which
case the prover will need to increase signedWeight (by
obtaining more signatures).

3) Initialize a list sigs having the same length as attestors.
Each entry in sigs consists of a triple (sig, L, R), which
is computed as follows. For each 𝑖 starting with 0, first set

sigs[𝑖] .L = sigs[𝑖 − 1] .R

(with the base case sigs[0] .L = 0). Next, if 𝑖 is in
signersList, set

sigs[𝑖] .R = sigs[𝑖] .L + attestors[𝑖] .weight

and let sigs.sig be the signature on 𝑀 under
attestors[𝑖] .pk that the prover obtained in the previous

step. Otherwise, set sigs[𝑖] .R = sigs[𝑖] .L and leave
sigs[𝑖] .sig empty.
In addition, we define (but do not store)

sigs[𝑖] .weight def= sigs[𝑖] .R − sigs[𝑖] .L .

Notice that the R value of the last entry in sigs will be
equal to signedWeight.

4) Compute Rootsigs as the Merkle root of a Merkle tree
whose leaves are sigs.

5) Create a function IntToInd that allows efficient lookups
from a value coin, such that 0 ≤ coin < signedWeight,
to the unique index 𝑖 such that sigs[𝑖] .L ≤ coin <

sigs[𝑖] .R. (Note that this function can be easily imple-
mented via a binary search on the L values of the sigs
array.) We will denote such 𝑖 via IntToInd(coin).

6) Create a map T as follows. First, define

numReveals =

⌈
𝑘 + 𝑞

log2 (signedWeight/provenWeight)

⌉
. (1)

Then, for 𝑗 ∈ {0, 1, . . . , numReveals − 1}, let

Hin 𝑗 = (𝑗 , Rootsigs, provenWeight, 𝑀, 𝐶attestors) ,
coin 𝑗 = HashsignedWeight (Hin 𝑗) , and

𝑖 𝑗 = IntToInd(coin 𝑗) .

If T[𝑖 𝑗] is not yet defined, define T[𝑖 𝑗] to consist of the
four-tuple containing:
• the tuple sigs[𝑖 𝑗] (without the R value),
• the Merkle authenticating path to the 𝑖th

𝑗
leaf,

• attestors[𝑖 𝑗], and
• ComProve(𝑖 𝑗 , attestors).
The resulting compact certificate cert consists of Rootsigs,

signedWeight, and the map T, which has at most
numReveals entries, but will have fewer if different iterations
of Step 6 select the same 𝑖 value (see Figure 6, Section VII).

B. V: Verifying the certificate
The verifier V knows 𝐶attestors = Commit(attestors),

and receives the message 𝑀, the value provenWeight,
and the compact certificate cert consisting of Rootsigs,
signedWeight, and a map T with up to numReveals
entries, each containing the four-tuple (𝑠, 𝜋𝑠 , 𝑝, 𝜋𝑝), where
numReveals is defined in Equation (1) (Section IV-A).
If signedWeight ≤ provenWeight, then V rejects. (V

may choose to require a higher signedWeight in order to
avoid having to verify certificates that are too long, for example,
to protect itself against having to do too much work; this may
also be accomplished simply by limiting the maximum size
of the map T that V will accept.) Otherwise, for each entry 𝑖
such that T[𝑖] is defined (as (𝑠, 𝜋𝑠 , 𝑝, 𝜋𝑝)), V performs the
following steps to validate it:
• check that 𝜋𝑠 is the correct authenticating path for the 𝑖th
leaf value 𝑠 with respect to Rootsigs;

4

• check that ComVerify(𝐶attestors, 𝑖, 𝑝, 𝜋𝑝) = True; and
• check that 𝑠.sig is a valid signature on 𝑀 under 𝑝.pk.
If any of the above checks fails, V rejects. Otherwise, for

𝑗 ∈ {0, 1, . . . , numReveals − 1}, V computes

Hin 𝑗 = (𝑗 , Rootsigs, provenWeight, 𝑀, 𝐶attestors) and

coin 𝑗 = HashsignedWeight (Hin 𝑗) ,

then checks that there exists 𝑖 such that T[𝑖] is defined and
is equal to (𝑠, 𝜋𝑠 , 𝑝, 𝜋𝑝) with 𝑠.L ≤ coin 𝑗 < 𝑠.L + 𝑝.weight.
If no such 𝑖 exists, then V rejects.
If all of the above checks pass, then V outputs True.

Otherwise, V outputs False.

C. Optimizations

• To save space and reduce the cost of computing Rootsigs,
the entry sigs[𝑖] may be left entirely empty for 𝑖 ∉

signersList, and the R value of each entry in sigs need
not be stored (since it equals the L value of the next entry).

• Computing numReveals precisely in the prover and verifier
algorithms requires high-precision arithmetic, which may
be slow and difficult to implement. Instead, we propose (in
Appendix B) and implement (in Section VII) an approximate
calculation of numReveals.

• Combining multiple Merkle paths into a single subtree will
save bandwidth, because of overlapping entries. Moreover,
because higher-weight entries in the sigs and attestors
lists are more likely to be revealed, sorting attestors by
weight before committing to it will likely provide more
overlap in Merkle paths and thus will reduce the total proof
size. We implement this optimization in Section VII.

• Aggregatable vector commitments (see [42] and references
therein) allow one to combine multiple proofs 𝜋𝑝 into one,
reducing the size of the certificate (we do not implement
this optimization, because it comes at a considerable
computational cost; instead, we use a Merkle tree for
𝐶attestors).

V. Security

In this section, we first prove security of the 𝑃compcert scheme
given in Section IV, then discuss concrete parameter choices.

A. Security Proof

The noninteractive protocol 𝑃compcert defined in Section IV
is essentially the result of applying the Fiat-Shamir [34]
transform to the interactive protocol 𝑃interactive described in
Figure 1. Security intuition is provided by Lemma 1. The rest
is technicalities.

Theorem 1. The protocol 𝑃compcert is a compact certificate
system with knowledge error

𝑒 < 𝑄 ·
(
provenWeight

signedWeight

)numReveals
+ 1
2
· 𝑄

2

2_
+ Inseccom (𝑡) ,

where _ is the output length of the hash function used in the
Merkle tree, 𝑄 = 2𝑞 is the number of random oracle queries1
made by the adversary, 𝑡 is the running time of the adversary,
and Inseccom (𝑡) is the insecurity of the vector commitment
used to produce 𝐶attestors (Section II-A).

Proof. We first consider a (rather inefficient) Interactive Oracle
Proof (IOP) [7, §4] 𝑃interactive for the following relation R of
pairs. Let an instance x = (attestors, 𝑀, provenWeight).
For a list of signatures w, the pair (x,w) ∈ R if and only
if (attestors, 𝑀,w, provenWeight) is sufficiently weighty
(Section III). Assume the prover has x and w and the verifier
has x.

Lemma 1. The protocol 𝑃interactive (Figure 1) is a
public-coin interactive oracle proof of knowledge (as de-
fined in [7, §4.2]) for R with knowledge error 𝑒 =

(provenWeight/signedWeight)numReveals.

Proof. Completeness is self-evident, and all that we need to
show is the proof of knowledge property. Indeed, to extract
w, simply remove the L field from every entry of sigs and
output the result. It remains to show that if the verifier accepts
with probability 𝜖 , then the resulting (x,w) ∈ R (i.e., the
total weight of valid signatures is at least provenWeight)
with probability at least 𝜖 − 𝑒.
Consider sigs sent by the prover in the first message.

The prover can lie about the L values of some (or all)
elements of sigs, but not about their weight or the cor-
rectness of their signatures. The important feature of the L
values for security is not their correctness, but rather their
fixity once the first message is sent by the prover. Fixing
sigs[𝑖] .L for a given 𝑖 ensures that the prover can use the
validity of sigs[𝑖] .sig in response to some coin 𝑗 only if
sigs[𝑖] .L ≤ coin 𝑗 < sigs[𝑖] .L + attestors[𝑖] .weight.
Thus, no matter what sigs[𝑖] .L is set to, the total amount
of the range [0, signedWeight) that sigs[𝑖] can cover is
limited to attestors[𝑖] .weight. Therefore, after the first
message is sent, if the total weight of attestors whose signatures
are valid in sigs is less than provenWeight, then the
probability, for each 𝑗 , that there exists an 𝑖 𝑗 for that will sat-
isfy the verifier is less than provenWeight/signedWeight.
Thus, the probability that the prover will convince the
verifier for all numReveals values of coin 𝑗 is less than
(provenWeight/signedWeight)numReveals = 𝑒.
Therefore, either the prover’s first message makes the

knowledge extractor succeed, or the prover has to get very
lucky (probability less than 𝑒) with the verifier’s coins. By
the union bound, the prover’s success probability is less than
that of the knowledge extractor plus 𝑒. �

We can modify 𝑃interactive to send the second prover message
as a map rather than a list (i.e., in arbitrary order and with
duplicates removed, with the verifier figuring out which set
element to use for which coin 𝑗). The analysis remains the
same. The protocol 𝑃compcert can be viewed as the result of

1For easier analysis in terms of 𝑄, we assume WLOG that the adversary
always runs the verification algorithm on the proof it outputs, making the
necessary random oracle queries in the process.

5

𝑃interactiveProver Verifier

Compute sigs and
signedWeight as in P sigs, signedWeight Reject if signedWeight ≤ provenWeight.

Reject if |sigs| ≠ |attestors|
Compute numReveals as in V.
Choose numReveals values coin 𝑗
uniformly from the range [0, signedWeight)
(right boundary excluded){coin 𝑗 }numReveals−1𝑗=0

Compute 𝑖 𝑗 = IntToInd(coin 𝑗)
for each 𝑗 {𝑖 𝑗 }numReveals−1𝑗=0

For each 𝑗 , check that
sigs[𝑖 𝑗] .L ≤ coin 𝑗 < sigs[𝑖 𝑗] .L + attestors[𝑖 𝑗] .weight
and sigs[𝑖 𝑗] .sig is valid on 𝑀 under attestors[𝑖 𝑗] .pk

Fig. 1. Protocol 𝑃interactive (Section V-A). Protocol 𝑃compcert (Section IV) is essentially the result of applying the Fiat-Shamir transform to 𝑃interactive.

applying the Fiat-Shamir [34] transformation from IOP to
NIROP of [7, §6] to this slightly modified protocol. Because
of the specifics of 𝑃interactive, we are able to simplify the
transformation slightly; these simplifications do not affect the
proof of security in any significant way. The main differences
between our noninteractive protocol 𝑃compcert and the result of
applying the transformation of [7] to 𝑃interactive are as follows:
• The prover’s second message, which is short, is sent in the
clear rather than Merkle-hashed. This does not decrease
security.

• We do not compute hash values that tie together multiple
rounds of Merkle roots and verifier randomness, because
Merkle hashing is applied only once (so chaining of roots
is not needed) and the verifier needs randomness only once.
This only simplifies the hash chains that are needed to
analyze security.

• We do not have the prover compute the final hash value
𝜎𝑘 of the alleged verifier queries (which any prover can do
correctly anyway by expending one more random oracle
query); instead, we assume (Footnote 1) that the prover
makes at least the same random oracle queries as the verifier.

• The verifier does not have all of x. Instead, attestors
is replaced by 𝐶attestors, and the prover provides only
those elements of attestors that the verifier needs. Since
𝐶attestors is trusted (per Section III; from a security point
of view, this is equivalent to having 𝐶attestors computed
by the verifier), any prover who convinces the verifier to
accept an incorrect element of attestors would break the
security of the vector commitment; this accounts for the
Inseccom term in the knowledge error given in Theorem 1.

• As a consequence of the previous item, the verifier does
not hash all of x, but replaces attestors by 𝐶attestors.
This has no effect on the security proof.

.
Thus, essentially the same analysis as in [7, Thm. 7.1]

applies to the protocol 𝑃compcert. In order to apply the
theorem, we need to analyze the knowledge error of 𝑃interactive
under the 𝑄-round state restoration attack of [7, §5] (the
“restricted” version of the attack—see [7, §5.4]—is equivalent
to unrestricted one in our case, because it is the prover who
sends the first message in 𝑃interactive). In this attack, as applied
to 𝑃interactive, the prover gets 𝑄 attempts at fooling the verifier,
by either sending a different first message, or sending the same
first message but receiving fresh random queries coin 𝑗 . Note
that if in any of the attempts the first message contains valid
signatures with sufficient weight, then the knowledge extractor
will succeed; otherwise, the prover will fail with probability
more than 𝑄𝑒 by the union bound. Thus, the knowledge error
of 𝑃interactive under the this attack is 𝑄𝑒.
Applying [7, Thm. 7.1], we get that the protocol 𝑃compcert

is a compact certificate scheme with soundness error

𝑒 < 𝑄 ·
(
provenWeight

signedWeight

)numReveals
+ 1
2
· 𝑄

2

2_
+ Inseccom ,

as claimed.
To see why our security loss is slightly better than in [7,

Thm. 7.1], note that the reduction fails only in case of hash
collision or a hash output guess; guessing is prevented by the
assumption in Footnote 1, and hash collisions are overcounted
in [7, Claim 7.3], because 𝜌1 and 𝜌2 collisions can be counted
separately. �

B. Choosing Parameters for Desired Security
The knowledge error 𝑒 of Theorem 1 has three terms. The

Inseccom term depends only on the commitment used for
𝐶attestors, so as long as this commitment is sufficiently secure,
there is nothing to analyze. The 1/2 · 𝑄2 · 2−_ term is small
enough as long as _ is long enough; for practical purposes,
256-bit _ suffices for 128-bit security, as is usual for collision-
resistant hashing.

6

The interesting term to analyze is thus
𝑄 · (provenWeight/signedWeight)numReveals. If we want this
term to be smaller than 2−𝑘 , then, recalling that 𝑄 = 2𝑞 and
solving

2−𝑘 = 2𝑞 ·
(
provenWeight

signedWeight

)numReveals
for numReveals gives

numReveals =
𝑘 + 𝑞

log2 (signedWeight/provenWeight)
, (2)

which is at most the value we use in the prover and verifier
algorithms (Equation (1), Section IV-A).
Note that the closer signedWeight is to provenWeight,

the larger numReveals will be, and thus the larger the compact
certificate. Thus, as discussed in Section IV-B, verifiers may
choose to require a value for signedWeight that limits
numReveals, resulting in a shorter certificate and therefore
lower verification cost.

VI. Using Compact Certificates When Some Attestors
are Adversarial

The statement of Theorem 1 and the analysis of Section V-B
give us concrete bounds on the insecurity of our compact
certificate scheme. We now wish to understand how these
bounds apply when some of the attestors are adversarial.
In the rest of this section, we compute what provenWeight

should be in two possible scenarios. We then demonstrate
examples of numReveals computed according to Equation (1)
(Section IV-A) for the given provenWeight for 128-bit
security, which we interpret to mean 𝑘 + 𝑞 = 128.2
The two scenarios we consider are:

• Proving that at least one honest attestor provided an
attestation (this is useful when we can safely assume that
there can be no disagreement among honest attestors):
parameters worked out in Section VI-A.

• Providing an incontrovertible certificate—that is, proving
that a majority of honest attestors provided an attestation
(this is useful to establish consensus): parameters worked
out in Section VI-B.

A. Parameters for Proving At Least One Honest Attestation
Suppose we can be assured that there is no disagreement

among honest attestors. For example, in a blockchain that
guarantees no forks (e.g., [27, 41]), honest participants will
always agree on the block at a particular height. In that case,
the truth can be established by any single honest attestor.
If the fraction of the weight controlled by the adversary is

less than 𝑓𝐴, then it suffices to prove that the total weight of
signers is at least provenWeight = 𝑓𝐴 ·totalWeight, where

totalWeight =
∑︁
𝑖

attestors[𝑖] .weight ,

since this guarantees that at least one of the signers is honest.

2In other words, an adversary making 𝑄 = 2𝑞 queries to the random oracle
succeeds in generating a certificate that fools the verifier with probability at
most 𝑄 · 2−128 (Section V-B).

Fraction 1 − signedWeighttotalWeight of
attestations missing

0 𝑓𝐴/2 𝑓𝐴 1.5 𝑓𝐴 2 𝑓𝐴

M
ax
im
um
ad
ve
rs
ar
ia
l

fr
ac
tio
n

𝑓 𝐴

5% 30 30 31 31 31
10% 39 40 41 42 43
15% 47 49 52 55 58
20% 56 59 64 71 81
25% 64 71 81 97 128
30% 74 86 105 147 309
35% 85 104 144 291 —
40% 97 128 219 — —
45% 112 164 442 — —

Fig. 2. numReveals values for proving at least one honest attestation
(Section VI-A). ‘—’ means that no such value is possible.

The actual signedWeight value can vary, depending on
the number of attestors who do not submit attestations due
to adversarial corruption, lost network connectivity, or other
faults. Figure 2 shows numReveals computed according to
Equation (1) (Section IV-A) for a number of scenarios ranging
from more optimistic to more pessimistic.

B. Incontrovertible Certificates: Parameters for Proving Ma-
jority Agreement

In contrast to the previous section, suppose now that there
is no guarantee of agreement even among honest attestors. If
we wish to ensure that no two compact certificates attesting
to the same event can contradict each other, then we need to
verify that a majority of honest attestors attest to the same
version of an event.
If the corrupted fraction is 𝑥, then half of honest weight is

(1 − 𝑥)/2, and thus it suffices to prove that the total weight
of valid attestations is more than (1 − 𝑥)/2 + 𝑥 = (1 + 𝑥)/2.
Thus, if 𝑥 < 𝑓𝐴, then it suffices to prove that total weight of
valid attestations is at least provenWeight = (1 + 𝑓𝐴)/2. The
value numReveals, as explained above, depends not only on
provenWeight, but also on the actual weight signedWeight
of attestations that certificate creator collected. As in the
previous section, the actual signedWeight value can vary.
Figure 3 gives examples of numReveals computed according
to Equation (1) (Section IV-A) for different values of 𝑓𝐴 and
signedWeight.

VII. Performance evaluation

This section empirically answers the following questions
about the compact certificate scheme 𝑃compcert from Sec-
tion IV.
• How much CPU time is required to create a compact
certificate?

• How much CPU time is required to verify a compact
certificate?

• What is the size of a compact certificate?

7

Fraction 1 − signedWeighttotalWeight of
attestations missing or not agreeing

with the majority
0 𝑓𝐴/2 𝑓𝐴 1.5 𝑓𝐴 2 𝑓𝐴

M
ax
im
um
ad
ve
rs
ar
ia
l

fr
ac
tio
n

𝑓 𝐴

5% 138 144 150 157 165
10% 149 163 181 204 237
15% 161 187 227 298 452
20% 174 219 309 576 —
25% 189 264 487 — —
30% 206 331 1198 — —
35% 226 443 — — —
40% 249 665 — — —
45% 276 1331 — — —

Fig. 3. numReveals values for proving that a majority of honest weight
signed 𝑀 (Section VI-B). ‘—’ means that no such value is possible.

A. Implementation

To evaluate the performance of compact certificates, we
implemented a prototype of the compact certificate scheme
described Section IV. The implementation consists of about
1,200 lines of Go code, including 400 lines of code for a
Merkle commitment library and 200 lines of code for a
deterministic floating-point library that efficiently computes
numReveals (see Section IV-C and Appendix B). The Merkle
tree library aggregates proofs for multiple elements together, by
eliding common paths to the root (see Section IV-C). To make
this optimization more effective, we sort the elements of the
attestors array by weight. This ensures that high-weight
elements, which appear more often, are clustered together
and share more common elements in their path to the root
of the tree. We used ed25519 [9, 10] signatures and SHA-
512/256 [68] hash implementations from libsodium [53],
and we used msgpack [61] to encode compact certificates into
a byte sequence.

B. Experimental results

We ran our evaluation on an Intel Xeon Silver 4215R CPU
(3.2 GHz) running Linux 5.9 and Go 1.15.5. We simulated
1 million attestors, each with equal weight (unless otherwise
mentioned), and set the target provenWeight to half of the
total weight of all attestors. We set the security parameter
𝑘 + 𝑞 = 128 (Section VI). We ran each experiment 3 times,
reporting the median outcome.
To provide a baseline comparison, we also evaluated a naïve

scheme where the certificate consists of a set of signatures that
add up to provenWeight. Verifying this certificate requires
verifying each of the signatures in the certificate.
To measure the time required to create and verify certificates,

we performed the following steps:
1) We signed messages on behalf of all attestors. This
involves a standard ed25519 signature. This took 22.3
seconds (22.3 `sec per signature); we expect that in a
real deployment, this cost would be distributed across

many nodes. This time was the same for both compact
certificates and naïve certificates.

2) We fed the resulting signatures to the node that would be
building the compact certificate. This took 55.7 seconds
(55.7 `sec per signature), dominated by the cost of
verifying the ed25519 signature. This cost is highly
parallelizable across many cores, although our prototype
implementation does not do so.
We also measured the time to generate a naïve certificate,
which entails checking signatures until the total weight
of the checked signatures is at least provenWeight =

totalWeight/2. This took roughly half as long as feeding
the signatures to the compact certificates prover node—
28.3 seconds—because only half as many signatures need
to be checked (assuming all are valid, which is optimistic).

3) We generated compact certificates with different signed
weights (i.e., with only some fraction of the signatures
present), and measured the time required to do so. Generat-
ing each certificate cost 5.9 seconds, dominated by the cost
of constructing a Merkle tree over the sigs array. Notably,
the time to generate the certificate is largely independent
of signedWeight.
For the naïve certificates, there was no additional time for
generating the certificate, since the certificate is exactly
the array of signatures that have already been verified.
Figure 4 shows the size of the resulting compact certificate,
versus the signedWeight. The size is dominated by the
size of the Merkle proof for each reveal. The number
of reveals ranges from 931 (for 55% signedWeight)
down to 129 (for 100% signedWeight), yielding compact
certificates ranging from roughly 650 kBytes to roughly
120 kBytes. In contrast, the size of the naïve certificate was
35 MBytes (corresponding to 500,000 signatures), which
is roughly 50–280× larger than the compact certificates.

4) We verified the resulting compact certificate. Figure 5
shows the time required for verification, ranging from
72 msec (for 55% signedWeight with 931 reveals) down
to 9.3 msec (for 100% signedWeight with 129 reveals).
The time is dominated by the cost of checking the revealed
ed25519 signatures.
In the naïve certificate scheme, the verification time was far
higher—28.3 seconds—corresponding to the time required
to verify 500,000 signatures. This is roughly 300–4000×
slower than checking a compact certificate.
To evaluate the size of the compact certificate when the

distribution of weights is not uniform, we generated several
skewed distributions, based on a skew parameter 𝑠. Each
skewed distribution consisted of 1 million attestors. The first
attestor had a weight of 244, and the weight of each subsequent
attestor was multiplied by 1 − 10−𝑠 (rounded up to 1 unit of
weight to ensure that all 1 million attestors have non-zero
weight).

8

55 60 65 70 75 80 85 90 95 100
Percentage of signatures present

0

100000

200000

300000

400000

500000

600000

C
om

pa
ct

ce
rt

si
ze

(b
yt

es
)

Fig. 4. Size of compact certificate (bytes), as a function of the percentage of signatures present (signedWeight), for provenWeight = totalWeight/2.

55 60 65 70 75 80 85 90 95 100
Percentage of signatures present

0

10

20

30

40

50

60

70

V
er

ifi
ca

tio
n

tim
e

(m
se

c)

Fig. 5. Time taken to verify a compact certificate, as a function of the percentage of signatures present (signedWeight), for provenWeight = totalWeight/2.

1 2 3 4 5 6 7 8 9
Skew parameter

0

20

40

60

80

100

120

N
um

be
ro

fd
is

tin
ct

re
ve

al
s

Distinct reveals

0

20000

40000

60000

80000

100000

120000

C
om

pa
ct

ce
rt

si
ze

(b
yt

es
)

Compact cert size

Fig. 6. Size of compact certificate (bytes) and number of distinct reveals, as a function of the skew of the weight distribution, for signedWeight =

totalWeight = 2 · provenWeight.

9

Figure 6 shows the results. With extremely skewed distribu-
tions, the number of distinct reveals (i.e., |T|) is low because
the same attestor is chosen to be revealed multiple times, but
appears only once in the resulting certificate (Section IV-A,
Step 6). For example, at 𝑠 = 1, there are only 29 distinct
reveals even though numReveals = 129. At moderate skew
levels, attestors are no longer chosen to be revealed multiple
times, but the certificate size is significantly smaller than
the unskewed case because the Merkle proofs elide common
paths to the root for high-weight attestors, which are clustered
together (as a result of sorting by weight). For instance, with
𝑠 = 4, there are 129 distinct reveals, but the certificate size is
76 kBytes, versus 124 kBytes for an unskewed distribution.

VIII. Implementing Certificate Formation In A
Decentralized Setting

In this section, we address the problem of constructing a
compact certificate in a setting without a single trusted prover
and with a somewhat unreliable network. This setting arises
naturally in a permissionless blockchain system (e.g., [18, 27,
41, 62, 66]). Specifically, suppose that to certify a block in
the system, we wish to use a compact certificate based on
signatures of the block by the top stakeholders. As described
in Section I, this approach saves the verifiers from having to
verify the entire blockchain in order to verify the latest block.
We wish for this construction of a compact certificate to

be both reliable and efficient, even if no single certificate
creator or attestor can be relied upon. The honest and
connected attestors will wish to make sure that the certificate
is constructed without knowing who exactly is constructing it.
We thus have to address several challenges that arise due to
resource constraints, adversarial nodes, and fault tolerance.
We will use the term node to refer to a computer that partic-

ipates in the decentralized protocol. Some nodes correspond
to an attestor (or multiple attestors) that can sign statements
for which we will form a compact certificate. Other nodes
do not correspond to any attestors (i.e., the nodes do not
sign any statements), and instead exist solely to support the
decentralized protocol, such as by relaying messages.
We will assume that the underlying blockchain system

provides a consensus mechanism; we will rely on this
mechanism to ensure reliability.
We do not give evaluation results for the design in this

section, because those results would depend almost exclusively
on the details of the underlying blockchain and network.

A. Resource constraints: Collecting signatures
The first challenge in our decentralized setting lies in decid-

ing what nodes will form compact certificates. Constructing a
compact certificate requires access to all of the signatures from
attestors (the sigs array from Section IV-A), even though the
resulting compact certificate is far smaller. This means that
any node that forms a compact certificate must receive and
store many messages (linear in the number of attestors in the
system). Requiring all nodes in a decentralized protocol to play
this role would require bandwidth quadratic in the number of
attestors, and can be costly if the number of attestors is high.

To avoid this cost, we divide nodes into two categories:
relay and non-relay nodes. Relay nodes are responsible for
collecting all signatures that will be used to build the compact
certificate, and relaying any signatures they receive to other
relay nodes in the system, so that all relay nodes have all of
the signatures. Non-relay nodes send their signatures to relay
nodes, but do not receive signatures from other nodes. Each
node in the system (both relay and non-relay) chooses several
relay nodes to which it will send its messages. For relay nodes,
this forms a network of relays so that signatures propagate
between them in relatively few hops. For non-relay nodes, this
ensures that their signatures will be quickly propagated across
relay nodes, even if some relay nodes might be faulty.
It is important to choose carefully when to send a signature.

All attestors in the system are likely to produce signatures at
approximately the same time (e.g., when the next candidate
block in a blockchain becomes available); if all nodes immedi-
ately send those signatures, the system will be overwhelmed by
a spike of messages, many of which will have to be dropped.
To avoid such a bandwidth spike, we de-synchronize the

transmission of signatures, by randomizing the time at which
signatures are sent. Specifically, we choose some window of
time (e.g., one minute) designated for transmitting signatures.
When an attestors signs a message, that attestors’s node
chooses a pseudo-random offset within the time window at
which the signature will be sent.3 A relay node that receives a
new, previously unseen signature, will immediately send that
signature to other relays; this ensures rapid propagation of
signatures. A relay nodes that receives a duplicate signature
does not relay it.
It is also important to limit the number of attestors that

are allowed to contribute signatures to the compact certificate,
because otherwise an adversary who can form a large number
of attestor identities can force relay nodes to handle and
maintain in memory a large number of signatures. This can be
addressed by capping the number of attestors for the purposes
of compact certificates to some moderate number—say, the
top 1 million accounts by weight—as long as all nodes in the
system agree on which precise subset of accounts constitutes
the set of attestors.

B. Adversarial nodes: When to create a certificate?

In a decentralized setting, there is a tension regarding
when to form a compact certificate. On the one hand, it
is desirable to form a compact certificate quickly, so that
relay nodes can stop maintaining the set of all signatures in
memory, attestors can stop re-transmitting their signatures (as
we describe in the next subsection), and the compact certificate
can be used sooner to convince verifiers. On the other hand,
the total weight of all signatures at a relay node grows over
time, as more signatures arrive from different attestors. Thus,
waiting for more signatures to arrive enables a smaller compact
certificate (because a higher signedWeight implies a lower
numReveals, per Section V-B).

3A convenient scheme is to choose the offset pseudo-randomly based on
the public key of the signer.

10

This tension is exacerbated by the presence of adversarial
nodes. In a decentralized setting, any relay node should be able
to create a compact certificate; however, if one of those nodes
was adversarial, it could create a compact certificate with
the lowest acceptable signedWeight (and thus the largest
possible numReveals), leading to a larger-than-necessary
certificate.
To address this tension, we implement a decaying threshold

for signedWeight of an acceptable compact certificate. The
threshold initially starts at totalWeight (i.e., requiring
signatures from every attestor), at the time corresponding to the
end of the window for sending signatures (from the previous
section); this threshold decays linearly towards provenWeight
(i.e., the lowest acceptable value for signedWeight). At
any given time, nodes in the system will accept a compact
certificate only if its signedWeight is at least the current
threshold value at that time. The decay rate should be gradual
enough to allow honest nodes to propose the best compact
certificate they can construct, while still allowing the system to
make progress (by forming at least some compact certificate)
in a reasonable time frame.
In order for the nodes to have a consistent view of the current

threshold (and thus have an agreement on whether a compact
certificate is acceptable), they must agree on some notion
of time. In a blockchain system, a convenient way to ensure
that each proposed compact certificate has an unambiguous
timestamp is to include the compact certificate (attesting to
an earlier block) as part of a (later) block; the timestamp for
that compact certificate is then the block number in which it
appears.

C. Fault tolerance: Retransmitting signatures
It is important that compact certificates can be formed even

if network or node failures occur during signature collection, as
long as a sufficient set of nodes comes back online afterwards.
To this end, we follow a simple rule: nodes must durably store
their attestors’ signatures until they see that a corresponding
compact certificate is durably stored by the system. In a
blockchain setting, storing the compact certificate on the
blockchain itself provides a convenient way of ensuring the
durability of the compact certificate, and thus making it safe
to delete the input signatures that would have been necessary
for creating the certificate.
Nodes periodically retransmit their stored signatures, so that

a compact certificate can be formed even if the signatures were
lost when they were first sent over the network. In particular,
each node periodically (de-synchronized, just like during the
initial sending) sends out all of its stored signatures to the
relays to which it is connected. When a relay receives a
signature that it already knows, it does not relay this signature
immediately; the relay will resend that signature on its own
retransmission schedule. On the other hand, when a relay
receives a new signature for the first time, it will immediately
relay it to other nodes, to ensure timely propagation.
In the common case, we expect that network-level re-

transmission (e.g., TCP) should ensure reliable message
propagation, so the above retransmission plan should not start

until after the initial transmission time window plus the decay
time. This ensures that, in the common case, signatures for
a compact certificate are sent at most once by each node to
each of its connected relays.

Acknowledgments
We thank Alessandro Chiesa for clarifying the results of

[7], Chris Peikert for a careful reading of our proof, Fraser
Brown for editorial feedback, and Max Justicz for suggestions
on and review of our implementation. The work of G.V. was
performed while the author was at Algorand.

References
[1] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger.
Synchronized aggregate signatures: new definitions, con-
structions and applications. In ACM CCS 2010, October
2010.

[2] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim,
Gregory Neven, Ahmad-Reza Sadeghi, and Matthias
Schunter. SANA: Secure and scalable aggregate network
attestation. In ACM CCS 2016, October 2016.

[3] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki.
Multisignatures secure under the discrete logarithm
assumption and a generalized forking lemma. In ACM
CCS 2008, October 2008.

[4] Ali Bagherzandi and Stanislaw Jarecki. Multisignatures
using proofs of secret key possession, as secure as the
Diffie-Hellman problem. In SCN 08, September 2008.

[5] Mihir Bellare and Gregory Neven. Multi-signatures in
the plain public-key model and a general forking lemma.
In ACM CCS 2006, October / November 2006.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In ACM CCS 93, November 1993.

[7] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas
Spooner. Interactive oracle proofs. In TCC 2016-B,
Part II, October / November 2016.

[8] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryp-
tocurrencies without proof of work. In FC 2016
Workshops, February 2016.

[9] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter
Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. In CHES 2011, September / October 2011.

[10] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter
Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. Journal of Cryptographic Engineering,
2(2):77–89, September 2012.

[11] Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In PKC 2003, January
2003.

[12] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching
techniques for accumulators with applications to IOPs
and stateless blockchains. In CRYPTO 2019, Part I,
August 2019.

[13] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon.
Efficient polynomial commitment schemes for multiple

11

points and polynomials. Cryptology ePrint Archive,
Report 2020/081, 2020. https://eprint.iacr.org/2020/081.

[14] Dan Boneh, Manu Drijvers, and Gregory Neven. Com-
pact multi-signatures for smaller blockchains. In ASI-
ACRYPT 2018, Part II, December 2018.

[15] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In EUROCRYPT 2003, May 2003.

[16] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin.
Sequential aggregate signatures with lazy verification
from trapdoor permutations - (extended abstract). In
ASIACRYPT 2012, December 2012.

[17] Mike Burmester, Yvo Desmedt, Hiroshi Doi, Masahiro
Mambo, Eiji Okamoto, Mitsuru Tada, and Yuko Yoshifuji.
A structured ElGamal-type multisignature scheme. In
PKC 2000, January 2000.

[18] Vitalik Buterin. Ethereum: A next-generation smart
contract and decentralized application platform, 2014.

[19] Benedikt Bünz, Mary Maller, Pratyush Mishra, and Noah
Vesely. Proofs for inner pairing products and applications.
Cryptology ePrint Archive, Report 2019/1177, 2019.
https://eprint.iacr.org/2019/1177.

[20] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris
Kolonelos, and Luca Nizzardo. Incrementally aggregat-
able vector commitments and applications to verifiable
decentralized storage. In ASIACRYPT, 2020.

[21] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo
Krawczyk, and Tal Rabin. Adaptive security for threshold
cryptosystems. In CRYPTO’99, August 1999.

[22] Claude Castelluccia, Stanislaw Jarecki, Jihye Kim, and
Gene Tsudik. A robust multisignatures scheme with
applications to acknowledgment aggregation. In SCN 04,
September 2005.

[23] Dario Catalano and Dario Fiore. Vector commitments
and their applications. In PKC 2013, February / March
2013.

[24] Chin-Chen Chang, Jyh-Jong Leu, Pai-Cheng Huang, and
Wei-Bin Lee. A scheme for obtaining a message from
the digital multisignature. In PKC’98, February 1998.

[25] Alexander Chepurnoy, Charalampos Papamanthou, and
Yupeng Zhang. Edrax: A cryptocurrency with stateless
transaction validation. Cryptology ePrint Archive, Report
2018/968, 2018. https://eprint.iacr.org/2018/968.

[26] Phil Daian, Rafael Pass, and Elaine Shi. Snow white:
Robustly reconfigurable consensus and applications to
provably secure proof of stake. In FC 2019, February
2019.

[27] Bernardo David, Peter Gazi, Aggelos Kiayias, and
Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In
EUROCRYPT 2018, Part II, April / May 2018.

[28] Yvo Desmedt. Society and group oriented cryptography:
A new concept. In CRYPTO’87, August 1988.

[29] Yvo Desmedt and Yair Frankel. Threshold cryptosystems.
In CRYPTO’89, August 1990.

[30] Yvo Desmedt and Yair Frankel. Shared generation of
authenticators and signatures (extended abstract). In

CRYPTO’91, August 1992.
[31] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi

shelat. Secure two-party threshold ECDSA from ECDSA
assumptions. In 2018 IEEE Symposium on Security and
Privacy, May 2018.

[32] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike
Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs.
On the security of two-round multi-signatures. In 2019
IEEE Symposium on Security and Privacy, May 2019.

[33] Rachid El Bansarkhani and Jan Sturm. An efficient
lattice-based multisignature scheme with applications to
bitcoins. In CANS 16, November 2016.

[34] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In CRYPTO’86, August 1987.

[35] Rosario Gennaro and Steven Goldfeder. Fast multiparty
threshold ECDSA with fast trustless setup. In ACM CCS
2018, October 2018.

[36] Rosario Gennaro, Steven Goldfeder, and Arvind
Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In ACNS
16, June 2016.

[37] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Robust and efficient sharing of RSA
functions. In CRYPTO’96, August 1996.

[38] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and
Tal Rabin. Secure applications of Pedersen’s distributed
key generation protocol. In CT-RSA 2003, April 2003.

[39] Craig Gentry, Adam O’Neill, and Leonid Reyzin. A uni-
fied framework for trapdoor-permutation-based sequential
aggregate signatures. In PKC 2018, Part II, March 2018.

[40] Craig Gentry and Zulfikar Ramzan. Identity-based
aggregate signatures. In PKC 2006, April 2006.

[41] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, 2017.

[42] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and
Zhenfei Zhang. Pointproofs: Aggregating proofs for mul-
tiple vector commitments. In ACM CCS 20, November
2020.

[43] Thomas Hardjono and Yuliang Zheng. A practical digital
multisignature scheme based on discrete logarithms. In
AUSCRYPT’92, December 1993.

[44] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In ASIACRYPT 2010, December 2010.

[45] Joe Kilian. A note on efficient zero-knowledge proofs
and arguments (extended abstract). In 24th ACM STOC,
May 1992.

[46] Yuichi Komano, Kazuo Ohta, Atsushi Shimbo, and Shin-
ichi Kawamura. Formal security model of multisigna-
tures. In ISC 2006, August / September 2006.

[47] Russell W. F. Lai and Giulio Malavolta. Subvector
commitments with application to succinct arguments.
In CRYPTO 2019, Part I, August 2019.

12

https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2018/968

[48] Susan K. Langford. Threshold dss signatures without a
trusted party. In CRYPTO’95, August 1995.

[49] Duc-Phong Le, Alexis Bonnecaze, and Alban Gabillon.
Multisignatures as secure as the Diffie-Hellman problem
in the plain public-key model. In PAIRING 2009, August
2009.

[50] Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee.
Threshold-multisignature schemes where suspected
forgery implies traceability of adversarial shareholders.
In EUROCRYPT’94, May 1995.

[51] Benoît Libert, Somindu C. Ramanna, and Moti Yung.
Functional commitment schemes: From polynomial com-
mitments to pairing-based accumulators from simple
assumptions. In ICALP 2016, July 2016.

[52] Benoît Libert and Moti Yung. Concise mercurial vector
commitments and independent zero-knowledge sets with
short proofs. In TCC 2010, February 2010.

[53] libsodium: A modern, portable, easy to use crypto library.
https://github.com/jedisct1/libsodium.

[54] Yehuda Lindell. Fast secure two-party ECDSA signing.
In CRYPTO 2017, Part II, August 2017.

[55] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham,
and Brent Waters. Sequential aggregate signatures and
multisignatures without random oracles. In EURO-
CRYPT 2006, May / June 2006.

[56] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and
Hovav Shacham. Sequential aggregate signatures from
trapdoor permutations. In EUROCRYPT 2004, May 2004.

[57] Gregory Maxwell, Andrew Poelstra, Yannick Seurin,
and Pieter Wuille. Simple schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive,
Report 2018/068, 2018. https://eprint.iacr.org/2018/068.

[58] Ralph C. Merkle. A digital signature based on a
conventional encryption function. In CRYPTO’87, August
1988.

[59] Silvio Micali. CS proofs (extended abstracts). In 35th
FOCS, November 1994.

[60] Silvio Micali. Computationally sound proofs. SIAM J.
Comput., 30(4):1253–1298, 2000.

[61] Messagepack: it’s like JSON, but fast and small. https:
//msgpack.org/.

[62] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2009.

[63] Gregory Neven. Efficient sequential aggregate signed
data. In EUROCRYPT 2008, April 2008.

[64] Kazuo Ohta and Tatsuaki Okamoto. A digital multisig-
nature scheme based on the Fiat-Shamir scheme. In
ASIACRYPT’91, November 1993.

[65] Sangjoon Park, Sangwoo Park, Kwangjo Kim, and
Dongho Won. Two efficient RSA multisignature schemes.
In ICICS 97, November 1997.

[66] Rafael Pass and Elaine Shi. Thunderella: Blockchains
with optimistic instant confirmation. 2018.

[67] Torben P. Pedersen. A threshold cryptosystem without
a trusted party (extended abstract) (rump session). In
EUROCRYPT’91, April 1991.

[68] Secure hash standard. National Institute of Standards and

Technology, NIST FIPS PUB 180-4, U.S. Department
of Commerce, August 2015.

[69] Douglas R. Stinson and Reto Strobl. Provably secure
distributed Schnorr signatures and a (𝑡, 𝑛) threshold
scheme for implicit certificates. In ACISP 01, July 2001.

[70] Steve Thakur. Batching non-membership proofs with
bilinear accumulators. Cryptology ePrint Archive, Report
2019/1147, 2019. https://eprint.iacr.org/2019/1147.

[71] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin
Drake, Dankrad Feist, and Dmitry Khovratovich. Aggre-
gatable subvector commitments for stateless cryptocur-
rencies. In SCN 20, September 2020.

Appendix A
Using Merkle Trees Unambiguously

Merkle trees ensure that there is a unique decommitment for
every leaf position. However, the security goal of the vector
commitment 𝐶attestors as well as of the Merkle tree with root
Rootsigs, is to ensure that there is a unique decommitment for
every index 𝑖. This goal can be achieved by ensuring that there
is an unambiguous mapping, enforced by the verifier, between
indices and leaf positions. How to construct this mapping
depends on the tree structure and the verifier’s knowledge. We
suggest the following options.
• The size of the vector should be included as part of the
commitment, and the tree structure should be fixed for any
given size.

• Alternatively, if the tree structure is variable (which is
helpful when the tree is constructed dynamically), but we
can be sure that the commitment is computed by a trusted
party (we make that assumption on 𝐶attestors), then the
data at each leaf can include its index, and the verifier will
check that this index is equal to 𝑖.

• Finally, if the tree structure is variable and the commitment
is not trusted, then the mapping from indices to leaf
positions can be provided by another, trusted, commitment,
as long as the verifier checks that this mapping is followed.
Thus, the tree structure for Rootsigs can simply parallel
the structure of the tree that computes 𝐶attestors, and the
verifier will check that the paths in the two trees are the
same for a given index (in addition to verifying that the
index matches in 𝐶attestors, as per the previous item).

Appendix B
Computing numReveals efficiently

In order to compute the value

numReveals =

⌈
𝑘 + 𝑞

log2 (signedWeight/provenWeight)

⌉
(per analysis in Section V-B) while avoiding expensive precise
integer arithmetic or imprecise (and not always cross-platform
compatible) floating-point arithmetic, we may wish to use
approximate multiplication and exponentiation. Approximate
multiplication, described below, stores only the most significant
bits of intermediate values (“mantissa”) and a second value
(“exponent”) representing the number of remaining, not stored,

13

https://github.com/jedisct1/libsodium
https://eprint.iacr.org/2018/068
https://msgpack.org/
https://msgpack.org/
https://eprint.iacr.org/2019/1147

bits. In this section we describe this method of computing
numReveals and analyze the error it produces.

Definition and Analysis of Approximate Multiplication
and Exponentiation: Suppose we are limited to multipli-
cation of integers less than 2𝑤, where 𝑤 is a power of 2
(e.g., 𝑤 = 231 and thus multiplication is limited to 32-bit
integers and never produces an answer longer than 64 bits).
For a positive integer 𝑥, define [𝑥]𝑤 (respectively, [𝑥]𝑤) as
follows: if 𝑥 < 2𝑤, [𝑥]𝑤 = [𝑥]𝑤 = 𝑥; else [𝑥]𝑤 (respectively,
[𝑥]𝑤) is equal to 𝑥 rounded down (respectively, up) to the
nearest multiple of 2𝑝 , where 𝑝 the unique integer such that
𝑤 ≤ 𝑥/2𝑝 < 2𝑤.
For any 𝑥, [𝑥]𝑤 (respectively, [𝑥]𝑤) can be represented

as 𝑥𝑚 · 2𝑥𝑒 , where the mantissa 𝑥𝑚 = b𝑥/2𝑝c (respectively,
d𝑥/2𝑝e) and the exponent 𝑥𝑒 = 𝑝 (except when 𝑥 < 2𝑤,
in which case 𝑥𝑚 = 𝑥 and 𝑥𝑒 = 0, or when rounding up
produces 2𝑤, in which case 𝑥𝑚 = 𝑤 and 𝑥𝑒 = 𝑝 + 1). Thus,
multiplying values after [·]𝑤 or [·]𝑤 has been applied involves
a multiplication of mantissas (which are less than 2𝑤) and an
addition of exponents.
Note that if 𝑥 ≥ 𝑤, then by definition of 𝑝, 𝑥/𝑤 ≥ 2𝑝 and

thus (1 − 1/𝑤)𝑥 ≤ 𝑥 − 2𝑝 < [𝑥]𝑤 ≤ 𝑥 ≤ [𝑥]𝑤 < 𝑥 + 2𝑝 ≤
(1 + 1/𝑤)𝑥. We thus have, regardless of whether 𝑥 ≥ 𝑤 or
not,

(1 − 1/𝑤)𝑥 < [𝑥]𝑤 ≤ 𝑥 ≤ [𝑥]𝑤 < (1 + 1/𝑤)𝑥 .

For any integer 𝑎, let 𝑎.𝑛 (respectively, 𝑎&𝑛) denote the
result of starting at 1 and applying 𝑛 repetitions of multiplying
the result by 𝑎 and applying [·]𝑤 (respectively, [·]𝑤) to the
result. Formally,

𝑎.𝑛
def
= [. . . [[𝑎 · 𝑎]𝑤 · 𝑎]𝑤 · · · · · 𝑎]𝑤︸ ︷︷ ︸

𝑛 times

and

𝑎&𝑛
def
= [. . . [[𝑎 · 𝑎]𝑤 · 𝑎]𝑤 · · · · · 𝑎]𝑤︸ ︷︷ ︸

𝑛 times
To avoid large-number arithmetic when exponentiating, we

will first apply [·]𝑤 or [·]𝑤 to a value, and then perform
one of the two forms of approximate exponentiation we just
defined. To bound the error this method produces, observe
that from the above inequality, we have

(1 − 1/𝑤)𝑛𝑎𝑛 < 𝑎.𝑛 ≤ 𝑎𝑛 ≤ 𝑎&𝑛 < (1 + 1/𝑤)𝑛𝑎𝑛

and therefore

(1−1/𝑤)2𝑛𝑎𝑛 < ([𝑎]𝑤).𝑛 ≤ 𝑎𝑛 ≤ ([𝑎]𝑤)&𝑛 < (1+1/𝑤)2𝑛𝑎𝑛.

Using Approximate Exponentiation to Compute
numReveals: To find numReveals, find the smallest
positive integer 𝑛 (using a simple loop incrementing 𝑛 by
one, multiplying, and rounding) such that

2𝑘+𝑞 · ([provenWeight]𝑤)&𝑛 ≤ ([signedWeight]𝑤).𝑛 .

Set numReveals = 𝑛.

This method never underestimates numReveals and
thus guarantees security at least 𝑘 , because 2𝑘+𝑞 ·
provenWeight𝑛 ≤ 2𝑘+𝑞 · ([provenWeight]𝑤)&𝑛 ≤
([signedWeight]𝑤).𝑛 ≤ signedWeight𝑛 and thus condi-
tions in Section V-B for achieving security parameter 𝑘 are
satisfied.
This method may overestimate numReveals. However,

([signedWeight]𝑤).𝑛
([provenWeight]𝑤)&𝑛 >

signedWeight𝑛

provenWeight𝑛
· (1 − 1/𝑤)

2𝑛

(1 + 1/𝑤)2𝑛

≈ signedWeight𝑛

(provenWeight(1 + 4/𝑤))𝑛 .

Therefore, the cost of this method is equivalent to the cost
of increasing provenWeight by a factor of approximately
(1 + 4/𝑤). If we are using 32-bit integers, the cost of this
method is less than the cost of increasing provenWeight by
two parts per billion.

14

