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Abstract
Incoming and outgoing processing for a given TCP connec-
tion often execute on different cores: an incoming packet
is typically processed on the core that receives the interrupt,
while outgoing data processing occurs on the core running the
relevant user code. As a result, accesses to read/write connec-
tion state (such as TCP control blocks) often involve cache in-
validations and data movement between cores’ caches. These
can take hundreds of processor cycles, enough to significantly
reduce performance.

We present a new design, called Affinity-Accept, that
causes all processing for a given TCP connection to occur
on the same core. Affinity-Accept arranges for the network
interface to determine the core on which application process-
ing for each new connection occurs, in a lightweight way;
it adjusts the card’s choices only in response to imbalances
in CPU scheduling. Measurements show that for the Apache
web server serving static files on a 48-core AMD system,
Affinity-Accept reduces time spent in the TCP stack by 30%
and improves overall throughput by 24%.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design; D.4.8 [Operating Systems]:
Performance

General Terms Design, Measurement, Performance

Keywords Multi-core, Packet Processing, Cache Misses

1. Introduction
It is well known that a good policy for processing TCP
connections on a multiprocessor is to divide the connections
among the cores, and to ensure that each connection is
handled entirely on one core [18]. This policy eliminates
contention for the locks that guard each connection’s state
in the kernel, and eliminates cache coherence traffic that
would be caused if a connection’s state were used on multiple
cores. The policy is an instance of a more general rule for
parallelism: activities on different cores should interact as
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little as possible. Many server programs are designed to
follow this rule. Web servers, for example, typically process
a stream of requests from many independent clients. They
process the requests concurrently on many cores, and the
requests’ independence allows them to be processed with
little serialization due to shared state, and thus allows for
good parallel speedup.

In practice, however, even with independent requests it
is difficult to avoid all interactions between activities on
different cores. One problem is that the kernel typically
serializes processing of new connections on a given TCP port
(e.g., the single UNIX accept() queue). A second problem
is that there may be no way to cause all of the activities
related to a given connection to happen on the same core:
packet delivery, kernel-level TCP processing, execution of
the user process, packet transmission, memory allocation, etc.
A third problem is that the connection-on-one-core goal may
conflict with other scheduling policies, most notably load
balance. Finally, the application’s design may not be fully
compatible with independent processing of connections.

This paper describes Affinity-Accept, a design that
achieves the goal of executing all activity related to a given
connection on a single core, and describes an implementation
of that design for Linux. The starting point for Affinity-
Accept is an Ethernet controller that distributes incoming
packets over a set of receive DMA rings, one per core, based
on a hash of connection identification fields. New connec-
tion requests (SYN packets) are added to per-core queues,
protected by per-core locks, so that connection setup can
proceed in parallel. Each server process that is waiting for
a connection accepts a new connection from its own core’s
queue, and we assume that the application processes the
connection on the same core where it was accepted. Since the
Ethernet controller will place subsequent incoming packets
for this connection into the DMA ring for the same core, the
end effect is that all packet and application processing for this
connection will take place on the same core. This minimizes
contention for shared cache lines and locks. Affinity-Accept
also balances load at multiple time-scales to handle connec-
tions with differing processing times as well as persistent
imbalances due to unrelated computing activity.

An alternate solution is to use a “smart” Ethernet card
with a configurable flow steering table that routes packets to
specific cores. The kernel could configure the card to route
packets of each new connection to the core running the user
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Figure 1: A TCP listen socket in Linux is composed of two data
structures: the request hash table, which holds request sockets, and
the accept queue, which holds established TCP sockets. The listen
socket performs three duties: (1) tracking connection initiation
requests on SYN packet reception, (2) storing TCP connections
that finished the three-way handshake, and (3) supplying TCP
connections to applications on calls to accept().

space application. Unfortunately, this does not work due to
limited steering table sizes and the cost of maintaining this
table; §7 gives more details.

We present an evaluation on a 48-core Linux server
running Apache. First, we show that, independent of Affinity-
Accept, splitting up the new connection queue into multiple
queues with finer-grained locks improves throughput by 2.8×.
Next, we evaluate Affinity-Accept and show that processing
each connection on a single core further reduces time spent
in the TCP stack by 30% and improves overall throughput
by 24%. The main reason for this additional improvement is
a reduction in cache misses on connection state written by
other cores.

The rest of the paper is organized as follows. §2 describes
the problems with connection management in more detail, us-
ing Linux as an example. §3 presents the kernel components
of Affinity-Accept’s design, with application-level consider-
ations in §4, and implementation details in §5. §6 evaluates
Affinity-Accept. §7 presents related work and §8 concludes.

2. Connection Processing in Linux
This section provides a brief overview of Linux connection
initiation and processing, and describes two problems with
parallel connection processing: a single lock per socket and
costly accesses to shared cache lines.

2.1 TCP Listen Socket Lock
The Linux kernel represents a TCP port that is waiting for
incoming connections with a TCP listen socket, shown in
Figure 1. To establish a connection on this port the client starts
a TCP three-way connection setup handshake by sending a
SYN packet to the server. The server responds with a SYN-
ACK packet. The client finishes the handshake by returning
an ACK packet. A connection that has finished the handshake
is called an established connection. A listen socket has two
parts to track this handshake protocol: a hash table recording

arrived SYNs for which no ACK has arrived, and an “accept
queue” of connections for which the SYN/SYN-ACK/ACK
handshake has completed. An arriving SYN creates an entry
in the hash table and triggers a SYN-ACK response. An
arriving ACK moves the connection from the hash table to
the accept queue. An application pulls connections from the
accept queue using the accept() system call.

Incoming connection processing scales poorly on multi-
core machines because each TCP port’s listen socket has a
single hash table and a single accept queue, protected by a
single lock. Only one core at a time can process incoming
SYN packets, ACK packets (in response to SYN-ACKs), or
accept() system calls.

Once Linux has set up a TCP connection and an applica-
tion process has accepted it, further processing scales much
better. Per-connection locks allow only one core at a time
to manipulate a connection, but in an application with many
active connections, this allows for sufficient parallelism. The
relatively coarse-grained per-connection locks have low over-
head and are easy to reason about [9, 18].

Our approach to increasing parallelism during TCP con-
nection setup is to partition the state of the listen socket in
order to allow finer grained locks. §3 describes this design.
Locks, however, are not the whole story: there is still the
problem of multiple cores sharing an established connection’s
state, which we discuss next.

2.2 Shared Cache Lines in Packet Processing
The Linux kernel associates a large amount of state with
each established TCP connection, and manipulates that state
whenever a packet arrives or departs on that connection. The
core which manipulates a connection’s state in response
to incoming packets is determined by where the Ethernet
interface (NIC) delivers packets. A different core may execute
the application process that reads and writes data on the
connection’s socket. Thus, for a single connection, different
cores often handle incoming packets, outgoing packets, and
copy connection data to and from the application.

The result is that cache lines holding a connection’s state
may frequently move between cores. Each time one core
modifies a cache line, the cache coherency hardware must
invalidate any other copies of this data. Subsequent reads
on other cores pull data out of a remote core’s cache. This
sharing of cache lines is expensive on a multicore machine
because remote accesses are much slower than local accesses.

Processing the same connection on multiple cores also
creates memory allocation performance problems. An exam-
ple is managing buffers for incoming packets. The kernel
allocates buffers to hold packets out of a per-core pool. The
kernel allocates a buffer on the core that initially receives the
packet from the RX DMA ring, and deallocates a buffer on
the core that calls recvmsg(). With a single core process-
ing a connection, both allocation and deallocation are fast
because they access the same local pool. With multiple cores
performance suffers because remote deallocation is slower.
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3. An Affinity-aware Listen Socket
To solve the connection affinity problem described in the
previous section, we propose a new design for a listen socket,
called Affinity-Accept. Affinity-Accept’s design consists of
three parts. As a first step, Affinity-Accept uses the NIC to
spread incoming packets among many RX DMA rings, in a
way that ensures packets from a single flow always map to
the same core (§3.1).

One naı̈ve approach to ensure local packet processing
would be to migrate the application-level thread handling
the connection to the core where the connection’s packets
are delivered by the NIC. While this would ensure local
processing, thread migration is time-consuming, both because
migration requires acquiring scheduler locks, and because
the thread will incur cache misses once it starts running on a
different core. For short-lived connections, thread migration
is not worthwhile. Another approach would be to tell the NIC
to redirect the packets for a given flow to a different core.
However, a single server may have hundreds of thousands
of established TCP connections at a given point in time,
likely exceeding the capacity of the NIC’s flow steering table.
Moreover, the time taken to re-configure the NIC for each
flow is also prohibitively high for short-lived connections.

Thus, the second part of Affinity-Accept’s design is that in-
stead of forcing specific connections or threads to a particular
core, Affinity-Accept arranges for the accept() system call
to preferentially return local connections to threads running
on the local core (§3.2). As long as the NIC’s flow steering
does not change, and application threads do not migrate to
another core, all connection processing will be done locally,
with no forcible migration of flows or threads.

Since Affinity-Accept does not use forcible migration
to achieve connection affinity, it assumes that the NIC will
spread load evenly across cores. However, there are many
reasons why some cores may receive more or less load at any
given time. Thus, the third part of Affinity-Accept’s design is
a mechanism to dynamically balance the load offered by the
NIC’s RX DMA rings to each core, to counteract both short-
and long-term variations (§3.3).

3.1 Connection Routing in the NIC
Affinity-Accept assumes that a multi-core machine includes
a NIC, such as Intel’s 82599 10Gbit Ethernet (IXGBE)
card, that exposes multiple hardware DMA rings. Assigning
each core one RX and one TX DMA ring spreads the
load of processing incoming and outgoing packets among
many cores. Additionally, a performance benefit of multiple
hardware DMA rings is that cores do not need to synchronize
when accessing their own DMA rings.

To solve the connection affinity problem, Affinity-Accept
must configure the NIC to route incoming packets from
the same connection to the same core. To do this, Affinity-
Accept leverages packet routing support in the NIC. The
NIC hardware typically hashes each packet’s flow identifier

five-tuple (the protocol number, source and destination IP
addresses, and source and destination port numbers) and uses
the resulting hash value to look up the RX DMA ring where
the packet will be placed. Since all packets from a single
connection will have the same flow hash values, the NIC
will deliver all packets from a single connection into a single
DMA ring.

The IXGBE card supports two mechanisms to map flow
hash values to RX DMA rings; here, we omit some details
for simplicity. The first is called Receive-Side Scaling, or
RSS [5]. RSS uses the flow hash value to index a 128-entry
table. Each entry in the table is a 4-bit identifier for an RX
DMA ring. A limitation of this mechanism is that a 4-bit
identifier allows for routing packets to only 16 distinct DMA
rings. This is a limitation particular to the IXGBE card; other
NICs can route packets to all DMA rings.

The second mechanism supported by IXGBE uses a flow
steering table and is called Flow Direction, or FDir [14]. FDir
can route packets to 64 distinct DMA rings, and Affinity-
Accept uses FDir. FDir works by looking up the flow hash
value in a hash table. This hash table resides in the NIC, and
the kernel can modify it by issuing special requests to the
card. Each entry in the hash table maps a flow’s hash value
to a 6-bit RX DMA ring identifier. The table is bounded by
the size of the NIC’s memory, which is also used to hold
the NIC’s FIFOs; in practice, this means the table can hold
anywhere from 8K to 32K flow steering entries.

Affinity-Accept requires the NIC to route every incoming
packet to one of the available DMA rings. As described above,
FDir can only map specific flows to specific DMA rings, and
the FDir table does not have sufficient space to map the
hash value for every possible flow’s five-tuple. To avoid this
problem, we change the NIC’s flow hash function to use only
a subset of the packet’s five-tuple. In particular, we instruct
the NIC to hash the low 12 bits of the source port number,
resulting in at most 4,096 distinct hash values. Each hash
value now represents an entire family of flows, which we
call a flow group. We then insert FDir hash table entries for
each one of these 4,096 flow groups, and map them to RX
DMA rings to distribute load between cores. This method
frees the kernel from communicating with the NIC on every
new connection, and avoids the need for an entry per active
connection in the hardware table. As we will describe later,
achieving good load balance requires having many more flow
groups than cores.

3.2 Accepting Local Connections
In order to efficiently accept local connections, Affinity-
Accept must first eliminate the single listen socket lock,
shown in Figure 1. The listen socket lock protects two data
structures: the request hash table, and the accept queue.
To remove the single listen socket lock, we use the well-
known technique of splitting a single lock protecting a data
structure into many finer-grained locks each protecting a
part of the data structure. Affinity-Accept removes the lock
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by partitioning the accept queue into per-core accept queues,
each protected by its own lock, and by using a separate lock to
protect each bucket in the request hash table. These changes
avoid lock contention on the listen socket. We describe these
design decisions in more detail in §5.

To achieve connection affinity, Affinity-Accept modifies
the behavior of the accept() system call. When an appli-
cation calls accept(), Affinity-Accept returns a connection
from the local core’s accept queue for the corresponding lis-
ten socket, if available. If no local connections are available,
accept() goes to sleep (as will be described in §3.3, the
core first checks other core’s queues before going to sleep).
When new connections arrive, the network stack wakes up
any threads waiting on the local core’s accept queue. This
allows all connection processing to occur locally.

3.3 Connection Load Balancer
Always accepting connections from the local accept queue,
as described in §3.2, addresses the connection affinity prob-
lem, but introduces potential load imbalance problems. If
one core cannot keep up with incoming connections in its
local accept queue, the accept queue will overflow, and the
kernel will drop connection requests, adversely affecting the
client. However, even when one core is too busy to accept
connections, other cores may be idle. An ideal system would
offload connections from the local accept queue to other idle
cores.

There are two cases for why some cores may be able to
process more connections than others. The first is a short-term
load spike on one core, perhaps because that core is handling
a CPU-intensive request, or an unrelated CPU-intensive
process runs on that core. To deal with short-term imbalance,
Affinity-Accept performs connection stealing, whereby an
application thread running on one core accepts incoming
connections from another core. Since connection stealing
transfers one connection at a time between cores, updating
the NIC’s flow routing table for each stolen connection would
not be worthwhile.

The second case is a longer-term load imbalance, perhaps
due to an uneven distribution of flow groups in the NIC, due
to unrelated long-running CPU-intensive processes, or due
to differences in CPU performance (e.g., some CPUs may be
further away from DRAM). In this case, Affinity-Accept’s
goal is to preserve efficient local processing of connections.
Thus, Affinity-Accept must match the load offered to each
core (by packets from the NIC’s RX DMA rings) to the
application’s throughput on that core. To do this, Affinity-
Accept implements flow group migration, in which it changes
the assignment of flow groups in the NIC’s FDir table (§3.1).

In the rest of this subsection, we first describe connection
stealing in §3.3.1, followed by flow group migration in §3.3.2.

3.3.1 Connection Stealing
Affinity-Accept’s connection stealing mechanism consists of
two parts: the first is the mechanism for stealing a connection

from another core, and the second is the logic for determining
when stealing should be done, and determining the core from
which the connection should be stolen.

Stealing mechanism. When a stealer core decides to steal
a connection from a victim core, it acquires the lock on
the victim’s local accept queue, and dequeues a connection
from it. Once a connection has been stolen, the stealer core
executes application code to process the connection, but the
victim core still performs processing of incoming packets
from the NIC’s RX DMA ring. This is because the FDir
table in the NIC cannot be updated on a per-flow basis. As a
result, the victim core is still responsible for performing some
amount of processing on behalf of the stolen connection.
Thus, short-term connection stealing temporarily violates
Affinity-Accept’s goal of connection affinity, in hope of
resolving a load imbalance.

Stealing policy. To determine when one core should steal
incoming connections from another core, Affinity-Accept
designates each core to be either busy or non-busy. Each core
determines its own busy status depending on the length of its
local accept queue over time; we will describe this algorithm
shortly. Non-busy cores try to steal connections from busy
cores, in order to even out the load in the short term. Busy
cores never steal connections from other cores.

When an application calls accept() on a non-busy core,
Affinity-Accept can either choose to dequeue a connection
from its local accept queue, or from the accept queue of a
busy remote core. When both types of incoming connections
are available, Affinity-Accept must maintain efficient local
processing of incoming connections, while also handling
some connections from remote cores. To do this, Affinity-
Accept implements proportional-share scheduling. We find
that a ratio of 5 : 1 between local and remote connections
accepted appears to work well for a range of workloads. The
overall performance is not significantly affected by the choice
of this ratio. Ratios that are too low start to prefer remote
connections in favor of local ones, and ratios that are too high
do not steal enough connections to resolve a load imbalance.

Each non-busy core uses a simple heuristic to choose
from which remote core to steal. Cores are deterministically
ordered. Each core keeps a count of the last remote core it
stole from, and starts searching for the next busy core one
past the last core. Thus, non-busy cores steal in a round-robin
fashion from all busy remote cores, achieving fairness and
avoiding contention. Unfortunately, round robin does not give
preference to any particular remote queue, even if some cores
are more busy than others. Investigating this trade-off is left
to future work.

Tracking busy cores. An application specifies the max-
imum accept queue length in the listen() system call.
Affinity-Accept splits the maximum length evenly across all
cores; this length is called the maximum local accept queue
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length. Each core tracks the instantaneous length of its local
queue which we simply call the local accept queue length.

Each core determines its busy status based on its local
accept queue length. Using the max local accept queue length,
Affinity-Accept sets high and low watermark values for the
queue length. These values determine when a core gets
marked as busy, and when a core’s busy status is cleared.
Once a core’s local accept queue length exceeds the high
watermark, Affinity-Accept marks the core as busy. Since
many applications accept connections in bursts, the length of
the accept queue can have significant oscillations. As a result,
Affinity-Accept is more cautious about marking cores non-
busy: instead of using the instantaneous queue length, it uses
a running average. This is done by updating an Exponentially
Weighted Moving Average (EWMA) each time a connection
is added to the local queue. EWMA’s alpha parameter is set
to one over twice the max local accept queue length (for
example, if an application’s max local accept queue length
is 64, alpha is set to 1/128). A small alpha ensures that
the EWMA tracks the long term queue length, because the
instantaneous queue length oscillates around the average. The
work stealer marks a core non-busy when this average drops
below the low watermark.

We have experimentally determined that setting the high
and low watermarks to be 75% and 10% of the max local
accept queue length works well with our hardware; the num-
bers may need to be adjusted for other hardware. Developers
of Apache and lighttpd recommend configuring the accept
queue length to 512 or 1024 for machines with a low core
count. The length must be adjusted for larger machines. We
found a queue length of 64 to 256 per core works well for
our benchmarks.

To ensure that finding busy cores does not become a
performance bottleneck in itself, Affinity-Accept must allow
non-busy cores to efficiently determine which other cores,
if any, are currently busy (in order to find potential victims
for connection stealing). To achieve this, Affinity-Accept
maintains a bit vector for each listen socket, containing one
bit per core, which reflects the busy status of that core. With a
single read, a core can determine which other cores are busy.
If all cores are non-busy, the cache line containing the bit
vector will be present in all of the cores’ caches. If the server
is overloaded and all cores are perpetually busy, this cache
line is not read or updated.

Polling. When an application thread calls accept(),
poll(), or select() to wait for an incoming connection,
Affinity-Accept first scans the local accept queue. If no con-
nections are available, Affinity-Accept looks for available
connections in remote busy cores, followed by remote non-
busy cores. If no connections are available in any accept
queues, the thread goes to sleep.

When new connections are added to an accept queue,
Affinity-Accept first tries to wake up local threads waiting for
incoming connections. If no threads are waiting locally, the

local core checks for waiting threads on any non-busy remote
cores, and wakes them up.

To avoid lost wakeups, waiting threads should first add
themselves to the local accept queue’s wait queue, then check
all other cores’ accept queues, and then go to sleep. We have
not implemented this scheme yet, and rely on timeouts to
catch lost wakeups instead.

3.3.2 Flow Group Migration
Connection stealing reduces the user-space load on a busy
core, but it neither reduces the load of processing incoming
packets nor allows local connection processing of stolen
connections. Thus, to address long-term load imbalance,
Affinity-Accept migrates flow groups (§3.1) between cores.

To determine when flow group migration should occur,
Affinity-Accept uses a simple heuristic based on how often
one core has stolen connections from other cores. Every
100ms, each non-busy core finds the victim core from which
it has stolen the largest number of connections, and migrates
one flow group from that core to itself (by reprogramming the
NIC’s FDir table). In our configuration (4,096 flow groups
and 48 cores), stealing one flow group every 100ms was
sufficient. Busy cores do not migrate additional flow groups
to themselves.

4. Connection Affinity in Applications
Applications must adhere to a few practices to realize the full
performance gains of Affinity-Accept. This section describes
those practices in the context of web servers, but the general
principles apply to all types of networking applications.

4.1 Thundering Herd
Some applications serialize calls to accept() and poll()
to avoid the thundering herd problem, where a kernel wakes
up many threads in response to a single incoming connection.
Although all of the newly woken threads would begin run-
ning, only one of them would accept a connection. The kernel
would then put the remainder back to sleep, wasting cycles in
these extra transitions. Historically, applications used to seri-
alize their calls to accept() to avoid this problem. However,
Linux kernel developers have since changed the accept()
system call to only wake up one thread. Applications that still
serialize calls to accept() do so only for legacy reasons.

For Affinity-Accept to work, multiple threads must call
accept() and poll() concurrently on multiple cores. If not,
the same scalability problems that manifested due to a single
socket lock will appear in the form of user-space serialization.
Many web servers use the poll() system call to wait for
events on the listen socket. The Linux kernel, unfortunately,
still wakes up multiple threads that use poll() to wait for
the same event. Affinity-Accept significantly reduces the
thundering herd problem for poll() by reducing the number
of threads that are awoken. It uses multiple accept queues and
only wakes up threads waiting in poll() on the local core.

5



4.2 Application Structure
To get optimal performance with Affinity-Accept, calls to
accept(), recvmsg(), and sendmsg() on the same con-
nection must take place on the same core. The architecture of
the web server determines whether this happens or not.

An event-driven web server like lighttpd [4] adheres to
this guideline. Event-driven servers typically run multiple
processes, each running an event loop in a single thread. On
calls to accept() the process gets back a connection with an
affinity for the local core. Subsequent calls to recvmsg() and
sendmsg() therefore also deal with connections that have an
affinity for the local core. The designers of such web servers
recommend spawning at least two processes per available
core [6] to deal with file system I/O blocking a processes and
all of its pending requests. If one process blocks, another non-
blocked process may be available to run. The Linux process
load balancer distributes the multiple processes among the
available cores. One potential concern with the process load
balancer is that it migrates processes between cores when it
detects a load imbalance. All connections the process accepts
after the migration would have an affinity to the new core,
but existing connections would have affinity for the original
core. §6 shows that this is not a problem because the Linux
load balancer rarely migrates processes, as long as the load is
close to even across all cores.

The Apache [2] web server has more modes of opera-
tion than lighttpd, but none of Apache’s modes are ideal
for Affinity-Accept without additional changes. In “worker”
mode, Apache forks multiple processes; each accepts con-
nections in one main thread and spawns multiple threads to
process those connections. The problem with using this de-
sign with Affinity-Accept is that the scheduler disperses the
threads across cores, causing the accept and worker threads to
run on different cores. As a result, once the accept thread ac-
cepts a new connection, it hands it off to a worker thread that
is executing on another core, violating connection affinity.

Apache’s “prefork” mode is similar to lighttpd in that it
forks multiple processes, each of which accepts and processes
a single connection to completion. Prefork does not perform
well with Affinity-Accept for two reasons. First, prefork uses
many more processes than worker mode, and thus spends
more time context-switching between processes. Second,
each process allocates memory from the DRAM controller
closest to the core on which it was forked, and in prefork
mode, Apache initially forks all processes on a single core.
Once the processes are moved to another core by the Linux
process load balancer, memory operations become more
expensive since they require remote DRAM accesses.

The approach we take to evaluate Apache’s performance
is to use the “worker” mode, but to pin Apache’s accept
and worker threads to specific cores, which avoids these
problems entirely. However, this does require additional setup
configuration at startup time to identify the correct number
of cores to use, and reduces the number of threads which

the Linux process load balancer can move between cores
to address a load imbalance. A better solution would be to
add a new kernel interface for specifying groups of threads
which the kernel should schedule together on the same core.
Designing such an interface is left to future work.

5. Implementation
Affinity-Accept builds upon the Linux 2.6.35 kernel, patched
with changes described by Boyd-Wickizer et al [9], and
includes the TCP listen socket changes described in §3.
Affinity-Accept does not create any new system calls. We
added 1,200 lines of code to the base kernel, along with a new
kernel module to implement the connection load balancer in
about 800 lines of code.

We used the 2.0.84.9 IXGBE driver. We did not use a
newer driver (version 3.3.9) because we encountered a 20%
performance regression. We modified the driver to add a mode
that configures the FDir hardware so that the connection load
balancer could migrate connections between cores. We also
added an interface to migrate flow groups from one core to
another. The changes required about 700 lines of code.

We modified the Apache HTTP Server version 2.2.14 to
disable a mutex (described in §4) used to serialize multiple
processes on calls to accept() and poll().

5.1 Per-core Accept Queues
One of the challenging aspects of implementing Affinity-
Accept was to break up the single lock and accept queue in
each listen socket into per-core locks and accept queues. This
turned out to be challenging because of the large amount of
Linux code that deals with the data structures in question.
In particular, Linux uses a single data structure, called a
sock, to represent sockets for any protocol (TCP, UDP,
etc). Each protocol specializes the sock structure to hold
its own additional information for that socket (such as the
request hash table and accept queue, for a TCP listen socket).
Some functions, especially those in early packet processing
stages, manipulate the sock part of the data structure. Other
operations are protocol-specific, and use a table of function
pointers to invoke protocol-specific handlers. Importantly,
socket locking happens on the sock data structure directly,
and does not invoke a protocol-specific function pointer; for
example, the networking code often grabs the sock lock,
calls a protocol-specific function pointer, and then releases
the lock. Thus, changing the locking policy on sock objects
would require changing the locking policy throughout the
entire Linux network stack.

To change the listen socket locking policy without chang-
ing the shared networking code that deals with processing
sock objects, we clone the listen socket. This way, there is a
per-core copy of the original listen socket, each protected by
its own socket lock. This ensures cores can manipulate their
per-core clones in parallel. Most of the existing code does
not need to change because it deals with exactly the same
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type of object as before, and the sock locking policy remains
the same. Code specific to the listen socket implementation
does manipulate state shared by all of the clones (e.g., code in
accept that performs connection stealing), but such changes
are localized to the protocol-specific implementation of the
listen socket. Additionally, we modified generic socket code
that expects only one socket to be aware of cloned sockets.
For example, we aggregate data from all cloned sockets when
reporting statistics.

5.2 Fine-grained Request Hash Table Locking
The other data structure protected by the single listen socket
lock is the request hash table (Figure 1). One approach to
avoid a single lock on the request hash table is to break it up
into per-core request hash tables, as with the accept queue
above. However, this leads to a subtle problem when flow
groups are migrated between cores. Due to flow group mi-
gration, a connection’s SYN packet could arrive on one core
(creating a request socket in its per-core request hash table),
and the corresponding ACK packet could arrive on another
core. The code to process the ACK would not find the request
socket in its local request hash table. The same problem does
not occur with established TCP sockets because the kernel
maintains a global hash table for established connections, and
uses fine-grained locking to avoid contention.

At this point, we are left with two less-than-ideal options:
the core that receives an ACK packet could drop it on the
floor, breaking the client’s connection, or it could scan all
other cores’ request hash tables looking for the corresponding
request socket, which would be time-consuming and interfere
with all other cores. Since neither option is appealing, we
instead maintain a single request hash table, shared by all
clones of a listen socket, and use per-hash-table-bucket locks
to avoid lock contention. We have experimentally verified
using the benchmark described in §6 that this design incurs at
most a 2% performance reduction compared to the per-core
request hash table design.

6. Evaluation
In this section we describe the experimental setup (§6.1) and
workload (§6.2). Then we show that the listen socket lock
in stock Linux is a major scalability bottleneck, and split-
ting the single lock into many fine grained locks alleviates
the problem (§6.3). After removing the lock bottleneck, data
sharing is the predominant problem and Affinity-Accept fur-
ther improves throughput by reducing sharing (§6.4). Clients
can experience poor service using Affinity-Accept without a
load balancer, and our proposed load balancer addresses this
imbalance (§6.5). We end with a characterization of the type
of workloads Affinity-Accept helps (§6.6).

6.1 Hardware Setup
We run experiments on two machines. The first is a 48-core
machine, with a Tyan Thunder S4985 board and an M4985

Local Latency (cycles) Remote Latency (cycles)

L1 L2 L3 RAM L3 RAM

AMD 3 14 28 120 460 500
Intel 4 12 24 90 200 280

Table 1: Access times to different levels of the memory hierarchy.
Remote accesses are between two chips farthest on the interconnect.

quad CPU daughterboard. The machine has a total of eight
2.4 GHz 6-core AMD Opteron 8431 chips. Each core has
private 64 Kbyte instruction and data caches, and a 512 Kbyte
private L2 cache. The cores on each chip share a 6 Mbyte
L3 cache, 1 Mbyte of which is used for the HT Assist probe
filter [8]. Each chip has 8 Gbytes of local off-chip DRAM.
Table 1 shows the access times to different memory levels.
The machine has a dual-port Intel 82599 10Gbit Ethernet card,
though we use only one port for all experiments. That port
connects to an Ethernet switch with a set of load-generating
client machines.

The second machine is composed of eight 2.4 GHz 10-
core Intel Xeon E7 8870 chips. Each core has a private 32-
Kbyte data and instruction cache, and a private 256 Kbyte
L2 cache. All 10 cores on one chip share a 30 Mbyte L3
cache. Each chip has 32 Gbytes of local off-chip DRAM.
Table 1 shows the memory access times for the Intel machine.
The machine is provisioned with two dual-port Intel 82599
10Gbit Ethernet cards. Each port exposes up to 64 hardware
DMA rings, which is less than the machine’s core count. For
experiments that use 64 or fewer cores we use a single port;
for experiments with more than 64 cores we add another port
from the second card. A second port adds up to 64 more
DMA rings and each core can have a private DMA ring.

6.2 Workload
To evaluate the performance of network-heavy applications
with and without Affinity-Accept, we measure the rate at
which a machine can serve static web content, in terms of
HTTP requests per second. This is distinct from connections
per second because a single HTTP connection can issue
multiple requests.

We profile two web servers, lighttpd [4] and Apache [2],
to show that two different architectures work with Affinity-
Accept. We use 25 client machines with a total of 54 cores,
running the httperf [3] HTTP request generator. A single
httperf instance issues many requests in parallel, up to the
maximum number of open file descriptors (1024). We run
4 httperf instances per client machine core so that httperf is
not limited by file descriptors. Httperf works by generating
a target request rate. In all experiments we first search for
a request rate that saturates the server and then run the
experiment with the discovered rate.

The content is a mix of files inspired by the static parts of
the SpecWeb [7] benchmark suite. We do not use SpecWeb

7



directly because it does not sufficiently stress the network
stack: some requests involve performing SQL queries or
running PHP code, which stresses the disk and CPU more
than the network stack. Applications that put less stress on
the network stack will see less pronounced improvements
with Affinity-Accept. The files served range from 30 bytes to
5,670 bytes. The web server serves 30,000 distinct files, and
a client chooses a file to request uniformly over all files.

Unless otherwise stated, in all experiments a client re-
quests a total of 6 files per connection with requests spaced
out by think time. First, a client requests one file and waits for
100ms. The client then requests two more files, waits 100ms,
requests three more files, and finally closes the connection.
§6.6 shows that the results are independent of the think time.

We configure lighttpd with 10 processes per core for a
total of 480 processes on the AMD machine. Each process
is limited to a maximum of 200 connections. Having sev-
eral processes handling connections on each core limits the
number of broken connection affinities if the Linux scheduler
migrates one of the processes to another core, and reduces
the number of file descriptors each process must pass to the
kernel via poll().

We run Apache in worker mode and spawn one process
per core. Each process consists of one thread that only
accepts connections and multiple worker threads that process
accepted connections. We modify the worker model to pin
each process to a separate core. All threads in a process inherit
the core affinity of the process, and thus the accept thread
and worker threads always run on the same core. A single
thread processes one connection at a time from start to finish.
We configure Apache with 1,024 worker threads per process,
which is enough to keep up with the load and think time.

We use a few different implementations of the listen socket
to evaluate our design. We first compare Affinity-Accept
to a stock Linux listen socket that we call “Stock-Accept”
and then a second intermediate listen socket implementation
that we refer to as “Fine-Accept”. Fine-Accept is similar to
Affinity-Accept, but does not maintain connection affinity to
cores. On calls to accept(), Fine-Accept dequeues connec-
tions out of cloned accept queues in a round-robin fashion.
This scheme performs better than Stock-Accept’s single ac-
cept queue, because with multiple accept queues, each queue
is protected by a distinct lock, and multiple connections can
be accepted in parallel. The Fine-Accept listen socket does
not need a load balancer because accepting connection round-
robin is intrinsically load balanced: all queues are serviced
equally. In all configurations we use the NIC’s FDir hardware
to distribute incoming packets among all hardware DMA
rings (as described in §3.1) and we configure interrupts so
that each core processes its own DMA ring.

6.3 Socket Lock
First, we measure the throughput achieved with the stock
Linux listen socket, which uses a single socket lock. The
Stock-Accept line in Figure 2 shows the scalability of Apache
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Figure 2: Apache performance with different listen socket imple-
mentations on the AMD machine.

Stock-Accept
Fine-Accept

Affinity-Accept

0

5000

10000

15000

20000

25000

1 4 8 12 16 20 24 28 32 36 40 44 48

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
ec

/c
or

e)

Cores

Figure 3: Lighttpd performance with different listen socket imple-
mentations on the AMD machine.

on the AMD machine. The number of requests each core can
process decreases drastically as the number of cores increases
(in fact, the total number of requests handled per second
stays about the same, despite the added cores). There is an
increasing amount of idle time past 12 cores because the
socket lock works in two modes: spinlock mode where the
kernel busy loops and mutex mode where the kernel puts the
thread to sleep.

To understand the source of this bottleneck, the Stock-
Accept row in Table 2 shows the cost of acquiring the socket
lock when running Apache on a stock Linux kernel on the
AMD machine. The numbers are collected using lock stat,
a Linux kernel lock profiler that reports, for all kernel locks,
how long each lock is held and the wait time to acquire the
lock. Using lock stat incurs substantial overhead due to
accounting on each lock operation, and lock stat does not
track the wait time to acquire the socket lock in mutex mode;
however, the results do give a picture of which locks are
contended. Using Stock-Accept, the machine can process a
request in 590 µs, 82 µs of which it waits to acquire the listen
socket lock in spin mode and at most 320 µs in mutex mode.
Close to 70% of the time is spent waiting for another core.
Thus, the decline observed for Stock-Accept in Figure 2 is
due to contention on the listen socket lock.

8



Non-Idle Time

Listen Socket Throughput
(requests / sec / core) Total Time Idle Time Socket Lock

Wait Time
Socket Lock
Hold Time Other Time

Stock-Accept 1,700 590 µs 320 µs 82 µs 25 µs 163 µs
Fine-Accept 5,700 178 µs 8 µs 0 µs 30 µs 140 µs

Affinity-Accept 7,000 144 µs 4 µs 0 µs 17 µs 123 µs

Table 2: The composition of time to process a single request with Apache running on the AMD machine with all 48 cores enabled. These
numbers are for a lock stat enabled kernel; as a consequence the throughput numbers, shown in the first column, are lower than in other
experiments. The total time to process a request, shown in the second column, is composed of both idle and non-idle time. The idle time is
shown in the third column; included in the idle time is the wait time to acquire the socket lock in mutex mode. The last three columns show the
composition of active request processing time. The fourth column shows the time the kernel waits to acquire the socket lock in spinlock mode
and the fifth column shows the time the socket lock is held once it is acquired. The last column shows the time spent outside the socket lock.

To verify that Apache’s thread pinning is not responsi-
ble for Affinity-Accept’s performance advantage, Figure 3
presents results from the same experiment with lighttpd,
which does not pin threads. Affinity-Accept again consis-
tently achieves higher throughput. The downward slope of
Affinity-Accept is due to lighttpd’s higher performance that
saturates the NIC: the NIC hardware is unable to process any
additional packets. Additionally the higher request processing
rate triggers a scalability limitation in how the kernel tracks
reference counts to file objects; we have not yet explored
workarounds or solutions for this problem.

The Affinity-Accept line in Figure 2 shows that the scala-
bility of Apache improves when we use the Affinity-Accept
listen socket. Part of the performance improvement comes
from the reduced socket lock wait time, as shown in Affinity-
Accept row of Table 2. Part of the improvement also comes
from improved locality, as we evaluate next.

6.4 Cache Line Sharing
To isolate the performance gain of using fine grained locking
from gains due to local connection processing, we analyze
the performance of Fine-Accept. The Fine-Accept row in
Table 2 confirms that Fine-Accept also avoids bottlenecks
on the listen socket lock. However, Figures 2 and 3 show
that Affinity-Accept consistently outperforms Fine-Accept.
This means that local connection processing is important to
achieving high throughput, even with fine-grained locking. In
case of Apache, Affinity-Accept outperforms Fine-Accept by
24% at 48 cores and in the case of lighttpd by 17%.

Tracking misses. In order to find out why Affinity-Accept
outperforms Fine-Accept, we instrumented the kernel to
record a number of performance counter events during each
type of system call and interrupt. Table 3 shows results of
three performance counters (clock cycles, instruction count,
and L2 misses) tracking only kernel execution. The table
also shows the difference between Fine-Accept and Affinity-
Accept. The softirq net rx kernel entry processes in-
coming packets. These results show that Fine-Accept uses
40% more clock cycles than Affinity-Accept to do the same
amount of work in softirq net rx. Summing the cycles

Cycles Instructions L2 Misses

Kernel Entry Total ∆ Total ∆ Total ∆

softirq net rx 97k / 69k 28k 33k / 34k -788 352 / 178 174
sys read 17k / 10k 7k 4k / 4k 260 60 / 31 29
schedule 23k / 17k 6k 9k / 8k 450 79 / 38 41
sys accept4 12k / 7k 5k 3k / 2k 666 38 / 19 19
sys writev 15k / 12k 3k 5k / 4k 120 53 / 33 20
sys poll 12k / 9k 3k 4k / 4k 94 39 / 17 22
sys shutdown 8k / 6k 3k 3k / 3k 55 28 / 7 21
sys futex 18k / 16k 3k 8k / 8k 357 56 / 45 11
sys close 5k / 4k 707 2k / 2k 29 12 / 10 2
softirq rcu 714 / 603 111 212 / 204 8 4 / 3 1
sys fcntl 375 / 385 -10 275 / 276 -1 0 / 0 0
sys getsockname 706 / 719 -13 277 / 275 2 1 / 1 0
sys epoll wait 2k / 2k -29 568 / 601 -33 3 / 2 1

Table 3: Performance counter results categorized by kernel entry
point. System call kernel entry points begin with “sys”, and timer
and interrupt kernel entry points begin with “softirq”. Numbers
before and after the slash correspond to Fine-Accept and Affinity-
Accept, respectively. ∆ reports the difference between Fine-Accept
and Affinity-Accept. The kernel processes incoming connection in
softirq net rx.

column over network stack related system calls and inter-
rupts, the improvement from Fine-Accept to Affinity-Accept
is 30%. The application level improvement due to Affinity-
Accept, however, is not as high at 24%. The is because the
machine is doing much more than just processing packets
when it runs Apache and lighttpd. Both implementations exe-
cute approximately the same number of instructions; thus, the
increase is not due to executing more code. The number of
L2 misses, however, doubles when using Fine-Accept. These
L2 misses indicate that cores need to load more cache lines
from either the shared L3, remote caches, or DRAM.

To understand the increase in L2 misses, and in particular,
what data structures are contributing to the L2 misses, we
use DProf [19]. DProf is a kernel profiling tool that, for a
particular workload, profiles the most commonly used data
structures and the access patterns to these data structures.
Table 4 shows that the most-shared objects are those asso-
ciated with connection and packet processing. For example
the tcp sock data type represents a TCP established socket.
Cores share 30% of the bytes that make up this structure.
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Data Type Size of Object (bytes) % of Object’s Cache
Lines Shared

% of Object’s Bytes
Shared

% of Object’s Bytes
Shared RW

Cycles Accessing Bytes
Shared in Fine-Accept,

per HTTP Req

tcp sock 1664 85 / 12 30 / 2 22 / 2 54974 / 30584
sk buff 512 75 / 25 20 / 2 17 / 2 17586 / 9882

tcp request sock 128 100 / 0 22 / 0 12 / 0 5174 / 3278
slab:size-16384 16384 5 / 1 1 / 0 1 / 0 1531 / 1123
slab:size-128 128 100 / 0 9 / 0 9 / 0 1117 / 51
slab:size-1024 1024 38 / 0 4 / 0 4 / 0 882 / 24
slab:size-4096 4096 19 / 5 1 / 0 1 / 0 417 / 136
socket fd 640 10 / 10 2 / 2 2 / 2 348 / 23

slab:size-192 192 100 / 33 17 / 2 17 / 2 - / -
task struct 5184 10 / 0 2 / 0 2 / 0 - / -
file 192 100 / 100 8 / 8 8 / 8 - / -

Table 4: DProf results for Fine-Accept, shown before the slash, and Affinity-Accept, shown after the slash. Results for Fine-Accept show that
the data types shared across multiple cores are those used by the network stack. The tcp sock and tcp request sock are established and
request TCP socket objects respectively. A sk buff holds packet data and a socket fd is used to represent an established or listen socket as a
file descriptor. Data types that start with “slab” are generic kernel buffers (including packet buffers). Entries with “-” indicate that we did not
collect latency data for the data structure.
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Figure 4: CDF of memory access latencies to shared memory
locations reported in the right column of Table 4.

Worse yet, these shared bytes are not packed into a few cache
lines but spread across the data structure, increasing the num-
ber of cache lines that cores need to fetch. For an established
socket, cores share 85% of the cache lines.

To get an understanding of how long it takes a core
to access shared cache lines, we measure access times for
individual load instructions directly. For the top shared data
structures, DProf reports all load instructions that access
a shared cache line. The set of instructions is bigger for
Fine-Accept than for Affinity-Accept because Fine-Accept
shares more cache lines. When collecting absolute memory
access latencies for Affinity-Accept, we instrument the set of
instructions collected from running DProf on Fine-Accept;
this ensures that we capture the time to access data that is no
longer shared. We measure the access latency by wrapping
the load with rdtsc and cpuid instructions. The rdtsc
instruction reads a time stamp which the hardware increments
on each cycle. We use the cpuid instruction to force in-order
execution of the rdtsc and load instructions. The difference
between the before and after time stamps is the absolute
access latency. The absolute access latency is distinct from
the duration a load instruction stalls a core. The core may not

Fine-Accept
Affinity-Accept

Stock-Accept

0

2000

4000

6000

8000

10000

12000

1 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
ec

/c
or

e)

Cores

Figure 5: Apache performance with different listen socket imple-
mentations on the Intel machine.

stall at all if it can execute other instructions while waiting for
the load to finish. Nevertheless, the measurement is a good
indication of from how far away the data is fetched.

The last column in Table 4 shows the total per request
absolute latency to access the shared cache lines of each data
type. Affinity-Accept reduces the number of cycles needed
to access shared cache lines of tcp sock by more than 50%.
We also plot the results as a CDF in Figure 4. Accesses with
long latencies are either directed to memory or to remote
caches, and the CDF shows that Affinity-Accept considerably
reduces long latency memory accesses over Fine-Accept.

The results in Table 4 show that Affinity-Accept removes
most of the sharing. The sharing that is left is due to ac-
cesses to global data structures. For example, the kernel adds
tcp sock objects to global lists. Multiple cores manipulate
these lists and thus modify the cache lines that make up the
linked list pointers. The minimal amount of sharing remain-
ing with Affinity-Accept suggests that it will continue to scale
better than Fine-Accept as more cores are added.

Intel machine. We also evaluate the performance of
Affinity-Accept on a machine with a different architecture.
Figure 5 shows the performance of Apache and Figure 6
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Figure 6: Lighttpd performance with different listen socket imple-
mentations on the Intel machine.

shows the performance of lighttpd on our Intel system.
Affinity-Accept outperforms Fine-Accept by a smaller mar-
gin on this system than on the AMD machine. We suspect
that this difference is due to faster memory accesses and a
faster interconnect.

6.5 Load Balancer
To evaluate the load balancer we want to show two things.
First, that without connection stealing, accept queues over-
flow and affect the performance perceived by clients. Second,
that flow group migration reduces the incoming packet load
on cores not processing network packets, and speeds up other
applications running on these cores.

The first experiment illustrates that the load balancer can
deal with cores that suddenly cannot keep up with the incom-
ing load. We test this by running the web server benchmark
on all cores but adjusting the load so the server uses only 50%
of the CPU time. For each connection, the client terminates
the connection after 10 seconds if it gets no response from the
server. To reduce the processing capacity of the test machine,
we start a build of the Linux kernel using parallel make on
half of the cores (using sched setaffinity() to limit the
cores on which make can run). Each client records the time to
service each connection, and we compute the median latency.

Running just the web server benchmark yields a median
and 90th percentile latency of 200ms with and without the
load balancer. This includes both the time to processes the
6 requests, as well as the two 100ms client think times,
indicating that request processing takes under 1ms. When
make is running on half of the cores, the median and 90th
percentile latencies jump to 10 seconds in the absence of a
load balancer, because the majority of connections time out
at the client before they are serviced by the web server. The
timeouts are due to accept queue overflows on cores running
make. Enabling load balancing reduces the median latency to
230ms, and the 90th percentile latency to 480ms. The extra
30ms in median latency is due to the 100% utilization of cores
still exclusively running lighttpd, and is a consequence of
taking a workload that uses 50% of CPU time on 48 cores and
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Figure 7: The effect of TCP connection reuse on Apache’s through-
put running on the AMD machine. The accept rate decreases as
clients send more HTTP requests per TCP connection.
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Figure 8: The effect of increasing client think time on Apache’s
throughput running on the AMD machine.

squeezing it onto 24 cores. If the initial web server utilization
is less than 50%, the median latency falls back to 200ms.

The second experiment shows that flow group migration
improves non-web server application performance. We run
the same experiment as above, with connection stealing
enabled, but this time measure the runtime of the kernel
compile. As a base line, the compilation takes 125s on
24 cores without the web server running. Adding the web
server workload with flow group migration disabled increases
the time to 168s. Enabling flow group migration reduces
the time to 130s. The extra 5s is due to the time it takes
flow group migration to move all flow groups away from
the cores running make. This migration actually happens
twice, because the kernel make process has two parallel
phases separated by a multi-second serial process. During the
break between the two phases, Affinity-Accept migrates flow
groups back to the cores that were running make.

6.6 Variations to the Workload
The evaluation thus far concentrated on short-lived connec-
tions. This section examines the effect of three parameters of
the workload on Affinity-Accept performance: accept rate,
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Figure 9: The effect of different average file sizes on Apache’s
throughput running on the AMD machine. The average file size is
of all serviced files.

client think time, and average served file size. All of the
experiments in this section were run with all CPUs enabled.

Accept Rate. The first workload variation we consider is
HTTP connection reuse. A client can send multiple requests
through a single HTTP connection, which reduces the frac-
tion of accepts in the server’s total network traffic. In previous
experiments the request per connection ratio is fixed to 6; Fig-
ure 7 shows the performance of Apache as the number of
requests per connection varies. In this example, Apache is
configured to permit an unbounded number of requests per
connection instead of the default configuration which limits
connection reuse. When the number of requests per connec-
tion is small, Affinity-Accept and Fine-Accept outperform
Stock-Accept as described in the earlier experiments. As con-
nection reuse increases, total throughput increases, as there is
less overhead to initiate and tear down connections. Affinity-
Accept outperforms Fine-Accept at all measured points. At
very high rates of connection reuse (above 5,000 requests per
connection), lock contention for the listen socket is no longer
a bottleneck for Stock-Accept, and its performance matches
that of Fine-Accept.

Figure 7 also shows that Affinity-Accept provides a benefit
over Fine-Accept even when accepts are less frequent, since
Affinity-Accept reduces data sharing costs after the kernel
accepts connections.

Think Time. Figure 8 shows the effect of increasing the
lifetime of a connection by adding think time at the client
between requests sent over the same TCP connection. This
experiment holds connection reuse constant at 6 requests
per connection, so it does not vary the fraction of network
traffic devoted to connection initiation. It does add a variable
amount of client-side think time between subsequent requests
on the same connection to increase the total number of active
connections that the server must track. The range of think
times in the plot covers the range of delays a server might
experience in data center or wide area environments, although
the pattern of packet arrival would be somewhat different if

the delays were due to propagation delay instead of think
time. Beyond the rightmost edge of the plot (1s), the server
would need more than half a million threads, which our kernel
cannot support. Stock-Accept does not perform well in any
of these cases due to socket lock contention. Affinity-Accept
outperforms Fine-Accept and the two sustain a constant
request throughput across a wide range of think times.

This graph also points out the problem with NIC assisted
flow redirection. In this experiment at 100ms of think time
there are more than 50,000 concurrently active connections
and at 1s of think time more than 300,000 connections. Such
a large number of active connections would likely not fit into
a current NIC’s flow steering table.

Average File Size. Figure 9 shows how file size affects
Affinity-Accept. The average file size for previous experi-
ments is around 700 bytes and translates to 4.5 Gbps of traffic
at 12,000 requests/second/core. Here we change all files pro-
portionally to increase or decrease the average file size. The
performance of Stock-Accept is once again low due to lock
contention. At an average file size larger than 1 Kbyte, the
NIC’s bandwidth saturates for both Fine-Accept and Affinity-
Accept; as a consequence, the request rate decreases and
server cores experience idle time. The Stock-Accept config-
uration does not serve enough requests to saturate the NIC,
until the average file size reaches about 10 Kbytes.

7. Related Work
There has been previous research that shows processing
packets that are part of the same connection on a single core
is critical to good networking performance. Nahum et al. [18],
Yates et al. [24], Boyd-Wickizer et al. [9], and Willmann et
al. [23] all demonstrate that a network stack will scale with
the number of cores as long as there are many connections
that different cores can processes in parallel. They also show
that it is best to process packets of the same connection on
the same core to avoid performance issues due to locks and
out of order packet processing. We present in detail a method
for processing a single connection on the same core. Boyd-
Wickizer et al. [9] used an earlier version of this work to get
good scalability results from the Linux network stack.

RouteBricks [10] evaluates packet processing and routing
schemes on a multicore machine equipped with multiple
IXGBE cards. They show that processing a packet exclusively
on one core substantially improves performance because it
reduces inter-core cache misses and DMA ring locking costs.

Serverswitch [17] applies recent improvements in the pro-
grammability of network components to data center networks.
Using similar features within future NIC designs could enable
a better match between hardware and the needs of systems
such as Affinity-Accept.

In addition to network stack organization, there have been
attempts to address the connection affinity problem. We
describe them in the next two sections.
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Figure 10: The effect of TCP connection length on Apache’s
throughput running on the AMD machine. This is a duplicate
of Figure 7 but includes “Twenty-Policy”: stock Linux with flow
steering in hardware.

7.1 Dealing with Connection Affinity in Hardware
The IXGBE driver authors have tried to use FDir to route
incoming packets to the core processing outgoing packets.
They do so by updating the FDir hash table on every 20th
transmitted packet to route incoming packets to the core
calling sendmsg(). We call this scheme “Twenty-Policy”
and Figure 10 shows its performance. At 1,000 requests per
connection the NIC does a good job of routing packets to the
correct core and the performance matches Affinity-Accept.
At 500 requests per connection, however, maintaining the
hardware table limits performance. Socket lock contention
limits performance below 100 requests per connection; the
table maintenance problems would still limit performance
even if the socket lock were not a bottleneck.

There are a few problems with Twenty-Policy. First, it is
expensive to talk to the network card. It takes 10,000 cycles
to add an entry into the FDir hash table. The bulk of this cost
comes from calculating the hash value, and the table insert
takes 600 cycles.

Second, managing the hash table is difficult. The driver
cannot remove individual entries from the hash table, because
it does not know when connections are no longer active. The
driver, instead, flushes the table when it overflows. It takes
up to 80,000 cycles (∼ 40µs) to schedule the kernel to run
the flush operation, and 70,000 cycles (∼ 35µs) to flush the
table. The driver halts packet transmissions for the duration
of the flush. A rate of 50,000 connections/second and a hash
table with 32K entries requires a flush every 0.6 seconds.
We have also confirmed that the NIC misses many incoming
packets when running in this mode. Although we do not have
a concrete reason, we suspect it is because the NIC cannot
keep up with the incoming rate while the flush is in progress.
The stopped transmission and missed packets cause TCP
timeouts and delays, and the end result is poor performance.

Tighter integration with the network stack can reduce
many of these costs. This is exactly the approach Accelerated
Receive Flow Steering (aRFS) [13] takes. Instead of on every

NIC
HW DMA

Rings
RSS DMA

Rings
Flow Steering Table

(# connections)

Intel [14] 64 16 32K
Chelsio [1] 32 or 64 32 or 64 “tens of thousands”
Solarflare [16] 32 32 8K
Myricom [15] 32 32 -

Table 5: Comparison of features available on modern NICs. Entries
with “-” indicate that we could not find information.

20th transmitted packet, an aRFS enabled kernel adds a
routing entry to the NIC on calls to sendmsg(). To avoid
the kernel calculating the connection hash value on a hash
table update the NIC reports, in the RX packet descriptor,
the hash value of the flow and the network stack stores this
value. Unfortunately, the network stack does not notify the
driver when a connection is no longer in use so the driver
can selectively shoot down connections. Instead, the driver
needs to periodically walk the hardware table and query the
network stack asking if a connection is still in use. Just as in
Twenty-Policy, we see the need for the driver to search for
dead connections as a point of inefficiency.

Even with aRFS, flow steering in hardware is still imprac-
tical because the third problem is the hard limit on the size
of the NIC’s table. Table 5 lists the table sizes for different
modern 10Gbit NICs. FreeBSD developers, who are also
implementing aRFS-like functionality, have raised similar
concerns over hardware table sizes [20].

Additionally, currently available 10Gbit NICs provide
limited hardware functionality in one way or another. Table 5
summarizes key NIC features. Each card offers either a
small number of DMA rings, RSS supported DMA rings,
or flow steering entries. For example, using the IXGBE
NIC there is no way to spread incoming load among all
cores if FDir is also used to route individual connections
to particular cores. In this case, we would have to use RSS
for load balancing new connections, which only supports 16
DMA rings. It is imperative for NIC manufacturers to grow
the number of DMA rings with increasing core counts and
provide functionality to all DMA rings.

7.2 Dealing with Connection Affinity in Software
Routing in software is more flexible than routing in hardware.
Google’s Receive Flow Steering patch [11, 12] for Linux
implements flow routing in software. Instead of having the
hash table reside in the NIC’s memory, the table is in main
memory. On each call to sendmsg() the kernel updates the
hash table entry with the core number on which sendmsg()
executed. The NIC is configured to distribute load equally
among a set of cores (the routing cores). Each routing core
does the minimum work to extract the information needed
to do a lookup in the hash table to find the destination core.
The routing core then appends the packet to a destination
core’s queue (this queue acts like a virtual DMA ring). The
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destination core processes the packet as if it came directly
from the NIC. Unfortunately, routing in software does not
perform as well as in hardware: achieving a 40% increase
in throughput requires doubling CPU utilization [11]. Our
analysis of RFS shows similar results, and points to remote
memory deallocation of packet buffers as part of the problem.

The Windows [5], FreeBSD [20], and Solaris [22] kernels
have multi-core aware network stacks and support RSS
hardware. Both FreeBSD and Solaris have had a form of
RFS before Linux. These kernels have the same connection
affinity problem as stock Linux: user space and interrupt
processing can happen on different cores and lead to cache
line sharing. These kernels would benefit from this work.

FlexSC [21] introduces an asynchronous system call in-
terface to the Linux kernel that allows a core other than the
local core to execute a system call. With the ability to route
system calls to different cores the kernel can execute system
calls that touch connection state on the core processing in-
coming packets. The drawbacks are similar to RFS: cores
need to communicate with each other to exchange request
and response messages.

8. Conclusion
This paper introduced Affinity-Accept, a new design for
operating systems to align all phases of packet processing
for an individual network connection onto the same core of a
multi-core machine, and implemented this design in Linux.
This approach ensures that cores will not suffer from lock
contention between cores to modify connection state, as well
as long delays to transfer cache lines between cores.

An evaluation of Affinity-Accept shows that on workloads
that establish new connections at high rates, such as web
servers, these modifications significantly improve application
performance on large multi-core machines.
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