
Multi-Key Searchable Encryption

Raluca Ada Popa and Nickolai Zeldovich
MIT CSAIL

Abstract

We construct a searchable encryption scheme that enables keyword search over data encrypted with
different keys. The scheme is practical and was designed to be included in a new system for protecting
data confidentiality in client-server applications against attacks on the server.

1 Introduction

A promising approach to preventing confidential data disclosures due to adversaries that compromise servers
is to store only encrypted data on servers, and to encrypt and decrypt documents only on client machines.
In the case of a multi-user application, each user may have access to a different set of documents stored on
the server; this can be achieved by ensuring that each document is encrypted with a separate per-document
key, and arranging for each user’s client machine to have access to the keys of the documents that the
corresponding user has access to.

One challenge with this approach lies in supporting applications that allow users to search for documents
that contain a given word. Many applications, such as document sharing, chat, forums, and calendars, support
search over documents shared by different users. Prior work on searchable encryption schemes would require
the client to provide the server with a search token under each key that a matching document might be
encrypted with, and thus the number of tokens scales with the number of documents to search. This can be
slow when there is a large number of documents.

We present a cryptographic scheme that allows a client to provide a single search token to the server, but
still allows the server to search for that token’s word in documents encrypted with different keys. We call
such a scheme multi-key search. Intuitively, the scheme hides the content of the document and the words one
searches for, and the only information the server learns is whether some word being searched for matches
a word in a document. We formalize the security guarantees with cryptographic security definitions and
prove the security of our scheme under variants of the Bilinear Decisional Diffie-Hellman and External
Diffie-Hellman assumptions, as well as in the random oracle model. The scheme is practical and was designed
to be included in a new system for protecting data confidentiality against attacks on the server.

The most challenging aspect when coming up with such a scheme is that there is no single trusted user;
for example, in many web applications, anyone, including an adversary, can create an account and become a
user. As a result, users cannot agree on a secret, and each document must be encrypted under different keys
that are generated independently, rather than generated from a common secret key. Another challenge is that
the scheme must be practical because our goal is to use it in a real system.

In the rest of the paper, we describe the related work in Sec. 2, we explain the problem setting in Sec. 3,
we provide syntax and security definitions in Sec. 5, we present our construction together with a performance
measurement in Sec. 6 and 7, respectively, and finally, we prove the security of our scheme in Sec. 9 under
the assumptions in Sec. 8.

2 Related work

Most of the research on searchable encryption [14, 10, 4, 7, 3, 8, 5, 2, 16, 15, 13, 11, 6] focused on the case
when the data is encrypted with the same key, and considered various aspects of the resulting cryptosystem,
such as public- versus secret-key, more expressive computation such as conjunctions and disjunctions,
indexable schemes, and others.

1



User 1 

User 2 

User 3 

Doc 1 

Doc 2 

Doc 3 

Figure 1: Access graph example.

To the best of our knowledge, Lopez-Alt et al. [12] is the only work considering computation over data
encrypted with different keys. They design a fully homomorphic encryption (FHE) scheme in which anyone
can evaluate a function over data encrypted with different keys. However, the decryption requires all the
parties to come together and run an MPC protocol. Translated to our setting, this requires a client to retrieve
all the keys under which the data is encrypted so the client still needs to do work proportional in the number
of keys, which is what we are trying to avoid. Moreover, due to the semantic security of FHE, the server does
not learn whether a document matches a keyword: it only learns the encryption of whether the document
matches; therefore, the server would have to return the entire data, which is not practical.

A related scheme is the one of Bao et al. [2], who consider a setting where users have different keys
but all the data is encrypted with one key and the search happens over data encrypted with one key. One
cannot directly apply their scheme to the multi-key setting by creating an instance of the scheme for every key
because this results in many search tokens; the reason is that the search tokens are tied to a secret different for
every different key. Moreover, one requires different security definitions and security proofs when considering
data encrypted under different keys with users only accessing a subset of them. Other works [8, 15, 16, 13]
fall in the same category of multi-user one-key schemes, and have similar properties.

3 Problem setting

In our model, there is a set of users, a server, and a set of documents. The server stores encrypted documents.
Each user has access to a subset of the documents. A user can create a document and then give access to other
users to the document by giving them the decryption key of the document. We call the graph of user accesses
to documents, an access graph, defined below. Fig. 1 shows an example of an access graph.

Definition 3.1 (Access graph). An access graph G = (U,D,E) consists of a set of users U , a set of
documents D, as well as a set of edges E, where an edge e is a pair (i, j) for i ∈ U and j ∈ D denoting user
i has access to document j. We write e ∈ G to mean that e ∈ E.

At a high level, the following security guarantees are desirable. If some user was not given access to a
document, the user should not be able to read the contents of that document or search over that document,
even if the user colludes with the server. The setting is entirely distributed. Each user generates his key and
there is no trusted party for choosing keys, and no globally trusted user. Moreover, there is no trusted party to
create document keys or to help with providing access to documents.

The functionality goal is to allow a user to search a word over all the documents he can access, say n
documents, even if those documents are encrypted under different keys. Note that the user has access to all
the keys for these n documents, but the user should only give one search token to the server, instead of n
tokens.

2



Let’s now consider a more concrete model for such a multi-key search. We denote the key of user i with
uki, and the key of document j with kj . Consider that a user, say Alice, (with key ukA) has n encrypted
documents at the server, and each is encrypted under a key kj for j = 1 . . . n. Alice wants to search for a
word w over all the documents she has access to, so she uses ukA to compute a token for a word w. In order
to allow the server to match the token against words encrypted with k1, . . . , kn, Alice gives the server some
public information called delta. Alice provides one delta per key kj , denoted ∆ukA,kj . The server can use
∆ukA,kj to convert a search token under key ukA to a search token under kj , a process we call adjust. In this
way, the server can obtain tokens for word w under k1, . . . , kn while only receiving one token from Alice,
and then performing a traditional single-key search with the new tokens.

Multi-key search provides efficiency guarantees over single-key search. If T is the total number of words
Alice searches, she provides O(n+ T ) pieces of information to the server: n deltas and T tokens, the size
of all of which only depends on the security parameter. In contrast, if Alice uses a single-key searchable
encryption as in previous work, she provides O(nT ) pieces of information to the sever, because she provides
n tokens, one for each key kj , for each of T words.

4 Preliminaries

We denote by κ the security parameter throughout this paper. For a distribution D, we write x← D when x
is sampled from the distribution D. If S is a finite set, by x← S we mean x is sampled from the uniform
distribution over the set S.

We use p(·) to denote that p is a function that takes one input. Similarly, p(·, ·) denotes a function p that
takes two inputs.

We say that a function f is negligible in an input parameter κ, if for all d > 0, there exists K such that
for all κ > K, f(κ) < k−d. For brevity, we write: for all sufficiently large κ, f(κ) = negl(κ). We say
that a function f is polynomial in an input parameter κ, if there exists a polynomial p such that for all κ,
f(κ) ≤ p(κ). We write f(κ) = poly(κ). A similar definition holds for polylog(κ).

Let [n] denote the set {1, . . . , n} for n ∈ N∗.
When saying that a Turing machine A is PPT we mean that A is a probabilistic polynomial-time machine.
Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are said to be computationally indistinguishable

(denoted {Xκ}κ∈N
c
≈ {Yκ}κ∈N) if for every probabilistic polynomial-time algorithm D,

|Pr[D(Xκ, 1
κ) = 1]− Pr[D(Yκ, 1

κ) = 1]| = negl(κ).

We use asymmetric bilinear map groups of Type 2 for our construction [9]. Let G1 and G2 be two disjoint
cyclic subgroups on an elliptic curve of Type 2, and let e be a non-degenerate bilinear map e : G1×G2 → GT .
Let params = (p,G1,G2,GT , e, g1, g2, gT )← CSetup(1κ) be the procedure that generates curve parameters,
where g1, g2, and gT are generators of G1, G2, and GT .

5 Syntax and security definitions

We now formalize the syntax and security definitions.

Definition 5.1 (Multi-key search). A multi-key search scheme MK is a tuple of algorithms (MK.Setup,
MK.KeyGen, MK.Delta, MK.Token, MK.Enc, MK.Adjust, MK.Match) as follows:

• params← MK.Setup(1κ): Takes as input the security parameter and outputs system wide parameters.

• k ← MK.KeyGen(params): Takes as input the system parameters and outputs a secret key, which
could be a key for a user or for a document.

3



• ∆← MK.Delta(k1, k2): Takes as input two keys and outputs a delta.

• tk← MK.Token(k,w): Takes as input a key k and a word w and outputs a search token tk.

• c← MK.Enc(k,w): Takes as input a key k and a word w and outputs an encryption of the word c.

• stk← MK.Adjust(tk,∆): Takes as input a token tk and a delta ∆ and outputs a search token tk′.

• b← MK.Match(stk, c): Takes as input a search token stk and a ciphertext c and outputs a bit b.

Correctness. For any polynomial n(·), for every sufficiently large security parameters κ, for all w ̸= w′ ∈
{0, 1}n(κ),

Pr


params← MK.Setup(1κ);
uk← MK.KeyGen(params); k ← MK.KeyGen(params);
∆← MK.Delta(uk, k);
stk← MK.Adjust(MK.Token(uk, w),∆) :
MK.Match(stk,MK.Enc(k,w)) = True and MK.Match(stk,MK.Enc(k,w′)) = False

 = 1−negl(κ).

Correctness says that when searching for a word w, encryptions of the word w in some document will
match (after adjusting the token for w to the key of the document), but encryptions of a different word w′ will
not match the search.

For simplicity, we do not include a decryption algorithm in the syntax of the scheme, but a multi-key
search scheme can be easily augmented with a decryption algorithm by appending to each ciphertext produced
in MK.Enc a symmetric-key semantically secure encryption with the same key as the argument to MK.Enc.

Remark 5.2. In an alternate syntax, each user has a public key pk, and the algorithm MK.Delta takes as
input the public key of a user instead of his private key. A public-key MK.Delta algorithm has the advantage
that when a user, say Alice, wants to give access to another user, say Bob, to a document, Alice can just
compute the delta to the document for Bob and provide it to the server. (In fact, our construction can be
adapted to public-key by setting the public key of a user to pk = g

1/uk
2 , where uk is the secret key of the user.)

However, inherently, such a multi-key scheme cannot hide the word searched for because the functionality
of the scheme allows a dictionary attack. Assume that an adversary wants to learn what Alice searches for,
and let pkA be Alice’s public key. An adversary can create a document with some key k, and encrypt in this
document every word of a dictionary using key k. Then, the adversary can produce a delta for Alice to this
document by computing ∆A := MK.Delta(pkA, k). Now, for every search token tk of Alice, the adversary
computes stk := MK.Adjust(tk,∆A) and uses stk to find a match in the encrypted dictionary. Once a match
is found, the adversary knows what word the user searched for.

Intuitively, we want two security properties from the MK scheme: the ciphertext and the token should
not reveal the value of the underlying plaintext, and the only information revealed to the server is whether
a search token matches a ciphertext only when the server has a delta for some document or whether one is
searching for the same word as before. Moreover, if the key of a document leaks, the key of the user should
not leak and the contents of the other documents the user has access to should not leak.

We formalize these properties with two games, data hiding and token hiding, that express these goals. One
holistic security definition would be a stronger guarantee, but that greatly complicates the proofs. Nevertheless,
the separate definitions also capture the desired security goals.

4



5.1 Data hiding

Data hiding requires that the adversary not be able to distinguish between ciphertexts of two values not
matched by some token. The case when the token matches a ciphertext is handled by the token hiding game.
In the following definition, documents are numbered from 0 onwards and users from 1 onwards. The reason
there is document 0 is that this is a special document used in the challenge.

Definition 5.3 (Data hiding game). The data hiding game is between a challenger Ch and an adversary Adv
on security parameter κ and public parameters params.

• Ch computes params← CSetup(1κ) and provides them to Adv.

• Adv provides an access graph G with users numbered from 1 and documents numbered from 0 to Ch
along with keys kj for every document with j > 0.

• Ch generates k0 ← MK.KeyGen(1κ, params) for document 0. Then, for every user i, it generates
uki ← MK.KeyGen(1κ) and for every edge (i, j) ∈ G, it provides MK.Delta(uki, kj) to Adv.

• Challenge step: Adv chooses w∗
0, w

∗
1 ← {0, 1}n(κ) and provides w∗

0, w
∗
1 to Ch. Ch chooses a random

bit b and provides MK.Enc(k0, w
∗
b) to Adv.

• Adaptive step: Adv makes the following queries to Ch adaptively. The ℓ-th query can be:

1. “Encrypt wℓ to document 0”: Ch returns MK.Enc(k0, wℓ).

2. “Token for word wℓ for user i”: Ch returns MK.Token(uki, wℓ).

• Adv outputs b′, its guess for b.

Restriction on Adv: for all token queries wℓ for user i, if (i, 0) ∈ G, it must be that wℓ /∈ {w∗
0, w

∗
1}.

Adv wins the game if b′ = b. Let winAdv(κ) be the random variable indicating whether Adv wins the
game for security parameter κ.

Definition 5.4. A multi-key search scheme is data hiding if, for all PPT adversaries Adv, for all sufficiently
large κ, Pr[winAdv(κ)] < 1/2 + negl(κ).

Here is how the definition models our intentions:

• The fact that Adv can provide keys for all documents except for the challenge one models the fact that
an adversary could steal keys of document or create documents, but such actions should not allow Adv
to learn information about a document he does not own.

• The restriction on the token queries of Adv is required because otherwise Adv could distinguish the
ciphertexts based on the functionality of the scheme.

• Note that Adv can ask tokens for words that are part of the challenge (e.g., w0 or w1) for users that do
not have a delta to document 0. This ensures that any user i that does not have a delta to a document
cannot search that document.

• We do not need to allow Adv to ask for encrypt queries to documents i for i > 0 because Adv has the
corresponding secret keys and can encrypt by itself.

A stronger definition would allow an adaptive step before the challenge step as well. Our scheme can also
be proven secure in that setting, but results in a more complicated proof, which we do not provide here.

5



5.2 Token hiding

Token hiding requires that an adversary cannot learn the word one searches for.

Definition 5.5. A u-free document in a particular graph is a document with no edge from user u in that
graph. A u-free user in a particular graph is a user that has edges only to u-free documents in that graph.

User 0 will be the challenge user, for which Adv will have to distinguish tokens. Thus, we will refer to
0-free users and 0-free documents as simply “free users” and “free documents”.

Definition 5.6 (Token hiding game). The token hiding game is between a challenger Ch and an adversary
Adv on security parameter κ and public parameters params.

• Ch computes params← CSetup(1κ) and provides them to Adv.

• Adv provides an access graph G with users numbered from 0 and documents numbered from 1, along
with keys uki for every free user i and kj for every free document j.

• Ch generates uki ← MK.KeyGen(1κ) for every non-free user i, kj ← MK.KeyGen(1κ) for every
non-free document j. For every edge (i, j) ∈ G, Ch sends MK.Delta(uki, kj) to Adv.

• Adaptive step. Adv makes the following queries to Ch adaptively. At query ℓ:

1. “Encrypt wℓ for document j”: Ch returns MK.Enc(kj , wℓ).

2. “Token wℓ for user i” with i > 0: receives MK.Token(uki, wℓ).

• Challenge step: Adv sends w∗
0 and w∗

1 to Ch and receives MK.Token(uk0, w
∗
b) for a random bit b.

• Adv repeats the adaptive step.

• Adv outputs b′, its guess for b.

Restriction on Adv: For every “Token wℓ for user i” query: wℓ /∈ {w∗
0, w

∗
1} or user i is free. For every

“Encrypt wℓ for document j” query: wℓ /∈ {w∗
0, w

∗
1} or document j is free.

Adv wins the game if b′ = b. Let wintokenAdv (κ) be the random variable indicating whether Adv wins the
game for security parameter κ.

Definition 5.7. A multi-key search scheme is token-hiding if, for all PPT adversaries Adv, for all sufficiently
large κ, Pr[wintokenAdv (κ)] < 1/2 + negl(κ).

As before, the reason Adv can pick keys is to signify that Adv can corrupt certain users or documents, or
can even create nodes in the access graph.

The constraints on the game are so that the adversary cannot distinguish the challenge words trivially,
because the functionality of the scheme distinguishes them (either because there is a search match or the
token is deterministic). Note that the definition (and in fact the scheme as well) allows an adversary to tell if
two tokens are equal: in practice, if the same set of documents match a token, it is likely that the token is the
same so we did not consider important to hide this equality relation among tokens. A solution for hiding the
token is to use composite groups and multiply a random element from the second group to the token, but we
do not explore this further here.

6



6 Construction

Let H : {0, 1}∗ → G1 and H2 : GT ×GT → {0, 1}∗ be hash functions, modeled as random oracles. Our
multi-key search scheme is as follows:

• params← MK.Setup(1κ): return (p,G1,G2,GT , e, g1, g2, gT )← CSetup(1κ).

• k ← MK.KeyGen(params): return k ← Zp.

• ∆← MK.Delta(k1, k2): return ∆ = g
k2/k1
2 ∈ G2.

• tk← MK.Token(k,w): return tk = H(w)k ∈ G1.

• c← MK.Enc(k,w): Draw r ← GT . Output c =
(
r,H2(r, e(H(w), g2)

k)
)
.

• tk′ ← MK.Adjust(tk,∆): return tk′ = e(tk,∆) ∈ GT .

• b← MK.Match(tk, c): Let c = (r, h). Return H2(r, tk)
?
= h.

Remark 6.1 (Alternate constructions). Using asymmetric pairings here is crucial for security. With symmetric
pairings (G1 = G2), there is an attack that can determine the search word: given H(w), H(w)k, and H(w2),
one can distinguish H(w2)

k from R by computing crossed pairings and thus can do a dictionary attack.
Asymmetric groups prohibit applying the pairing between elements of G1.

Another way to hide the search token would be to employ composite-order groups and multiply a random
element R ∈ Gh by the token for a word. One can also simulate composite order groups with standard groups
using the orthogonal vector space techniques of Freeman and Lewko, which enables faster implementations.

Remark 6.2 (Indexed search). If the encryption scheme were deterministic, it would be easier to search for
matches because an index could be constructed over the data. To make the scheme indexable in this way, one
can modify MK.Enc to just output e(H(w), g2)

k. If a user makes sure that there are no repetitions of words
w in a document encrypted with the same key, making the encryption deterministic results in roughly the
same security guarantees (although the data-hiding definitions need a few changes).

Theorem 6.3. The scheme above is a data- and token-hiding multi-key search scheme, based on the BDHV
and XDHV assumptions in the random oracle model for H and H2.

Proof. We prove correctness of the scheme here, and in Sec. 9, we prove that it achieves the security
properties.

Consider the setup from the correctness definition: params← MK.Setup(1κ), k1 ← MK.KeyGen(params),
k2 ← MK.KeyGen(params), ∆← MK.Delta(k1, k2), tk← MK.Adjust(MK.Token(k1, w),∆).

This means that tk = e(H(w)k1 , g
k2/k1
2 ) = e(H(w), g2)

k2 .
Then H2(r, tk) = H2(r, e(H(w), g2)

k2), so MK.Match(tk,MK.Enc(k2, w)) outputs True as desired.
The chance that H2(r, e(H(w), g2)

k2) = H2(r, e(H(w′), g2)
k2) is statistically negligible (in fact,

it can be zero if the hash functions’ output size is not smaller than the input size). Therefore,
MK.Match(tk,MK.Enc(k2, w

′)) outputs False. We thus showed correctness of our scheme.
✷

7



7 Implementation

We implemented the scheme in C++ and used the PBC library [1] for implementation of a Type 2 curve [9],
called Type D in the library. Below are evaluation results on an AMD Opteron(tm) Processor 2.4GHz, running
on one core, when scheme is encrypting average-sized words, randomly generated. The scheme has a modest
overhead.

Algorithm MK.KeyGen MK.Delta MK.Token MK.Enc MK.Adjust MK.Match

Time (ms) 0.35 6.3 0.89 6.3 5.5 0.0021

8 Assumptions

Our construction can be proven secure under variants of the Decisional Diffie-Hellman and External Diffie-
Hellman assumptions, both of which are standard assumptions and were used in previous constructions, and
in the random oracle model. Our assumptions are simple variants of these, and one can verify they hold in the
generic group model.

Definition 8.1 (Bilinear Diffie-Hellman Variant (BDHV) assumption). For all PPT algorithms Adv, for every
sufficiently large security parameter κ,

|Pr[params← CSetup(1κ); a, b, c← Zp : Adv(params, ga1 , g
b
2, g

1/a
2 , gc1, e(g1, g2)

abc) = 1]−

Pr[params← CSetup(1κ); a, b, c← Zp, R← GT : Adv(params, ga1 , g
b
2, g

1/a
2 , gc1, R) = 1]| = negl(κ).

Definition 8.2 (External Diffie-Hellman Variant (XDHV) assumption). For all PPT algorithms Adv, for every
sufficiently large security parameter κ,

|Pr[params← CSetup(1κ); a, b, c,m← Zp : Adv(params, ga1 , g
b
1, g

ab
1 , gca2 , gcd2 , gd1 , g

1/d
2 ) = 1]−

Pr[params← CSetup(1κ); a, b, c,m← Zp, R← G1 : Adv(params, ga1 , g
b
1, R, gca2 , gcd2 , gd1 , g

1/d
2 ) = 1]|

= negl(κ).

This assumption consists of the XDH assumption in the first three terms, but with extra information about
a in the form of gca2 , but masked by c, which itself is masked by d.

As mentioned, we also model the hash functions H and H2 as random oracles.

9 Security proof

The proofs are in the random oracle model for H and H2, and H is a programmable random oracle.
To show that our scheme is secure with either of the security games, we consider a sequence of hybrid

games starting from the game in the security definition in consideration, moving through gradually simpler
games, and reaching the final game; in the final game, no adversary can guess the challenge bit b correctly
with more than negligible chance information-theoretically.

During the sequence of hybrid games, we will sometimes show that Game “target” ⇐ Game “new”,
meaning that if a scheme is secure in Game “new”, it will be secure in Game “target”, so it suffices to prove
that the scheme is secure in Game “new”.

Other times, we will show that Game “target”⇔Game “new” meaning that the games are computationally
indistinguishable. We will not review here the notion of game indistinguishability. Loosely speaking, any PPT

adversary D playing the role of the adversary in Game “target” and Game “new” cannot tell in which of the

8



two games it is. If two games are computationally indistinguishable and no PPT adversary can win in one
game with more than negligible probability, then no PPT adversary can win in the other game either.

For brevity, we do not include in the hybrid games the initial step in which Ch computes params ←
CSetup(1κ) and provides them to Adv, the fact that Adv always has access to H1 and H2, as well as the final
step when Adv outputs his guess for b, the challenger’s bit. For clarity, we highlight certain parts of a game in
blue, to indicate that these are differences from the previous game.

9.1 Data hiding proof

Proof. The sequence of hybrid games in the proof are related as follows:
Data hiding game⇐ Game 1⇐ Game 2⇐ Game 3 BDHV⇔ Game 4⇐ Game 5.
Games 1– 3 provide gradual simplications of the original game. Game 4 is computationally

indistinguishable from Game 3 based on the BDHV assumption. In Game 5, any adversary has chance
of guessing statistically close to 1/2.

Game 1 no longer has the keys kj for j > 0: see the difference in blue. We will also replace the algorithms
of the multi-key scheme with the exact quantities returned.

Game 1

• Adv1 provides an access graph G with one document, labeled 0, and any number of users.

• Ch1 generates k0 ← MK.KeyGen(1κ, params) for document 0. Then, Ch1 provides g
k0/uki
1 for

every edge (i, 0) ∈ G, and g
1/uki
1 for every user i.

• Adv1 provides w∗
0, w

∗
1.

• Ch1 chooses a random bit b and provides r∗, H2(r
∗, e(H(w∗

b), g2)
k0).

• Adaptive step: Adv1 makes the following queries to Ch1 adaptively. The ℓ-th query can be:

1. “Encrypt wℓ”: Ch1 returns rℓ, H2(rℓ, e(H(wℓ), g2)
k0).

2. “Token for word wℓ for user i”: Ch1 returns H(wℓ)
uki .

Restriction on Adv1: for all token queries wℓ for user i, if (i, 0) ∈ G, it must be that wℓ /∈ {w∗
0, w

∗
1}.

If the scheme is secure in this game, then it is secure in the data hiding game. The reason is that if there is
there is a PPT adversary Adv that wins in the data hiding game, there is a PPT adversary Adv1 that wins the
Game 1. Adv1 can use Adv to win Game 1. Adv1 can simulate the inputs to Adv by simply storing the kj
values from Adv and computing gkj/uki when given g1/uki , as in the third step of the data-hiding game that
Adv is expecting.

Next, we would like to remove from the game users that do not have access to document 0. The intuition
is that whatever information the adversary gets about those users is unrelated to document 0 and hence to the
challenge. We create a new game in which the adversary creates only users with access to document 0.

Game 2

9



• Adv2 provides an access graph G with one document, labeled 0, and any number of users all with
access to document 0.

• Ch2 generates k0 ← MK.KeyGen(1κ, params) and provides gk0/uki2 and g
1/uki
2 for every user i.

• Adv2 provides w∗
0, w

∗
1.

• Ch2 chooses a random bit b and provides r∗, H2(r
∗, e(H(w∗

b), g2)
k0).

• Adaptive step: Adv2 makes the following queries to Ch2 adaptively. The ℓ-th query can be:

1. “Encrypt wℓ”: Ch2 returns rℓ, H2(rℓ, e(H(wℓ), g2)
k0).

2. “Token for word wℓ for user i”: Ch2 returns H(wℓ)
uki .

Restriction on Adv2: for all wℓ in token queries, wℓ /∈ {w∗
0, w

∗
1}.

Claim 9.1. If a scheme is secure in Game 2, the scheme is secure in Game 1.

Proof. For contradiction, let Adv1 be an adversary that breaks Game 1, and let us construct an adversary Adv2
that breaks Game 2. Adv2’s strategy is as follows: for users i with access to doc 0, Adv2 uses its challenger
Ch2 to answer token queries of Adv1; for other users, Adv2 generates a random key for each such user i, uki,
and answers Adv1’s queries using that key.

Let Ch2 be the challenger of Adv2 in Game 2. Adv2 works as follows:

1. Receive a graph G from Adv1. Construct a graph G′ which is G from which we remove the users with
no access to doc 0 as well as their edges. Provide G′ to Ch2. Receive g

k0/uki
2 and g

1/uki
2 for every user

i ∈ G′ from Ch2. Choose uki ← MK.KeyGen(1κ) for all users i ∈ G′ − G. For every edge (i, 0),
compute g

1/uki
2 . Provide all this information to Adv1.

2. Adv2 gets w∗
0 and w∗

1 from Adv1, forwards them to Ch2 and returns Ch2’s answer.

3. Adaptive step: answer Adv1’s queries as follows:

• Forward any encrypt query to Ch2 and provide Ch2’s result to Adv1.

• Forward any token request for user i ∈ G′ to Ch2 and return answer to Adv1. Compute H(wℓ)
uki

for every user i ∈ G−G′ using the generated uki.

4. Adv2 outputs Adv1’s decision.

We can see that since Adv1 makes no token queries containing w∗
0, w

∗
1 for users with access to doc 0,

Adv2 will also satisfy the restriction in Game 2.
We can see that Adv2 simulates Adv1’s inputs perfectly and when Adv1 distinguishes, so does Adv2; since

Adv1 wins in Game 1 with nonnegligible probability, Adv2 also wins in Game 2 with the same probability,
concluding the proof.

✷

We would like to simplify the game by only allowing encryption queries to w∗
0 and w∗

1. Note that Adv2
can compute by himself the result of any encrypt query for a word wℓ /∈ {w∗

0, w
∗
1} by simply requesting a

token for wℓ for any user and using the delta information g
k0/uki
2 . So it suffices to receive encryptions for the

w∗
0 and w∗

1 only, as in the following game.

10



Game 3

• Adv3 provides an access graph G with one document, labeled 0, and any number of users all with
access to document 0.

• Ch3 generates k0 ← MK.KeyGen(1κ, params) and provides gk0/uki2 and g
1/uki
2 for every user i.

• Adv3 provides w∗
0, w

∗
1.

• Ch3 chooses a random bit b and provides r∗, H2(r
∗, e(H(w∗

b), g2)
k0).

• Adaptive step: Adv3 makes the following queries to Ch3 adaptively. The ℓ-th query can be

– “Encrypt wℓ”, for wℓ ∈ {w∗
0, w

∗
1}: Ch3 returns rℓ, H2(rℓ, e(H(wℓ), g2)

k0)

– “Token for word wℓ /∈ {w∗
0, w

∗
1} for user i”: Ch3 returns H(wℓ)

uki .

Claim 9.2. If a scheme is secure in Game 3, the scheme is secure in Game 2.

Proof. For contradiction, assume there is a PPT adversary Adv2 that can break Game 2, and let us show how
to construct an PPT adversary Adv3 that can break Game 3.

Let Ch3 be the challenger of Adv3 in Game 3. The idea is that Adv3 will answer encrypt queries for word
wℓ /∈ {w∗

0, w
∗
1} by asking for a token for wℓ and then computing the ciphertext, and for words w∗

0 or w∗
1, by

asking Ch3 for encryptions. Adv3 proceeds as follows.

1. Adv3 receives the graph G from Adv2. Adv3 creates an additional user I with edge to document 0 and
adds it to G. Adv3 sends the new graph to Ch3, records the answers from Ch3 and returns all answers
to Adv2 except for gk0/ukI2 and g

1/ukI
2 .

2. Challenge step: Adv3 receives w∗
0, w

∗
1 from Adv2 and provides them to Ch3. Adv3 forwards these to

Ch3 and receives r∗, H2(r
∗, e(H(w∗

b), g2)
k0). Adv3 sends all these values to Adv2.

3. Adv3 answers the queries of Adv2 from the adaptive step as follows:

• “Encrypt wℓ” : If wℓ ∈ {w∗
0, w

∗
1}, Adv3 sends this query to Ch3 and returns Ch3’s result. Else

Adv3 asks Ch3 for “token wℓ user I”, receives H(wℓ)
ukI and computes r,H2(r, e(H(wℓ), g2)

k0)
for some r ← Zp by using k0/ukI .

• “Token wℓ for user i”: forward this query to Ch3 and send the response to Adv2.

4. Adv3 outputs Adv2 decision.

We can see that Adv3 plays the game with Ch3 correctly because it never asks Ch3 for encryption to
words not in {w∗

0, w
∗
1}. Moreover, Adv3 simulates the inputs to Adv2 exactly so Adv3 also has a nonnegligible

chance of deciding correctly equal to the one of Adv2, which concludes the proof.
✷

We now use the BDHV assumption to replace e(H(w∗
b ), g2) with a random value R, which is desirable

so that the adversary loses the information about b that e(H(w∗
b ), g2) provides.

11



Game 4

• Adv4 provides an access graph G with one document, labeled 0, and any number of users all with
access to document 0.

• Ch4 generates k0 ← MK.KeyGen(1κ, params) and provides gk0/uki2 and g
1/uki
2 for every user i.

• Adv4 provides w∗
0, w

∗
1.

• Ch4 chooses a random bit b and provides r∗, H2(r
∗, R) for R← GT .

• Adaptive step: Adv4 makes the following queries to Ch4 adaptively. The ℓ-th query can be:

1. “Encrypt wℓ” for wℓ ∈ {w∗
0, w

∗
1}: If wℓ = w∗

b, Ch4 returns rℓ and H2(rℓ, R), else Ch4 returns
rℓ, H2(rℓ, R

α), where α is such that gα1 = H(w∗
1−b)/H(w∗

b).

2. “Token for word wℓ for user i” for wℓ /∈ {w0, w1}: Ch4 returns H(wℓ)
uki .

Claim 9.3. Assuming BDHV and that H is a programmable random oracle, Game 3 and Game 4 are
computationally indistinguishable.

Proof. For contradiction, we assume that there is a PPT adversary D that distinguishes the two games, and
show how to construct a PPT reduction B that breaks BDHV.

B receives as input params, ga1 , g
b
2, g

1/a
2 , gc1 and T , where T is either e(g1, g2)abc or random. To distinguish

what is T , B proceeds as follows.
B wants to embed some of the values from its challenge into the random oracle results whenD queries for

w∗
0 or w∗

1. However, D could make queries to these values before declaring to B the values in the challenge
step.

As a solution, B will guess which of the queries to the random oracle H are for challenge values. Without
loss of generality, assume that D makes unique queries to H . We have three cases:

• B makes no query to the random oracle H including w∗
0 or w∗

1 before the challenge step.

• B queries exactly one of w∗
0 and w∗

1 to H before the challenge step.

• B queries both w∗
0 and w∗

1 to H before the challenge step.

Let i0 be the guessed index of the query to H in which B requests w∗
0; i0 could be ⊥ if B does not

request this value before the challenge step. Let p be a polynomial upper-bounding the runtime of D and
hence the number of queries to H that D makes. B assigns a probability of 1/3 to each case above and draws
i0, i1 from 1, . . . , p(κ).

When D provides w∗
0 and w∗

1 to B in the challenge step, B can check whether it guessed i0 and i1
correctly. If it did not, B outputs a random guess in its game, and halts.

• Initialization: B generates params and sends them to D. B chooses α← Zp.

• H simulation: Initialize oracle. For each query w of D to H , B does:

– If this is the i0-th query, return gc1.

– If this is the i1-th query, return gcα1 .

12



– Otherwise, choose q ← Zp, store oracle[w] := q and return gq1.

• B receives a graph G from D. For each user i > 1, let ∆i ← Zp and let ∆1 := 1. Instead of gk0/uki2 ,
provide g

b/∆i

2 , and instead of g1/uki2 , provide g
1/a
2 to D.

• Challenge step: Receive w∗
0 and w∗

1 from D. Validate whether i0 and i1 were correct guesses. If not,
output a bit at random and halt. Else, provide r∗, H2(r

∗, T ) to D.

• For each query of D during adaptive step:

– For “encrypt wℓ”: if wℓ = w∗
b, return rℓ and H2(rℓ, T ), else return rℓ, H2(rℓ, T

α).

– For “Token wℓ user i”: return g
a∆ioracle[wℓ]
1 .

• Output D’s answer.

Let us argue that B simulates the inputs toD correctly. All the inputs to the random oracle H are correctly
distributed, and the chance that c equals some value q drawn by B is statistically small.

B will have a chance of 1/poly of guessing correctly i0 and i1. Therefore, all we have to show is that
when B guesses these values correctly, B has a nonnegligible chance of outputting b.

For this purpose, let us show that the inputs B provides to D are statistically close to the inputs from
Game 3. Consider the following change of variables and note it preserves distributions:

a↔ uk1, b↔ k0/uk1, gc1 ↔ H(w∗
b), gcα1 ↔ H(w∗

1−b), ∆i ↔ uki/uk1

B sends D: g1/a∆i

2 = g
1/uki
2 , gb/∆i

2 = g
k0/uki
2 .

For “encrypt” and the challenge step, note that if T = e(g1, g2)
abc then T = e(H(w∗

b), g2)
k0 as in

Game 3, else T has the same distribution as R in Game 4.
For “token”, ga∆i×oracle[wℓ]

1 = H(wℓ)
uki , as desired.

Finally, when D distinguishes Game 3 from Game 4, B also breaks the BDHV assumption, which
completes the proof.

✷

Note that in Game 4, all the information using uki, k0 is useless to an adversary because the challenge
ciphertexts do not depend on these values. Therefore, we can simplify further the game:

Game 5

• Adv5 provides w∗
0, w

∗
1.

• Ch5 chooses a random bit b and provides r∗, H2(r
∗, R) for R← GT .

• Adv5 can repeat the following query; query ℓ is “Encrypt wℓ” for wℓ ∈ {w∗
0, w

∗
1}: Ch5 draws

rℓ ← Zp; if wℓ = w∗
b, Ch5 returns rℓ, H2(rℓ, R), else Ch5 returns rℓ, H2(rℓ, R

α), where α is such
that gα1 = H(w∗

1−b)/H(w∗
b).

By the security of the random oracle H2, no Adv can distinguish in Game 5 with non-negligible probability,
concluding our proof.

✷

13



9.2 Token hiding proof

Proof. We will create a set of hybrid games that progressively simplify the game until it becomes easy to
show that Adv cannot learn b.

The first game, Game 1 is the same as the token hiding game except that it removes the encrypt queries.
The intuition is that the output of the encrypt algorithm in our construction can be deduced from the outputs
of the token and delta algorithms.

Game 1

1. Adv1 provides G along with keys uki and kj for free users and documents.

2. Ch1 generates a new key for every non-free user i and document j using MK.KeyGen(1κ). For
every edge (i, j) ∈ G, Ch1 sends MK.Delta(uki, kj) to Adv1.

3. Adaptive step: Adv1’s ℓ-th query is “Token wℓ for user i” and Adv1 receives MK.Token(uki, w).

4. Adv1 provides w∗
0 and w∗

1 to Ch1. Ch1 chooses b ← {0, 1} and sends MK.Token(uk0, w
∗
b ) to

Adv1.

5. Adv1 runs the adaptive step again.

Restriction on Adv1: For every “Token wℓ for user i” query: wℓ /∈ {w∗
0, w

∗
1} or user i is free.

Claim 9.4. If a scheme is secure with Game 1, the scheme must be token hiding.

Proof. For contradiction, assume there is a PPT adversary Adv that wins the token hiding game, and let us
construct a PPT adversary Adv1 that wins Game 1. Let Ch1 be the challenger in Game 1. Adv1 uses Adv as
follows.

• On input a graph G and keys from Adv, Adv1 simply forwards these to Ch1. Adv1 forwards the
responses from Ch1 to Adv and records these as well.

• Adaptive step: For “Token” queries, Adv1 sends the same queries to Ch1 and forwards the responses to
Adv.

For a query “Encrypt wℓ for document j”, Adv1 proceeds as follows. If document j is free, Adv1 knows
kj from Adv so it simply computes MK.Enc(kj , wℓ). If document j is non-free, Adv1 must have a delta
between user 0 and document j, say ∆0,j . Adv1 requests “Token wℓ for document 0” to Ch1, which is
a valid request because wℓ /∈ {w0,α, w1,α}α because of the constraints on Adv. Upon receiving token
Token back, Adv1 sends r,H2(r, e(t,∆0,j)) to Adv.

• Adv1 forwards the challenges from Adv to Ch1 and sends Ch1’s answer to Adv1.

• Adv1 proceeds as above in the second adaptive step.

• Adv1 ouputs Adv’s answer.

We can see that Adv1 simulates Adv’s inputs perfectly. Since Adv wins in the token hiding game with
non-negligible probability, so will Adv1 win in Game 1.

✷

14



To simplify the game further, we would like to remove the free documents and the free users from the
game, and only work with non-free users and documents.

Game 2

1. Adv2 provides a graph G that has only non-free documents and users.

2. Ch2 generates a new key for every user i and document j using MK.KeyGen(1κ). For every edge
(i, j) ∈ G, Ch2 provides gkj/uki2 to Adv2. For every user i > 0, Ch2 provides g1/uki2 .

3. Adaptive step: Adv2’s ℓ-th query can be “Token wℓ for user i”, in which case it receives H(wℓ)
uki

from Ch2.

4. Adv2 provides w∗
0 and w∗

1 to Ch2. Ch2 chooses b at random and provides H(w∗
b)

uk0 to Adv2.

5. Adv2 runs the adaptive step again.

Restriction on Adv2: wℓ /∈ {w∗
0, w

∗
1}, for all ℓ.

Claim 9.5. If a scheme is secure with Game 2, the scheme is secure with Game 1.

Proof. For contradiction, assuming there is a PPT adversary Adv1 for Game 1, let us show how to construct
a PPT reduction Adv2 that wins in Game 2. Let Ch2 be the challenger of Adv2 in Game 2. Adv2 works as
follows:

• Receive G from Adv1 along with uki and kj for all free nodes. Remove from G all free nodes and thus
obtain a new graph G′. Send G′ to Ch2. Store uki, kj .

• Ch2 replies with g
kj/uki
2 and g

1/uki
2 corresponding to non-free nodes. Adv2 needs to compute all deltas

for G for Adv1. For an edge between two free nodes, Adv2 has both keys so it can directly compute the
delta. For an edge between two non-free nodes, Adv2 got gkj/uki2 from Adv1. For an edge between a
non-free user i and a free document j, Adv2 knows g1/uki2 and kj so it can compute delta g

kj/uki
2 . To

provide g1/uki2 to Adv1, Adv2 either uses its knowledge of uki for free users or receives this value from
Ch2.

• Adv2 now answers Adv1’s queries, which are of the form “Token wℓ for user i”. We have two cases. If
i is a free user, Adv2 can directly compute the token using uki. If i is non-free, i can ask Ch2 for the
token and forward it to Adv2.

We can see that Adv2 still satisfies the constraints of its game and simulates the inputs to Adv1 perfectly.
Moreover, whenever Adv1 wins, Adv2 wins as well.

✷

We now write a final hybrid in which H(wb,ℓ)
uk0 is a random value preserving the equality relations of

wb,ℓ. Claim 9.6 shows that Game 2 and Game 3 are computationally indistinguishable.

Game 3

1. Adv3 provides G with only non-free documents and users.

15



2. Ch3 generates a new key for every user i and document j using MK.KeyGen(1κ). For every edge
(i, j) ∈ G, Ch3 provides gkj/uki2 to Adv3. For every user i > 0, Ch3 provides g1/uki2 .

3. Adaptive step: Adv3 queries ℓ-th query: “Token wℓ for user i” and receives H(wℓ)
uki .

4. Adv3 provides w∗
0 and w∗

1 to Ch3. Ch3 chooses b at random and sends R, for R← GT .

5. Adv3 runs the adaptive step again.

Restriction on Adv3: wℓ /∈ {w∗
0, w

∗
1}, for all ℓ.

We can see that in this game Adv3 receives no information about b information theoretically. The chance
Adv3 has to guess b is exactly 1/2, which completes our proof.

Claim 9.6. Assuming XDHV holds, Game 2 is computationally indistinguishable from Game 3, in the random
oracle model for H .

Proof. For contradiction, assume that there is a PPT adversary D that can distinguish the two games (i.e.,
distinguish between Ch2 and Ch3). Let us construct a PPT adversary B that can break the XDHV assumption.

Let p be a polynomial in which D runs. As in the proof of data hiding, B wants to embed a ciphertext
from its challenge, gb1 into the oracle result to D, when D queries for the challenge ciphertext w∗

b. However,
D can query w∗

b to H before the challenge step, so before B knows the value of w∗
b. Therefore, B will guess

which of the queries to the random oracle H are w∗
b. If during the challenge step the guess turns out to be

incorrect, B outputs a bit at random and halts. Otherwise B proceeds.
B receives as input ga1 , g

b
1, T, g

ca
2 , gcd2 , gd1 , g

1/d
2 and must decide if T = gab1 or T is random.

• H simulation: B flips a coin, and if the coin is heads, B predicts that D will never ask for w∗
b to

the random oracle; otherwise, B predicts that D with ask for w∗
b and chooses an index at random

I ∈ {0, . . . , p(κ)} to represent the index of the query during which D will ask for w∗
b. For each query

w of D to H , B does:

– If this is the I-th query, return gb1.

– Otherwise, choose q ← Zp, store oracle[w] := q and return gq1.

• Initialization. B starts adversary D and receives a graph G. B provides the following information for
the graph. For each document j, let αj ← Zp if j > 1 and let α1 := 1 for j = 1. For each user i, let
∆i ← Zp if i > 1, and let ∆1 := 1 if i = 1.

– g
kj/uk0
2 := g

dcαj

2 , for j ≥ 1.

– g
kj/uki
2 := g

acαj/∆i

2 .

– g
1/uki
2 := g

1/d∆i

2 .

• Adaptive step: If user is 0, B outputs gaoracle[w]
1 . Otherwise, user i > 0, and B outputs gd∆ioracle[w]

1 .
Note that it is crucial that w ̸= w∗

b because B would not know oracle[w∗
b] (which should be b).

• B receives w∗
0 and w∗

1. B checks if w∗
b is indeed the I-th element D queried to H , B’s guess. If not, B

outputs a random bit and halts. Otherwise, B sends T to D.

16



• B proceeds as in the adaptive step.

• B outputs D’s decision.

Let us argue that B simulates the inputs to D correctly, whenever B does not halt early. All the inputs to
the random oracle H are uniformly random distributed, and the chance that a equals some value q drawn by
B is statistically small.

Consider the following change of variables and note that it preserves distributions:

a↔ uk0, gb1 ↔ H(w∗
b), c↔ k1/uk1uk0, d↔ uk1, ∆i ↔ uki/uk1, αj ↔ kj/k1.

The quantities D receives are:

• For gkj/uk02 with j ≥ 1: gdcαj

2 = g
uk1

k1
uk0uk1

kj
k1

2 = g
kj ,uk0
2 , as desired.

• For gkj/uki2 : gacαj/∆i

2 = g
k1
uk1

αj
∆i

2 = g
kj/uki
2 , as desired,

• For g1/uki2 : g1/d∆i

2 = g
1

uk1∆i
2 = g

1/uki
2 , as desired.

• Adaptive step: gaoracle[wℓ]
1 = H(wℓ)

uk0 , and g
d∆ioracle[w]
1 = H(w)uki as desired.

• If T is random, the challenge step is as in Game 3. When T = gab1 = H(w∗
b)

uk0 , the challenge step is
as in Game 2.

We can see that B simulates the inputs to D statistically close, whenever B does not halt early. Since
D has a nonnegligible chance of distinguishing Game 3 from Game 2, when B does not halt, B also has a
non-negligible chance of breaking the the XDHV assumption. The chance that B does not halt is at least
1/2p, so the overall advantage of B remains non-negligible.

✷

✷

10 Acknowledgements

We thank Allison Lewko for pointers to common assumptions in asymmetric bilinear map groups, and Stefano
Tessaro for comments on the syntax.

References

[1] PBC library: The pairing-based cryptography library. http://crypto.stanford.edu/pbc/.

[2] Feng Bao, Robert H. Deng, Xuhua Ding, and Yanjiang Yang. Private query on encrypted data in
multi-user settings. In ISPEC, pages 71–85, 2008.

[3] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO, pages 535–552, 2007.

[4] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In EUROCRYPT’04, pages 506–522, 2004.

17

http://crypto.stanford.edu/pbc/


[5] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In TCC, pages
535–554, 2007.

[6] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael Steiner.
Highly-scalable searchable symmetric encryption with support for boolean queries. Cryptology ePrint
Archive, Report 2013/169, 2013. http://eprint.iacr.org/.

[7] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In ACNS, pages 442–455, 2005.

[8] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In CCS, pages 79–88, 2006.

[9] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156, 2008.

[10] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216.

[11] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric encryption.
In CCS, pages 965–976, 2012.

[12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[13] Remya Rajan. Efficient and privacy preserving multi user keyword search for cloud storage services. In
IJATER, pages 48–51, 2012.

[14] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In Proceedings of the 21st IEEE Symposium on Security and Privacy, Oakland, CA, May 2000.

[15] Yanjiang Yang, Haibing Lu, and Jian Weng. Multi-user private keyword search for cloud computing. In
CloudCom, pages 264–271, 2011.

[16] Fangming Zhao, Takashi Nishide, and Kouichi Sakurai. Multi-user keyword search scheme for secure
data sharing with fine-grained access control. In ICISC, pages 406–418, 2011.

18

http://eprint.iacr.org/

	Introduction
	Related work
	Problem setting
	Preliminaries
	Syntax and security definitions
	Data hiding
	Token hiding

	Construction
	Implementation
	Assumptions
	Security proof
	Data hiding proof
	Token hiding proof

	Acknowledgements

