
Multiprocessor Support for
Event-Driven Programs

Nickolai Zeldovich, Alexander Yip, Frank Dabek,
Robert T Morris, David Mazières, Frans Kaashoek

MIT Laboratory for Computer Science

Usenix Technical, June 2003

Introduction

● Many internet servers use an event-driven
programming model:

– Code consists of many callback functions, which
are executed when an event occurs

– Events can be a mouse click, receiving network
data, timer expiration, ...

– Callback functions perform some task and can
register other callbacks waiting for new events

What's wrong?

● Callback functions are executed sequentially

– Code is never executed in parallel

– Programmer can be confident that his callback is
the only one changing the state right now

● But we want parallel execution: it's faster on
multiprocessors!

– Can't just break a fundamental assumption

Carefully breaking the assumption

● Let the programmer say what, if anything,
can run in parallel

● Add a color to every callback

– A color is any integer value

– Callbacks of the same color can't run in parallel

– Callbacks of different colors can run in parallel

Where do colors come from?

● Think BSD wait channels

● For example, file descriptor number of client
connection, or pointer to shared object

● By default, everything is color zero

– Programmer has to explicitly break things

● Color collision may reduce performance, but
not correctness!

Isn't this already solved?

● Use mutex locks from the threads world?

– Mutex locks are hard: deadlocks, race conditions

– Not worrying about concurrency and locking is a
big advantage in event-driven programs!

– Callbacks in event-driven programs should not
block; acquiring a mutex does

Why color callbacks?

● Two observations:

– Callbacks typically perform short, well-defined
operations associated with a single event

– Systems software often has natural coarse-
grained parallelism (e.g. many independent
requests)

● Coordinating parallel execution at the level
of callbacks sounds reasonable

What's so great about colors?

● Callback colors let the scheduler make
decisions and optimize ahead of time

● Callbacks can be colored incrementally to
achieve incremental multiprocessor speedup

– With threads and mutex locks, it's all-or-nothing

● Less expressive than locking, but that's fine

libasync

● C++ library for event-driven programs

● Provides the main event loop which waits for
events and runs callbacks

● Events: signals, timers, socket readable or
writable

Useful things in libasync

● Function currying for C++ to save callback
state:

– void cbfunc (char x, int y);

callback cb = wrap (&cbfunc, 'A');
cb (7); /* executes cbfunc ('A', 7) */

More useful things

● Common event dispatcher allows modules
to co-exist without knowing about each other

– Great for modularity

● libasync provides additional event-based
modules for DNS, SunRPC, NFS, ...

libasync-smp

● Modified version of libasync which can take
advantage of multiprocessors

● Implements callback coloring for
concurrency control

Design of libasync-smp

● One worker thread and callback queue per
CPU

● Worker thread repeatedly chooses a runnable
callback from its queue and runs it

while (Q.head)
 Q.head ();

while (Q.head)
 Q.head ();

CPU 1 CPU 2

... ...

Design of libasync-smp

● Worker threads share address space, file
descriptors, and signal handlers

● select() call from libasync's event loop is
now just another callback on the queue

– Executed by a worker thread when there are no
other callbacks to run

– Calls select() and enqueues other callbacks as
necessary

Where to queue callbacks?

● Mapping of colors to worker threads

– Callbacks of the same color run in same worker
thread

– Color-to-worker affinity improves cache locality,
like thread-to-CPU affinity in kernel scheduler

Scheduling Callbacks

● Preference for callbacks of the same color
as the last callback to execute

– Improves cache locality

● When a worker thread is idle, steal work
from other queues

– Must steal all callbacks of the same color

What to measure?

● How much faster do libasync-smp programs
run on N CPUs than the same program
using libasync on 1 CPU?

● Run N copies of libasync version and use
aggregate speed of N copies as upper
bound for libasync-smp performance

What to measure?

● How easy is it to use libasync-smp?

– Count lines of code changed or written

– Count number of callbacks colored

Performance Testing

● Experiments done on 4-way 500 Mhz
Pentium-3 Linux server, 512MB memory

● Each Linux client has separate gigabit
Ethernet link to server

● Tested an HTTP server and SFS (network
file system) file server

Our HTTP Server
● libasync-based HTTP/1.1 server

● Uses an NFS loopback server for non-
blocking disk I/O

● Two shared caches that must be protected
from simultaneous accesses:

– NFS file handle cache

– Web page cache
● Actually a small number (10) of independent caches,

to allow simultaneous access to different pages

How hard was it?

● Our libasync HTTP server is 1260 lines of
code with 39 calls to wrap (callback
creation)

● 23 callback creation points modified to
provide a non-zero color for the callback

HTTP Server Concurrency

HTTP Servers Tested

● Compare the performance of these servers:

– libasync-smp based event-driven server

– Same web server using unmodified libasync,
running a separate copy on each CPU (``N-
copy'')

– Apache 2.0.36

– Flash v0.1.990914

HTTP: libasync-smp vs. N-copy

● On 1 CPU, libasync-smp
thoughput is 0.86 times
that of N-copy; on 4
CPUs, it is 0.85 of N-copy

● libasync-smp extracts
most of the speedup the
OS offers for a web server

HTTP Server Performance

● libasync-smp
speedup is
1.5; Flash
gets 1.68

● N-copy used
by Flash OK
for web
servers, but
not for shared
state

SFS File Server

● SFS is a secure network filesystem

● User-level libasync-based SFS file server

● Encrypted (RC4) and authenticated (SHA-1)
communication with clients over TCP

● Maintains significant mutable state, such as
lease records for client cache consistency

Parallelizing the file server
● Profiling reveals file server is compute-

bound due to crypto (75% CPU time spent
there)

● Split up the send callback to encrypt in
parallel (40 lines of code changed)

Parallelizing the file server

● Another 50 lines of code changed to
similarly color the packet receive code path

● Using libasync-smp, 65% CPU time spent in
cryptographic operations

● Maximum theoretical speedup, with as many
CPUs as needed, is 1/(1-0.65)=2.85

File server performance

● libasync-smp file server on 4 CPUs is 2.5
times faster than original libasync-based
fileserver on 1 CPU

● Close to theoretical
maximum speedup
of 2.85

● libasync-smp is 0.96 times
as fast as libasync-based
fileserver on 1 CPU

● N-copy not viable

Conclusion

● Event-driven programs can use colors to
specify callbacks to be executed in parallel

● Callbacks in programs can be colored
incrementally for incremental speedup

● libasync-smp requires little programming
effort to achieve multi-processor speedup

http://www.fs.net/

