
Locating Cache Performance Bottlenecks Using Data Profiling

Aleksey Pesterev Nickolai Zeldovich Robert T. Morris
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Lab

{alekseyp, nickolai, rtm}@csail.mit.edu

Abstract
Effective use of CPU data caches is critical to good perfor-
mance, but poor cache use patterns are often hard to spot
using existing execution profiling tools. Typical profilers at-
tribute costs to specific code locations. The costs due to fre-
quent cache misses on a given piece of data, however, may
be spread over instructions throughout the application. The
resulting individually small costs at a large number of in-
structions can easily appear insignificant in a code profiler’s
output.

DProf helps programmers understand cache miss costs
by attributing misses to data types instead of code. Associ-
ating cache misses with data helps programmers locate data
structures that experience misses in many places in the ap-
plication’s code. DProf introduces a number of new views of
cache miss data, including a data profile, which reports the
data types with the most cache misses, and a data flow graph,
which summarizes how objects of a given type are accessed
throughout their lifetime, and which accesses incur expensive
cross-CPU cache loads. We present two case studies of using
DProf to find and fix cache performance bottlenecks in Linux.
The improvements provide a 16–57% throughput improve-
ment on a range of memcached and Apache workloads.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Measurement Techniques; D.4.8 [Operating Sys-
tems]: Performance

General Terms Experimentation, Measurement, Perfor-
mance

Keywords Cache Misses, Data Profiling, Debug Registers,
Statistical Profiling

1. Introduction
Processors can consume data much faster than off-memory
can supply it. While on-chip caches and prefetching can
bridge some of this gap, it is nevertheless the case that pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

grams often spend a significant fraction of their run-time
stalled waiting for memory. Multicore chips will likely make
this problem worse, both because they may increase total
demand for data and because they allow for the possibility
of cache misses due to contention over shared data. Under-
standing why software is suffering cache misses is often a
pre-requisite to being able to improve the software’s perfor-
mance.

Following Hennessy and Patterson [13], the reasons for
cache misses can be classified as follows. Compulsory
misses are those taken the very first time a memory location
is read. True sharing misses are those taken on core X as a
result of a write from core Y invalidating data needed on X .
False sharing misses are those taken on core X as a result of
a write from core Y to a different part of a cache line needed
by X . Conflict misses are those taken because a core uses, in
rapid succession, too many distinct items of data that happen
to fall in the same associativity set. Finally, capacity misses
are those taken because the working set of the software is
larger than the total cache capacity.

Identifying the specific causes of cache misses can be
difficult, even with tools such as CPU time profilers or
hardware-counter based cache miss profilers. For example, if
many different points in a program read a particular variable,
and the variable is frequently modified, the miss costs will be
distributed widely and thinly over a CPU time profile; no one
profile entry will attract the programmer’s attention. Capacity
misses may have the same lack of focused symptoms, because
a cache that is too small for the active data will cause misses
throughout the software; even if the programmer realizes that
the cache miss rate is higher than it should be, it is rarely clear
what data is contributing to the too-large working set. Conflict
misses similarly can be difficult to spot and to attribute to
specific items of data.

Creating a sharp distinction between misses due to invali-
dations, capacity misses, and associativity misses is important
because the strategies to reduce misses are different in the
three cases. Associativity conflicts can usually be fixed by
allocating memory over a wider range of associativity sets.
False cache line sharing can be fixed by moving the falsely
shared data to different cache lines. True sharing can some-
times be reduced by factoring data into multiple pieces that
usually need only be touched by a single CPU, or by re-
structuring software so that only one CPU needs the data.
Avoiding capacity misses may require changing the order

1

in which data is processed to increase locality, or imposing
admission control on the number of concurrent activities.

This paper describes a new tool called DProf whose goal is
to help programmers understand and eliminate cache misses.
DProf addresses two core challenges: identifying the causes
of misses, and presenting those causes in a way that helps
the programmer eliminate them. DProf uses performance
monitoring hardware to gradually accumulate traces of run-
ning software’s references to memory addresses. These traces
allow DProf to categorize all types of cache misses. Associa-
tivity misses are identifiable as repeated cycling of the same
addresses in a single associativity set. True and false shar-
ing are identifiable by comparing traces from different cores.
DProf identifies capacity misses by estimating the working
set size from the traces.

Once DProf has categorized cache misses, it identifies
the types of data participating in each miss. DProf allows
the programmer to navigate four different views of the cache
misses incurred by the software’s data types. The highest
level view is a “data profile”: a list of data types, sorted
by how many misses they suffer. The “miss classification”
view indicates the kinds of misses incurred by each data
type. The “working set” view shows which data types were
most active, how many objects of each type were active, and
which associativity sets those objects used; this information
helps diagnose capacity and associativity misses. Finally, to
find instances of true and false sharing, the “data flow” view
shows when data moves from one CPU to another.

We have implemented DProf within the Linux kernel,
using Linux’s kernel allocator to help identify the type of
each memory location that misses. The implementation uses
the AMD instruction-based sampling (IBS) hardware [11]
and x86 debug registers [14] to acquire a trace of references.

To evaluate the effectiveness of DProf, we present a num-
ber of case studies. Each involves a workload that generates
significant misses within the kernel. In each case, existing
tools such as OProfile do not usefully identify the cause of
the misses. We show that DProf does identify them, and
presents the programmer with information that is useful in
understanding and eliminating the misses.

The rest of this paper starts with a description of the
views that DProf provides, in Section 2. Section 3 describes
how DProf generates those views, and Section 4 details our
data collection mechanisms for x86 processors. Section 5
uses case studies to show how DProf can be used to find
a range of problems related to cache misses in the Linux
kernel. Section 6 compares DProf to related work, Section 7
mentions limitations and directions for future research, and
Section 8 concludes.

2. DProf Views
After a programmer has run software with DProf profiling,
DProf offers the programmer the following views:

Data Profile The highest level view consists of a data
profile: a list of data type names, sorted by the total number
of cache misses that objects of each type suffered. As a
convenience, the data profile view also indicates whether
objects of each type ever “bounce” between cores. This view
is most useful when the design and handling of each data type
is what causes misses for that type. A data profile view is less
useful in other situations; for example, if the cache capacity
is too small, all data will suffer misses. Aggregation by type
helps draw attention to types that suffer many misses in total
spread over many objects. The “data profile view” columns
of Tables 4, 7, and 8 show examples of this kind of view.

Miss Classification This view shows what types of misses
are most common for each data type. For example, objects of
type skbuff might incur mostly capacity misses, objects of
type futex mostly associativity conflict misses, and objects
of type pktstat both true and false sharing misses. For
capacity or conflict misses, the programmer would look next
at the working set view; for sharing misses, the data flow
view.

Working Set This view summarizes the working set of the
profiled software, indicating what data types were most active,
how many of each were active at any given time, and what
cache associativity sets are used by each data type. This
global knowledge of cache contents is important to track
down the causes of capacity and conflict misses, which are
caused by different data elements evicting each other from the
cache. The working set column of Tables 4, 7, and 8 illustrate
an example of this kind of output, although the full working
set view also includes a distribution of data types by cache
associativity sets. An example cache associativity histogram
for one data type is shown in Figure 1. Using the working set
view, the programmer can determine if the software is using
too many distinct data items of a particular type at once. The
distribution of data types by associativity set can also help
determine if certain data types are aligned with each other,
causing conflict misses.

Data Flow Finally, the data flow view shows the most
common sequences of functions that reference particular
objects of a given type. The view indicates points at which
an object (or its cache lines) moves between cores, incurring
cache misses due to either false or true sharing. Programmers
can also use the data flow view to explore how a program
processes a particular type of data, as we will illustrate in
one of the case studies. Figure 2 shows an example data flow
view.

3. Generating Views
DProf collects two kinds of data to help it generate views.
The first kind is path traces. Each path trace records the life
history of a particular data object, from allocate to free, in
terms of the sequence of instruction locations that read or
write the object. This sequence may be from a single thread

2

Average Timestamp Program Counter CPU Change Offsets Cache Hit Probability Access Time
0 kalloc() no 0–128 — 0
5 tcp write() no 64–128 100% local L1 3 ns
10 tcp xmit() no 24–28 100% local L1 3 ns
25 dev xmit() yes 24–28 95% foreign cache 200 ns
50 kfree() no 0–128 — 0

Table 1. A sample path trace for a particular data type and execution path. This path trace is for a network packet structure
and the transmit path. The CPU change flag indicates whether that program counter was encountered on the same CPU as the
previous one, or on a different CPU. The offset indicates the offset into the data structure that was accessed at this program
counter location. The cache hit probabilities indicate the percentage of time that memory access was satisfied using different
caches in the system, and the access time indicates the average time spent waiting for that memory reference. An execution path
is defined by the sequence of program counter values and CPU change flags, and DProf keeps track of how frequently each
execution path is seen for each data type.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

U
n
iq

u
e

C
ac

h
e

L
in

es

Associtivity Set

Figure 1. First level cache associativity set histogram of
data accesses to 1024 byte network packet buffers. The y-
axis represents the number of unique cache lines accessed in
one associativity set. The gaps represent lost opportunities to
spread out references over multiple associativity sets. They
are formed because in Linux all 1024 byte packet buffers are
aligned so that each byte of the buffer can only fall into 32
different associativity sets.

of execution, but may also involve instructions from multiple
cores that are using the same object concurrently. DProf
collects path traces for a randomly selected subset of the
objects allocated during execution, and combines the traces
of objects of the same type if those objects are touched by the
same sequence of instructions. For each accessing instruction
in a combined trace, DProf records the hit probability of
the instruction in different levels of the cache hierarchy, the
average time to access the data, the average time since the
object’s allocation, and a flag indicating that the instruction
executed on a different core than the previous instruction.
DProf records how frequently each execution path is observed
for a given data type. Table 1 shows a path trace for a network
packet data structure, on an execution path that transmits the
packet.

The second kind of data is called an address set, which
includes the address and type of every object allocated during

execution. DProf uses the address set to map objects to
specific associativity sets in the cache. Thus, it is sufficient to
store addresses modulo the maximum cache size in this data
structure.

DProf is a statistical profiler and assumes a workload that
is uniform over time. Without a cyclic workload a statistical
profiler cannot capture enough samples to characterize the
workload. This assumption is similarly made by other time
and hardware-counter based statistical profilers.

Path traces are constructed by combining cache miss data
generated by hardware-counters with traces of references to
data gathered using hardware debug registers. Debug registers
can be setup to trigger interrupts every time a particular
memory location is accessed. We will describe how the path
traces and address sets are collected in the next section, but
for now we focus on the problem of generating different
views using these data sources.

3.1 Data Profile
Recall that a data profile reflects the miss rates and CPU
bouncing information for a given type (for example, see
Tables 4, 7, and 8). To construct a data profile for type T ,
DProf combines all of the path traces for T . The CPU bounce
flag in T ’s data profile will be set if any path trace for T
indicates a CPU change. The miss rate for T ’s data profile
is the average miss rate to DRAM or other CPUs’ caches
encountered on all of the execution paths, according to the
path traces, weighted by the frequency with which that path
is observed.

3.2 Working Set
The working set view presents two kinds of information. First,
an indication of whether some cache associativity sets suf-
fer many more misses than others (suggesting associativity
conflicts), and the data types involved in those misses. Fig-
ure 1 shows one such histogram for network packet buffers.
Second, an estimate of which types are most common in the
cache, to help diagnose capacity misses.

DProf runs a simple cache simulation to generate this
information. DProf randomly picks objects from the address

3

set (weighted by how common each object is in the set) and
paths from the path traces (weighted by how common each
path is) and simulates the memory accesses indicated by the
object’s path trace. When an object is freed in its path trace,
that object’s cache lines are removed from the simulated
cache.

Based on the cache simulation, DProf counts how many
distinct pieces of memory are ever stored in each associativity
set. The associativity sets with the highest counts are the
most likely to be suffering associativity conflict misses. The
histogram can be used by the programmer to find what
data types are using highly-contended associativity sets and
thereby causing conflict misses. DProf reports which types
an associativity set holds and the number of distinct instances
of each type in the set.

DProf also counts the number of each data type that
is present in the cache, averaged over the simulation. The
programmer can use these counts to suggest ways to reduce
the working set size to avoid capacity misses. Finding the
data types that dominate the working set may not always
reveal why there are so many instances of these types. For
example, in the Linux kernel each buffered network packet
is held in an instance of the skbuff type. skbuffs can
be used in many different ways; for example, for TCP FIN,
ACK, or data packets. If the cache is full of skbuffs, the
programmer needs to know which of the many potential
sources is generating them. To solve this problem, DProf’s
working set view reports not only the most common data
types found in the cache, but also the execution paths that
those data types take.

3.3 Miss Classification
For the miss classification view, DProf uses path traces to
classify cache misses into three categories: invalidations
(including both true sharing and false sharing), conflict
misses, and capacity misses. Although compulsory misses are
often treated as a separate class of cache miss, in practice all
memory on a real system has been accessed by a CPU at some
point in the past, so there are almost no compulsory misses.
(Device DMA could cause a compulsory miss, but DMA-
to-cache is common and would largely avoid such misses.)
Thus, DProf assumes there are no compulsory misses.

Invalidations Invalidations occur when one core has data
in its cache and a second core writes the data; the processor’s
cache coherence protocol removes the data from the first
core’s cache, and that core’s next access to the data will miss.
DProf uses path traces to identify misses due to invalidations,
and thus to identify instructions that cause invalidations. For
each miss in each path trace, DProf searches backwards in the
trace for a write to the same cache line from a different CPU.
If there is such a write, then the miss is due to invalidation.

One type of false sharing occurs when two fields in an
object are accessed disjointly on multiple CPUs but share the
same cache line. To help catch such a problem, DProf repeats

the above procedure but searches backwards for writes to
the entire cache line on a different CPU. Due to profiling
limitations, DProf does not detect false sharing if multiple
objects share the same cache line.

Conflict Misses An N-way set associative cache is com-
posed of multiple associativity sets. When a cache line is
added to the cache, the address of the cache line is used to
deterministically calculate which set the cache line maps to.
Each set can hold up to N cache lines simultaneously. Con-
flict misses take place when the software frequently accesses
more than N different cache lines that map to the same as-
sociativity set. To detect conflict misses, DProf must first
determine what associativity sets a particular data type falls
into, and then determine whether those associativity sets are
used to store significantly more data than other sets.

To determine the associativity sets used by type T , DProf
adds the addresses from T ’s address set to the offsets accessed
in T ’s path traces, and maps the resulting absolute addresses
into associativity sets. To determine whether a particular
associativity set is suffering from conflict misses, DProf
computes the histogram of associativity sets, described earlier
in the working set view. DProf then checks whether that
associativity set is assigned more cache lines than it can hold,
and if so, whether the number of cache lines assigned to it is
much higher than the average number of cache lines assigned
to other associativity sets. (In our prototype, we check if the
number of cache lines is a factor of 2 more than average.) If
both of those conditions hold, DProf marks that associativity
set as suffering from conflict misses.

Capacity Misses Capacity misses occur when the total
amount of data actively used by the software (the working
set) is greater than the size of the cache. DProf helps the
programmer understand capacity misses by estimating the
primary contents of the working set.

There is overlap between conflict and capacity misses,
since at a detailed level capacity misses are caused by as-
sociativity conflicts. DProf distinguishes between the two
cases heuristically: if only a few associativity sets have lots
of conflicts, DProf attributes the misses to conflicts; if most
associativity sets have about the same number of conflicts,
DProf indicates that the problem is capacity.

3.4 Data Flow
DProf constructs the data flow view for a particular type T
by combining the execution paths seen in T ’s path traces
into a single graph. All path traces start from an allocation
routine like kalloc(), and end in a deallocation routine
like kfree(). As a result, DProf can always construct a data
flow graph from kalloc() to kfree(). When multiple
execution paths share a prefix or suffix, DProf can merge the
common program counter values into a shared sequence of
nodes in the graph.

4

Field Description
type The data type containing this data.
offset This data’s offset within the data type.
ip Instruction address responsible for the access.
cpu The CPU that executed the instruction.
miss Whether the access missed.
level Which cache hit.
lat How long the access took.

Table 2. An access sample that stores information about a
memory access.

4. Collecting Path Traces and Address Sets
As Section 3 outlined, DProf relies on two data structures to
generate its views: the path traces and the address set. DProf
constructs an address set by instrumenting the allocator to
record allocation and deallocation of all objects, along with
their type information.

DProf pieces together path traces by sampling raw data
from CPU performance monitoring hardware as a workload
executes. DProf combines the raw data into a set of path
traces, one per data type / path combination. Because DProf
samples, its path traces are statistical estimates.

DProf collects two kinds of raw data: access samples and
object access histories. Each access sample records informa-
tion for a memory-referencing instruction execution randomly
chosen by the hardware, and includes the instruction address,
data memory address, whether the memory access hit in the
cache, and the memory access latency (for misses). An object
access history is a complete trace of all instructions that read
or wrote a particular data object, from when it was allocated
to when it was freed. These two types of raw data are dic-
tated by the performance monitoring hardware provided by
the CPUs we use. In particular, the hardware that collects
object access histories does not record cache miss informa-
tion. Combining access samples with object access histories
allows construction of path traces.

DProf performs two additional steps in generating path
traces. First, it finds the type of the data referenced by each
access sample, to help it decide which object access histories
each access sample might be relevant to. Second, it aggregates
object access histories that refer to the same data type and
involve the same path of instructions.

Currently DProf stores all raw samples in RAM while
profiling. Techniques from DCPI [4] could be used to transfer
samples to disk while profiling. The following subsections
detail how DProf collects and combines the raw data.

4.1 Access Samples
To gather information about cache misses, DProf samples
data accesses. Each sampled data access is saved as an
“access sample” shown in Table 2. The output of a data
access profiling session is a collection of access samples

that captures the software’s most common data accesses and
how many of the accesses missed in the cache.

DProf uses Instruction Based Sampling (IBS) [11] pro-
vided by AMD processors to collect access samples. IBS is
a hardware feature that allows detailed CPU execution sam-
pling. IBS works by randomly tagging an instruction that
is about to enter the CPU’s pipeline. As a tagged instruc-
tion moves through the pipeline, built-in hardware counters
keep track of major events like cache misses, branch miss-
predictions, and memory access latencies. When the tagged
instruction retires, the CPU issues an interrupt alerting the
operating system that an IBS sample is ready. IBS reports
the instruction address for each sample and the physical and
virtual memory addresses for instructions that access mem-
ory. IBS tagging is not completely random due to stalling
instructions. IBS results are biased toward instructions that
spend more time in a pipeline stage.

After initializing the IBS unit, DProf receives interrupts
on each new IBS sample. The DProf interrupt handler creates
a new access sample and fills it with the data described in
Table 2.

4.2 Address to Type Resolution
To construct an access sample, DProf needs to compute the
type and offset that corresponds to the memory address. The
type information is necessary to aggregate accesses to objects
of the same type, and to differentiate objects of different types
placed at the same address by the memory allocator.

DProf assumes C-style data types, whose objects are
contiguous in memory, and whose fields are located at well-
known offsets from the top-level object’s base address. DProf
implements a memory type resolver whose job is to generate
a type and offset for any memory address at runtime. For
a given address, the resolver finds the type of object that
the address belongs to, and the base address of that object.
Subtracting the address from the base address gives the offset
into the type, which is used to infer the field.

The method for finding the type and base address of an
address depends on whether the address refers to dynamically-
allocated or statically-allocated memory. For statically-
allocated memory, the data type and the object base address
can be found by looking at the debug information embedded
in the executable.

For dynamically-allocated memory, DProf modifies the al-
locator to keep track of the type of all outstanding allocations.
The Linux kernel’s allocator already has this information,
since a separate memory pool is often used for each type of
object. As a result, DProf can ask the allocator for the pool’s
type, and the base address of the allocation that includes a
given address. We are exploring off-line assembly typing
techniques for associating types with dynamically-allocated
memory from shared memory pools, and for allocators out-
side of the Linux kernel. For now, our approach has been to
manually annotate with type information the few allocations
that come from a generic pool.

5

Field Description
offset Offset within data type that’s being accessed.
ip Instruction address responsible for the access.
cpu The CPU that executed the instruction.
time Time of access, from object allocation.

Table 3. An element from an object access history for a
given type, used to record a single memory access to an offset
within an object of that type.

4.3 Object Access Histories
Object access history profiling works by recording all instruc-
tion pointers that access a given object during that object’s
lifetime. An object access history is a collection of elements
shown in Table 3.

DProf uses debug registers provided by modern AMD and
Intel CPUs that generate an interrupt for every access to a
given address. Current hardware provides a limited number
of these debug registers, each covering up to eight bytes of
contiguous memory at a time. As a result, DProf must use
debug registers to monitor a small part of each data object
at a time, and to piece together the resulting offset access
histories into a complete object access history.

DProf monitors one object at a time, on all CPUs. When a
free debug register becomes available, DProf decides what
type of object it would like to monitor, focusing on the most
popular objects found in the access samples. DProf picks an
offset within that data type to monitor, based on what offsets
have not been covered yet. DProf then cooperates with the
kernel memory allocator to wait until an object of that type
is allocated. When an allocation happens, DProf configures
the debug registers on every CPU to trace the given offset
within the newly-allocated memory region, until the object is
eventually freed, and the debug register is released.

The CPUs interrupt on each load and store to the currently
monitored object and offset. The DProf interrupt handler
creates a record of the access on each interrupt, as shown
in Table 3. The offset field is known at allocation time,
the ip and cpu fields are known at interrupt-time, and
time field is computed using the RDTSC timestamp counter,
relative to the object’s initial allocation time.

In order to build up an object access history for all offsets
in a data type, DProf must determine how accesses to different
offsets should be interleaved with one another. To do so,
DProf performs pairwise sampling using pairs of debug
registers, configured to track two different offsets within the
same object. DProf samples all possible pairs of offsets within
an object, and then combines the results into a single access
history by matching up common access patterns to the same
offset. While this process is not perfect, access patterns for
most data types are sufficiently repetitive to allow DProf to
perform this merging.

To detect false sharing of a cache line used by multiple
objects, DProf could observe cases when two objects share
the same cache line and profile both at the same time. DProf
currently does not support this mode of profiling.

4.4 Path Trace Generation
Once the access samples and object access histories have
been collected, DProf combines the two data sets to create
path traces for each data type. First, DProf aggregates all
access samples that have the same type, offset, and ip
values, to compute the average cost of accessing memory of a
particular type by a given instruction. Aggregation takes place
at the type level, as opposed to the type instance level, because
there are not enough access samples collected per second to
capture enough data about particular instances of a type. Then,
DProf augments object access histories with data from the
access samples, by adding the miss, level, and lat data
from the access sample to object access history records with
the same type, offset, and ip values. Finally, DProf
combines all augmented object access histories that have
the same execution path (same sequence of ip values and
equivalent sequence of cpu values) by aggregating their
time, miss, level, and lat values. All of the combined
histories for a given type are that type’s path trace.

5. Evaluation
This section evaluates DProf by using it to find cache perfor-
mance problems in the Linux 2.6.30 kernel for two workloads,
Apache and memcached. The hardware involved is a 16-core
AMD machine (four four-core Opteron chips) with an Intel
10GB Ethernet card (IXGBE) [10]. Each core has an L1 and
L2 cache; the four cores on each chip share one L3 cache. An
L1 hit costs 3 cycles, an L2 hit costs 14 cycles, and an L3
hit costs 50 cycles. A miss in the L3 costs 200-300 cycles to
fetch the data from RAM or from another chip [6]. Sixteen
other machines generate load via a 24-port 1GB switch with
a 10GB Ethernet interface.

The IXGBE has 16 TX and RX queues. Each queue
can be set to interrupt one specific core. The card hashes
header fields of incoming packets to choose the queue. We
configured the card to ensure that each load-generation host’s
packets went to a different core, in order to reduce contention
over a number of kernel locks and data structures. We also
modified the kernel to avoid using global data structure locks
in subsystems like the directory entry cache and the SLAB
memory allocator. These changes were necessary to reduce
lock contention—a first effect performance bottleneck—and
bring data contention to the forefront.

This section presents two case studies of how DProf helps
find the sources of costly cache misses, and then evaluates
DProf’s profiling overhead. The case studies compare how
precisely DProf and two existing popular tools, lock stat and
OProfile, direct the programmer’s attention to the underlying
causes of cache misses.

6

5.1 Case Study: True Sharing
Memcached [2] is an in-memory key-value store often used
to speed up web applications. A distributed key-value store
can be created by running multiple instances of memcached
and having clients deterministically distribute keys among all
available servers.

For this case study, the test machine ran 16 instances of
memcached. Each instance used a different UDP port and was
pinned to one core. Separate memcached processes were used
to avoid scalability bottlenecks with threaded memcached.
Each load generating machine ran a UDP memcached client
querying the same memcached instance, with different clients
querying different instances. The Ethernet hardware was con-
figured to deliver receive packet interrupts to the appropriate
server core. Each UDP client repeatedly asked for one non-
existent key.

This configuration aimed to isolate all data accesses to one
core and eliminate cross core sharing of data that results in
both contention for locks and cache misses. Even though we
configured the experiment to reduce cross core sharing, we
were still not getting linear speed up running memcached.

5.1.1 Profiling with DProf
Table 4 shows part of the data profile generated by DProf. A
few kernel objects had a high concentration of cache misses.
In addition, the same objects were bouncing between cores.
With a high proportion of cache misses, the size-1024 ob-
jects are a good place to start the analysis. These objects hold
packet payload. The DProf data flow view shows that many
of these objects move from one core to another between a call
to dev queue xmit and dev hard start xmit. This
means that individual packets are handled by multiple cores
during transmit processing, rather than by one as expected.
The size-1024 objects are only the packet payloads; per-
packet skbuff objects are used to store bookkeeping infor-
mation about each packet. Since skbuffs are on the list and
are also bouncing, they are worth looking at next.

Figure 2 shows a snippet of the data flow view gen-
erated by DProf for skbuffs. The view indicates that
skbuffs on the transmit path jump from one core to
another between a call to pfifo fast enqueue and
pfifo fast dequeue. Both of these functions are part
of the Qdisc Linux subsystem that is used to schedule
packet transmission. Packets are placed on the head of the
queue and are taken off the queue when the card is ready to
transmit them. The IXGBE driver was configured with 16
hardware transmit queues. In principle, each core should be
able to transmit a packet without contending for locks by
placing the packet onto a “local” queue dedicated to its use.
Since skbuffs jump to a different core at this point, this is
apparently not happening.

Now that we have an idea of what the problem is, we need
to find why packets are not placed on the local queue. The
data flow graph limits the scope of the search: we only need

ixgbe_alloc_rx_buffers

ixgbe_clean_rx_irq

netif_receive_skb

udp_recvmsg

...

ixgbe_xmit_frame

...

skb_tx_hash

dev_queue_xmit

pfifo_fast_enqueue

net_tx_action

__alloc_skb

sock_alloc_send_pskb __netdev_alloc_skb

...

__qdisc_run

ip_rcv

ip_local_deliver

pfifo_fast_dequeue

ip_local_out

...

...

free

alloc

Figure 2. Partial data flow view for skbuff objects in
memcached as reported by DProf. The thick line indicates a
transition from one core to another. Darker boxes represent
functions with high cache access latencies.

7

Type Name Description Working Set View Data Profile View % ReductionSize % of all L3 misses Bounce
slab SLAB bookkeeping structure 2.5MB 32% yes 80%
udp sock UDP socket structure 11KB 23% yes 100%
size-1024 packet payload 20MB 14% yes -60%
net device network device structure 5KB 12% yes 80%
skbuff packet bookkeeping structure 34MB 12% yes 80%
ixgbe tx ring IXGBE TX ring 1.6KB 1.7% no 90%
socket alloc socket inode 2.3KB 1.7% yes 100%
Qdisc packet schedule policy 3KB 0.8% yes 100%
array cache SLAB per-core bookkeeping 3KB 0.4% yes 100%

Total 57MB 98% — —

Table 4. Working set and data profile views for the top data types in memcached as reported by DProf. The percent reduction
column shows the reduction in L3 misses caused by changing from a remote to a local queue selection policy. The number of L3
misses for size-1024 increased with the local policy.

to look at functions above pfifo fast enqueue to find
why packets are not placed on to the local queue. Fortunately,
we do not need to look far for the problem. Looking at the
skb tx hash, it is easy to spot that the transmit queue is
chosen by hashing the content of the skbuff.

The problem is that the IXGBE driver does not provide
its own custom queue selection function that overrides the
suboptimal default. In the memcached benchmark it is best
for the system to choose the local queue rather than balancing
transmit load by hashing to a remote queue. Modifying the
kernel in this way increased performance by 57%.

Changing the queue selection policy halved the number of
L2 and L3 misses, as Table 5 shows. Many data types share in
this reduction. The last column in Table 4 shows the percent
reduction in L3 cache misses for the top data types.

5.1.2 Analysis using Lock stat
We wanted to see how easy it would be to find the same
problem using lock stat. Lock stat reports, for all Linux
kernel locks, how long each lock is held, the wait time to
acquire the lock, and the functions that acquire and release
the lock. Lock stat found four contended kernel locks shown
in Table 6. Contention for locks implies that the memory
protected by the lock is accessed on multiple CPUs, and
might be a bottleneck. To try to use lock stat’s results to
understand why memcached wasn’t scaling, we looked at
each lock it reported.

The first reported lock protects part of the event poll
system call interface. In the memcached benchmark it might
be safe to assume that socket descriptors generate most events.
The event poll subsystem uses wait queues internally, so the
“epoll” and “wait queue” lock uses might be related. Without
call stacks, it is hard to tell how the two locks relate, or how
other parts of the kernel might be using events or wait queues.

Contention over the SLAB cache lock indicates that
data is allocated on one CPU and deallocated on an-
other. cache alloc refill is called to refill the ex-

hausted per-core local cache of free objects. The call to
drain alien cache shows that objects are frequently

freed on a core other than the original allocating core, requir-
ing the object to be placed back on the original core’s free
lists. It is not clear from the lock stat output what type of
objects are being allocate and deallocated.

The Qdisc lock contention indicates that multiple
cores are touching the same packet transmit queue. The
dev queue xmit function places packets onto a queue
and the qdisc run function takes them off. Studying
the dev queue xmit function, we could make the same
conclusion as we did with DProf. The fact that this is possible
is something of a lucky coincidence for lock stat, since there
is no real reason why the choice of queue and the mechanics
of placing the packet on that queue had to be in the same
function. Often such pairs of actions are not in the same place
in the code, and lock stat often doesn’t identify the point in
the code that effectively decides to share data with another
core. DProf’s data flow views identify these problems more
explicitly, limiting the functions that need to be examined to
the ones that used the data just before the data switched to a
different core.

5.1.3 Profiling with OProfile
OProfile [19] is an execution profiler, reporting the cost
of each function or line of code. Table 12 shows the
output of OProfile for the memcached workload. OPro-
file reports over 33 functions with more than 1% of the
samples. It is hard to tell which functions are potential
performance problems, since none stand out. The mem-
cached benchmark is forcing the kernel to allocate, trans-
mit, and deallocate millions of packets per second; it
is reasonable for ixgbe clean rx irq, kfree, and
kmem cache free to be at the top of the list. Before
getting to the interesting dev queue xmit function, the
programmer must first examine the first 10 functions. Even
when inspecting dev queue xmit, the programmer would

8

Queue Selection
Policy

Requests per
Second

L2 Misses
per Request L2 Miss Rate L3 Misses

per Request L3 Miss Rate

Remote 1,100,000 80 1.4% 70 1.2%
Local 1,800,000 40 0.7% 30 0.5%

Table 5. Cache misses per request and cache miss rates for the L2 and L3 caches. Results are shown running memcached for
both transmit queue selection policies. These numbers were gathered using hardware performance counters to collect cache miss
and data access counts.

Lock Name Wait Time Overhead Functions
epoll lock 0.66 sec 0.14% sys epoll wait, ep scan ready list, ep poll callback
wait queue 0.57 sec 0.12% wake up sync key
Qdisc lock 1.21 sec 0.25% dev queue xmit, qdisc run
SLAB cache lock 0.05 sec 0.01% cache alloc refill, drain alien cache

Table 6. Lock statistics reported by lock stats during a 30 second run of memcached. The wait time is a sum over all 16 cores.

likely focus on the locking problem, just as in the lock stat
analysis.

The OProfile output mentions 6 functions that deal with
packet transmission. Another 14 are generic functions that
may manipulate packets. Even if the programmer realizes
that the problem is packets placed on a remote queue, up to
20 functions would need to be studied to understand why this
is happening.

OProfile does generate call graphs that present information
similar to data flow views. For the purposes of this analysis,
however, call graphs lack the continuity of DProf data flows
when objects are placed in data structures and later retrieved,
as with queues.

As shown in column 3 of Table 12, the reduction in L2
misses after changing the queue selection policy is spread
over most of the top functions. That is, the 57% improvement
is not concentrated in a few functions in a way that would be
clear from OProfile output. By attributing miss costs to data
types, rather than functions, DProf identifies the source of the
performance problem more clearly than OProfile.

5.2 Case Study: Working Set
For this case study we configure the test machine to run
the Apache [1] web server. 16 different Apache servers
listen to different TCP ports, each pinned to a different core.
Each Apache server serves a single 1024B static file out of
memory pre-cached by the MMapFile directive. The 16
load generating machines repeatedly open a TCP connection,
request the file once, and close the connection. Each client
attempts to maintain a set request rate using up to 1024 TCP
connections at any one time. The problem we used DProf to
investigate was that the total number of requests served per
second abruptly dropped off after the request generation rate
was increased beyond a certain point.

5.2.1 Profiling with DProf
Using DProf we captured two runs of Apache: one at the
peak and one when performance dropped off. Looking at the
results shown in Table 7 and Table 8, it was obvious that
something happened to the working set size of tcp sock
objects. The data flow view also indicated that the time from
allocation to deallocation of tcp sock objects increased
significantly from the peak case to the drop off case. Here,
we used DProf to perform differential analysis to figure out
what went wrong between two different runs.

Investigation showed the following to be the problem.
Each instance of Apache allowed many TCP requests to
be backlogged on its accept queue. The load generating
machines eagerly filled this queue with new requests. In the
peak performance case, the time it took from when a request
was received by the kernel to the time Apache accepted the
new connection was short because Apache kept up with the
load and the queue remained shallow. When Apache accepted
a new connection, the tcp sock was in a cache close to the
core. In the drop off case the queue filled to its limit and
by the time Apache accepted a connection, the tcp sock
cache lines had already been flushed from the caches closest
to the core. The average cycle miss latency for a tcp sock
cache lines was 50 cycles in the peak case and 150 cycles in
the drop off case.

We implemented admission control by limiting the number
of TCP connections queued in memory. Connections that did
not fit on the queue were dropped. This change eliminated
the performance drop-off at the higher request rate raising
performance to the same level as peak performance (an
improvement of 16%).

5.2.2 Analysis with Lock stat
The lock stat analysis results are shown in Table 9. The results
show that the Linux kernel fast user mutex (futex) subsystem
is taking up execution time acquiring locks. This is indeed the

9

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Benchmark Data Type Data Type
Size (bytes) Histories Histories

Sets
Collection
Time (s)

Overhead
(%)

memcached size-1024 1024 8128 32 170 1.3
skbuff 256 5120 80 95 0.8

Apache

size-1024 1024 20320 80 34 2.9
skbuff 256 2048 32 24 1.6

skbuff fclone 512 10240 80 2.5 16
tcp sock 1600 32000 80 32 4.9

Table 10. Object access history collection times and overhead for different data types and applications.

Benchmark Data Type Elements per
History

Histories per
Second

Elements per
Second

memcached size-1024 0.3 53 120
skbuff 4.2 56 350

Apache

size-1024 0.5 660 1660
skbuff 4.8 110 770

skbuff fclone 4.0 4600 27500
tcp sock 8.3 1030 10600

Table 11. Average object access history collection rates for different data types and applications.

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
n
t

o
f

U
n
iq

u
e

P
at

h
s

History Sets

memcached size−1024
memcached skbuff
Apache size−1024

Apache skbuff
Apache skbuff_fclone

Apache TCP

Figure 4. Percent of unique paths captured as a function
of history sets collected. For all data types, the maximum
number of unique paths is based on a profile with 720 history
set. Only results for profiles with less than 160 sets are shown.

5.4 Object Access History Overhead
The overhead of capturing object access histories depends on
the number of debug register interrupts triggered per second—
which DProf has no control over—and the number of histories
collected per second—which DProf can modulate. For the
Apache and memcached applications Table 10 shows the
range of overheads when profiling different data types. A
history set is a collection of object access histories that cover
every offset in a data type. For example, a skbuff is 256
bytes long and its history set is composed of 64 histories with
debug register configured to monitor length of 4 bytes.

The overhead for capturing Apache skbuff fclone
access histories is 16% because the lifetime of this data type
is short and DProf can collect many access histories per
second. The collection rates are shown in Table 10. To reduce
the overhead, DProf can collect less histories per second.

Table 13 shows a breakdown of the profiling overhead.
The first component is the cost to take an interrupt and save
an element. This interrupt is triggered every time the profiled
object is accessed and costs the test machine 1,000 cycles.

There are two setup overheads: the cost to reserve an
object for profiling with the memory subsystem and the cost
to setup debug registers on all cores. At high histories per
second rates, the dominating factor is the debug registers
setup overhead. The core responsible for setting up debug
registers incurs a cost of 130,000 cycles. The high cost is due
to interrupts sent to all other cores to notify them to set their
debug registers.

In addition to cycle overhead, history collection incurs a
memory overhead of 32 bytes per element in an object access
history.

The time to collect all histories depends on the size and
lifetime of an object. Table 10 shows collection times for
a number of data types. Table 11 shows the rates at which
histories are collected. Since DProf profiles only a few bytes
of an object at a time, the bigger the object the more runs are
needed. Also because DProf can profile only a few objects at
a time, the longer an object remains in use, the longer it takes
to capture its history.

The time to setup an object to be monitored also adds to
the profiling time. It costs about 220,000 cycles to setup an

11

%
CLK

% L2
Misses

%
Reduc-

tion
Functions

5.1 9.7 16% ixgbe clean rx irq
4.4 6.3 77% kfree
3.2 6.6 68% kmem cache free
3.2 7.5 74% alloc skb
2.8 0.7 54% local bh enable
2.8 3.6 54% ixgbe clean tx irq
2.6 3.8 59% ixgbe xmit frame
2.2 1.1 92% ep poll callback
2.1 2.1 48% ip finish output
2.0 1.6 52% find first bit
1.8 2.1 80% dev queue xmit
1.7 0.6 44% copy user generic string
1.7 1.5 6.2% phys addr
1.7 1.5 -1.6% udp recvmsg
1.6 1.3 100% wake up sync key
1.5 2.4 100% dev kfree skb irq
1.5 1.6 -0.5% ip rcv
1.5 2.3 0.8% lock sock nested
1.4 1.5 15% kfree skb
1.4 1.9 82% qdisc run
1.3 0.02 44% event handler
1.3 3.7 52% gart unmap page
1.3 1.1 57% skb put
1.2 0.3 79% kmem cache alloc node
1.2 3.5 39% skb dma map
1.2 2.1 10% skb recv datagram
1.2 0.3 93% udp sendmsg
1.1 1.2 -5.7% skb copy datagram iovec
1.1 0.1 65% getnstimeofday
1.1 0.8 29% ip append data
1.0 2.4 100% sock def write space
1.0 2.4 90% ixgbe unmap
1.0 1.8 100% pfifo fast enqueue

Table 12. Top functions by percent of clock cycles and L2
misses for memcached as reported by OProfile. The percent
reduction column shows the reduction in L2 misses when the
local queue selection policy is used. OProfile can produce
this column only after samples have been collected from runs
using both the local and remote queue selection policies.

object for profiling. Most of this cost comes from notifying
all cores to setup their debug registers.

An object can take multiple paths; to record all of an
object’s paths, DProf needs to profile multiple times until all
paths are captured. DProf is concerned with capturing the
most often take paths. Paths that are not taken often usually
do not contribute to the performance of an application. The
question is how many times should an object be profiled to
collect all relevant paths? There is no specific answer because
the number depends on individual data types. We have found
that for all the data types we studied, 30 to 100 history sets
were sufficient to collect all relevant paths.

Data Type Interrupts/Memory/Communication
size-1024 20% / 10% / 70%

skbuff 60% / 10 % / 30%
skbuff fclone 5% / 5% / 90%

tcp sock 20% / 5% / 75%

Table 13. Object access history overhead breakdown for dif-
ferent data types used by Apache. The overhead is composed
of the cost to take a debug register interrupt, the cost to com-
municate with the memory subsystem to allocate an object
for profiling, and the cost to communicate with all cores to
setup debug registers.

To verify this, we collected profiles with a large number
of history sets (720 sets per data type) for a couple different
data types used by the Apache and memcached applications.
By collecting a profile with a large number of history sets we
hope to capture all unique and relevant paths for a particular
type. We then collected profiles with a decreasing number of
history sets and counted the number of unique paths found.
Figure 4 shows the result of this experiment. As the number
of histories collected decreases, the percent of all unique
paths captured decreases as well. In general 30 to 100 history
sets are sufficient to capture most unique paths.

To build the data flow view, DProf must monitor multiple
bytes of an object at the same time. This is needed order
the accesses to fields of an object along each path. To get
a complete picture, DProf profiles every pair of bytes in an
object. Pairwise data collection takes longer because many
more histories need to be collected to profile an object just
once; the increase is quadratic. Table 14 shows times for
pairwise profiling.

To reduce the time to collect pairwise histories, DProf does
not profile all fields of a data type. Instead, DProf analyzes the
access samples to find the most used fields. The programmer
can tune which fields are in this set. DProf profiles just the
bytes that cover the chosen fields.

6. Related Work
There are many studies of application cache performance, and
the strong impact of cache access patterns on the performance
has been noted for Unix kernels [8] and databases [3]. Recent
work has provided tools to help programmers make more
efficient use of caches for specific workloads [7, 18]. DProf,
on the other hand, helps programmers determine the cause of
cache misses that lead to poor system performance, so that
they know where to either apply other tools, or make other
changes to their code. Tools most similar to DProf can be
subdivided into two categories: Section 6.1 describes code
profilers and Section 6.2 describes data profilers.

6.1 Code Profilers
Code profilers such as Gprof [12], Quartz [5], and OPro-
file [19] gather runtime statistics about an application or the

12

Benchmark Data Type Data Type
Size (bytes) Histories Histories

Sets
Collection
Time (s)

Overhead
(%)

memcached size-1024 1024 32132 1 400 0.9
skbuff 256 2017 1 26 1.0

Apache

size-1024 1024 32132 1 50 4.8
skbuff 256 2017 1 18 1.7

skbuff fclone 512 8129 1 2.3 18
tcp sock 1600 79801 1 81 5.5

Table 14. Object access history collection times and overhead using pair sampling for different data types and applications.

entire system, attributing costs such as CPU cycles or cache
misses to functions or individual instructions. Code profil-
ers rank functions by cost to draw a developer’s attention to
those most likely to benefit from optimization. DProf is likely
to be more useful than a code profiler in cases where the
cache misses for an object are spread thinly over references
from many functions. DProf also provides specialized views
tailored to tracking down sources of cache misses that are
often not apparent from code profilers, such as the working
set exceeding the cache size.

OProfile [19] (which was inspired by DCPI [4]) samples
hardware events and assigns them to instruction pointers. It
can profile a variety of events counted by the CPU hardware:
clock cycles, cache misses, memory accesses, branch miss-
predictions, etc. The output of a profiling session is a list of
functions ranked by cost.

Both OProfile and DProf use hardware support for sam-
pling performance information. In particular, DProf relies
heavily on x86 debug registers [14] and IBS [11], which was
inspired by ProfileMe [9].

6.2 Data Profilers
MemSpy [20] helps developers locate poor cache access
patterns. MemSpy uses a system simulator to execute an
application. The simulator allows MemSpy to interpose on
all memory accesses and build a complete map of the cache.
MemSpy can account for and explain every single cache
miss and using a processor accurate model can approximate
memory access latencies. Unfortunately, MemSpy has very
high overhead and requires applications to run on top of a
simulator. It also can only estimate the access latencies that
would occur on out-of-order processors.

A number of other cache simulators have been pro-
posed [24], including CProf [17] and valgrind’s cachegrind
module [22, 23]. Most of these simulators are similar to Mem-
Spy, differing in the amount of programmer annotations or
instrumentation necessary to run the tool. The key difference
from DProf is that none of these tools report cache misses for
a particular data structure, making it easy to overlook cache
misses that are spread throughout the application’s code.

Intel’s performance tuning utility (PTU) [15], a follow-
on to VTune [16], uses Intel’s PEBS facility to precisely
associate samples with instructions. The PEBS hardware is

similar in purpose to IBS. Both Intel PEBS and AMD IBS can
capture the addresses used by load and store instructions and
access latencies for load instructions. DProf can use PEBS
on Intel hardware to collect statistics.

Intel PTU does not associate addresses with dynamic
memory; only with static memory. Collected samples are
attributed to cache lines, and if the lines are a part of static
data structures, the name of the data structure is associated
with the cache line. This is mainly geared at profiling access
to static arrays. In addition, there is no aggregation of samples
by data type; only by instruction. Intel PTU uses the addresses
of collected load and stores to calculate the working set of the
application. The working set, however, is presented in terms
of addresses and not data types.

The Intel hardware has a richer set of performance coun-
ters than the AMD hardware. False cache line sharing is de-
tected by collecting a combination of hardware counters that
count local misses and fetches of cache lines in the modified
state from remote caches.

There have also been proposals to modify hardware for
more direct cache access monitoring. The authors of Flash-
Point [21] propose an interface that allows the programmer
to tell the hardware what data they are interested in profil-
ing. The hardware directly collects fine grained statistics and
classifies cache misses.

7. Discussion
DProf is limited by the data collection mechanisms present
in AMD and Intel processors. First, DProf estimates working
set sizes indirectly, based on allocation, memory access,
and deallocation events. Hardware support for examining
the contents of CPU caches directly would make this task
straightforward, and improve its precision. FlashPoint [21]
is one example of a possible hardware change that can
make tracking cache misses easier. DProf is also limited by
having access to only four debug registers for tracing memory
accesses through application code. As a result, computing
object access histories requires pairwise tracing of all offset
pairs in a data structure. Collecting precise information in this
manner is difficult, and having a variable-size debug register
would greatly help DProf.

13

8. Conclusion
Cache misses are a significant factor in application perfor-
mance, and are becoming increasingly more important on
multicore systems. However, current performance profiling
tools focus on attributing execution time to specific code lo-
cations, which can mask expensive cache misses that may
occur throughout the code. This paper presents DProf, a data-
oriented profiler that attributes cache misses to specific data
types. Programmers can use DProf’s data-oriented views to
locate and fix different causes of cache misses in their appli-
cations, which may be difficult to locate using CPU profilers.
We have used DProf to analyze cache misses encountered
in the Linux kernel, and have found and fixed a number of
suboptimal memory access patterns. Our fixed Linux kernel
achieves 16–57% throughput improvement running a range
of memcached and Apache workloads.

Acknowledgments
This research was partially supported by a MathWorks Fel-
lowship and by NSF award CNS-0834415. We thank our
shepherd Alexandra Fedorova and the anonymous reviewers
for making suggestions that improved this paper.

References
[1] Apache HTTP Server, January 2010. http://

httpd.apache.org/.

[2] Memcached, January 2010. http://memcached.org/.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: where does time go? In
Proceedings of the 25th International Conference on Very
Large Data Bases, Edinburgh, Scotland, September 1999.

[4] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profiling:
where have all the cycles gone? ACM Trans. Comput. Syst.,
15(4):357–390, 1997.

[5] T. E. Anderson and E. D. Lazowska. Quartz: A tool for tuning
parallel program performance. SIGMETRICS Perform. Eval.
Rev., 18(1):115–125, 1990.

[6] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. Corey: An operating system for many cores. In
Proceedings of the 8th, San Diego, CA, December 2008.

[7] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek. Reinventing
scheduling for multicore systems. In Proceedings of the 12th
Workshop on Hot Topics in Operating Systems, Monte Verita,
Switzerland, May 2009.

[8] J. Chapin, A. Herrod, M. Rosenblum, and A. Gupta. Memory
system performance of UNIX on CC-NUMA multiprocessors.
In Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Ottawa,
Ontario, May 1995.

[9] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware support for instruction-

level profiling on out-of-order processors. In Proceedings
of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, Research Triangle Park, NC, December
1997.

[10] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting parallelism to scale software routers.
In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, Big Sky, MT, October 2009.

[11] P. J. Drongowski. Instruction-based sampling: A new per-
formance analysis technique for AMD family 10h proces-
sors, November 2007. http://developer.amd.com/
assets/AMD IBS paper EN.pdf.

[12] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call
graph execution profiler. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, pages 120–126, Boston,
MA, 1982.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 3rd edition, 2002.

[14] Intel. Intel 64 and IA-32 Architectures Developer’s Manual,
November 2008.

[15] Intel. PTU, January 2010. http://
software.intel.com/en-us/articles/
intel-performance-tuning-utility/.

[16] Intel. VTune, January 2010. http://
software.intel.com/en-us/intel-vtune/.

[17] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC
benchmarks: A case study. IEEE Computer, 27:15–26, 1994.

[18] R. Lee, X. Ding, F. Cheng, Q. Lu, and X. Zhang. MCC-
DB: Minimizing cache conflicts in multi-core processors for
databases. In Proceedings of the 35th International Conference
on Very Large Data Bases, Lyon, France, August 2009.

[19] J. Levon et al. Oprofile, January 2010. http://
oprofile.sourceforge.net/.

[20] M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing
memory system bottlenecks in programs. In Proceedings
of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 1–12, 1992.

[21] M. Martonosi, D. Ofelt, and M. Heinrich. Integrating perfor-
mance monitoring and communication in parallel computers.
SIGMETRICS Perform. Eval. Rev., 24(1):138–147, 1996.

[22] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 89–100, San
Diego, CA, June 2007.

[23] N. Nethercote, R. Walsh, and J. Fitzhardinge. Building
workload characterization tools with valgrind. Invited tuto-
rial, IEEE International Symposium on Workload Character-
ization, October 2006. http://valgrind.org/docs/
iiswc2006.pdf.

[24] J. Tao and W. Karl. Detailed cache simulation for detecting
bottleneck, miss reason and optimization potentialities. In Pro-
ceedings of the 1st International Conference on Performance
Evaluation Methodologies and Tools, Pisa, Italy, October 2006.

14

