
CryptDB: A Practical Encrypted Relational DBMS

Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan
{raluca, nickolai, hari}@csail.mit.edu

ABSTRACT
CryptDB is a DBMS that provides provable and practical privacy
in the face of a compromised database server or curious database
administrators. CryptDB works by executing SQL queries over
encrypted data. At its core are three novel ideas: an SQL-aware en-
cryption strategy that maps SQL operations to encryption schemes,
adjustable query-based encryption which allows CryptDB to ad-
just the encryption level of each data item based on user queries,
and onion encryption to efficiently change data encryption levels.
CryptDB only empowers the server to execute queries that the users
requested, and achieves maximum privacy given the mix of queries
issued by the users. The database server fully evaluates queries
on encrypted data and sends the result back to the client for final
decryption; client machines do not perform any query processing
and client-side applications run unchanged. Our evaluation shows
that CryptDB has modest overhead: on the TPC-C benchmark on
Postgres, CryptDB reduces throughput by 27% compared to regular
Postgres. Importantly, CryptDB does not change the innards of
existing DBMSs: we realized the implementation of CryptDB using
client-side query rewriting/encrypting, user-defined functions, and
server-side tables for public key information. As such, CryptDB is
portable; porting CryptDB to MySQL required changing 86 lines of
code, mostly at the connectivity layer.

1. INTRODUCTION
Theft of sensitive private data is a significant problem [37].

Database management systems (DBMSs) are an especially appeal-
ing target for attackers, because they often contain large amounts of
private information. When individual users or enterprises store their
sensitive data in a DBMS today, they must trust that the server hard-
ware and software are uncompromisable, that the data center itself
is physically protected, and assume that the system and database
administrators (DBAs) are trustworthy. Otherwise, an adversary
who gains access to any of these avenues of attack can compromise
the entire database, as has been documented in a number of pub-
lished reports of data thefts [37] (and presumably there are more
compromises that have not been publicized).

These stringent security requirements are also at odds with cost-
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saving measures such as the consolidation of DBMSs belonging
to different business units into a common enterprise-wide IT in-
frastructure, moving databases into a public cloud, or outsourcing
DBA tasks. In fact, “lack of trust” is an oft-quoted primary con-
cern about moving data in database systems to more cost-effective
cloud infrastructures. Moreover, thanks to high-profile thefts of
social security identifiers, credit card numbers, and other personal
information from various online databases, these concerns are in-
creasingly being reflected in the law as well: for instance, recent
legislation requires that all databases containing personal data about
Massachusetts residents be encrypted [28].

This paper presents CryptDB, a practical relational DBMS that
provides provable privacy guarantees without having to trust the
DBMS server or the DBAs who maintain and tune the DBMS. In
CryptDB, unmodified DBMS servers store all data in an encrypted
format, and execute SQL queries over encrypted data without having
access to the decryption keys. CryptDB works by intercepting and
rewriting all SQL queries in a frontend to make them execute on
encrypted data, by encrypting and decrypting all data, as well as
changing some query operators, while preserving the overall seman-
tics of the query. The frontend has access to the encryption key for
the entire database. By not giving the DBMS server access to the
decryption key, CryptDB greatly reduces trust requirements for a
DBMS server. For example, CryptDB can alleviate privacy concerns
when outsourcing databases to a cloud computing environment [47],
such as Amazon’s AWS, Microsoft’s SQL Azure, or Google’s App-
Engine, or when outsourcing the work of DBAs. CryptDB can
also prevent privacy breaches due to curious administrators [6] or
compromised DBMS servers.

There are three significant challenges in designing and imple-
menting a DBMS that operates on encrypted data. The first lies in
supporting a wide range of SQL queries on encrypted data. Unlike
a simple encrypted data store, a DBMS must perform computations
on encrypted data to execute SQL queries. For example, an SQL
query may ask for the average salary of employees, for the names
of employees whose salary is greater than $60,000, or for the list
of employees that share an office with more than two colleagues.
Simply encrypting each row in the database with a single key would
not allow a DBMS server to execute such SQL queries without
access to the decryption key.

The second challenge is to carefully define “privacy” for an un-
trusted DBMS, as well as come up with a system design that prov-
ably achieves that definition. On the one hand, even if all of the data
stored on a DBMS server were encrypted, the server must be able to
perform certain operations on the rows, such as aggregations, selec-
tions, and joins. On the other hand, an adversary that compromises
a DBMS server may now learn information about the data, such as
relations between different rows in a table. Thus, we need to define
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privacy in a way that balances the need for server-side computation
with the need to minimize information revealed to the server.

The third challenge lies in making an encrypted DBMS practical
to use. To provide good performance, an encrypted DBMS should
impose minimal performance overheads on the server, but at the
same time avoid offloading SQL query execution onto the client. To
make an encrypted DBMS easy to deploy, an ideal system would
also require no changes to existing DBMS server software, so that it
can take advantage of more than four decades of engineering and
optimization work, run over a range of commodity DBMS servers,
as well as as make no changes to client applications.

We address these challenges in CryptDB’s design using three
key ideas. The first idea is an SQL-aware encryption strategy. We
observe that SQL queries are composed of primitive operators, no-
tably order comparisons, equality checks, and addition. For most of
these operators, we found existing encryption schemes in which the
operation can be performed on the ciphertext without knowing the
decryption key. One exception is joins, for which no cryptographic
primitive existed; in this case, we developed a novel cryptographic
construction for privacy-preserving joins. Given these primitives,
we encrypt each data item with encryption schemes that enable the
server to execute the necessary SQL operators on that data. This
approach is both efficient and practical, since the bulk of the DBMS,
including query planning, data layout, transaction coordination, and
the structure of the queries themselves, can remain the same, and
only individual SQL operators used by a query may need to change.

The second idea is adjustable query-based encryption, where
CryptDB dynamically adjusts the encryption level for each data
item at runtime, so as to achieve the maximum privacy level given
the user’s queries. In particular, CryptDB initially encrypts all
data with the strongest level of encryption, and, as the application
issues SQL queries, CryptDB adjusts the level of encryption on the
server, so that the server can perform the classes of computations
necessary for that SQL query. This model forms the basis of our
privacy definition, ensuring maximum privacy given the classes of
computations required by the queries presented to the DBMS, and
avoids the need to modify application code to declare the necessary
level of encryption ahead of time.

The third idea is to implement adjustable query-based encryption
by encrypting each data item in an onion of encryptions, from
weaker forms of encryption that allow certain computations, to
stronger forms of encryption that reveal no information, as shown
in Figure 3. This approach allows CryptDB to efficiently adjust
encryption levels on the server without having to re-encrypt all data
at the client. For example, the outermost layer uses randomized
encryption, which guarantees that the server can learn nothing about
the data, aside from its length. If the user issues an SQL query
containing WHERE id=5, CryptDB sends the server an onion key
to decrypt the id column to a deterministic encryption level, where
identical plaintexts have identical ciphertexts.1 CryptDB then sends
the server a deterministic encryption of the constant 5, allowing it
to compute matching rows by only revealing the necessary relations
between data items, and not revealing the actual data, or other
relations between data items not used in this query.

To our knowledge, CryptDB is the first private system to sup-
port all of standard SQL over encrypted data without requiring
any client-side query processing, modifications to existing DBMS
codebases, changes to legacy applications and offloads virtually all
query processing to the server. CryptDB works by rewriting SQL
queries, storing encrypted data in regular tables, and using an SQL
user-defined function (UDF) to perform server-side cryptographic
1CryptDB never gives the server onion keys to decrypt the data to
plaintext.

operations. We have implemented a prototype of CryptDB that
works with unmodified Postgres and MySQL databases.2 Porting
CryptDB to a new database is straightforward: our port to MySQL
required changing just 86 lines of code. Our experimental results
demonstrate that CryptDB is portable and imposes a 27% penalty
in throughput for a TPC-C workload compared to an un-encrypted
DBMS. We view this overhead as relatively modest and a tolerable
penalty in many contexts where the desire for data privacy is more
important than achieving the highest level of performance.

2. THREAT MODEL
The goal of CryptDB is to ensure the secrecy of data in an SQL

database in the face of an adversary that has complete access to
the database server. The adversary could compromise the server
software, or even physically attack the server by stealing and read-
ing disks. Consequently, CryptDB makes no assumptions about the
database server keeping any data private. This model covers all
of the motivating scenarios we have mentioned so far, such as out-
sourcing a SQL database to the cloud, protecting against a curious
database administrator, and guarding against attackers breaking into
the database server machine. On the other hand, CryptDB assumes
that the application and the CryptDB frontend (Figure 1) are not
compromised, and do not reveal their keys to the adversary. Dealing
with attacks on these components, such as SQL injection vulnerabil-
ities or authentication bypass attacks, is outside of the scope of this
paper.

For the purposes of this paper, we assume that a malicious server
does not change the data or query results. Ensuring integrity for SQL
queries has been heavily researched, and we refer to prior literature
for techniques to achieve integrity, as follows. Since CryptDB
allows the DBMS to process relational queries on encrypted data
as it would on plaintext data, most previously-proposed approaches
can be readily used with CryptDB. A malicious server can affect
three aspects of data security: integrity, freshness, and completeness.
Integrity is solved by adding a MAC to each tuple as in [22, 26,
39]. Freshness has been addressed using Merkle hashes or chained
hashes [22, 36, 39] and both freshness and completeness of query
results are addressed in [32]. Also, [25] and [44] allow the client
to verify results of aggregation queries, [49] authenticates joins,
and [42] provides query assurance for most read queries.

2.1 Security Definition
Intuition. At a high level, CryptDB’s definition of privacy says

that CryptDB only reveals the relations between tuples needed by
the server to perform certain computations; in other words, CryptDB
provides maximum privacy given the classes of computations needed
at the server to process SQL queries. More specifically, the defini-
tion says two things:

• If users request no relational predicate filtering on a column
(i.e., they only request projections and computation), nothing
about the column content is leaked; if the user requests equal-
ity checks on a column, we reveal which items repeat in that
column; if the user requests inequality checks on a column,
we reveal the order of the elements in the column. We never
reveal the actual data content.

• The server cannot process queries (that is, discover new data
relations) different from the ones requested by the user.

This intuition suffices to grasp CryptDB’s security model, so the
reader uninterested in formalism can proceed to the “Implications”
2In fact, CryptDB will work with any other unmodified commodity
relational DBMS servers too.
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part of this section below (and perhaps return to the formal definition
of security later).

Definition. To formalize cryptographic definitions, often times
one defines an ideal world using oracles and then proves that the
proposed protocol has as much privacy as the ideal world with
respect to polynomial-time adversaries. We will instead use the term
ideal system.

What is the ideal system considering our goals? It is a system in
which the server only learns the data relations that it needs in order
to perform typical SQL processing for user queries, and nothing else.
This is equivalent to the server having access to no data content,
but only to an oracle that is willing to answer questions about the
relations between data items, restricted only to questions needed to
process requested queries.

Given a query Q, let FUNC(Q) be the classes of computa-
tions needed by Qi; that is, the relations between tuples that
the server is allowed to know to process the query. For ex-
ample, if Q is SELECT * FROM table1, table2 WHERE
table1.c1 = table2.c2, then FUNC(Q) consists of ques-
tions of the form: “is the ith item in c1 equal to the jth item in c2”.
Obviously, the server needs to know this information to process a
join, but it does not need to know the actual value of the two items.
In the Appendix, we describe FUNC precisely.

DEFINITION 1 (IDEAL SYSTEM). Let Q1 . . . Qt be the
queries users requested up to time t. The database at the server
consists of each data item encrypted with the strongest encryption
scheme (random). Moreover, the server has access to an oracle that
only answers questions from FUNC(Q1) ∪ . . . ∪ FUNC(Qt).

Obviously, in the Ideal System, the server can process SQL
queries on encrypted data because all the information it needs are
the relations in FUNC(Q1) ∪ . . . ∪ FUNC(Qt), by the definition
of FUNC. At the same time, such server always has the database
encrypted with the strongest encryption scheme that leaks nothing.

We want the server in CryptDB to learn as much information as
the server in the Ideal System and we show this property in §4.

Implications. While CryptDB does not reveal any data item, it
does not hide data access patterns. For example, the database server
can monitor the frequency with which some data item is returned
in a result set. Masking such access patterns from the server would
incur significant overhead [33], require virtually an overwrite of
the underlying DBMS, add considerable client-side processing, and
preclude server-side optimizations.

CryptDB’s database server can also check any predicates used
to execute past user-requested SQL queries, both at the time the
query is executed, and at any later time. For example, if the applica-
tion were to issue the query SELECT * FROM table1 WHERE
c1 = x2ad412, the server would be able to check rows for this
predicate; however, this will be mostly useless to the server because
x2ad412 is an encrypted value and all that the server learns is the
number of rows that match this unknown constant.

Note that, when the server needs to evaluate a predicate P (say,
id = x245ab1?), the server is allowed to perform the class of
equality check computations on column id (albeit checking for
equality with an encrypted value) rather than just the computation
of checking for a specific value. As such, the server can check
predicates of the form c1 = *, where ∗ is any ciphertext, but
whose corresponding value the server does not know. Therefore,
what the server learns is the frequency of repeats of values only in
column c1.

We considered allowing the server to check equality only for
the specific constant given by the user, but cryptographic primitives
supporting equality checks in this way are very expensive. Moreover,
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Figure 1: System overview. Steps (1)-(5) illustrate typical query
flow, with the user or application issuing query (1) and receiv-
ing result (5). UDF stands for user-defined function.

doing so will not bring much additional privacy. The reason is that,
typically, user queries end up performing selection on the same
column for a variety of different constants; after a few such queries,
the privacy of this seemingly-stronger scheme will converge to the
privacy of our scheme.

2.2 User-enforced Security
In certain applications, it may be difficult for a programmer to

find all of the queries issued by the application, making it difficult
to reason about the precise privacy guarantees that CryptDB will
provide. In this case, CryptDB allows the programmer to optionally
annotate the schema (in the frontend, as defined in the next section)
by specifying the lowest security level allowed for each column. For
example, the programmer may allow equality checks, but may not
want to reveal order within the column. In this case, CryptDB will
not allow the server to perform inequality checks, and reject any
query that requires such computations.

3. DESIGN OF CRYPTDB
CryptDB works by allowing the DBMS server to execute SQL

queries on encrypted data almost as if it were executing the same
queries on plain-text data. In CryptDB, the query plan for an en-
crypted query remains the same as for the original query, but indi-
vidual operations comprising the query, such as equality comparison
or summation, are performed on ciphertexts, and use modified oper-
ators in some cases.

Figure 1 shows the architecture of CryptDB. CryptDB is com-
posed of two parts: a trusted client-side frontend, and an untrusted
DBMS server. The frontend keeps track of a secret master key
MK, the database schema as seen by the application (i.e., without
encryption), and the level of onion encryption currently exposed at
the server for each data item. The server, on the other hand, keeps
track of the encrypted schema, the encrypted versions of user data
(i.e., the lowest level of encryption revealed to the server by the
frontend), and auxiliary tables used by CryptDB. The server imple-
ments CryptDB-specific UDFs that enable the frontend to compute
on ciphertexts on the server. Finally, the server stores encrypted
versions of the frontend’s state, including the schema and the cur-
rent onion levels, in a separate table, encrypted with MK, which
allows frontends on multiple client machines to synchronize with
one another.

Figure 1 also illustrates the typical flow of a query in CryptDB.
In step (1), the user issues a query, which is first passed through
the query rewriter/encryptor (QRE). This module anonymizes each
table and column name. Using the master key MK, this module
encrypts each constant in the query with an encryption scheme
allowing the desired operation, as we will describe shortly. In step
(2), the query is passed to the onion key manager (OKM). This
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module assesses if the server should be given onion keys to execute
the query. If so, the OKM provides the necessary onion keys by
issuing an UPDATE query at the server that invokes a UDF to adjust
the security of the appropriate columns to increase their functionality.
In step (3), the OKM forwards the anonymized query to the server,
which executes it using standard SQL (and occasionally invokes
more UDFs, as we will explain). In step (4), the DBMS returns the
query result, and in step (5) the result decryptor (RD) decrypts the
results and returns them to the user. We elaborate on these steps in
the rest of this section.

3.1 SQL-aware Encryption Strategy
To implement encryption that allows SQL query processing, we

use existing encryption schemes, optimize a recent scheme, and
design a new cryptographic primitive for joins, as we will now
describe. CryptDB uses the same level of encryption to encrypt all
data items in a given column, so that the same computation can be
performed on every element in that column.

For each encryption type, we explain the security property that
CryptDB requires from it. We explain how to implement it with
tools that are believed to achieve such security; if such tools are
ever broken, they can be replaced with other tools that provide such
property, without breaking the security design of CryptDB.

Random (RND). RND provides maximum privacy, such as in-
distinguishability under an adaptive chosen-ciphertext attack (IND-
CCA2), also known as semantic security. In particular, two equal
values will be mapped to different encryptions with high probability.
RND does not allow any computation to be performed efficiently on
the ciphertext. To implement RND, we use AES in UFE mode [11].

Deterministic (DET). DET has a slightly weaker guarantee: it
only leaks which encrypted values correspond to the same data
value, and nothing else. This encryption level allows the server to
perform equality checks, which means it can perform selects with
equality filters, equality joins, GROUP BY, COUNT, DISTINCT,
etc. There are many ways to implement DET, such as DETK(v) =
RNDK1(v) ‖ HMAC−SHA1K2(v), where ‖ is the concatenation
operator, K1 and K2 are two keys derived from K, and K itself is
derived by encrypting the table and column names with MK. For
this DET construction, the server compares two encryptions by
comparing their HMAC−SHA1 values.

Order-preserving encryption (OPE). OPE allows order rela-
tions between data items to be established based on their encrypted
values, but does not leak any other information about the data con-
tent. A recent proposal for OPE [3] is an encryption scheme that
preserves order: if x < y, then OPEK(x) < OPEK(y), for any
secret key K. Therefore, if a column is encrypted with OPE, the
server can perform range queries when given encrypted constants
OPEK(c1) and OPEK(c2) denoting the range c1 through c2. More-
over, the server can perform ORDER BY, MIN, MAX, SORT, etc.

OPE is a weaker encryption scheme because it reveals order.
Thus, the frontend will only reveal OPE-encrypted columns to the
server if users request range queries on those columns. OPE has
provable security guarantees: the encryption is equivalent to a ran-
dom permutation that preserves order. Therefore, the difference
between two encryptions OPEK(y)− OPEK(x) is basically ran-
dom, and is not equal to y − x except for the sign.

A provably secure OPE scheme was only proposed last year [3].
There was no implementation of the scheme, or any measure of how
practical it would be, so we implemented it. The initial performance
was about 20 ms per encryption, which was not great, given that
each row in a table may have a few items that should be encrypted
with OPE. We implemented several optimizations to reduce the
cost of OPE. At a high-level, given a value v, OPE performs
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Figure 2: Packing of 16 integer values (32 bits each) into a sin-
gle 1024-bit value that is subsequently encrypted using HOM.

binary search in the field of encryptions to find an encryption for
v. We realized that intermediate search results can be reused across
encryptions of different values, so we cache them when performing
many such encryptions (e.g., upon database load). To search the
cache efficiently we used fast AVL binary search trees. This reduced
the cost of OPE encryption to 4 ms, without affecting its security.
We also implemented a hypergeometric sampler that lies at the core
of OPE. The most efficient such scheme was proposed in 1988 (now
used in many tools such as MathWorks) [21], and we translated its
original implementation from Fortran-1988.

Homomorphic encryption (HOM). HOM is an encryption
scheme that is IND-CCA secure, but allows the server to perform
computations on encrypted data, the final result being decrypted by
the frontend. While homomorphic encryption for general operations
is prohibitively slow [9], homomorphic encryption for summation
is efficient. To support summation, we implemented the Paillier
cryptosystem [35]. With Paillier, multiplying the encryptions of
two values results in an encryption of the sum of the values, i.e.,
HOMK(x) · HOMK(y) = HOMK(x + y), where multiplication
is performed modulo some public-key value. When the server per-
forms summation on a column encrypted with HOM, it calls a UDF
that performs Paillier multiplication, and uses CryptDB’s public
key table to look up K, to homomorphically compute a ciphertext
corresponding to the sum of the plaintext values. HOM is secure
under a chosen-plaintext attack. HOM can also be used for com-
puting averages (by having the server return the sum and the count,
and dividing the decrypted sum by the count in the frontend), and
for incrementing values (e.g., SET id=id+1), on which we will
elaborate shortly.

One drawback with HOM is that the ciphertext length is 2048
bits long for each data value. However, we made the following
observation: a row can store just one HOM ciphertext for several in-
teger columns, because each HOM 2048-bit ciphertext corresponds
to a 1024-bit plaintext value, and 8 32-bit values from different
columns can be packed into one 1024-bit value at different bit off-
sets (allowing for 32 zero bits between each 32-bit integer value).
Individual columns can still be aggregated by having the frontend
extract the sum of the desired columns from the appropriate offset in
the homomorphically-computed plaintext. Figure 2 illustrates this
optimization.

Word search (SEARCH). To allow word searches (e.g., using
the “ILIKE” keyword), we implement a cryptographic protocol for
keyword searches on encrypted text [1, 43]. SEARCH allows the
server to detect repeating words in a given column.

Join (JOIN and OPE−JOIN). A separate encryption level is
necessary to allow equality joins between two columns, because the
DET encryption level uses different keys for each column. At a high
level, JOIN allows the server to compare values between values in
columns A and B, given a token from the frontend for columns
A and B. JOIN also supports all operations allowed by DET and
SEARCH, and also allows the server to detect repeating values
between two columns. For inequality joins, OPE−JOIN allows the
server to perform inequality joins on any columns at that encryption
level. The mechanics of these encryption levels are discussed in
more detail in §3.5, along with the entire join mechanism.
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any value

JOIN: equality join

SEARCH: word search
(only for text fields)

DET: equality selection

any value

OPE-JOIN: inequality join

OPE: comparison

RND: no functionality

int value

HOM: sum

Onion 1 Onion 2 Onion 3

RND: no functionality

Figure 3: Onion layers of encryption and the classes of compu-
tation they allow.

3.2 Adjustable Query-based Encryption
A key part of CryptDB’s design is adjustable query-based encryp-

tion, which dynamically determines the level of encryption to reveal
to the server. The answer depends on the queries being asked over
the data: if there is no reason to compare data items in a column
or sort a column, the column will be encrypted with RND, and for
columns that perform equality checks but not inequality checks,
DET suffices. Unfortunately, there are many databases where the
query set is not known in advance. Thus, we need an adaptive
scheme that dynamically “does the right thing” in terms of choosing
an encryption strategy for the query at hand.

Our idea is to encrypt each cell independently into an onion: each
value in the table is dressed in layers of increasingly stronger en-
cryption, as illustrated in Figure 3. Each layer of each onion enables
certain kinds of functionality as explained in the previous subsec-
tion. For example, the outermost layers, RND and HOM, provide
maximum privacy, whereas OPE provides more functionality. For
numeric values, CryptDB maintains three onions, whereas for string
values, CryptDB maintains two onions (i.e., no HOM). To prevent
the server from learning information from column or table names,
CryptDB’s frontend also anonymizes the schema. Figure 4 shows
an example server-side schema and data under CryptDB, along with
the corresponding plaintexts. Each data item is stored encrypted in
at most 3 onions (for integers) or 2 onions (for non-integer values),
although CryptDB’s optimizations can reduce that to 1 onion for
some sets of queries (as discussed in §3.7).

For each level of each onion, the frontend uses the same key for
encrypting values in the same column, and different keys across
columns, onion levels, and tables. All these keys are derived from
the master key MK. For example, for table t, column c, encryption
level l, the frontend uses the key

Kt,c,l = PRPMK(“table t”, “column c”, “level l”), (1)

where PRP is a pseudorandom permutation (such as AES).
Each onion starts out encrypted with the most private encryption

scheme (RND for onions 1 and 2, and HOM for onion 3). As the
frontend receives SQL queries from the application, the onion key
manager (OKM) determines whether layers of encryption need to
be removed. Given a predicate P on column c needed for the query,
the OKM first establishes what onion layer is needed to perform P
on c. If the encryption of c is already at an onion layer that allows
P , the OKM does nothing. Otherwise, the OKM must strip off the
onion layers to allow P on c, by sending the corresponding onion
key to the server.

To avoid changing the DBMS, CryptDB implements onion layer
decryption using user-defined functions in the server. For example,
to decrypt onion 2 of column 2 in table 1 to level OPE, the OKM
issues the following query to the server, using the DECRYPT_RND
UDF:
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Figure 4: Data layout at the server. When the frontend creates a
table with the schema on the left, the table created at the server
is the one from the right.

UPDATE Table1 SET C2-Onion2 =
DECRYPT_RND(K, C2-Onion2)

where K is the appropriate key computed as in Eq. (1).
Note that decryption is performed entirely by the server and not

by the client. More importantly, in the steady state, no server-side
decryptions are needed, since column decryption happens only when
a new type of predicate is performed on a column. For example,
after an equality predicate is performed on a column and the server
brings the column to level DET, the column remains in that state,
and future such queries no longer require decryption. As §6 will
illustrate, this ensures that, in the steady state, the overhead of
CryptDB is acceptably low. The resulting privacy level to which
the database converges is the maximum privacy level for the set of
queries issued by the application.

3.3 Query Execution for Read Queries
To execute each SQL query, the frontend anonymizes, encrypts

and rewrites the query before forwarding it to the untrusted DBMS
server. To anonymize a query, the frontend replaces each table with
the table name from the anonymized schema (see Figure 4). For
projection, the frontend replaces each column with the name of the
anonymized column for the first onion. For executing predicates or
aggregates on a column, the frontend replaces the column with the
anonymized name of the onion that allows the necessary operation
on that field, and, for certain operations (such as SUM), the frontend
replaces the operation with its equivalent UDF that operates on
ciphertexts. Finally, each constant in the query is encrypted with the
encryption scheme corresponding to the layer of the onion used by
the predicate involving the constant.

To illustrate how this works, consider an example scenario con-
sisting of a table Employees, which has four columns of interest:
id, name, address, and salary. Initially, each column in the
table is dressed in all onions of encryption with RND and HOM
as outermost layers, as shown in Figure 3. At this point, the server
can learn nothing about the data content other than the number of
columns, rows, and data size.

To illustrate when onion layers are removed, consider the query
SELECT * FROM Employees WHERE name = ’Alice’,
which requires lowering encryption of name to level DET. In this
case, the frontend first issues the query UPDATE Table1 SET
C2-Onion1 = DECRYPT_RND(K1,2,RND, C2-Onion1),
and then SELECT C1-Onion1, C2-Onion1, C3-Onion1,
C4-Onion1 FROM Table1 WHERE C2-Onion1 =
x7d35a3, where x7d35a3 is an encryption of “Alice” with key
K1,2,DET. The frontend decrypts the results from the server and
returns them to the user.

If the next query is SELECT COUNT(*) FROM Employees
WHERE name = ’Bob’, no additional server-side decryp-
tions are necessary, and the frontend directly issues the query
SELECT COUNT(*) FROM Table1 WHERE C2-Onion1
= xbb234a, where xbb234a is the encryption of “Bob”.

Finally, the frontend replaces aggregation operators with equiva-
lent UDFs that operate on encrypted values. For example, if the user
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issues the query SELECT SUM(salary) FROM Employees,
the frontend rewrites it to SELECT HOM_AGG(C4-Onion3,
PKTABLE.PK) FROM Table2, where HOM_AGG is a UDF that
performs Paillier multiplication (resulting in addition of plaintexts),
PKTABLE is a table of public keys CryptDB stores at the server (see
Fig. 1), and PK is the Paillier public key modulus.

3.4 Query Execution for Write Queries
CryptDB also supports queries that modify data on the server—

namely, INSERT, DELETE, and UPDATE. For all modification
queries, the frontend applies the same processing to the predicates
(i.e., the WHERE clause) as for read queries. For INSERT queries,
the frontend encrypts each inserted column’s value with each onion
layer that has not been stripped off yet in that column. For DELETE
queries, no additional processing is performed. For UPDATE queries
that set the value of a column to a constant, the frontend encrypts
the value in the appropriate onions as for INSERT.

The remaining case is UPDATE queries that update a
column value based on another column value, such as
salary=salary+1. Such an update would have to be performed
using HOM, because it allows additions. However, in doing so, the
values in the OPE and DET onions would become stale. In fact,
an encryption scheme that allows both addition and comparison
at the same time is fundamentally insecure: if a malicious server
knows the order of the items (OPE) and can increment the value by
one, the server can keep adding one to each field homomorphically
until the field becomes equal to some other value. This would allow
the server to compute the difference between any two values in the
database, which is almost equivalent to knowing their values.

There are two solutions to this problem. If a column is incre-
mented and then only projected (no comparisons performed on it),
the solution is simple: when requesting the value of this field, use
the value of Onion 3 rather than Onion 1 or 2, because Onion 3 is
up-to-date. This is the case for most TPC-C queries. If a column
is used in comparisons after it is incremented, the solution is to
split the query into two. That is, for query UPDATE Employees
SET salary=salary+1 WHERE id=3, the frontend issues
the encrypted version of SELECT salary FROM Employees
WHERE id=3, and then the encrypted version of UPDATE
Employees SET salary=z WHERE id=3, where z is one
more than the result of the first query.3 However, in most cases in
practice (such as in TPC-C), such updates are executed on individual
rows.

3.5 Computing Joins
Supporting joins is a challenging problem. If two columns are to

be joined, they need to be encrypted with the same key for levels
JOIN or OPE−JOIN. We first describe how CryptDB implements
deterministic joins (the overwhelmingly common case, i.e., level
JOIN), and then describe inequality joins (level OPE−JOIN).

To provide maximum privacy for equality joins, the server should
not be able to join columns for which the user did not request a join,
so columns that are never joined should not be encrypted with the
same cryptographic JOIN keys. Moreover, if users request a join
of columns A and B, and a join of columns C and D, the server
should not be able to join B and C. Thus, the question is, which
JOIN keys should each column be encrypted with, given that we do
not know in advance what columns will be joined?

3If the first SELECT query returns more than one result, the fron-
tend computes a mapping of old encrypted salary values and the
corresponding new encrypted salary values, and uses a UDF in
the second UPDATE query to update the salary column according
to this mapping.

To address this problem, we propose a new cryptographic primi-
tive that allows the server to dynamically adjust the JOIN encryption
keys of each column. Each column is initially encrypted with a dif-
ferent JOIN key, thus disallowing all joins. When the user requests
a join, the frontend will give the server an onion key to re-encrypt
the two columns to the same JOIN key, allowing joins between the
two columns.

Our algorithm is based on elliptic-curve cryptography (ECC).
When a row is initially inserted, the JOIN encryption of value v
is computed as JOINK(v) := H(v)K , where K is the initial key
for that table, column, and level, and H is a mapping from values
(integers or strings) to an elliptic curve. When the user requests
to join columns c and c′, the frontend computes ∆K = K/K′,
which can be used to bring the JOIN encryptions of c and c′ to the
same key. Given JOINK′(v) (stored in column c′) and ∆K, the
server uses a UDF to compute JOINK′(v)∆K = H(v)K′×K/K′

=
H(v)K = JOINK(v). Now that columns c and c′ share the same
JOIN key, the server can perform an equality join on c and c′ as
usual.

THEOREM 1. The server can only join pairs of columns that
were joined by a legitimate user query.

PROOF SKETCH. We delegate the full proof to the extended ver-
sion of this paper, and provide only a sketch here. Our scheme
is secure (i.e., the theorem is true) because K/K′ does not reveal
any information about K or K′ alone. Moreover, the server cannot
compute K from H(v)K because of the hardness assumption of
computing the discrete logarithm in elliptic curve-based groups.
Given two columns encrypted with K and K′, if the server is not
given K/K′, it cannot bring the two columns to the same encryption
level, and thus cannot perform unrequested joins.

We chose ECC because of its efficiency: computing
JOINK′(v)K/K′

is basically a multiplication, and does not involve
any exponentiations. Moreover, elliptic curve-based ciphertexts are
small (≈ 160 bits) compared to ciphertexts in typical public key
cryptosystems for the same security level [31].

For inequality joins, a similar dynamic re-encryption scheme
is difficult to construct. Instead, CryptDB requires that pairs of
columns that will be involved in inequality joins are declared by ap-
plications ahead of time, by annotating the schema, so that matching
keys are used for level OPE−JOIN of those columns. Alternatively,
level OPE−JOIN encryptions can be re-encrypted with matching
keys at the expense of sending an entire column to the frontend for
re-encryption, and then sending it back to the DBMS server.

3.6 Transactions and Indexes
CryptDB uses existing transaction and indexing mechanisms in

the DBMS server without any modifications. For transactions, the
frontend passes along any BEGIN, COMMIT, and ABORT queries to
the DBMS, and CryptDB does not change any transaction semantics.
For indexes, the DBMS builds indexes of encrypted columns much
the same way in which it builds indexes of plaintext data. The
frontend does not request indexes on RND encryptions, since no
lookups are performed at that level, but the frontend does construct
indexes on DET, JOIN, OPE, and OPE−JOIN encryptions, if the
application requested an index on the corresponding column in the
original schema (e.g., using an ALTER or CREATE query).

3.7 Optimizations
CryptDB implements three important optimizations to improve

its performance, which we now describe.
Known query set. For many applications, the queries issued by

the application are fixed and known ahead of time. In this case,
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we do not need to adjust onion levels at runtime, and can start
the database with the exact onion encryption levels that we need.
Moreover, if a certain column is never used in certain operations,
the corresponding onion can be omitted altogether. For example,
if an application never performs range or order operations on a
column, the OPE onion for that column can be omitted. Discarding
onions significantly reduces performance costs both in the frontend
and in the DBMS server. This optimization is implemented by a
train module in the frontend, which, given a set of queries a user
application will issue, determines the exact levels of encryption
needed.

Security convergence. Even if the query set is not known in
advance, after an application has run for a considerable while on
a DB, the frontend may drop any onions that have not been used,
because these onions are unlikely to be used in the future. If a query
does happen to use these onions later, the frontend can go through
the cost of inserting the deleted column, by downloading the entire
column and re-uploading it in a different, re-encrypted onion. Since
these operations are amortized over long periods of time, the overall
performance remains high.

Ciphertext caching. A significant ongoing cost for the frontend
lies in generating OPE and HOM encryptions of constants used
in queries. To avoid this cost, the frontend maintains a cache of
recently-used constants, along with their encryptions under different
keys. Since some constants are repeatedly used in many queries
(e.g., the constant 1), this optimization reduces the amount of CPU
time spent by the frontend encrypting data.

3.8 Discussion and Limitations
CryptDB’s design supports most relational queries and aggregates

on standard data types, such as integers and text/varchar types.
Numeric data of decimal type with p digits after the decimal can be
mapped to integer types by multiplying the input by 10p. CryptDB
can encrypt floating-point values, but cannot perform aggregations
on floating-point values per se (however, if the values are converted
to fixed-point, CryptDB can use HOM for aggregation). Additional
operations can be added to CryptDB by extending its existing onions,
or adding new onions for specific data types. For example, one could
add spatial and multi-dimensional range queries using the protocols
proposed by Shi et al [40].

CryptDB has certain limitations. For example, it does not support
both computation and comparison in the same predicate, such as
WHERE salary > age*2+10. CryptDB can facilitate process-
ing such a query, but it would require a little bit of processing on
the frontend. To use CryptDB, the query can be rewritten into a sub-
query that selects a whole column, SELECT age*2+10 FROM
. . ., which CryptDB computes using HOM, then re-encrypting the
results in the frontend, creating a new column (call it aux) at the
server consisting of the newly-encrypted values, and finally running
the original query with the predicate WHERE salary > aux.

The current CryptDB prototype does not support stored proce-
dures or other user-defined functions on the server. Supporting
stored procedures written in SQL should be straightforward, by
having the frontend rewrite the SQL statements inside of the stored
procedure as it would for any other query. On the other hand,
CryptDB’s design cannot support the execution of arbitrary user-
defined functions (not written in SQL) over encrypted data.

Finally, our current prototype handles server-side auto-increment
columns by leaving the column values in plaintext on the server. We
believe this is an acceptable trade-off, since the server is anyway
involved in choosing the auto-incremented value. A more privacy-
preserving scheme may involve using HOM to generate the auto-
incremented value, but HOM would not allow joins on that column

(whereas auto-increment is commonly used for primary key columns
that require joins). More generally, CryptDB allows columns that
are not privacy-sensitive to be left unencrypted on the server, to
reduce overhead and allow more general computations (such as
arbitrary UDFs).

4. PRIVACY ANALYSIS
In this section, we prove that CryptDB achieves the privacy goal

we set out in §2. To do so, we assume that the cryptographic
tools used by CryptDB actually provide the properties we require.
The constructions we proposed as implementations in the previous
section are secure based on some cryptographic assumptions; if such
assumptions are ever broken, the cryptographic constructions can
be replaced by others that have the same security guarantees, thus
preserving the security of the overall CryptDB design.

THEOREM 2. The server in CryptDB learns as much informa-
tion about the data in the database as does the server in the Ideal
System from Definition 1.

PROOF SKETCH. The proof is by induction on the queries re-
quested. The base case of the induction is when no queries have
been requested so far. Since we start out the database with RND,
we satisfy the base case.

In the inductive step, we need to prove that, by processing the
ith query, Qi, the server only learns as much information as the
relations contained in FUNC(Qi). Such proof is by exhaustively
considering all types of operations; for brevity, we only consider
the most basic ones here, leaving the remainder for the extended
version of this paper. Suppose Qi contains an equality predicate:
c1 = x1c5a21. Then, FUNC(Qi) contains the relation {c1 =

*}. CryptDB will lower the level of c1 to DET. By assumption
about the security level provided by DET, the server can only check
whether some encrypted data from c1 equals some other encrypted
data from c1, all of which is already permitted by c1 = * from
FUNC(Qi) because the server can replace ∗ with any value from
c1.

Now consider that Qi contains an inequality check c1 >
x1c5a21, which means that FUNC(Qi) contains {c1 > *}. In
this case, CryptDB will reveal the OPE encryptions of column c1
to the server. By assumption, OPE only leaks order between items,

that is, item i
?
> item j. However, this information is already

permitted by FUNC(Qi) because the server can replace c1 with
item i and ∗ with a value from item j in when posing a question to
the oracle from the set of questions allowed by {c1 > *}.

5. IMPLEMENTATION
We implemented CryptDB in C++ on top of Postgres 9.0, and

later ported it to MySQL, as reported in §6.4. We used the NTL
library for doing number theory on large numbers [41] to implement
some of our cryptographic protocols. CryptDB is 4700 lines of
code, not counting empty lines, standard libraries, the NTL library,
or evaluation code.

As mentioned earlier, CryptDB does not change the innards of a
DBMS. We managed to implement all the server-side functionality
with UDFs and server-side tables. The insight into why such mod-
ular change was possible is that the DBMS in fact lies in between
two aspects of query processing that CryptDB must modify. Specifi-
cally, query planning and execution is between query parsing and
low-level operations on data items. Therefore, CryptDB can run on
top of any DBMS that is SQL-compatible and supports UDFs, by
rewriting queries in the frontend and replacing individual operations
through UDFs.
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Figure 5: Throughput and latency for TPC-C queries without
transactions, as a function of the number of concurrent clients.

6. EXPERIMENTAL EVALUATION
This section evaluates three aspects of CryptDB’s design and our

prototype implementation: performance overheads, portability of
CryptDB to different DBMS servers, and portability of CryptDB
to different SQL applications. The results shown in the rest of
this section show that CryptDB has low runtime overheads (on the
order of 27% throughput cost and 0.64 ms latency cost for TPC-C
queries), is easy to port to new DBMS servers, and requires no
application code changes.

6.1 Overall Performance Results
To measure CryptDB’s performance, we use an experimental

setup consisting of a server that has an Intel Xeon 3.20 GHz CPU
with 4 cores and 3 GB of RAM, and a client machine that has an Intel
Xeon 1.6 GHz E7310 CPU with 16 cores and 8 GB RAM, on which
we simulate multiple users. Since we are interested in measuring
the overhead of CryptDB’s cryptographic transformations, we use a
workload where the entire data set fits in RAM on the DBMS server
machine, and the DBMS server is not bottlenecked by disk accesses
(which are equally slow with and without CryptDB).

For our performance experiments, we measure the throughput and
latency of CryptDB and an unmodified Postgres DBMS using a TPC-
C trace. Rather than just run the TPC-C benchmark, we generate a
mix of random OLTP queries by collecting TPC-C execution traces
and then having multiple clients present these queries to CryptDB.
This approach allows us to evaluate the performance overhead of
CryptDB on a variety of random OLTP-like access patterns.

A significant part of CryptDB’s CPU overhead running TPC-C
queries is masked by the ciphertext caching optimization, because
TPC-C queries repeatedly use a small set of constants, which may or
may not be representative of other workloads. Thus, we also report
results for CryptDB with the ciphertext caching optimization dis-
abled (called unoptimized CryptDB in our results), which achieves
lower but still reasonable performance.

To measure the raw number of queries the server can process
per second, we first report the throughput for TPC-C queries when
transactions are not used, as shown in Figure 5. We can see that
CryptDB incurs a throughput reduction of 21% compared to an
unmodified Postgres server (based on the highest throughput for
both configurations), and unoptimized CryptDB incurs a 35% over-
head. Furthermore, because of the CPU cost of encrypting data in
the frontend, unoptimized CryptDB requires more clients (running
on different cores) to achieve maximum throughput. Finally, the
difference in latency between CryptDB and the unmodified Postgres
server is within 4 ms.

Figure 6 shows the throughput achieved for the TPC-C query
mix when transactions are enabled. In this case, CryptDB incurs
a 27% penalty in terms of throughput compared to unmodified
Postgres, largely due to increased transaction contention because of
longer client-side processing times and expanded queries. In case of
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Figure 6: Throughput of TPC-C transactions as a function of
the number of concurrent clients.

unoptimized CryptDB, client-side processing times for each query
are increased even further, leading to significantly more transaction
conflicts and an overall throughput reduction of 70%.

6.2 Query Microbenchmarks
To understand the sources of overhead incurred by CryptDB,

we examined the throughput of individual queries, since different
applications may result in various query mixes. For each query type,
we collected corresponding queries from TPC-C, and measured
the latency for those queries running under CryptDB and under
unmodified Postgres. The results of this experiment are shown in
Table 1. We can see that the client encryption time is generally
low, adding an average of 0.34 ms to the query. The unoptimized
CryptDB also has low latency except for queries requiring OPE and
HOM; the overall client latency of 7.3 ms may still be acceptable
for some applications. The fact that server latencies are similar
for CryptDB and unmodified Postgres suggests that the expansion
factor due to encryption has a moderate impact on performance. In
summary, overall CryptDB adds 0.64 ms of latency to each query,
and unoptimized CryptDB adds 7.6 ms.

Figure 7 shows the throughput for the same mix of queries running
under CryptDB and unmodified Postgres. We can see that for six
query types (Select equality, Select join, Select range, Delete, Insert,
and Update set), the throughput overhead is minimal. These six
query types constitute most of the queries both for TPC-C and
likely for many other applications, making CryptDB a good choice.
Homomorphic operations, such as Select sum and Update increment,
incur a significant overhead with CryptDB, due to the server-side
cost to homomorphically multiply large cryptographic numbers
instead of adding 32-bit integers. Applications that use sums and
increments heavily would incur significant overhead with CryptDB,
but applications with a low percentage of sums (such as in TPC-C),
CryptDB overheads would be much lower.

In terms of storage, the frontends only need to store one master
key, the schema and onion status, as well as ciphertext caches for
OPE and HOM as an optimization. For TPC-C queries, the memory
footprint of the frontend process is minimal: 92 kB of memory, not
including the code and shared libraries like libc, or less than 4 MB
of memory including code and shared libraries. If the frontend
decides to cache ciphertext for OPE and HOM, to cache 100000
values (presumably the most common), it takes < 1 MB for OPE
and ≈ 12 MB for HOM.

On the server side, CryptDB increases the size of the database
due to multiple onions and ciphertext expansion. For TPC-C, the
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Query CryptDB Postgres
Server Client Client Unopt. Server

Select equality 0.43 0.10 0.10 0.41
Select join 0.72 0.27 0.27 0.63
Select range 1.2 0.40 58.2 0.99
Select sum 8.8 0.18 0.18 0.46
Delete 1.1 0.15 0.14 1.1
Insert 1.0 0.34 18.6 0.99
Update set 1.2 0.17 0.17 1.1
Update increment 2.0 0.71 17.7 1.8
Overall 1.4 0.34 7.3 1.1

Table 1: Latency figures in milliseconds. The client latency is
the encryption time for CryptDB and unoptimized CryptDB.
The overall time reflects the average latencies for the mixture of
TPC-C queries. “Update set” indicates an update where fields
are set to a constant, and “Update increment” indicates an up-
date where fields are incremented.
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Figure 7: Throughput comparison for query types from Table 1
running under CryptDB and unmodified Postgres. For each
query type we show the percentage throughput reduction under
CryptDB as compared to unmodified Postgres.

database size using unmodified Postgres was 135 MB and with
CryptDB, it was 619 MB, amounting to 4.5 times increase. This is
mostly because of aggregates which are large cryptographic num-
bers, without which it is a three fold increase. Since disk space is
relatively cheap, we do not consider increased storage cost to be a
significant barrier to adoption of CryptDB. CryptDB’s runtime over-
heads are significantly less than the storage expansion factor because
reading a column (or evaluating a predicate on a column) requires
accessing only one of the onions for that column, instead of every
onion for that column. Moreover, there is virtually no expansion
for large data items such as long strings or binaries. Therefore, a
database storing large text or binaries (e.g., photos) will have almost
no storage overheads.

6.3 Adjustable Query-based Encryption
Adjustable security involves decrypting columns to lower onion

levels. Fortunately, such decryption itself is fast, and only needs
to be performed once per column for the lifetime of the system.
In particular, in our implementation, removing a layer of RND
encryption requires decrypting AES, which our server can perform
at approximately 500 MB/sec. Thus, the cost of removing an onion
layer of encryption is bottlenecked by the speed at which the DBMS
server can copy an entire column of data in a single table; the
decryption speed is negligible in comparison with disk read and
write bandwidth.

Table 2 shows the resulting state of the encryption levels of the
various fields in TPC-C’s schema after executing the TPC-C queries.
We can see that 71% of the columns remain at RND which means

RND DET but not OPE OPE Uses HOM Total
65 19 8 8 92

Table 2: Resulting onion state of the database for TPC-C.

that no information leak about them whatsoever. This shows the
importance of dynamically adjusting encryption based on queries
rather than just starting out with encryption that enables all oper-
ations. For OPE only, 2 columns have range queries, the other 6
are decrypted to OPE due to ORDER BY. One could avoid such
decryption by simply ordering the items on the frontend.

6.4 Server Portability
To demonstrate the portability of CryptDB, we ported CryptDB

to MySQL. We only had to change and add a total of 86 lines of
code. This code was mostly connection code, allowing the CryptDB
frontend to connect to the MySQL server, a new format for UDF
declarations (though the content was the same), and different han-
dling of information sent to and received from the server. However,
we did not change any of the DBMS code in the MySQL server, and
did not change any code for CryptDB’s logic in the frontend. This
suggests that CryptDB can be easily ported to other DBMS servers
that support UDFs.

6.5 Application Portability
To demonstrate the portability of existing applications to

CryptDB, we ran several applications on CryptDB, including TPC-
C and two different versions of an academic institution’s graduate
admissions web application, one written using hand-written SQL
queries and one written using the Django ORM system [12] for
Python. CryptDB was able to support all SQL queries from these
applications without having to modify the queries or the application
in any way.

7. RELATED WORK
At a high level, the main contribution of CryptDB over prior

work is a practical novel approach for guaranteeing data privacy
in a DBMS. To our knowledge, CryptDB is the first private sys-
tem to support all the operators used commonly in SQL, perform
virtually all the query processing on the server, work without modi-
fying the internals of existing relational DBMS codebases or client
applications, and run at a fairly modest performance degradation.

We divide related work into applied cryptography, providing tools
for processing encrypted data, but not a comprehensive systems
solution, systems approaches done in the context of implemented
designs, and theoretical approaches.

Applied cryptography.
Over the past few years, researchers have developed cryptographic

tools for searching keywords over encrypted text [4, 43] and some
researchers have proposed using these tools to process SQL queries
on encrypted data [2, 5, 14, 51]. These approaches are a good first
cut at the problem, but are incomplete in substantive ways: they
do not support many basic SQL queries, providing mostly only
equality comparisons, most of them require significant client-side
query processing, require changing the innards of a DBMS; most
are too inefficient, e.g., requiring users either to build and maintain
indexes on the data at the server or else to perform sequential scans
for every selection/search; finally, many remained at the level of
cryptographic protocols and did not build and demonstrate a system.
Nevertheless, these approaches are useful for private text search, and
we use a similar method for “ILIKE” to the ones in [1, 43]; however,
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they do not constitute a complete or efficient privacy-preserving
DBMS.

Amanatidis et al. [1], slightly different from the schemes above,
allow the server to build indexes, but their privacy is signifi-
cantly lower than CryptDB’s: they reveal a priori all repeating
values and all common ranges (same prefix values) in the whole
database (across all columns and rows). Key to our security is the
dynamically-adjustable encryption based on queries: fields that are
never used in range queries or equalities should remain encrypted
with the strongest encryption scheme. Finally, they do not support
all other queries besides equality and prefix-based ranges, and did
not build a system.

In addition, the privacy provided by the most secure of these
previously developed schemes is approximately similar to CryptDB.
For example, in Yang et al.’s work [51], after one query has been
made, the server only knows the repetitions of the constant in the
selection filter, and does not know all the repetitions of data in a
column as in CryptDB. Therefore, after one equality query, their
protocol is more secure. However, after a few different queries with
the same structure, but different constants, CryptDB reveals as much
information as their approach. These are specific tools and do not
enable to server to perform other requirements in a DBMS: general
range queries, updates of a whole column or range of tuples (e.g.
increments), aggregates, some cannot support joins.

There is also work allowing the server to build secure indexes [18]
on encrypted data without having access to the data. These ap-
proaches require significant changes to the DBMS and would not be
as portable. Moreover, due to complex cryptographic tools they are
slower. In our case, the server builds indexes naturally as it would on
typical (longer) numbers. Ge and Zdonik [15] enable comparisons
and designs indexes for a column store.

There has been work on processing queries on encrypted
XML [20, 46]. This work provides useful security semantics for
XML data, but requires a cumbersome DBMS rewrite. Moreover,
the results sent to the client are a superset of the true result, requiring
the client to perform additional post-processing. They also do not
discuss updates and inserts.

Systems approaches.
While early proposals attempted to enable SQL processing over

encrypted data, their privacy mechanisms were heuristic without for-
mal guarantees, required a significant rewrite of the DBMS design,
relied on considerable client-side processing, and did not support a
wide range of SQL queries.

In [19], Hacigumus et al. split the domain of possible values for
each column in partitions. Each partition has a number (random or
order-preserving) and each value is replaced with the number of the
partition. The actual tuple is stored encrypted. By grouping elements
in partitions, privacy may be compromised because an untrusted
entity may well know which elements are close to each other in
value. The more partitions, the more useful work the server does,
but the less privacy clients have. With our dynamically-adjustable
encryption mechanism, we do not reveal relations for columns not
used in a filter.

Ozsoyoglu et al. [34] use user-defined functions and do not require
changes to the DBMS software. However, their approach only
applies to integers, does not support joins (must be processed at
the client), do not discuss updates and inserts. Importantly, they
encrypt fields with a distance-preserving encryption function for
which a− b = E(a)− E(b). Such scheme is not secure because
the mere knowledge of one value a for an encryption E(a) leaks
the decryption of all other encrypted values.

Damiani et al. [10] provide a solution for processing range queries

over encrypted data. Each element in a tuple is encrypted and hashed
to a small number of buckets to improve privacy. Range queries
can be computed using a B+ tree, but these are done by the trusted
client that needs to traverse the B+ tree by sequentially performing
queries at the server. Such work does not support joins, aggregates,
or string searches.

Ciriani et. al [8] propose a new approach to confidentiality: re-
placing data encryption with fragmentation; they store a part of the
data at the trusted client (e.g. sensitive columns or relations between
columns) and the rest of the data unencrypted at the untrusted server,
thus avoiding encryption altogether. However, each client (trusted)
has to store a potentially large amount of data locally and has to
perform query processing whenever sensitive data is involved in a
query.

Chow et al. [7] require the presence of two additional parties,
a randomizer and a query engine, which are assumed not to com-
municate; moreover, the data is stored at multiple DBMSs that do
not trust each other. The security of their protocols hinge on such
security assumptions and on no collusions happening; such a set-
ting is not always possible, and solutions without such strong trust
assumptions may be desirable.

Theoretical approaches.
Theoretical solutions promise a high degree of security, however,

they are prohibitively impractical. Recent work [16] based on fully
homomorphic encryption [17] enables an untrusted party to perform
any general computation on encrypted data (such computation could
be query processing) without leaking even access patterns to the data.
Unfortunately, as an example, performing a simple string search
using homomorphic encryption is about a trillion times slower than
without encryption [9].

Work in PIR [33] allows a user to request a tuple from the database
without the server learning what tuple was requested. While they
provide excellent security, such approaches are highly infeasible
because, for each tuple requested, the server must scan the whole
database.

Other work.
There has been a significant body of work on distributed privacy

preserving data integration, aggregation, and mining: construct-
ing decision trees [27], computing association rules, classification
and clustering [23, 24, 45, 50], outsourced data aggregation [48]
and [44]. These works provide a rich and useful set of privacy-
preserving tools for different purposes than CryptDB, and they can
be used together with CryptDB.

Work on differential privacy [13, 29, 38], introduced by Dwork
and enhanced by Miklau [30], as well as privacy in statistical
databases, allows a trusted server to decide what answers to re-
lease or how to obfuscate answers to aggregation queries to avoid
leaking information about any specific record in the database. Such
work has a different goal and model from CryptDB; in fact, one can
add differential privacy to the front end in CryptDB to provide to
users only privacy-preserving answers.

8. CONCLUSION
This paper presented CryptDB, a practical and novel system for

ensuring data privacy on an untrusted SQL DBMS server. CryptDB
uses three novel ideas to achieve its goal: an SQL-aware encryption
strategy, adjustable query-based encryption, and onion encryption.
As part of CryptDB’s SQL-aware encryption strategy, we propose
optimizations for existing cryptographic techniques, as well as a
new cryptographic mechanism for private joins. Our prototype
of CryptDB requires no changes to application or DBMS server
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code, and uses user-defined functions to perform cryptographic
operations inside an existing DBMS engine, including both Postgres
and MySQL. Under a TPC-C workload, our prototype incurs a
27% reduction in throughput compared to an unencrypted DBMS,
making CryptDB a practical option for privacy-sensitive data.
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APPENDIX
We describe in more detail FUNC(Q) (defined in §2.1), for any Q
an SQL query. A relation is an expression of the form {x OP y},
where OP can be any operation (such as =, >, <,≥,≤, ILIKE)
that can be performed between columns and/or constants. x and y
are either names of columns in a database or the wildcard ∗ (meaning
any constant value). An instantiation of a relation is an expression
where each column operand is replaced with the index of an item
in the column, and ∗ is replaced with some value. For example,
an instantiation of {table1.c1 = const} is {item i of
table1.c1 = x1c5a21}. The evaluation of an instantiation is
a boolean value: true if the instantiation of the relation is true and
false otherwise.

Then, FUNC(Q) is the set of all relations for which there is an
instantiation whose evaluation the server needs to know in order to
perform SQL processing given Q.
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For example, let Q: SELECT MAX(table1.c1) FROM
table1, table2 WHERE table1.c2 = table2.c1
AND table2.c2 = x1c5a21. Then, FUNC(Q) = {
{table1.c1 > table1.c1} (for MAX), {table1.c2 =
table2.c1}, {table2.c2 = *} }. For joins, if we have
a predicate of the form c1 = c2, this introduces {c1 = c2},
{c1 = *} and {c2 = *} in FUNC(). Inserts and aggregates
do not increase FUNC(). Updates by incrementation do not
increase FUNC() either; Updates by setting a value such as SET
c1 = x1c5a21 add c1 = ∗ to FUNC; Deletes add relation
corresponding to their filters as discussed above.
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