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Abstract—Order-preserving encryption—an encryption
scheme where the sort order of ciphertexts matches the sort
order of the corresponding plaintexts—allows databases and
other applications to process queries involving order over
encrypted data efficiently. The ideal security guarantee for
order-preserving encryption put forth in the literature is for
the ciphertexts to reveal no information about the plaintexts
besides order. Even though more than a dozen schemes were
proposed, all these schemes leak more information than order.

This paper presents the first order-preserving scheme that
achieves ideal security. Our main technique is mutable cipher-
texts, meaning that over time, the ciphertexts for a small
number of plaintext values change, and we prove that mutable
ciphertexts are needed for ideal security. Our resulting protocol
is interactive, with a small number of interactions.

We implemented our scheme and evaluated it on mi-
crobenchmarks and in the context of an encrypted MySQL
database application. We show that in addition to providing
ideal security, our scheme achieves 1–2 orders of magnitude
higher performance than the state-of-the-art order-preserving
encryption scheme, which is less secure than our scheme.

Keywords-order-preserving encryption, encoding

I. INTRODUCTION

Encryption is a powerful technique for protecting con-
fidential data stored on an untrusted server, such as in
cloud computing [10, 12, 37]. One limitation of encrypting
confidential data is that the data must usually be decrypted
for processing by an application—such as querying an
encrypted database or sorting encrypted email messages—
which requires trusting the server running the application.
The approach of computing on encrypted data avoids the need
of decrypting the data by a potentially untrustworthy server.
While recent work on fully homomorphic encryption shows
it is, in principle, possible to perform arbitrary computations
over encrypted data [14], the performance overheads are
prohibitively high, on the order of 109 times [15].

A practical approach for computing over encrypted data is
to use encryption schemes that allow an untrusted server to
execute specific computation primitives over the ciphertexts.
A common operation is order comparison, used for sorting,
range checks, ranking, etc. To allow an untrusted server to
perform order comparison on ciphertexts, many systems in
both research and industry use order-preserving encryption or
encoding schemes—that is, schemes where Enc(x)> Enc(y)
iff x > y. We abbreviate an order-preserving encryption or
encoding scheme (the latter may not be strictly an encryption

† This is an extended version of a conference publication [34] that
includes several appendices, which were omitted due to space constraints.

Order-preserving scheme Guarantees Leakage besides order

Özsoyoglu et al.’03 [30] None Yes
Agrawal et al.’04 [2] None Yes
Boldyreva et al.’09 [6, 7] ROPF [6], §II-A Half of plaintext bits
Agrawal et al.’09 [1] None Yes
Lee et al.’09 [23] None Yes
Kadhem et al.’10 [20] None Yes
Kadhem et al.’10 [21] None Yes
Xiao et al.’12 [38] None Yes
Xiao et al.’12 [39] IND-OLCPA [39] Yes
Yum et al.’12 [40] ROPF [6], §II-A Half of plaintext bits
Liu and Wang’12 [26] None Most of the plaintext
Ang et al.’12 [3] None Yes
Liu and Wang’13 [27] None Most of the plaintext

This paper⋆ Ideal: IND-OCPA None

Figure 1. Security provided by previous order-preserving encryption
or encoding schemes and our work, including the cryptographic security
guarantees provided by each scheme, and the information revealed by each
scheme in addition to the order of the plaintext values. We elaborate on
this information in §II. (⋆) Unlike prior schemes, our scheme uses an
interactive protocol and mutable ciphertexts.

scheme) by OPE. OPE is primarily used in databases for
processing SQL queries over encrypted data [2, 13, 19, 21,
23, 26, 27, 33, 38], although it has also been used in the
context of mail servers [3, 9, 32], web applications [9, 32],
CRM software [9, 35], and others. OPE is appealing because
systems can perform order operations on ciphertexts in the
same way as on plaintexts: for example, a database server
can build an index, perform SQL range queries, and sort
encrypted data, all in the same way as for plaintext data. This
property results in good performance and requires minimal
changes to existing software, making it easier to adopt.

The ideal security goal for an order-preserving scheme,
IND-OCPA [6], is to reveal no additional information about
the plaintext values besides their order (which is the minimum
needed for the order-preserving property). Despite a large
body of work on OPE schemes [1–3, 6, 7, 20, 21, 23, 26,
27, 30, 38, 39], none of the prior schemes achieve ideal
security: as shown in Fig. 1, they all leak more than just
the order of values. As we discuss in §II, many schemes
assume adversaries try to learn information from ciphertexts
in specific ways, but provide no security guarantees for
general adversaries. Boldyreva et al. [6] were the first to
provide a rigorous treatment of the problem; in fact, they
showed that it is infeasible to achieve ideal security for OPE,
under certain implicit assumptions. As a result, they settled
on a weaker security guarantee that was later shown to leak
at least half of the plaintext bits [7]. Thus, current OPE
schemes allow an adversary to compromise the privacy of
confidential data, beyond just learning the order of the items.
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This paper presents the first ideal-security order-preserving
encoding scheme where the ciphertexts reveal nothing except
for the order of the plaintext values. The insight that allows
us to avoid Boldyreva et al.’s infeasibility result [6] is
that most applications of OPE only require a relaxed OPE
interface that need not be as restrictive as the interface of
an encryption scheme. In particular, it is acceptable for the
encryption protocol to be interactive and for a small number
of ciphertexts of already-encrypted values to change as new
plaintext values are encrypted (e.g., it is straightforward to
update a few ciphertexts stored in a database). We call such
a scheme mutable order-preserving encoding, or mOPE, to
indicate the mutability of ciphertexts, and we use the word
encoding instead of encryption to emphasize our deviation
from the standard model of encryption. Building on this
insight, this paper makes several contributions, as follows:
1) We present the first order-preserving scheme that achieves

an ideal, rigorous security guarantee for OPE called IND-
OCPA [6], which requires that an adversary learns nothing
except for the order of values.

2) We show that mutability is in fact required for ideal secu-
rity: specifically, we show that, without prior knowledge
of the values to be encrypted, ideal security for OPE is
infeasible even for a relaxed encryption model (stateful
and interactive) if ciphertexts are non-mutable.

3) We observe that when considering a database system,
an even stronger notion of security is possible and
desirable: we define same-time OPE security (stOPE),
which requires that an adversary only learns the order of
items present in the database at the same time, and we
provide a refinement of mOPE that achieves this stronger
definition.

Intuitively, mOPE works by building a balanced search
tree containing all of the plaintext values encrypted by the
application. The order-preserving encoding of a value is the
path from the root to that value in the search tree. Thus,
if x is less than y, the path to x will be to the left of the
path to y; we represent tree paths using a binary encoding
where the encodings increase from left to right in a tree. The
search tree is stored on the same untrusted server that stores
the encrypted data, and the trusted client encrypts values
by inserting them into the tree using an interactive protocol.
The length of the path encoding is equal to the depth of the
tree, so to ensure ciphertexts do not become arbitrarily long,
mOPE rebalances the search tree. This requires updating
ciphertexts corresponding to any items whose location in
the tree changed as a result of rebalancing, but we show
that only a small number of already-encrypted values change
ciphertexts for each newly encoded value.

To understand the performance of mOPE, we implemented
mOPE (and the same-time OPE security variant) under both
a honest-but-curious and a malicious server model, and
evaluated it using a range of microbenchmarks. We show that

mOPE achieves 1–2 orders of magnitude higher performance
than the state-of-the-art OPE scheme by Boldyreva et al. [6]
(which does not achieve ideal security).

To demonstrate how mOPE can be used in an application,
we use mOPE to execute SQL queries over encrypted data in
a MySQL database. We present a transformation summary
technique to efficiently update mutable ciphertexts using a
single UPDATE SQL query, and show that updating ciphertexts
in the encrypted database application incurs low overheads
on queries from the industry-standard TPC-C benchmark.

The rest of this paper is organized as follows. §II discusses
related work. §III formally presents our threat model. §IV
presents mOPE in more detail, and §V shows that non-
mutable secure OPE is infeasible to achieve. §VI extends
our mOPE construction to provide same-time security, and
§VII describes how mOPE handles malicious servers. §VIII
illustrates how mOPE can be integrated into a database
application. §IX describes our implementation, and §X
evaluates the performance of mOPE. Finally, §XI concludes.

II. RELATED WORK

There has been a significant amount of work on OPE
schemes both in the research community [1, 2, 6, 7, 20, 21,
23, 26, 27, 30, 38, 39] and in industry [3, 9, 32, 35]. The
key contribution of this paper lies in providing the first OPE
scheme, mOPE, which achieves ideal IND-OCPA security;
we discuss prior schemes in more detail shortly (§II-A).

Even an ideal order-preserving scheme must reveal the
order of items. Kolesnikov and Shikfa [22] discuss the
leakage associated with revealing order in practice, and
techniques for minimizing such leakage, which is applicable
to mOPE as well as other OPE schemes.

mOPE is also related to cryptographic schemes for
performing range queries over encrypted data [8, 19, 28, 36].
These range query schemes aim for a different goal than
OPE: instead of requiring that the ciphertext values literally
preserve the order of the plaintext values, they separately
encrypt data values and query values, and provide an
algorithm by which one can learn the order between a query
value and a data value (but not between two query or two data
values, and ideally no other information). The fact that the
ciphertexts are not themselves order-preserving means such
schemes cannot be used with unmodified software as is the
goal with OPE. Moreover, no current efficient constructions
achieve this ideal goal; some schemes reveal all query values,
other schemes reveal some data values, and some schemes
provide only approximate answers.

Pandey and Rouselakis [31] introduce the notion of
property-preserving encryption (PPE): an encryption scheme
where a public predicate can be tested on any k ciphertexts.
OPE is a PPE for the order comparison predicate with k = 2.
Pandey and Rouselakis [31] provide a construction for the
inner product predicate, but not for the order predicate.
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Because our protocol is interactive, it resembles two-party
computation. In fact, our security definition for the malicious
server case (§VII) follows the general form of two-party
computation definitions. There exist protocols for two-party
computation for any arbitrary function [18], but using such
a protocol for order would result in prohibitive costs and is
not needed since the state of the server is not secret from
the client and the client is trusted.

Finally, OPE is related to work on order-preserving
compression [4, 5]. Although some OPE schemes use
similar techniques, the requirements for OPE are different:
compression is not a requirement for OPE, whereas security
(plaintext privacy) is not a requirement for compression.

A. OPE schemes

To put prior work on OPE schemes in perspective, it is
easiest to think about the security guarantees achieved by
each scheme, which translates into the information leaked
by that scheme beyond order. Fig. 1 summarizes the prior
work on OPE schemes, which we will now discuss.

The strongest security definition considered by prior work
is IND-OCPA, proposed by Boldyreva et al. [6]. IND-OCPA
captures the ideal security for order-preserving schemes:
an adversary with access to a set of ciphertexts cannot
learn anything about the plaintext values except for their
order. No existing scheme achieves IND-OCPA; this paper’s
construction, mOPE, is the first to achieve IND-OCPA.

Boldyreva et al. [6] prove that it is impossible for any OPE
scheme to achieve IND-OCPA, under some implicit assump-
tions about how an OPE scheme works—that ciphertexts
are immutable and that encryption is stateless. In §V, we
strengthen this impossibility result by showing IND-OCPA
is impossible even for stateful OPE schemes, but also show
that IND-OCPA is achievable if ciphertexts are mutable.

In this paper we also propose a new security definition,
called same-time OPE security, which requires that an
adversary can learn the order only for items that are stored in
the application at the same time. This definition is stronger
than IND-OCPA, and we show how an extension of mOPE
achieves this stronger definition.

Since none of the prior schemes achieve the ideal IND-
OCPA goal, they put forward a variety of alternative security
definitions. For example, Boldyreva et al. [6] define the
notion of a random order-preserving function (ROPF), and
construct an OPE scheme that is indistinguishable from a
ROPF, which we will call BCLO [6]. Yum et al. [40] improve
the performance of BCLO. It was subsequently shown that
the ROPF definition inherently reveals more than order—in
fact, at least half of the plaintext bits [7, 24, 25].

Other schemes either provide weaker security definitions
by making assumptions about attacks, which are unlikely to
hold in practice, or do not provide a security definition or
guarantees at all [1–3, 20, 21, 23, 26, 27, 30, 38, 39, 39, 40].
For example, Xiao et al. define IND-OLCPA security by

requiring that the adversary learns the encryptions only for
“nearby” values [39], although it is unclear how a practical
system would enforce this. Other security definitions assume
that adversaries are restricted to a specific attack strategy, or
that they do not have any additional side information about
the values being encrypted, which is similarly hard to ensure
in practice. Thus, while such schemes make the job of the
adversary more difficult, the level of security they provide is
hard to quantify, and many of them allow an adversary to
extract a significant amount of information on top of order.

To understand how an adversary can learn additional
information from schemes without rigorous guarantees,
consider the scheme of Liu and Wang [26], which works
as follows. The secret key consists of two integers a and b
and the encryption of a value v is av+b+noise, for some
randomly chosen noise ∈ {0, . . . ,a− 1}, small enough to
preserve order. Note that a and b are the same across all
encryptions. Intuitively, this scheme is insecure because a
and b are a one-time pad that is being reused many times.
To attack Liu and Wang’s scheme, suppose an attacker
obtains two pairs of plaintexts and ciphertexts: c1 is the
encryption of 0 (i.e., c1 = b+ n1 for some noise n1), and
c2 is the encryption of k, where k is some large value (i.e.,
c2 = ak+b+n2). By computing the difference between c2
and c1, the attacker obtains c2−c1 = ak+n2−n1, and since
0 ≤ n1,n2 < a, the attacker learns that a is in the interval
I1 =

c2−c1
k+1 ≤ a ≤ I2 =

c2−c1
k−1 . If k is large, then one or few

integers will be between [I1, I2] so the attacker gets a. Even if
there are a few options in [I1, I2], by getting an encryption of
another large value k∗, and intersecting the resulting [I∗1 , I

∗
2 ],

the adversary gets a. Having a allows an attacker to decrypt
all ciphertexts. Liu and Wang’s later scheme [27] suffers
from the same attack.

III. MODEL

Our model consists of an OPE client and an OPE server
that interact with each other. The client is the owner of the
data to be encrypted and thus the client is trusted. The OPE
server is untrusted; we consider two settings, corresponding
to the following threat models regarding the server:
• Passive (or honest-but-curious) adversary: The server

follows our protocol correctly and returns correct an-
swers to the OPE client, but it tries to learn information
about the data beyond order. For example, the server
may log the entire history of operations and data, provide
the data to some other party, and even use some side
information to try to learn more about the data.

• Active (or malicious) adversary: The server can misbe-
have in any way, such as returning incorrect answers to
the client.

We construct two OPE schemes that leak only the order
of values in the two respective threat models above. We
consider these settings separately because our protocol for
the malicious setting is an incremental change to the one
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x93d12a = 32

x13e72b = 20 x27716c = 69

xc7a5ce = 25x54256e = 10

0
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1

OPE Tree: OPE Table: Ciphertext
OPE Encoding

[path]10..0

x93d12a

...

x13e72b

x27716c

x54256e

xc7a5ce

[]100 = decimal 4

[0]10 = decimal 2

[1]10 = decimal 6

[00]1 = decimal 1

[01]1 = decimal 3

OPE Server

OPE Client

secret key interaction

Figure 2. Overview of mOPE’s data structures. Each node in the OPE Tree contains a DET ciphertext (the hexadecimal value); for the reader’s information,
the gray block shows the corresponding plaintext value, but this is not stored in the tree. Child pointers are labeled with 0 or 1 to indicate the path encoding.

for the passive setting, but it also adds more performance
overhead. For some applications, the passive setting suffices.

A. Cryptographic preliminaries and notation

For a distribution D , we write d←D when d is sampled
at random from the distribution D . If S is a set, d← S means
d is sampled from the uniform distribution over the set S.
The security parameter throughout the paper is κ. We say that
f (κ) is negligible if f (κ) = o(κ−c) for every fixed constant
c. We write negl(κ) to denote a negligible function.

When saying that a Turing machine A is p.p.t. we mean
that A is a uniform probabilistic polynomial time machine.

By RND, we will refer to any standard IND-CCA2
symmetric key encryption scheme, RND= (RND.KeyGen,
RND.Enc, RND.Dec). By DET, we will refer to any deter-
ministic encryption scheme whose security property is that
of a pseudo-random function [16], DET = (DET.KeyGen,
DET.Enc, DET.Dec). Both RND and DET can be imple-
mented with any standard cipher, for example AES, except
that DET always uses a constant IV.

IV. MUTABLE ORDER-PRESERVING ENCODING (MOPE)

We first present the intuition for our scheme. Let’s start
by considering an ideal order-preserving encoding and see
how we can achieve it. Suppose that the client wants to
encrypt five values: 69, 32, 20, 10, and 25. A potential set of
order-preserving encodings for these values is 5, 4, 2, 1, and
3, respectively. We can see that this encoding is ideal because
it simply informs the server of the order of the values, and
nothing else. However, the challenge in achieving such an
encoding is that, when the client encodes an input x (e.g.,
69 above), it does not know the future values to be encoded,
so it does not know the order of x with respect to them (e.g.,
that 69 will be the fifth value).

Our insight for addressing this challenge is for the client
to selectively read previously encoded ciphertexts stored at
the server and to mutate a small number of ciphertexts when
needed. We show that it is possible to ensure the client reads
only a small number of ciphertexts (logarithmic in the total
number of encoded values).

Tree construction. Our basic idea is to have the encoded
values organized at the server in a search tree. A binary
search tree is a tree in which for each node v, all the nodes
in the left subtree of v are strictly smaller than v and all the
nodes in right subtree of v are strictly larger than v.

For simplicity of exposition, we present our construction
in terms of a binary tree, even though our implementation
uses a b-ary B-tree. All of our techniques extend to b-
ary trees in a straightforward fashion. We chose a B-tree
because it has many advantages for mOPE: it has logarithmic
worst-case cost for insert, delete, and lookup, it enables
efficient ciphertext updates based on concise transformation
summaries (§VIII), and it facilitates verifying that a malicious
server produced correct answers (§VII).

In our tree, each node of the tree contains the DET
encryption of a value (under the client’s secret key sk), but
the ciphertexts are arranged in the tree based on the order
of the plaintext values. Fig. 2 shows such a tree, which we
denote the OPE Tree. Since the client may encrypt a large
number of values, we store this tree on the untrusted server.
We can see that the plaintext values in the left subtree of
each node are smaller than the node value, and the values
in the right subtree are larger.

Of course, the server does not know the underlying
plaintext values, so it cannot arrange the tree in this form;
the client will help the server find the location in the tree
where to insert a value. To illustrate how the client does this,
suppose the client wants to encode 55 using the tree state
shown in Fig. 2. The client first requests the root node of
the tree, and the server returns x93d12a, which the client
decrypts to 32. Since 55 > 32, the client requests the right
child of the root from the server, and the server responds with
x27716c, which the client decrypts to 69. Finally, the client
requests the left child of the last node requested, and the
server responds that there is no such child. This means that
the client can insert a new node in this position, containing
the DET encryption of 55. Note that, crucially, the client told
the server only order information (namely, if the value being
encoded is to the left or to the right of another value), and
thus this interaction does not reveal anything else besides
the order. Fig. 3 provides the general algorithm.
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Algorithm 1 (OPE Tree traversal for a value v).
1: Cl↔ Ser: The client asks the server for the ciphertext

c′ at the root of the OPE tree.
2: Cl: The client decrypts c′ and obtains v′.
3: Cl→ Ser: If v < v′, the client tells the server “left”;

if v = v′ the client tells the server “found”; if v > v′,
the client tells the server “right”.

4: Ser: The server returns the next ciphertext c′′ based
on the client’s information, and goes back to step 2.

5: Ser, Cl: The algorithm stops when v is found, or
when the server arrives at an empty spot in the tree.
The outcome of the algorithm is the resulting pointer
in the OPE Tree, the path in the OPE Tree from the
root, and whether v was found.

Figure 3. OPE Tree traversal algorithm. The text in blue indicates at which
party each piece of computation happens (Cl or Ser).

Binary encoding. So what is the OPE encoding of the
newly inserted value 55? Observe that the path from the root
down to the node indicates the relative order of the node
with respect to the other tree nodes. If we label each left
edge with a “0” bit and each right edge with a “1” bit, we
can represent the path to a node from the root using the
bitwise concatenation of labels from the corresponding tree
edges. For example, the path for the value 10 is (binary)
00, which is decimal 0; the path of 25 is (binary) 01, which
is decimal 1; and the path of 55 is (binary) 10, which is
decimal 2. We can see that these values preserve the order of
the plaintexts. One has to be careful about nodes higher in
the tree. For example, the path of 32 (the root) is the empty
string. The empty string is not larger than 0 and smaller than
2. Therefore, we pad all paths to the same length (e.g., 32
or 64 bits in practice) by defining the OPE encoding of a
value as follows:

OPE encoding = [path]10 . . .0, (1)

where there are as many zero bits as necessary to pad the
value to a desired ciphertext size m. For example, if m = 3
as in Fig. 2, the encoding of the root value 32 is decimal
4, the encoding of 10 is decimal 1 and the encoding of 55
is decimal 5. We can see that the order of encodings is
preserved for all values.

Tree balancing. To ensure that OPE encodings do not grow
too large, mOPE must maintain a logarithmic tree height,
which requires occasional balancing operations. For example,
in a B-tree, if a node contains too many items, the node
gets split into two nodes and the parent node receives an
additional child. If the parent node also contains too many
items, the split propagates upward.

Tree balancing is precisely what mutates the OPE encoding:
after a rebalancing, a node may move to a different part of
the tree, thus changing its path in the tree. As we show

later in §V, any OPE scheme without mutation must have
infeasibly long OPE encodings, and we can see how mOPE’s
mutation ensures that OPE encodings stay short.

After balancing the OPE Tree, the OPE server must update
any server-side storage containing OPE encodings (e.g.,
update the relevant values in a database). This is why it
is important for the OPE server to be co-located with the
system using our OPE scheme.

Locating and modifying previously stored encodings can
also require a significant amount of time. In §VIII we present
a technique called a transformation summary that allows
us to concisely describe tree rebalancing operations with a
short O(logn) summary, and to precisely scope the range of
affected encoding values, so that encoding updates can be
performed efficiently in one pass over the affected range of
values.

Amortized cost. The client work in this protocol is O(logn),
where n is the total number of values encoded, and the order-
preserving encoding similarly requires just O(logn) bits. This
is because the tree has logarithmic height. Furthermore, the
client need not be involved in rebalancing: even though
the server does not know the underlying plaintext values,
the server can perform tree rebalancing without any client
involvement, because it needs to know only order information,
which is already available from the tree on the server.

Let us now examine the server-side cost of updating
encodings. Traditional logarithmic cost bounds for trees (such
as a B-tree) are computed by considering only the number
of nodes touched during a balance. However, the number of
affected ciphertexts is the number of children in the subtrees
of nodes moved during a balancing operation, which can be
asymptotically larger. For example, if one node moves higher
up in the tree, only a few nodes may be touched by this
rebalancing operation, but all the children of this node change
their OPE encodings. In theory, a scapegoat tree provides
O(logn) cost in this model. However, in practice we use a B-
tree, even though they have non-logarithmic worst-case cost,
because their actual cost in our experiments was less than
the cost of scapegoat trees, and few ciphertexts are updated
on average (§X). We recommend scapegoat trees be used
only when embedding our scheme in theoretical schemes
with constraints on server-side asymptotic performance.

Stale encodings. Tree rebalancings pose another challenge
because an OPE encoding of a particular value can become
stale. Consider a situation where an application first obtains
an OPE encoding of some value, by invoking the OPE client,
and then performs more work, which causes inserts and tree
rebalancings at the server. The rebalancing operations can
cause the application’s original OPE encoding to become
stale, meaning that the encoding no longer corresponds to
the value’s position in the tree. If the application were to
use a stale encoding, it could obtain incorrect results.
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To prevent staleness, we introduce a mapping at the server
called the OPE Table, as shown in Fig. 2. Whenever a new
item is inserted into the tree, or the server rebalances the tree,
the OPE Table is updated to map the DET ciphertexts to
their new or updated OPE encodings. Using this OPE Table,
a client needs to keep track only of DET ciphertexts, which
never become stale. Given a DET ciphertext, the server can
compute the OPE encoding at any time, without the client’s
help. Thus, we envision that OPE encodings would be stored
only internally at the server, where they can be rewritten
on demand. We remark that the OPE Table also helps as a
cache, saving client work when encoding a repeated value.

We will next present a formal description of the syntax
of this scheme, the scheme itself, and the ideal IND-OCPA
security definition for our construction.

A. Syntax and correctness

Since our encoding scheme can mutate ciphertexts, it has
a different syntax from a regular encryption scheme. The
encoding of a value v can be of two types:
• a permanent ciphertext c that refers to v and does not

change (corresponding to the DET encryption), and
• a transient order-preserving encoding e, where the

encoding corresponding to a given value can change
over time as the tree is rebalanced at the server; we will
refer to this as the OPE encoding.

Definition 1 (Mutable order-preserving encoding (mOPE)).
A mutable order-preserving encryption scheme for plaintext
domain D is a tuple of polynomial-time algorithms mOPE=
(KeyGen, InitState, Enc, Dec, Order) run by a client and a
stateful server, where KeyGen is probabilistic and the rest
are deterministic, and Enc is interactive.
• Key generation: sk ← KeyGen(1κ). KeyGen runs at

the client, takes as input the security parameter κ, and
outputs a secret key sk.

• Initializing server state: st← InitState(1κ). InitState
runs as the server, takes as input the security parameter
κ, and outputs an initial state st.

• Encryption: (c,st′)← Enc(sk,v,st). Enc is an interac-
tive algorithm between the client and the server. The
inputs to the client are sk and v, and the input to the
server is the state st. At the end, the client obtains a
ciphertext c and the server obtains a new state st′. Enc’s
running time is a fixed polynomial in |sk| and |v|.

• Decryption: v←Dec(sk,c). The client runs Dec on the
secret key and a ciphertext c, and obtains a plaintext v.

• Ordering: e← Order(st,c). Order runs at the server,
takes as input a state st and a ciphertext c, and outputs
an order-preserving encoding e.

In this syntax, Order(st,c) produces the OPE encoding
of the value corresponding to ciphertext c. In practice,
Order(st,c) rarely changes with st (since a given node in
the tree is rebalanced rarely); thus, we expect the application

Algorithm 2 (KeyGen(1κ) – runs at Cl).
1: Return sk← DET.KeyGen(1κ).

Algorithm 3 (InitState(1κ) – runs at Ser).
1: Initialize server state, st, with OPE Tree and OPE

Table containing only the values ±∞.
2: Return st.

Algorithm 4 (Enc(sk,v,st) – runs at Cl and Ser).
1: Cl: compute c← DET.Enc(sk,v) and send c to Ser.
2: Ser: if c is in the OPE Table,

Ser: return st unchanged. Cl: return c.
3: Ser: else

a) Cl↔ Ser run the OPE Tree traversal (Alg. 1) so
the server inserts c in the OPE Tree and obtains
the path of c. Ser then computes the OPE encoding
of c based on Eq. 1 and stores it in OPE Table.

b) Ser: If the OPE Tree needs to be rebalanced as
a result of the insertion, rebalance the tree and
update all affected encodings in the OPE Table.

c) Ser: return the new state. Cl: return c.

Algorithm 5 (Dec(sk,c) – runs at Cl).
1: Return v← DET.Dec(sk,c).

Algorithm 6 (Order(st,c) – runs at Ser).
1: If c is in OPE Table return the corresponding OPE

encoding from the OPE Table, else signal error.

Figure 4. The mOPE scheme. The algorithms that have client-server
interaction contain text in blue indicating at which party each piece of
computation happens (Cl or Ser).

would store the Order(st,c) value on disk, and update it
as necessary when tree rebalancings happen. Another nice
feature of this syntax is that the algorithms that run at the
client return only permanent ciphertexts, so the client need
not worry about encodings becoming stale. Fig. 4 presents
our mOPE scheme in terms of this syntax.

We now turn to defining what it means for the scheme to
be correct. Intuitively, the scheme should decrypt the correct
values and Order should indeed output order-preserving
ciphertexts. Consider encrypting a sequence of values seq=
v1, . . . ,vn. The state evolves after each encryption, from st0
to stn, by successively computing (ci,sti)← Enc(sk,vi,sti−1)
for i = 1 . . .n, where st0← InitState(1κ).

Definition 2 (Correctness). A mOPE scheme for plaintext
domain D is correct if, for all security parameters κ, for all
sk← KeyGen(1κ),

1) for all v ∈D and for all states st, for every c outcome
of Enc(sk,v,st), Dec(sk,c) = v; and,
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2) for all sequences seq= {v1, . . . ,vn} ∈Dn, for all pairs
vi,v j ∈ seq, for all ci,c j obtained as above, we have

vi < v j⇔ Order(stn,ci)< Order(stn,c j).

B. Security definition

We now define the “ideal” security of mOPE, which
intuitively says that the scheme must not leak anything
besides order. The security definition is the IND-OCPA
definition presented in Boldyreva et al. [6], except that we
adapt it to the syntax of our encoding scheme. The definition
says that an adversary cannot distinguish between encryptions
of two sequences of values as long as the sequences have
the same order relation.

In this section, we assume that the server is passive (see
§III), and treat malicious adversaries in §VII.

IND-OCPA security game. The security game between
a client Cl and an adversary Adv for security parameter κ
proceeds as follows:

1) The client Cl generates sk← KeyGen(1κ) and chooses
a random bit b.

2) The client Cl and the adversary Adv engage in a
polynomial number of rounds of interaction in which
the adversary is adaptive. At round i:

a) The adversary Adv sends values v0
i ,v

1
i ∈ D to the

client Cl.
b) The client Cl leads the interaction for the Enc

algorithm on inputs sk and vb
i with the server Ser,

with Adv observing all the state at Ser.
3) The adversary Adv outputs b′, its guess for b.
We say that the adversary Adv wins the game if (1) its

guess is correct (b = b′), and (2) the sequences {v0
i }i and

{v1
i }i have the same order relations (namely, for all i, j,

v0
i < v0

j ⇔ v1
i < v1

j ). Let winAdv,κ be the random variable
indicating the success of the adversary in the above game.

Definition 3 (IND-OCPA: indistinguishability under an
ordered chosen-plaintext attack). A mOPE scheme is IND-
OCPA secure if for all p.p.t. adversaries Adv, for all
sufficiently large κ, Pr[winAdv,κ]≤ 1/2+negl(κ).

C. Security proof

Theorem 1. Our mOPE scheme is IND-OCPA secure.

Due to space constraints, we point to Appendix B for the
proof, and provide intuition here.

Proof intuition. Consider any adversary Adv and any two
sequences of values Adv asks for in the security game:
v = (v1, . . . ,vn) and w = (w1, . . . ,wn). The view of Adv
consists of the information the server receives in the security
game. The first step is to use the security guarantees of the
DET encryption scheme, and assume that DET encryptions
are computationally indistinguishable from random values
that have the same pattern of repetitions (e.g., produced by

a random oracle). Next, we examine the information the
adversary learns in case the client encrypts v and in case
the client encrypts w, and show that this information is
information-theoretically the same.

For this goal, we proceed inductively in the number of
values to be encrypted. The base case is when no value
was encrypted and we can see that Adv starts off with the
same information. Now consider that after i encryptions, Adv
obtains the same information in both cases, and we show
that the information after step i+1 also remains the same.
At step i+1, Cl and Adv run Enc from Fig. 4 for vi and wi.

We have two possibilities. The first possibility is that the
encoding of vi is in the OPE Table. Then the encoding of wi
is also in the OPE Table (and vice versa) because v and w
have the same order relation; in particular, vi = v j iff wi = w j
so the pattern of repetitions will be the same. In this case,
Cl does not give any information to Adv.

The second possibility is that the encoding of vi (and
therefore of wi) is not in the OPE Table. Cl and Adv interact
according to Alg. 4 in both cases. Since v and w have the
same order relation, the path down the tree taken by Cl and
Adv must be the same. Also, the only information the client
gives the server is which edges to take in this path, which is
also the same for both cases.

Therefore, Adv receives the same information in both
cases, and hence cannot distinguish between them. �

V. IMPOSSIBILITY OF NON-MUTABLE STATEFUL OPE

The previous section showed that mOPE achieves IND-
OCPA security, but it changes the traditional model of an en-
cryption scheme, most notably via ciphertext mutability (there
have been interactive and/or stateful encryption schemes
before). A natural question is whether there exists an IND-
OCPA secure scheme that is stateful, but does not mutate
ciphertexts. In this section, we demonstrate that mutable
ciphertexts are needed, by showing that even a stateful and
interactive encryption scheme cannot feasibly achieve IND-
OCPA without prior knowledge of the values to be encrypted.

Boldyreva et al. [6] showed that any IND-OCPA-secure
OPE scheme must have ciphertext sizes at least exponential
in the size of the plaintext. For example, encrypting 64-
bit numbers would require 264-bit ciphertexts, which is
impractical. Their impossibility result implicitly assumes
a traditional model where encryption is a stateless function,
thus leaving open the question of whether an IND-OCPA-
secure stateful OPE scheme is possible. We show that even
such a scheme is infeasible: namely, any such scheme would
also have exponentially large ciphertexts. Due to space
constraints, we present only a proof sketch, and refer the
reader to Appendix C for more details.

Let us define IND-OCPA security for stateful OPE infor-
mally. Let EncOrd be the encryption algorithm of a stateful
OPE scheme. EncOrd takes as input a secret key, a current
state, and a plaintext x, and outputs a ciphertext c and a new
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state. Let EncOrd(x) denote informally the encryption of x
under the appropriate secret key and state.

We say that EncOrd is IND-OCPA-secure if all polynomial-
time adversaries Adv can win the following game with
probability of at most 1/2+negl(κ):

• Adv provides two sequences of numbers x = {x1, . . . ,xn}
and y = {y1, . . . ,yn}, such that they have the same order
relation (namely, xi < x j⇔ yi < y j, for all i, j).

• Adv is given an encryption of one of these sequences:
either {EncOrd(x1), . . . , EncOrd(xn)} or {EncOrd(y1),
. . . , EncOrd(yn)}. The values in these sequences are
encrypted in order; that is, when encrypting xi, EncOrd
receives the state from encrypting xi−1.

• Adv wins the game if it guesses correctly whether it
received an encryption of x or y.

Theorem 2. Any stateful OPE scheme that is IND-OCPA-
secure has ciphertext size exponential in the plaintext size.

Proof intuition. (See the full proof in Appendix C.) We need
to show that there exists a polynomial-time adversary Adv
that can break any scheme that has shorter than exponentially
large ciphertexts. Pick any stateful IND-OCPA-secure OPE
scheme and let EncOrd be its encryption algorithm.

Let us first build some intuition, by considering the
impossibility result of Boldyreva et al. [6] and showing why
it does not suffice here. Let 1, . . . ,N be the possible plaintext
values, with a corresponding plaintext size of ≈ logN.
Boldyreva et al. specifies an attacker Adv that can break any
stateless IND-OCPA scheme, unless the scheme has large
ciphertexts. Adv picks a random value m in {2, . . . ,N−2} and
outputs the sequences x= (1,m,m+1) and y= (m,m+1,N).
Then, when receiving c = (c1,c2,c3), the encryption of one
of these sequences, Adv checks if c1 and c2 are further apart
than c2 and c3 are, in which case it outputs “I guess x”,
else it outputs “I guess y”. The attack will fail if, for exam-
ple EncOrd(m)−EncOrd(1)<EncOrd(m+1)−EncOrd(m).
Boldyreva et al. use the term long jump to denote a
large difference between two consecutive values, such as
EncOrd(m+ 1)− EncOrd(m). The adversary fails only if
there are many long jumps, but as Boldyreva et al. show,
many long jumps imply an exponential ciphertext size.

However, when the scheme is stateful, this argument no
longer applies. One can no longer argue that if EncOrd(m)−
EncOrd(1)< EncOrd(m+1)−EncOrd(m), then the cipher-
text space is huge: there can be a scheme EncOrd that is
specialized to counter this attack using state. Such a scheme
can adjust the encryption of m+1 based on the previous two
values encrypted, 1 and m, which it can recall using state.

To show that the ciphertext size blows up even for stateful
schemes, our idea is to design an attack such that no stateful
scheme can specialize to counter it. For this, an adversary
provides a long trace of challenges but chooses only one at
random on which to guess.

0 max 

E[1] E[2] E[N-2] E[N-1]
E[N-3] mid2

long jump at the 3rd pair
ciphertext

Figure 5. The OPE encryptions of the values in the trace (1,N−1),(2,N−
2),N−3. E denotes encryption with EncOrd. The axis shows the ciphertext
space from a ciphertext of zero to a maximum ciphertext value.

Let us define our adversary Adv. Adv uses a trace
of T pairs of challenges {(1,N − 1),(2,N − 2),(3,N −
3), . . . ,(T,N − T )}, for some polynomial T = T (κ). Adv
shuffles the order of values in each pair, by choosing random
bits: we define (v,w)b to be (v,w) if b = 0, or (w,v) if b = 1.
Then, Adv chooses a random pair t on which to guess on.

Algorithm 7 (Adversary Adv(κ)).

1: Choose t randomly from 1, . . . ,T .
2: Choose t random bits b1, . . . ,bt .
3: Construct and output two challenge sets:

x = {(1,N−1)b1 ,(2,N−2)b2 , . . . ,(t,N− t)bt , t +1}, and

y = {(1,N−1)b1 ,(2,N−2)b2 , . . . ,(t,N− t)bt ,N− (t +1)}.

4: Receive encryptions c1, . . . ,c2t+1; Adv has to decide if
they correspond to x or y.

5: Let midt be the middle of the interval of
[EncOrd(t),EncOrd(N − t)]. If c2t+1 < midt , output
“it is x”, else output “it is y”.

Intuitively, the role of the bits bi is to ensure that EncOrd
does not know which challenge pair the adversary chose;
namely, EncOrd does not know the value of t.

The adversary Adv exploits the intuition that EncOrd(i+1)
should be closer to EncOrd(i) than to EncOrd(N− i) (and
the reverse for EncOrd(N− (i+ 1)). Whenever this is not
the case, we have a long jump; concretely, we say there
is a long jump at pair i+ 1 if c2i+1 > midi and c2i+1 is
the encryption of i+ 1 or if c2i+1 < midi and c2i+1 is the
encryption of N− (i+1). Fig. 5 shows an example. We can
see the OPE encryptions resulting from encrypting the trace
1,N−1,2,N−2,N−3. This trace corresponds to y for t = 2
and b1 = b2 = 0. There is a long jump at pair 3.

When there is a long jump at pair t + 1, Adv guesses
incorrectly; otherwise, Adv guesses correctly. If there are
few long jumps in the pairs 1, . . . ,T , then the chance that
pair t +1 has a long jump is small, so Adv guesses correctly
most of the time. But EncOrd is secure against any adversary,
so it must be the case that there are many long jumps. This
means that the ciphertext size is exponentially large in the
plaintext size, because each long jump halves the ciphertext
space (see full proof for details).

�
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Algorithm 8 (InitState(1κ) – runs at Cl and Ser).
1: Cl: sk← RND.KeyGen(1κ). The client tells the server to initialize itself.
2: Ser: initializes state st with OPE Tree and OPE Table containing only ±∞ (with a placeholder ⊥ for the ciphertext).

Algorithm 9 (Insert(v) – runs at Cl and Ser).
1: Cl: computes c← RND.Enc(sk,v) and sends c to the server.
2: Cl↔ Ser run the OPE Tree traversal (Alg. 1) so the server locates where c should be inserted, and computes the

corresponding OPE encoding e based on Eq. 1. If a ciphertext ct for v was already in the OPE Tree, the server just
increases its ref-count. Otherwise, if v was not already in the tree, Ser inserts c in the tree with a ref-count of 1 and
stores it in OPE Table.
• Ser: If the OPE Tree needs to be rebalanced, the server rebalances it and updates the OPE Table with the new

OPE encodings, and any other storage system containing these OPE encodings (e.g., database).
3: Cl, Ser: The algorithm returns c if v did not exist in the OPE Tree, else it returns the ciphertext from the tree ct .

Algorithm 10 (Remove(v) – runs at Cl and Ser).
1: Cl: computes c← RND.Enc(sk,v) and sends c to the server.
2: Cl↔ Ser run the OPE Tree traversal (Alg. 1) so the server finds the node to remove. If such a node does not exist,

signal an error. If the node exists (and has ciphertext ct), the server decreases its ref-count and, if the ref-count
becomes zero, removes the node from the tree and removes ct from the OPE Table. If node removal triggers tree
balancing, the server similarly updates the OPE Table and any storage containing these OPE encodings.

3: The algorithm returns ct , the ciphertext corresponding to v from the OPE Tree.

Algorithm 11 (Query(v) – runs at Cl and Ser).
1: Cl: computes c← RND.Enc(sk,v) and sends c to the server.
2: Cl↔ Ser run the OPE Tree traversal (Alg. 1). The server uses the strategy in Claim 3 to locate the tightest interval.
3: The server returns the ciphertexts for these interval margins and the flag indicating if v is equal to the left margin.

Algorithm 12 (Order(c) – runs at Ser).
1: If c is in the OPE Table, return the corresponding OPE encoding, else signal an error.

Figure 6. The stOPE scheme. The algorithms contain text in blue indicating at which party (or parties) each piece of computation happens (Cl or Ser).

VI. STORAGE-AWARE ORDER-PRESERVING ENCODING

Previous work [6, 7] considered IND-OCPA to be the ideal
security for OPE schemes because it captures the desired
“only order leaks” idea. We argue that in a real system, a
stronger security notion is possible and in fact more desirable.

Consider a database containing three values, {20,32,69},
encrypted with some IND-OCPA scheme. The user may
remove the value 32 and later insert a new value 55. The
server will learn the order relations of {20,32,69} and
{20,55,69} as desired, but it will also learn the order of 55
with respect to 32. In the extreme case, if all possible values
get encrypted over the lifetime of a system, the server could
learn the exact values of the items from their order, even if
only a few are present in the database at the same time.

To process order queries over the database, the server
needs to know order relations only among values currently in
the database; the order of current values with respect to old
values need not be revealed. Ideally, a scheme should leak
only the order of values that were present in the database
at the same time. Furthermore, some values may be used

in database queries without being inserted into the database.
For those values, the server should learn their order with
respect to the stored values in the database at the time of
the query, so it can process queries efficiently. However, the
server should not learn anything else (e.g., their order w.r.t.
old values or old queries).

We call the resulting security notion same-time OPE
security because it reveals order relations only among items
present at the same time in a system. We define this stronger
security notion and also provide a protocol that provably
achieves it. We call the scheme storage-aware OPE (stOPE)
because it considers the model of a storage system (and
also, it applies more generally to storage, and not only to
database-type storage). stOPE is a refinement of mOPE so
when we refer to both schemes, we simply use mOPE.

The reason why the existing “ideal” definition (IND-OCPA)
does not capture this problem is that the encryption model
itself does not even permit such a definition: there is no
way to indicate that an item was removed using the standard
interface of an encryption scheme. The encoding model we
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adopt allows us to capture such a definition because it is
closer to what happens in a storage system.

A. Syntax

Definition 4 (Storage-aware order-preserving encoding
(stOPE)). A stOPE scheme for a plaintext domain D is
a tuple of polynomial-time algorithms stOPE= (Init, Insert,
Remove, Query, Order), where the first four are interactive
between two stateful machines, client Cl (probabilistic) and
server Ser (deterministic). All algorithms take as input the
states of the two parties; Init, Insert, and Remove also update
these states (but we do not make state explicit for simplicity).
• Initialization Init(1κ): The client generates a secret key
sk as part of its initial state, while the server initializes
its state as well.

• Insert Insert(v): The client inserts an encoding of a
value v ∈D at the server. Both the client and the server
obtain as output an encryption c of v.

• Remove Remove(v): The client removes an encoding
of a value v ∈D from the server, if such a value exists
at the server. The client’s output is a ciphertext c of v.

• Query: Query(v) takes as input a value v ∈ D and
returns the tightest enclosing interval for v (two ci-
phertexts c1,c2 and a bit b), where c1 and c2 are the
ciphertexts of two values v1,v2 that are in storage such
that v1 ≤ v < v2 and this is the tightest such interval,
and the bit b is true iff v1 = v.

• Order: Order(c) takes as input a ciphertext c and
outputs an order-preserving encoding e.

Correctness. The correctness property required of the
scheme is straightforward: Query should return only cipher-
texts that exist at the server and that represent the tightest
enclosing interval. To define what it means for a value to
“exist” at the server, we use a reference count or ref-count.
The ref-count of a value v is the number of times v was
inserted at the server by Insert minus the number of times
v was removed by Remove. The correctness requirement
for Order is the same as in mOPE and need hold only for
values at the server. For simplicity, stOPE does not define a
decryption algorithm. One can always support decryption by
appending a RND encryption to the ciphertext c.

B. The stOPE scheme

Fig. 6 presents the stOPE scheme, based on mOPE; the
rest of this section explains the differences.

To ensure that the order of current values w.r.t. old values
does not leak, the first step is to remove values from the
OPE Tree when they get deleted from the database (Alg. 10).
This ensures that when the client encrypts a new value v and
traverses the OPE Tree together with the server, the client
will not reveal the order relation of v to removed values.
However, if there are duplicates of a value in a database, we
should not remove them all, so we use ref-counts at each
node of the OPE Tree to keep track of these.

To give an example of why order between removed and
new values will not leak, consider an encrypted database
containing three values {20,32,69} with order-preserving
encodings 2, 4, and 6. Suppose the user deletes 32 and later
inserts 55. After the OPE Tree traversal, 55 will be assigned
an OPE encoding of 4, the same as the previous encoding
of 32, thus not revealing the order between 55 and 32.

Note that we can no longer use DET for the ciphertexts
because DET reveals whether a new value equals some pre-
viously deleted value, and we want to leak order information
only about items present at the server at the same time.
Therefore, the ciphertexts in the OPE Tree now use RND.
Every time we request a value v as part of Insert, Remove,
or Query, the client encrypts it with new randomness for
RND, which is required by the desired security goal. Thus,
the OPE Table can no longer function as a cache; it serves
only to implement the Order algorithm (Alg. 12) efficiently.

Finally, we explain how the server finds the tightest
enclosing interval for Query. The following claim provides a
strategy and its proof follows from the properties of a B-tree.

Claim 3. For any node v in a B-tree containing both ±∞

values, the largest value vleft such that vleft ≤ v is:

• the rightmost child in the left subtree of v, or
• vleft is the first value on the path from v to the root such

that the right edge of that node is on the path.

Since ±∞ are in the tree, a left margin always exists. A
symmetric claim holds for the right margin. To compute the
margins for a value v that is not in the tree, consider the
empty spot returned by Alg. 1 where such a value v would
be inserted, and apply Claim 3 to this virtual node.

The intuition for why this scheme is secure is simple:
based on the security of mOPE, only order among data items
in the OPE Tree leaks, and because old values are removed
from the tree, the client will not disclose order with respect
to them. We present a full security definition and a proof in
Appendix D.

The problem becomes more challenging when the adver-
sary is malicious, which we consider next.

VII. MALICIOUS (ACTIVE) SERVER

A malicious server may alter its responses to the client
in an attempt to learn additional information on top of the
order of encrypted values. For example, it might not delete
old values from the OPE Tree, which would leak the order
with respect to old values, violating same-time OPE security.

To force the server to perform these operations correctly,
we add Merkle hashing on top of the OPE Tree and use it
to check the correctness of the server’s responses. Merkle
trees [29] are a common method for enforcing integrity
properties, so using them for integrity is not novel to this
work; only the way we integrate it with our scheme is new.
Fig. 7 shows the contents of an OPE Tree with Merkle hashes.
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c=x93d12a =32 ;  refcount = 1

lefthash=x274a; righthash=x9b32

hash of         =  x51c0

c=x13e72b =20 ;  refcount = 1

lefthash=x8db1; righthash=x02ac

hash of         = x274a

c=x27716c =69 ;  refcount = 2

lefthash=<>; righthash=<>

hash of         = x9b32

root Merkle hash

Figure 7. OPE Tree with Merkle hash and metadata; compare to the
Merkle-free version shown in Fig. 2.

The Merkle hash at a node is a hash over the data at this
node and the Merkle hashes of its children.

A. Merkle tree verification

To verify the correctness of each operation performed by
the server, the client stores a copy of the root Merkle hash,
and requests proofs from the server for each operation. For
example, in order for the client to check if a node v is in
the OPE Tree, the server has to provide a sibling-path: this
consists of all the information (including hashes) at the nodes
on the path from v up to the root, and the information at all
the siblings of these nodes. Using the properties of the Merkle
tree, in order to establish that v is in the tree, it suffices for
the client to compute the Merkle root corresponding to the
sibling-path and see if it matches the client’s stored hash.

In the rest of this section, we describe how the client
checks each OPE Tree operation for stOPE. This approach
can be similarly applied to mOPE, but we omit it for brevity.
We also omit the formal security definition and proof, which
are included in Appendix D.

Proofs of deletion and insertion. When the client requests
insertion or deletion of an item, the server needs to provide
a proof that it indeed inserted or deleted the item. The proof
consists of:

1) Old Merkle information: the information at the nodes
in the tree that were affected by the insertion/deletion,
together with the sibling paths of these nodes. (In a
B-tree, there is just one sibling-path corresponding to
the lowest node in the tree involved in the operation.)

2) New Merkle information: the new sibling-path with
values and hashes after the deletion.

The client checks the insertion or deletion proof by:
1) Using the old Merkle information, the client computes

the root of the Merkle tree and verifies that it agrees
with the current Merkle root the client has.

2) The client checks that the new information is correct:
the node was inserted or removed correctly in the B-tree
or the appropriate ref-count was updated, and any other
metadata at nodes was not altered.

3) The client computes the root of the new tree and stores
this updated Merkle hash.

Proofs of correctness for Order and Query. To prove
correctness of Order results, the server includes the sibling-
path from where the node is located in the tree to the root.
Using the client’s Merkle root hash, the client checks that
the hash of the path corresponds to the client’s Merkle root,
the path starts from the desired node, and the OPE encoding
is correct based on the path from the root to the node.

To check the results of Query(v), the client has to ensure
that the returned interval is not only enclosing but also tight.
For this, the client uses the characterization of the interval
margins from Claim 3. To prove tightness of the left margin
for a value v, let N be the node in the tree that either contains
v or that would be the node where v would be inserted (as
determined during the client–server interaction). The server
supplies the sibling-path of the rightmost element in the left
subtree of N, or the sibling-path of N if N has no left child.
The client checks against its root Merkle hash that this path
is indeed a valid path from the tree containing N. To verify
the result is tight, the client checks that it satisfies Claim 3
using the information from each node on this path (which
contains whether a node has a right or left child and the
children hashes). Treatment of the right margin is symmetric.

VIII. USING MOPE IN A DATABASE APPLICATION

In this section, we explain how to use mOPE in a database,
which is the primary application for OPE schemes and
for mOPE. As mentioned in the introduction, OPE allows
efficient order computations on an encrypted database because
the database server can compute order on OPE encodings
in the same way as on unencrypted data (e.g., database
indexes work the same way), and the database server software
does not need to be modified. Using mOPE in an encrypted
database improves security over other OPE schemes such as
BCLO [6], currently used in CryptDB [33], because mOPE
does not leak any information besides order. Using stOPE
would provide an even stronger same-time security guarantee.

Setup. Using mOPE (or similarly stOPE) in a database
requires the following setup:
• A trusted client-side application that uses the mOPE

client to encode values. Unmodified applications can be
supported by using a proxy that intercepts and rewrites
the application’s SQL queries [33].

• User-defined functions (UDFs) in the database server
that implement mOPE’s Order function and update
encodings in the database.

The client application maintains separate mOPE client state
(e.g., secret key) for every column encrypted with OPE.

Insert queries. To understand how values in a query are
encrypted, consider an application that wants to execute the
query INSERT INTO secret VALUES (5). The application
first encrypts 5 using mOPE.Enc (Fig. 4) and obtains c←
DET.Enc(5). It then issues the query INSERT INTO secret
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VALUES (MOPE_ORDER(c)), where MOPE_ORDER is a UDF
implementation of mOPE.Order.

Transformation summaries. If mOPE rebalances its tree,
it must update OPE encodings stored in the database. One
challenge lies in describing the transformation from old to
new encodings in a succinct way; a naïve approach of storing
a mapping between all old and new encodings would scale
poorly when a large subtree (e.g., the root) is rebalanced.

Updates due to a B-tree balancing can be summarized
succinctly in a transformation summary as a sequence of
split and merge operations. Consider a b-ary B-tree. For
each node that split, we record the location where an item
was inserted in the node causing the split, and the location
of the split (from 1 to b). If there are N items in the tree,
there are at most logN such splits for a single mOPE
insertion, because the height of the B-tree is bounded by
logN. We record similar information for node merges in
the case of deletions in stOPE. We can further determine
a tight interval [low,high] of the OPE encodings that must
change. The server can then update all affected OPE
encodings with one SQL query of the form UPDATE secret
SET item=MOPE_TRANSFORM(item, summary) WHERE
item>=low AND item<=high, where MOPE_TRANSFORM is
a UDF that adjusts encodings based on the transformation
summary summary.

Select queries. First consider a simple query: SELECT
* FROM secret WHERE val>5. As before, the proxy
computes mOPE.Enc of 5 to obtain c and then
rewrites the query into SELECT * FROM secret WHERE
val>MOPE_ORDER(c). At the server, the UDF MOPE_ORDER
returns the OPE encoding of 5, and the server executes the
query on encrypted data as if the data were not encrypted.

For simple queries that perform comparison on exactly
one encoded column (as in the example above), the work
of the client is the same as the work of the server because
executing the query consists of performing one tree traversal
and collecting the output; in this case, the client saves only
on storage. However, most realistic queries perform filtering
on other fields at the same time. In such cases, the work
of the server is more significant than the work of the client
because the server has to process joins, compute filters on
various columns, intersect results, and so on, before sending
a potentially small result set to the client. For example, one
query from the industry-standard TPC-C benchmark requests
stock items from warehouse number 2 with order numbers
between 1245 and 1873 and quantity less than 1.0:

SELECT COUNT(DISTINCT(s_i)) FROM order_line, stock
WHERE ol_w=2 AND s_w=2 AND ol_d=3 AND s_i=ol_i AND

ol_o<1873 AND ol_o>1245 AND s_quantity<1.0

Such queries also show why it is important to store the
OPE encoding explicitly in the database rather than just using
the OPE Tree, which implicitly stores the order of values:

such a complicated query can now be processed without
changing the DBMS and without incurring overheads from
comparing the relative positions of values in the OPE Tree.

Bulk loading. mOPE allows efficient bulk loading for a
database by constructing the entire mOPE state in a single
pass. Bulk loading is often used to initially load a large data
set into a database. To encrypt a large batch of plaintext
values, mOPE simply sorts the values, builds a B-tree on
top of the sorted values in linear time, and uploads the tree
to the server. The resulting OPE Tree is a valid state, and
can support subsequent individual insertion operations. We
demonstrate the efficiency of this approach in §X-B.

Concurrency. Databases often allow multiple queries on
the same column to execute concurrently. With mOPE,
modifications of either the OPE state (e.g., due to Enc)
or the encoded values stored in a database table (e.g., due
to tree balancing) must be carefully ordered with respect to
other modification or lookup operations (e.g., invocations of
Order). Our current prototype issues one query at a time,
although more fine-grained ordering may be possible, perhaps
using fine-grained tree locking [11].

IX. IMPLEMENTATION

We implemented mOPE and stOPE, including malicious
server protection (§VII), in 3,480 lines of C++ code (of
which the largest portion is 950 lines for Merkle verification).
We also added support for our scheme in MySQL, with
transformation summaries, UDFs, and bulk loading as
discussed in §VIII, to demonstrate its usage for performing
SQL queries on encrypted data. We made no change to
the MySQL code because UDFs are part of the MySQL
interface. For DET and RND, we use Blowfish for 32- and
64-bit plaintexts and AES for larger plaintext sizes.

X. EVALUATION

To evaluate the performance of mOPE, we answer the
following questions in the respective subsections:
• How is the mOPE encoding time affected by various

parameters, such as plaintext size, number of total items
encoded, number of items encoded in a batch, order of
items encoded, malicious vs. honest-but-curious server
scenarios, and network latency? (§X-B)

• How does the encoding time using mOPE compare
to the encryption time using the state-of-the-art OPE
scheme by Boldyreva et al. [6] (BCLO)? (§X-B)

• What are the storage costs of mOPE? (§X-C)
• How many ciphertext updates does mOPE perform, and

how costly are they in a real application? (§X-D)

A. Experimental setup

We measured the performance of mOPE and BCLO (our
shorthand for the scheme of Boldyreva et al. [6]) on a
machine with an Intel Core 2 Q9400 processor running
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Linux 3.3 with only a single core enabled for consistency,
running both the client and the server on the same machine.
For network experiments, we use a second identical machine
connected over a Gigabit network link, and we use Linux tc
to simulate additional network latency. We configure mOPE
to produce 64-bit OPE encodings, although none of our
experiments come close to a tree that deep. We evaluate
our schemes for the honest-but-curious (HbC) as well as
malicious server model.

We use an optimized implementation of the BCLO scheme
from CryptDB [33]. We extend it to support more efficient
batch encryption by caching HGD samples when encrypting
a batch of values at once.

B. Throughput

Fig. 8 shows the throughput of mOPE in several con-
figurations as a function of the number of items encoded.
Overall, mOPE’s throughput in each configuration goes down
slightly as the number of encrypted items goes up by orders of
magnitude. This is caused by the OPE Tree’s depth increasing
logarithmically with the number of encrypted items. The top
two curves show mOPE’s throughput when the items are
encrypted in sequential order starting from 1, and when
they are encrypted in random order. mOPE achieves nearly
identical performance in these two cases, because the B-tree
always remains balanced. Enabling malicious server checking
using Merkle hashing reduces mOPE’s throughput by 3.3×
compared to an honest-but-curious scenario. The bottom
curve shows the throughput of BCLO; it does not depend
on the number of items, and mOPE outperforms it by 43×
at 103 items in the honest-but-curious case.
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Figure 8. Throughput of mOPE and BCLO for 64-bit plaintext values
in the honest-but-curious (HbC) server setting and in the malicious server
setting, under either a random or a sequential distribution of inputs. BCLO’s
performance is independent of the number of items encrypted.

Applications often need to load large amounts of data,
making batch encryption an important workload. Fig. 9
shows the throughput of mOPE for batch encryption. mOPE
achieves significantly higher throughput in batch mode than
in single-item encryption (shown in Fig. 8), since it does

not traverse the tree for every item. mOPE’s throughput at
small batch sizes is dominated by tree construction startup
costs. Constructing the Merkle tree adds a 1.6× overhead.
mOPE in HbC mode achieves 83× higher batch throughput
than BCLO at 105 items, even when using our HGD caching
optimization for BCLO with sequential inputs (the ideal case
for HGD caching).
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Figure 9. Throughput of mOPE and BCLO when encrypting a batch of
64-bit plaintext values at once, as a function of the batch size.

Fig. 10 shows the effect of plaintext sizes on throughput.
mOPE is largely unaffected by plaintext sizes, in both the
HbC and malicious server settings; plaintext size affects only
the size of tree nodes and the time spent encrypting and
decrypting tree nodes using a block cipher. The throughput
of BCLO, however, drops exponentially as the plaintext size
increases; for 256-bit values (which correspond to relatively
short strings), BCLO takes 176 msec to encrypt a single
value, compared to < 1 msec for mOPE in the HbC model.
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Figure 10. Throughput of mOPE and BCLO when encrypting 1000 plaintext
values of different size.

Since mOPE requires interaction with a server to encode
a value, its performance depends on the network latency
between the client and the server. To evaluate this, we
considered two scenarios. The first is a worst-case scenario
where the client encrypts one value at a time; this forces the
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application to suffer the network latency for each value. The
second is an application with a parallel workload that allows
it to encrypt multiple values at the same time, so that the
network latency can be amortized and overlapped for multiple
values; to ensure there is always enough parallel work to
keep the pipeline full, we used 5,000 concurrent threads.
Fig. 11 shows the results. As expected, the single-threaded
client’s performance drops as the network latency increases.
However, mOPE maintains high throughput for a concurrent
client that performs multiple operations in parallel.
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Figure 11. Throughput of mOPE as a function of the client-server network
latency, for a single-threaded client and for a concurrent client that performs
multiple encryptions in parallel.

C. Storage and ciphertext sizes

To evaluate the storage cost of mOPE, we measured the
size of the on-disk representation of mOPE’s B-tree. On
average, we found that mOPE stores 40 bytes per encrypted
value, when encrypting 64-bit values.

D. Ciphertext update cost

To understand the impact of ciphertext updates in mOPE,
we measured the average number of existing ciphertexts
updated in a database when encrypting a new value. Fig. 12
shows the results. We can see that the number of rewrites
is around 2–4, and grows slowly as the number of items in-
creases. This shows that mOPE’s order-preserving encodings
are relatively stable, and do not change often as new values
are encrypted. A sequential workload incurs fewer rewrites,
because our 4-way B-tree fills nodes from left to right, and
incurs fewer rebalancings when inserting increasing values.

To understand the cost of ciphertext updates in a real
system, we used mOPE to encrypt data in a SQL database. We
analyzed the throughput of the scheme on both a sequential
workload and on a trace of INSERT and UPDATE queries
from TPC-C, an industry-standard database benchmark (as
mentioned in §VIII, we issue only one query at a time).
Fig. 13 shows the throughput when ciphertexts are updated in
the database (using our transformation summaries) and when
the ciphertexts are not updated. Overall, the cost of ciphertext
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Figure 12. Number of ciphertexts updated for each additional item encrypted
in mOPE, as a function of the total number of encrypted items.

updates is modest. We can see that for the sequential
workload, rewrites cause a small drop in throughput of
less than 15%. For TPC-C, the cost of rewrites is even
smaller because TPC-C inserts a large number of repeating
values, which do not modify mOPE’s tree, and thus do not
trigger rewrites. For TPC-C, the first few values take longer
to encrypt because they are unique, and later throughput
increases due to repetitions.
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Figure 13. Throughput of SQL queries per second for sequential INSERT
queries and for the TPC-C mix of INSERT and UPDATE queries, as a function
of the database size.

XI. CONCLUSION

We presented mOPE, the first order-preserving encoding
scheme that achieves ideal IND-OCPA security, where an
adversary learns nothing but the order of elements based on
the ciphertexts. mOPE uses the idea of mutable ciphertexts,
and we show that mutable ciphertexts are required to achieve
IND-OCPA. We propose a stronger notion of same-time
OPE security that allows an adversary to learn only the order
of elements present in an encrypted database at the same
time, and present an extension of mOPE, called stOPE, that
achieves this stronger definition. We also present versions of
mOPE and stOPE that protect against a malicious server
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by using Merkle hashing. Finally, we show that mOPE
achieves good performance both in microbenchmarks and in
the context of an encrypted database running TPC-C queries,
and that it outperforms the state-of-the-art OPE scheme by
1-2 orders of magnitude.
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APPENDIX A.
CHOICE OF TREE

In this section, we describe our choice for the tree
data structure. Most search trees have similar logarithmic
complexity guarantees for insert/delete/search, which means
that for all these choices the work of the client is O(logn),
where n is the number of nodes in the tree. Therefore, we
differentiate the trees based on experimental performance,
work of the server, and usefulness to our scheme. We consider
two types of trees:

• Trees that keep a strict balance such as B-trees. B-trees
balance the tree by splitting and merging nodes.

• Trees that have more relaxed balancing strategy such
as scapegoat trees. Scapegoat trees rebalance a node by
completely rearranging its subtree, and they perform
rebalancings only when some metric of unbalance in
the tree reaches some factor α.

We also considered trees with a hybrid approach between a
B-tree and a scapegoat tree, such as weight-balanced trees,
but these seemed to perform less well for our application.

The scapegoat tree is not a good fit for our Merkle solution
because, in some worst cases (albeit rare), the whole tree
gets rebalanced. This means that the client has to recompute
the Merkle hash on a large tree, and one cannot assume
such computation abilities from a client. Also, it is not clear
how to concisely summarize OPE encoding updates with
scapegoat trees as we were able to do with transformation
summaries for B-trees.

On the other hand, scapegoat trees guarantee logarithmic
worst-case amortized server-side work. Let us define the OPE
cost of an operation to be the total number of values that
change OPE encoding. For example, when a node moves up
the tree, all the nodes in its subtree change OPE encoding, so
the OPE cost is the size of this subtree. Because scapegoat
trees balance the tree by rearranging entire subtrees, the cost
of an insert or delete is in fact the OPE cost for the insert
or delete. The worst-case amortized cost of insert and delete
is logarithmic in the number of nodes in the tree, hence
implying a logarithmic worst-case amortized OPE cost.

For B-trees, this is no longer the case; in fact, there are
degenerate insertion sequences that may cause an OPE cost
of c
√

n for some constant c. However, one can check easily
that B-trees still have logarithmic OPE cost on sequential
insert and delete workloads, which are common in practice.

Nevertheless, on our experimental benchmarks, B-trees
still performed better than scapegoat trees. Fig. 14 evaluates
the B-tree and scapegoat tree experimentally; we can see
that the B-tree has smaller variations in the cost over a
variety of workloads and a lower average cost. Moreover,
the tree height, which determines the number of client-server
interactions, is smaller for B-trees as compared to scapegoat
trees.

Order B S α = 0.3 S α = 0.5 S α = 0.75

N = 100,000

random c=3, h=8 c=0, h=10 c=0, h=17 c=0, h=19
increasing c=2, h=9 c=40, h=10 c=13, h=16 c=8, h=41
decreasing c=5, h=9 c=45, h=10 c=13, h=17 c=9, h=39

N = 1,000,000

random c=3, h=10 c=0.6, h=12 c=0, h=20 c=0, h=24
increasing c=2, h=11 c=54, h=12 c=16, h=20 c=11, h=49
decreasing c=5, h=11 c=58, h=12 c=17, h=20 c=11, h=47

Figure 14. Tree comparisons for B-tree and scapegoat tree S. Workload
consists of N insertions. “c” stands for the OPE cost (average number of
ciphertexts that need to change OPE encoding per insert) and “h” is the
maximum height. The B-tree has a minimum of two keys per node and a
maximum of four. The scapegoat has a fanout of 4 nodes, that is, 3 keys
per node, and 4 subtrees per node.

Hence, we prefer B-trees for use in practice because of
their useful structural properties and good performance.

APPENDIX B.
PROOFS FOR MOPE

A. Preliminaries

We use p(·) to denote a function that takes one input.
Similarly, p(·, ·) denotes a function p that takes two inputs.

We say that a function f is negligible in an input parameter
κ, if for all d > 0, there exists K such that for all κ > K,
f (κ)< k−d . For brevity, we write: for all sufficiently large
κ, f (κ) = negl(κ). We say that a function f is polynomial
in an input parameter κ, if there exists a polynomial p such
that for all κ, f (κ)≤ p(κ). We write f (κ) = poly(κ).

Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are
said to be computationally indistinguishable (and denoted
{Xκ}κ∈N

c
≈ {Yκ}κ∈N) if for every probabilistic polynomial-

time algorithm D,

|Pr[D(Xκ,1κ) = 1]−Pr[D(Yκ,1κ) = 1]|= negl(κ).

B. Proof of Theorem 1

Proof. Let Adv be any p.p.t. adversary. We prove the theorem
using two hybrid games:
Hybrid 1: The IND-OCPA game of §IV-B for our scheme
mOPE and adversary Adv. Let HAdv

1 (κ) be the random
variable indicating the output of Adv, namely, Adv’s guess
bit.
Hybrid 2: The game of §IV-B for adversary Adv, where our
scheme is modified to replace DET with a random oracle
O. (A random oracle O is an oracle that when given input
a value v for the first time, it outputs a random value r.
However, when v is input again, the same random value is
returned r.) Let HAdv

2 (κ) be the random variable indicating
the output of Adv in this game.

Since DET is a pseudo-random permutation, it is straight-
forward to check that {HAdv

1 (κ)}κ
c
≈ {HAdv

2 (κ)}κ (we refer
the reader to [16] for the security definition of pseudo-random
permutations): if these two hybrids are distinguishable, then
we can construct a simulator that distinguishes a DET oracle

16



from a random oracle. The simulator, given as input a
sequence of DET ciphertexts or a sequence of values from
the random oracle O, can embed these into messages in the
mOPE game (§IV-B) to Adv and pass the output of Adv to
a distinguisher of the two hybrids.

In the following lemma, we prove that the chance Adv
guesses correctly in the second hybrid is exactly 1/2; this
means that the overall winning advantage of the adversary
can at most be 1/2+ negl(κ), which then completes the
proof.

Lemma 4. For any adversary Adv, the chance that Adv
guesses correctly in Hybrid 2, Pr[winAdv,κ in Hybrid 2] =
1/2.

Proof. Consider any adversary Adv and any two sequences
of values Adv asks for in the security game: v = (v1, . . . ,vn)
and w = (w1, . . . ,wn). The view of Adv consists of the
information the server receives in the security game. We
consider two cases: the case when Cl chose v to encrypt and
the case when Cl chose w to encrypt. We argue that the view
of Adv in the two cases is exactly the same.

Fix a random oracle O. We proceed inductively in the
number of values to be encrypted. The base case is when no
value was encrypted and we can see that Adv starts off with
the same information. Now consider that after i encryptions,
Adv observes the same information distribution in both cases,
and we show that the information after step i+1 also remains
the same. At step i+1, Cl and Adv run Enc from Fig. 4 for
vi and wi. We have two possibilities:

The first possibility is that the encoding of vi is in the
OPE Table. Then the encoding of wi is also in the OPE
Table (and vice versa) because v and w have the same order
relation; in particular, vi = v j iff wi = w j so the pattern of
repetitions will be the same. In this case, Cl does not give
any information to Adv.

The second possibility is that the encoding of vi (and
therefore of wi) is not in the OPE Table. Cl and Adv interact
according to Alg. 4 in both cases. Since v and w have the
same order relation, the path down the tree taken by Cl and
Adv must be the same. Also, the only information the client
gives the server is which edges to take in this path, which is
also the same for both cases. The OPE Table and the OPE
Tree will both be updated in the same way in both cases.

Therefore, based on this induction, in both cases the ad-
versary receives the same information and cannot distinguish
with non-negligible probability. �

The proof of the above lemma completes the proof of the
theorem. �

APPENDIX C.
IMPOSSIBILITY OF STATEFUL IND-OCPA

In this section, we formally prove Theorem 2. Recall the
preliminaries in §B-A.

A. Definition

Let us first formally define a stateful OPE scheme.

Definition 5 (Stateful OPE scheme). A stateful
order-preserving encryption scheme for a plaintext
domain D is a tuple of polynomial-time algorithms
sOPE = (sOPE.KeyGen,sOPE.Enc,sOPE.Dec), where
sOPE.KeyGen is probabilistic and the rest are deterministic.
• Key generation: sk,st0 ← sOPE.KeyGen(1κ).
sOPE.KeyGen takes as input the security parameter κ,
and outputs a secret key sk and an initial state st0.

• Encryption: (c,st′) ← sOPE.Enc(sk,v,st). sOPE.Enc
takes as input a secret key sk, a plaintext value v ∈D ,
and a current state st and outputs a ciphertext c.

• Decryption: v← sOPE.Dec(sk,c). Takes as input the
secret key sk and a ciphertext c and outputs a value v.

Note that sOPE.Enc runs polynomial in the size of sk and
v and does not depend on the size of the state.

We define what it means for the scheme to be correct.
Intuitively, the scheme should decrypt the correct values and
it should be order-preserving.

Definition 6 (Correctness). A sOPE scheme for plaintext
domain D is correct if for all security parameters κ, for all
sk← KeyGen(1κ), we have

1) for all v ∈D and for all states st, for every c outcome
of sOPE.Enc(sk,v,st), sOPE.Dec(sk,c) = v; and,

2) for all sequences seq= {v1, . . . ,vn} of values in D , for
all pairs vi,v j ∈ seq with vi < v j, letting (sti,ci) :=
sOPE.Enc(sk,vi,sti−1) (and similarly for j), we have
ci < c j.

B. IND-OCPA security game for sOPE

Let Adv be any p.p.t. adversary. The game for Adv and
security parameter κ proceeds as follows:

1) Let sk,st0← KeyGen(1κ) and let b be a random bit.
2) Repeat the following rounds a polynomial number of

times. At round i:
a) The adversary Adv outputs values v0

i ,v
1
i ∈D .

b) Return ci := sOPE.Enc(sk,vb
i ,sti−1).

3) The adversary Adv outputs b′, its guess for b.
We say that the adversary Adv wins the game if (1) its

guess is correct (b = b′), and (2) the sequences {v0
i }i and

{v1
i }i have the same order relations (namely, for all i, j,

v0
i < v0

j ⇔ v1
i < v1

j ). Let winAdv,κ be the random variable
indicating the success of the adversary in the above game.

Definition 7 (IND-OCPA: indistinguishability under an
ordered chosen-plaintext attack). A stateful OPE scheme
is IND-OCPA secure if for all p.p.t. adversaries Adv, for all
sufficiently large κ,

Pr[winAdv,κ]≤ 1/2+negl(κ).
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C. Proof of Theorem 2

Proof. We now show that even a stateful OPE scheme cannot
feasibly achieve IND-OCPA without mutable ciphertexts (if
the values to be encoded are not known a priori).

We advise the reader to first revise the intuition and
notation in §V; EncOrd in §V corresponds to sOPE.Enc
here. We need to show that there exists a polynomial-time
adversary Adv that can break any scheme that has shorter
than exponentially large ciphertexts. Consider the adversary
defined in Alg. 7 of §V. We denote it by AdvP where P is
some polynomial such that T = min(P(κ),N/2).

Intuition: Let’s remind the reader of the information
received by the encryption algorithm sOPE.Enc belonging
to any fixed scheme. It receives values to encrypt one after
the other, and it does not know which will be the last value
to encrypt, or what is the value of t, because t is chosen at
random; it just knows the values encrypted so far. We first
argue that, when given input i, sOPE.Enc cannot determine
from its state if i is t or some other smaller value (which is
desirable because t specifies the index of the pair on which
Adv will try to guess). This is precisely the role of the bits bi.
Without these, the first 2t inputs to sOPE.Enc would always
be 1,N− 1,2,N− 2, . . . , t,N− t. When sOPE.Enc receives
as input N− (t +1) instead of t +1 (which happens when
encrypting y), it knows that t is the challenge value because
it can recall the history of values encrypted so far using
state. With the random bits bi, the scheme equally expects
to be asked for t +1 or N− (t +1). We now formalize this
statement.

Denote by (c1, . . . ,ci)← sOPE.Enc(sk,v1, . . . ,v j) the ci-
phertexts resulting from encrypting each value v1, . . . ,v j
sequentially, where the state used for the i-th encryption
sOPE.Enc(sk,vi,st) is the state output by the encryption of
vi−1 (or the initial state for i = 1).

Claim 5. For any stateful OPE scheme sOPE, for all
polynomials P, for every security parameter κ, for every
secret key sk, for all N, for all t ∈ {1, . . . ,min(P(κ),N/2)},
the following two distributions are the same:

{(b1, . . . ,bT )←{0,1}T ,

(c1, . . . ,c2T )← sOPE.Enc(sk,(1,N−1)b1 , . . . ,(T,N−T )bT ) :
(c1, . . . ,c2t+1)},
and

{(b1, . . . ,bt)←{0,1}t , b←{0,1},
generate x and y as in Step 3 of AdvP(κ), Alg. 7,

if b = 0, ch := x; else ch := y
(c1, . . . ,c2t+1)← sOPE.Enc(sk,ch) :
(c1, . . . ,c2t+1)}.

Proof. It suffices to prove that the first 2t + 1 inputs to
sOPE.Enc are equally distributed in both cases. The reason
is that, when encrypting the first 2t + 1 inputs, sOPE.Enc

receives no information about the future inputs to encrypt.
We can see that indeed the first 2t+1 inputs to sOPE.Enc are
indeed equally distributed because b has the same distribution
as bt+1. �

We would like to evaluate the advantage of adversary Adv.
For this, let us define a long jump formally.

Definition 8. Let sOPE be a fixed stateful OPE scheme. Let
sk be a fixed secret key. Let b1, . . . ,bi,bi+1 be a set of i+1
bits and let c1, . . . ,c2i+1 be the output of sOPE.Enc when
given the sequence (1,N− 1)b1 ,(2,N− 2)b2 , . . . ,(i,N− i)bi

followed by either i+1 if bi+1 is 0, or N− (i+1) otherwise.
We say that sOPE has a long jump at index i if c2i+1 >midi
and bi+1 = 0 or if c2i+1 <midi and bi+1 = 1.

There are two cases to consider.
Case 1: For all keys sk, sequences b1, . . . ,bT , the fraction

of indexes with long jumps is at most 1/10. (The constant
1/10 was chosen arbitrarily. Any fraction < 1/2 suffices for
our purpose.)

Let us evaluate the advantage of AdvP. Note that if there is
a long jump at t, AdvP outputs an incorrect guess; otherwise,
it outputs the correct guess.

The winning probability of the adversary is, by definition,

Pr[sk← sOPE.KeyGen(1κ);
t←{1, . . . ,T};
(b1, . . . ,bt)←{0,1}t , b←{0,1};
generate x and y as in Step 3, of AdvP(κ), Alg. 7,
if b = 0, ch := x; else ch := y;
(c1, . . . ,c2t+1)← sOPE.Enc(sk,ch) :
AdvP(c1, . . . ,c2t+1) = b],

which by Claim 5 equals

Pr[sk← sOPE.KeyGen(1κ);
t←{1, . . . ,T};
(b1, . . . ,bT )←{0,1}T ;

(c1, . . . ,c2T )← sOPE.Enc(sk,(1,N−1)b1 , . . . ,

(T,N−T )bT ) :
AdvP(c1, . . . ,c2t+1) = b]≥ 9/10,

Case 2: There exists a secret key sk, sequence b1, . . . ,bT ,
such that the fraction of long jumps is > 1/10.

We argue that the size of the ciphertext is at least
T/10 in this case. Each long jump halves the size of the
ciphertext space as follows. A long jump at step i means that
sOPE.Enc(i+ 1) > midi or that sOPE.Enc(N − (i+ 1)) <
midi. Let’s consider the first case. It means that the interval
[sOPE.Enc(i+ 1),sOPE.Enc(N− i)] is half of the interval
[sOPE.Enc(i),sOPE.Enc(N− i)]. Since there are T/10 long
jumps, it must be the case that the original ciphertext space
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was at least 2T/10 large. This yields ciphertext sizes of at
least log2T/10 = T/10.

For a sOPE scheme to be IND-OCPA secure, the advantage
of the adversary must be smaller than any polynomial.
Therefore, Case 1 reaches a contradiction and the only
possible case is Case 2.

Based on the definition of T , we have two possibilities:
Case 1: T = P(κ). The running time of AdvP is linear

in P. Since sOPE must be secure against any polynomial-
time adversary, it must also be secure against AdvP for any
polynomial P. This means that the size of the ciphertexts
has to be larger than any fixed polynomial. But sOPE.Enc is
a p.p.t. algorithm that must output a fixed polynomial-sized
ciphertext, thus reaching a contradiction. The remaining case
is thus:

Case 2: If T = N/2, the ciphertext size is N/20, which is
exponential in the plaintext size, as desired. �

APPENDIX D.
SECURITY OF STOPE

We now formally define the security definition of stOPE
and prove its security. Because of client-server interaction and
because the server is honest-but-curious, we cast our security
definition in the secure multi-party computation (MPC)
definitional framework. We provide only brief background
on the MPC definitional framework, so we refer the reader
to Goldreich [17], Chapter 7, for more details.

A. Security definition

MPC Setup. In secure two-party computation, two parties
each having a private input want to compute a function F ,
such that both parties learn the output of F , but no party
learns any additional information about the private input of
the other party.

In our case, the two parties are the client and the server,
and the function F is order information. The client has a
private input, the plaintext values to be encrypted. The server
has no private input. The client is honest but the server is
honest-but-curious.

In an MPC definition, ones defines an ideal world in which
security relies on a trusted party and a real world which
consists of a protocol to be proven secure (e.g., stOPE). In
the ideal world, the trusted party performs all computation
correctly, while the server never receives any information be-
sides order information. This ideal world clearly satisfies the
desired security goal that only order leaks. Then, we require
that in the real world where the trusted party is replaced
by our protocol, the server learns as much information as
in the ideal world, namely only order information. This is
done using the useful simulation paradigm: for every server
adversary, there is a p.p.t. simulator that can simulate all
that the server learns in the real world, by using only the
information the server gets in the ideal world. Intuitively,

this means that the server only gets order information in the
real world as well.

Ideal-world execution. In the ideal world, there are
three parties: a client Cl, a server Ser, and a trusted
party Trusted. The client’s input is a sequence of op-
erations seq = {(op1,v1), . . . ,(opn,vn)}, for some n, with
op ∈ {Insert,Remove,Query}. An example sequence is
(Insert,5),(Query,6),(Remove,5) and the value v = ⊥ for
Query. We do not model Init because each party runs this
protocol on its own without exchange of information and we
do not model Order because it runs exclusively at the server.

The client sends its input to the trusted party. Trusted
outputs the operations to be performed and the order relations
of the data items. Let us define the order information
OInfo(i;seq). OInfo(i;seq) is a function that gets as input
an index i and a sequence of n operations and outputs i−1
strings from the set {“left”, “right”, “equal”, ⊥} as follows.
Let vi be the value for the i-th operation in seq. For each
operation (op j,v j) ∈ seq with j < i, if the value v j is not
(or no longer) in the storage by the i-th operation (as given
by operations op1, . . . ,opi−1), the string is ⊥; otherwise, the
string is “left” if vi < v j, “right” if vi > v j, or “found” if
vi = v j. We can see how this definition captures same time
security: if two values are not at the same time in storage,
Trusted outputs ⊥.

Let info(seq) be the entire information that
Trusted outputs on a sequence seq, namely
info(seq) = {opi,OInfo(i;seq)}n

i=1.
The view of the adversary in this case is the information

info it receives from the trusted party. Consider the following
distribution:

IDEALAdv,z(seq) = Adv(1κ,z, info(seq)),

where z is the auxiliary input, representing some side
information the adversary may have.
Real-world execution. The execution in the real world
consists of running our stOPE protocol provided in §VI,
in which the client is a honest party and the adversary is an
honest-but-curious (passive) adversary. We are not concerned
about a server which refuses to answer queries because this
is immediately detectable by the client and would thus cause
the client to switch to a different service provider.

The view of the adversary is the set of messages received
from the client, any auxiliary information z, and its internal
random tape. Let msgCli be the i-th message that Cl sends to
Adv. We thus have:

REALAdv,z(seq) = Adv(1κ,z,{msgCli }i).

Definition 9 (Secure stOPE). A stOPE scheme as defined in
Def. 4 is secure if for all p.p.t. adversaries Adv in the real
model, there exists a p.p.t. simulator S in the ideal model
such that

{IDEALS,z}1κ,seq,z(seq)
c
≈ {REALAdv,z}1κ,seq,z(seq),
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where |seq| and |z| are polynomials in κ.

B. Security guarantees

Theorem 6. Our stOPE construction is secure as in Def. 9.

Proof. This proof is very similar to the proof of Theorem 1
(Appendix B), so we only present the differences.

Consider any p.p.t. adversary Adv. A simulator S receives
as input 1κ,z, info(seq) for some sequence of operations seq
unknown to S, and must produce as output whatever Adv
outputs given inputs 1κ,z,{msgCli }i.

In fact, all we need to show is that S can simulate the
messages {msgCli }i that Adv receives from the client using
the order information S receives; then S can just apply the
algorithm of Adv on these messages and obtain a correct
simulation.

Algorithm 13 (S on input {opi,OInfo(i;seq)}n
i=1). Maintain

an OPE Tree and an OPE Table; at each node N in the OPE
Tree also maintain an index index[N] = j indicating that the
j-th value from seq is stored at node N.

1: For each operation opi and for each message Cl sends to
the server Adv as part of opi:

a) Follow the algorithm for opi from stOPE’s protocol,
Fig. 6, to assemble a message msg, replacing any
unknown value as follows.
• The type of operation: use opi.
• The RND ciphertext: draw a freshly random value.
• The “left”,“right”, or “found” directions in the tree:

use the index[N]-th string from OInfo(i;seq).
b) Run Adv on the resulting message msg and continue.

2: Output the final output of Adv.

With a similar hybrid argument as in the proof of
Theorem 1, we replace RND with entirely random values
O∗. That is, O∗ maps any value v to a fresh random value
even if v is given as input twice to O∗.

We now want to show the simulation results in the same
distribution as Adv’s output in the real world, and we perform
this by induction on the operations in the sequence. At the
base case, the server Adv receives no information from Cl
so the simulation is trivial. Assuming the state of Adv in the
simulation of S after operation opi−1 has the same distribution
as the corresponding state in the real world, we want to show
that the same holds for the states after opi. For this, one
can follow the stOPE protocol, Fig. 6, step-by-step together
with S’s simulation and check that each message sent to the
server Adv is identically distributed in the real and ideal
worlds. Such a check is straightforward but lengthy, so we
do not write it out here. Now since Adv receives identically
distributed messages in the simulation and in the real world,
it outputs the same distribution, thus completing the inductive
step, and our proof. �
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