
Concurrency Control for Multi-Processor

Event-Driven Systems

by

Nickolai Zeldovich

Submitted to the Department of Electrical Engineering and Computer

Science

in partial ful�llment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c Nickolai Zeldovich, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Electrical Engineering and Computer Science

May 23, 2002

Certi�ed by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Robert Morris

Assistant Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arthur C. Smith

Chairman, Department Committee on Graduate Theses



2



Concurrency Control for Multi-Processor Event-Driven

Systems

by

Nickolai Zeldovich

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2002, in partial ful�llment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes libasync-mp, an extension of the libasync asynchronous pro-
gramming library that allows event-driven applications to take advantage of multi-
processors by running code for event handlers in parallel. To control concurrency
between events, the programmer can specify a color for each event: events with the
same color (the default case) are handled serially; events with di�erent colors can
be handled in parallel. Parallelism in existing event-driven applications can be in-
crementally exposed by assigning di�erent colors to computationally-intensive events
that don't share mutable state.

An evaluation of libasync-mp shows that applications achieve multi-processor
speedup with little programming e�ort. For example, parallelizing the cryptogra-
phy in the SFS �le server required about 90 lines of changed code in two modules,
out of a total of 12,000 lines. Multiple clients were able to read �les from this SFS
server running on a 4-CPU machine 2.55 times faster than from an unmodi�ed SFS
server on one CPU.

Thesis Supervisor: Robert Morris
Title: Assistant Professor
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Chapter 1

Introduction

To obtain high performance, servers must overlap computation with I/O. Programs

typically achieve this overlap using threads or events. Threaded programs typically

process each request in a separate thread; when one thread blocks waiting for I/O,

other threads can run. Event-based programs are structured as a collection of callback

functions which a main loop calls when I/O events occur. Threads provide an intu-

itive programming model, but require coordination of accesses by di�erent threads to

shared state, even on a uniprocessor. Event-based programs execute callbacks serially,

so the programmer need not worry about concurrency control; however, event-based

programs until now have been unable to take advantage of multiprocessors.

The contribution of this thesis is libasync-mp, an extension of the libasync event-

driven library [11, 12] that supports event-driven programs on multiprocessors. libasync-

mp is intended to support the construction of user-level systems programs, partic-

ularly network servers and clients; this thesis demonstrates that these applications

can achieve performance gains on multi-processors by exploiting coarse-grained par-

allelism. libasync-mp is intended for programs that have natural opportunities for

parallel speedup; it has no support for expressing very �ne-grained parallelism.

Much of the e�ort required to make existing event-driven programs take advan-

tage of multiprocessors is in specifying which events may be handled in parallel.

libasync-mp provides a simple mechanism to allow the programmer to incrementally

add parallelism to uni-processor applications as an optimization. This mechanism

allows the programmer to assign a color to each callback. Callbacks with di�erent

colors can execute in parallel. Callbacks with the same color execute serially. By de-

fault, libasync-mp assigns all callbacks the same color, so existing programs continue
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to work correctly without modi�cation. As programmers discover opportunities to

safely execute callbacks in parallel, they can assign di�erent colors to those callbacks.

libasync-mp is based on the libasync library. libasync uses operating system asyn-

chronous I/O facilities to support event-based programs on uniprocessors. The mod-

i�cations for libasync-mp include coordinating access to the shared internal state of a

few libasync modules, adding support for colors, and scheduling callbacks on multiple

CPUs.

An evaluation of libasync-mp demonstrates that applications achieve multi-processor

speedup with little programming e�ort. As an example, the SFS [12] �le server was

modi�ed to use libasync-mp. This server uses more than 320 distinct callbacks. Most

of the CPU time is spent in just two callbacks, those responsible for encrypting and

decrypting client traÆc; this meant that coloring just a few callbacks was suÆcient

to gain substantial parallel speedup. The changes a�ected 90 lines in two modules,

out of a total of about 12,000 lines. When run on a machine with four Intel Xeon

CPUs, the modi�ed SFS server was able to serve large cached �les to multiple clients

2.55 times as fast as an unmodi�ed uniprocessor SFS server on one CPU.

Even servers without cryptography can achieve modest speedup, especially if the

O/S kernel can take advantage of a multiprocessor. For example, with a workload of

multiple clients reading small cached �les, an event-driven Web server achieves 1.54

speedup on four CPUs.

1.1 Thesis Overview

The next section (Section 2) introduces libasync, on which libasync-mp is based, and

describes its support for uniprocessor event-driven programs. Section 3 and 4 describe

the design and implementation of libasync-mp, and show examples of how applications

use it. Section 5 uses two examples to show that use of libasync-mp requires little

e�ort to achieve parallel speedup. Section 6 discusses related work, and Section 7

concludes.
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Chapter 2

Uniprocessor Event-driven Design

Many applications use an event-driven architecture to overlap slow I/O operations

with computation. Input from outside the program arrives in the form of events;

events can indicate the arrival of network data, a new client connection, completion

of disk I/O, or a mouse click, for example. The programmer structures the program as

a set of callback functions, and registers interest in each type of event by associating

a callback with that event type.

In the case of complex event-driven servers, such as named [4], the complete

processing of a client request may involve a sequence of callbacks; each consumes

an event, initiates some I/O (perhaps by sending a request packet), and registers a

further callback to handle completion of that particular I/O operation (perhaps the

arrival of a speci�c response packet). Using an event-driven architecture for such

servers allows the servers to keep state for many concurrent activities.

Event-driven programs typically use a library to support the management of

events. The library maintains a table associating incoming events with callbacks.

The library typically contains the main control loop of the program, which alternates

between waiting for events and calling the relevant callbacks. Use of a common library

allows callbacks from mutually ignorant modules to co-exist in a single program.

An event-driven library's control loop typically calls ready callbacks one at a

time. The fact that the callbacks never execute concurrently simpli�es their design.

However, it also means that an event-driven program typically cannot take much

advantage of a multiprocessor.

The multiprocessor event-driven library described in this paper is based on the

libasync uniprocessor library originally developed as part of SFS [12, 11]. This sec-
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tion describes uniprocessor libasync and the programming style involved in using it.

Existing systems, such as named [4] and Flash [15], use event-dispatch mechanisms

similar to the one described here. The purpose of this section is to lay the foundations

for Section 3's description of extensions for multiprocessors.

2.1 libasync

libasync is a UNIX1 C++ library that provides both an event dispatch mechanism

and a collection of event-based utility modules for functions such as DNS host name

lookup and Sun RPC request/reply dispatch [11]. Applications and utility modules

register callbacks with the libasync dispatcher. libasync provides a single main loop

which waits for new events with the UNIX select() system call. For each event,

the main loop calls the registered callback. Multiple independent modules can use

libasync without knowing about each other, which encourages modular design and

re-usable code.

libasync handles a core set of events as well as a set of events implemented by

utility modules. The core events include new connection requests, data arriving on

�le descriptors, timer expiration, and UNIX signals. The RPC utility module allows

automatic parsing of incoming Sun RPC calls and dispatch to callbacks registered

per program/procedure pair. The RPC module also allows a callback to be registered

to handle the arrival of the reply to a particular RPC call. Other utility modules

initiate activities such as starting a DNS host name lookup, and calling a callback

when the activity completes. Finally, a �le I/O module allows applications to perform

non-blocking �le system operations by sending RPCs to the NFS server in the local

kernel; this allows non-blocking access to all �le system operations, including (for

example) �le name lookup.

Typical programs based on libasync register a callback at every point at which

an equivalent single-threaded sequential program might block waiting for input. The

result is that programs create callbacks at many points in the code. For example, the

SFS server creates callbacks at about 100 points.

In order to make callback creation easy, libasync provides a type-checked facility

similar to function-currying [19] in the form of the wrap() macro [11]. wrap(fn, x,

y) constructs an anonymous function called a wrap. When the wrap is called with

1libasync also runs on Windows using cygwin.
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callback wrap ((func *)(), arg1, .., argN) Create a callback object

fdcb (int fd, bool read, callback cb) Call cb when fd is readable/writeable

sigcb (int sig, callback cb) Call cb when signal sig is received

timecb (timespec t, callback cb) Call cb at time t

amain () Start the event loop and poll for events

Table 2.1: Core API for libasync

(for example) argument z, the wrap calls fn(x, y, z). A wrap can be called more

than once; libasync reference-counts wraps and automatically frees them in order to

save applications tedious book keeping. Similarly, the library also provides support

for programmers to pass reference-counted arguments to wrap. The bene�t of wrap()

is that it simpli�es the creation of callback structures that carry state.

2.2 Event-driven Programming

The core API for libasync is shown in Table 2.1, and Figure 2-1 shows an abbreviated

fragment of a program written using libasync. The purpose of the application is to act

as a Web proxy. The example code accepts TCP connections, reads an HTTP request

from each new connection, extracts the server name from the request, connects to the

indicated server, etc. One way to view the example code is that it is the result of

writing a single sequential function with all these steps, and then splitting it into

callbacks at each point that the function would block for input.

main() calls inetsocket() to create a socket that listens for new connections

on TCP port 80. UNIX makes such a socket appear readable when new connections

arrive, so main() calls the libasync function fdcb() to register a read callback. Finally

main() calls amain() to enter the libasync main loop.

The libasync main loop will call the callback wrap with no arguments when a new

connection arrives on afd. The wrap calls accept cb() with the other arguments

passed to wrap(), in this case the �le descriptor afd. After allocating a bu�er in

which to accumulate client input, accept cb() registers a callback to req cb() to

read input from the new connection. The server keeps track of its state for the

connection, which consists of the �le descriptor and the bu�er, by including it in each

wrap() call and thus passing it from one callback to the next. If multiple clients

connect to the proxy, the result will be multiple callbacks waiting for input from the
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main()

{

// listen on TCP port 80

int afd = inetsocket(SOCK_STREAM, 80);

// register callback for new connections

fdcb(afd, READ, wrap(accept_cb, afd));

amain(); // start main loop

}

// called when a new connection arrives

accept_cb(int afd)

{

int fd = accept(afd, ...);

str inBuf(""); // new ref-counted buffer

// register callback for incoming data

fdcb(fd, READ, wrap(req_cb, fd, inBuf));

}

// called when data arrives

req_cb(int fd, str inBuf)

{

read(fd, buf, ...);

append input to inBuf;

if (complete request in inBuf) {

// un-register callback

fdcb(fd, READ, NULL);

// parse the HTTP request

parse_request(inBuf, serverName, file);

// resolve serverName and connect

// both are asynchronous

tcpconnect(serverName, 80, wrap(connect_cb, fd, file));

} else {

// do nothing; wait for more calls to req_cb()

}

}

// called when we have connected to the server

connect_cb(int client_fd, str file, int server_fd)

{

// write the request when the socket is ready

fdcb(server_fd, WRITE, wrap (write_cb, file, server_fd));

}

Figure 2-1: Outline of a web proxy that uses libasync.
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Name #Wraps Lines of Code

SFS [12] 100 12000
SFSRO [10] 77 7619
Chord [18] 50 5278
CFS [6] 75 3283

Table 2.2: Applications based on libasync, along with the approximate number of
distinct wraps in each application. The numbers are exclusive of the wraps created
by libasync itself, which number about 60.

client connections.

When a complete request has arrived, the proxy server needs to look up the target

web server's DNS host name and connect to it. The function tcpconnect() performs

both of these tasks. The DNS lookup itself involves waiting for a response from a

DNS server, perhaps more than one in the case of timeouts; thus the libasync DNS

resolver is internally structured as a set of callbacks. Waiting for TCP connection

establishment to complete also involves callbacks. For these reasons, tcpconnect()

takes a wrap as argument, carries that wrap along in its own callbacks, and �nally calls

the wrap when the connection process completes or fails. This style of programming is

reminiscent of the continuation-passing style [17], and makes it easy for programmers

to compose modules.

A number of applications are based on libasync; Table 2.2 lists some of them,

along with the number of distinct calls to wrap() in each program. These numbers

give a feel for the level of complexity in the programs' use of callbacks.
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Chapter 3

Multiprocessor Design

The focus of this paper is libasync-mp, a multiprocessor extension of libasync. The

goal of libasync-mp is to execute event-driven programs faster by running callbacks

on multiple CPUs. Much of the design of libasync-mp is motivated by the desire to

make it easy to adapt existing libasync-based servers to multiprocessors.

A server based on libasync-mp consists of a single process containing multiple

worker threads, one per available CPU. libasync-mp maintains a queue of callbacks

that need to be run, and each worker thread repeatedly dequeues the next callback

and executes it. The worker threads are scheduled by the kernel across multiple CPUs

and share an address space, �le descriptors, and signals. The library assumes that the

number of CPUs available to the process is static over its running time. A mechanism

such as scheduler activations [1] could be used to dynamically determine the number

of available CPUs.

An alternate design might be to run multiple independent copies of an event-

driven program on a multiprocessor, one per CPU. This approach might work in the

case of a web server, since the processing of di�erent client requests can be made

CPU 1

while (Q.head)
    Q.head ();

U

K
select ()

(a)

CPU 3

while (Q.head)
    Q.head ();

while (Q.head)
    Q.head ();

while (Q.head)
    Q.head ();

while (Q.head)
    Q.head ();

U
K

. . .

CPU 1 CPU 2 CPU N

(b)

Figure 3-1: The single process event driven architecture (left) and the multiprocess
event driven architecture (right).
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independent. This approach does not work if the program maintains mutable state

that is shared among all clients or requests. For example, a user-level �le server might

maintain a table of leases for client cache consistency. In other cases, running multiple

independent copies of a server may lead to decreases in eÆciency: a web proxy might

maintain an cache of recently accessed pages in main memory. Multiple copies of

the proxy could maintain independent caches, but content duplicated in these caches

would waste memory. libasync-mp allows a single copy of the application to achieve

performance improvements similar to those achieved by running multiple copies of an

application while protecting access to shared data structures.

There are a number of design challenges to making the single address space ap-

proach work, the most interesting of which is coordination of access to application

data shared by multiple callbacks. An e�ective concurrency control mechanism should

allow the programmer to easily (and incrementally) identify which parts of a server

can safely be run in parallel.

3.1 Coordinating callbacks

The design of the concurrency control mechanisms in libasync-mp is motivated by

two observations. First, most system software has natural coarse-grain parallelism,

because typically client requests are not dependent on each other or each request

has a sequence of independent states of processing. Second, existing event-driven

programs are already structured as non-blocking units of execution (callbacks), often

associated with one stage of the processing for a particular client. Together, these

observations suggest that individual callbacks are an appropriate unit of coordination

of execution.

libasync-mp associates a color with each registered callback, and ensures that no

two callbacks with the same color execute in parallel. Colors are arbitrary 32-bit

values, and their semantics resemble wait channels [13] in many ways. Application

code can optionally specify a color for each callback it creates; if it speci�es no color,

the callback has color zero. Thus, by default, callbacks execute sequentially on a single

CPU. This means that unmodi�ed event-driven applications written for libasync will

execute correctly with libasync-mp.

Event-driven systems do not inherently preclude the use of other concurrency

control mechanisms, such as the conventional mutex locks. However, mutex locks

16



are almost always blocking: an attempt to obtain a lock held by some other code

results in suspension of execution until the lock is available. This property of mutex

locks is contrary to the notion of short-running, non-blocking event callbacks: a

callback that uses mutex locks for synchronization can block for long periods of time

waiting to obtain a mutex lock. Colors avoid callback blocking by exposing the

concurrency information to the scheduler, which in turn can make optimal decisions

about execution order.

Thread-oriented concurrency control mechanisms, such as mutex locks, are often

hard to reason about, and therefore diÆcult to implement correctly. Engler et al. [8]

have shown that programming errors associated with mutex locks are common in

the Linux kernel, and Savage et al. [16] have shown that �nding and debugging such

problems is very diÆcult. The coloring concurrency control mechanism is easier to

reason about, because colors are applied to existing self-contained units of execution

which are often associated with single, well-de�ned tasks. Because callbacks have a

�xed coloring, there are no possible deadlock conditions; the worst case is sequential

execution on a single processor, when all callbacks are of the same color. Experience

shows that it is easy to correctly color callbacks in applications using libasync-mp in

order to take advantage of multiple processors.

The fact that color can be applied to a callback almost orthogonally to the call-

back's code makes it easy to adapt existing libasync-based servers. A typical arrange-

ment is to run the code that accepts new client connections in the default color. If

the processing for di�erent connections is largely independent, choose a new unique

color for the connection and apply that color to the entire sequence of callbacks that

process that connection. If a particular stage in request processing shares mutable

data among requests (e.g. a cache of web pages), choose a color for that stage and

apply it to all callbacks that use the shared data, regardless of which connection the

callback is associated with.

In some cases, application code may need to be modi�ed. This arises when a

single callback uses shared data but also has signi�cant computation that does not

use shared data. In that case it is typical to split the callback; the �rst half then

uses a special libasync-mp call (cpucb()) to schedule the second half with a di�erent

color.

The color mechanism is less expressive than locking; for example, a callback can

have only one color, which is equivalent to holding a single lock for the complete du-
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callback cwrap ((func *)(), arg1, .., Create a callback object with the given color.
argN, Color color)

callback cpwrap ((func *)(), arg1, .., Create a callback object with the given color
argN, Color color, int prio) and priority.

void cpucb (callback F) Add cb to the runnable callback queue.

Table 3.1: Additional calls in the libasync-mp API.

ration of a callback. However, experience suggests that �ne-grained and sophisticated

locking, while it may be necessary for correctness with concurrent threads, rarely is

necessary to achieve reasonable speedup on multiple CPUs for server applications.

Parallel speedup usually comes from the parts of the code that don't need much lock-

ing; coloring allows this speedup to be easily captured, and also makes it easy to port

existing event-driven code to multiprocessors.

3.2 libasync-mp API

The API that libasync-mp presents di�ers slightly from that exposed by libasync. The

wrap function described in Section 2 is extended by the cwrap function. The new

cwrap function takes an additional color argument; Table 3.1 shows the prototype

for cwrap. The color speci�ed at the callbacks creation (i.e. when cwrap is called)

dictates the color it will be executed under. Embedding color information in the

callback object rather than in an argument to fdcb and other calls which register

callbacks allows the programmer to write modular functions which accept callbacks

and remain agnostic to the color under which those callbacks will be executed. Note

that colors are not inherited by new callbacks created inside a callback running under

a non-zero color. While color inheritance might seem convenient, it makes it very

diÆcult to write modular code as colors \leak" into modules which assume that

callbacks they create carry color zero.

Since colors are arbitrary 32-bit values, programmers have considerable latitude in

how to assign colors. One reasonable convention is to use each request's �le descriptor

number as the color for its parallelizable callbacks. Another possibility is to use the

address of a data structure to which access must be serialized; for example, a per-

client or per-request state structure. Depending on the convention, it could be the

case that unrelated modules accidentally choose the same color. This might reduce

performance, but not correctness.
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The libasync-mp API also includes an optional priority level for callbacks; the

cpwrap function takes an additional priority value that will be associated with the

newly created callback. Priority levels are a hint to the scheduler about the order

in which callbacks should be executed; larger priority values indicate a callback that

should be executed preferentially over callbacks with lower priority values. Because

priority level information is just a hint to the scheduler, applications may not depend

on any particular execution order of callbacks based on their priorities. Priority levels

can be used to improve overall throughput of the system; their use is described in

more detail in Section 3.4.

libasync-mp provides a cpucb() function that takes a callback as an argument

and puts that that callback directly onto the runnable callback queue. This function

can be used to register a callback with a color di�erent from that of the currently

executing callback. As commonly used, the cpucb() function allows a programmer to

split a CPU-intensive callback in two callbacks. One of these callbacks performs com-

putation while the other synchronizes with shared state. To minimize programming

errors associated with splitting an existing callback into a chain of cpucb() callbacks,

libasync-mp guarantees that all CPU callbacks of the same color will be executed in

the order they were scheduled. This maintains assumptions about sequential execu-

tion that the original single callback may have been relying on. Execution order isn't

de�ned for callbacks with di�erent colors.

3.3 Example

Consider the web proxy example from Section 2. For illustrative purposes assume

that the parse request() routine was found to use a large amount of CPU time and

to not depend on any shared data. We could re-write req cb() to parse di�erent

requests in parallel on di�erent CPUs by calling cpucb() and assigning the callback

a unique color. Figure 3-2 shows this change to req cb(). In this example only the

parse request() workload is distributed across CPUs. As a further revision, reading

requests could be parallelized by adding color arguments to the fdcb() calls which

register the read request callback.
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// called when data arrives

req_cb(int fd, str inBuf)

{

read(fd, buf, ...);

append input to inBuf;

if (complete request in inBuf) {

// un-register callback

fdcb(fd, READ, NULL);

// parse the HTTP request under color fd

cpucb(cwrap(parse_request_cb, fd, inBuf, (color) fd))

} else {

// do nothing; wait for more calls to req_cb()

}

}

// below parsing done w/ color fd

parse_request_cb(int fd, str inBuf)

{

parse_request(inBuf, serverName, file);

// start connection to server

tcpconnect(serverName, wrap(connect_cb, fd, file));

}

Figure 3-2: Changes to the asynchronous web proxy to take advantage of multiple
CPUs

3.4 Scheduling callbacks

Each libasync-mp worker thread uses a simple scheduler to choose a callback to exe-

cute next from the queue. The scheduler considers color restrictions, callback/CPU

aÆnity, and programmer-speci�ed priority level hints. Its design is loosely based on

that of the Linux SMP kernel [5].

Figure 3-3 shows the structure of the queue of runnable callbacks. In general,

new runnable callbacks are added on the right, but cpucb() callbacks always appear

to the left of I/O event callbacks. A worker thread's scheduler considers callbacks

starting at the left. The scheduler skips over callbacks whose color makes them not

eligible to run; a shared table records the colors of callbacks currently running on

other CPUs. When choosing a callback to execute, the worker thread examines the

�rst N eligible callbacks on the queue, and assigns each callback cb a weight, computed
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Queue
Head

cpucb1 cpucb2 cpucb
Tail

fdcb1 fdcb2 select Queue
Tail

Figure 3-3: The callback queue structure in libasync-mp. cpucb() adds new callbacks
to the left of the dummy element marked \cpucb Tail." New I/O callbacks are added
at \Queue Tail." The scheduler looks for work starting at \Queue Head."

Callback 1

Callback 2

Callback 3 Callback 4CPU1

CPU2

Execution Time
(a)

Callback 3

Callback 1

Callback 4

Callback 2

CPU1

CPU2

Execution Time
(b)

Figure 3-4: Scheduling of callbacks across CPUs, without the use of priorities (left)
and with programmer-assigned priority levels (right).

as w(cb) = cb:priority+ (cb:color == last color ? 1 : 0), where last color is the color

of the last callback to execute in this worker thread. The worker thread chooses the

callback with the highest weight; in case of a tie, the left-most callback is chosen. The

parameter N is chosen to be a small integer to prevent a linear scan of all runnable

tasks.

Di�erent priority levels can be used to increase throughput in situations where a

certain color accounts for a much larger fraction of processing time than other colors.

For example, suppose the callback queue contains callbacks 1 through 4; callbacks

1 and 2 have colors 1 and 2 respectively, and callbacks 3 and 4 are colored zero.

Assume all four callbacks take the same amount of time to execute. Then, in the

absence of priority information, callbacks will be executed as shown in Figure 3-4 (a),

taking 3 time units to complete. If the programmer speci�es a higher priority for

zero-colored callbacks (3 and 4), the scheduler will choose to execute callbacks 3 and

4 over callbacks 1 and 2 when possible, as shown in Figure 3-4 (b). This allows the

callbacks to complete execution in 2 time units instead of 3.

The priority technique is useful for improving throughput of incrementally par-

allelized applications. If only a small number of callbacks in the system have been

parallelized (colored), then the priority of zero-colored callbacks can be increased to

result in better throughput, as demonstrated in Figure 3-4.

The scheduler favors callbacks of the same color as the last to execute on the

current CPU in order to increase performance. Callback colors often correspond to

particular requests, so libasync-mp tends to run callbacks from the same request on
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the same CPU. This processor-callback aÆnity leads to greater cache hit rates and

improved performance.

The reason that the scheduler favors cpucb() callbacks is to increase the perfor-

mance of chains of cpucb callbacks from the same client request. The state used by

a cpucb callback is likely to be in cache because the creator of the cpucb callback

executed recently. Thus, early execution of cpucb callbacks increases cache locality.
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Chapter 4

Implementation

libasync-mp is an extension of libasync, the asynchronous library [11] distributed as

part of the SFS �le system [12]. The library runs on Linux, FreeBSD and Solaris.

Applications written for libasync work without modi�cation with libasync-mp.

The worker threads used by libasync-mp to execute callbacks are kernel threads

created by a call to the clone() system call (under Linux), rfork() (under FreeBSD)

or thr create() (under Solaris). When a the work queue is empty, a worker thread

suspends itself by calling poll() on a special pipe �le descriptor; when another worker

thread puts callbacks on the work queue, it writes dummy data to the pipes of waiting

workers.

When libasync-mp starts, it adds a \select callback" to the run queue whose job is

to call select() to detect I/O events. The select callback enqueues callbacks based

on which �le descriptors select() indicates have become ready.

The select callback might block the worker thread that calls it if no �le descriptors

are ready; this would prevent one CPU from executing any tasks in the work queue.

To avoid this, the select callback uses select() to poll without blocking. If select()

returns some �le descriptors, the select callback adds callbacks for those descriptors

to the work queue, and then puts itself back on the queue. If no �le descriptors were

returned, a blocking select callback is placed back on the queue instead. The blocking

select callback is only run if it is the only callback on the queue, and calls select()

with a non-zero timeout. In all other aspects, it behaves just like the non-blocking

select callback. The use of two select callbacks guarantees that no worker threads

block in select() as long as there are callbacks eligible to be executed.

Although programs which use libasync-mp should not need to perform �ne grained
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locking, the libasync-mp implementation uses spin-locks internally to protect its own

data structures. The most important locks protect the callback run queue, the call-

back registration tables, and the memory allocator. The reference-counting garbage

collector uses atomic increment/decrement instructions.

The source code for libasync-mp is available as part of the SFS distribution at

http://www.fs.net on the CVS branch mp-async.
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Chapter 5

Evaluation

In evaluating libasync-mp we are interested in both its performance and its usability.

This section evaluates the parallel speedup achieved by two sample applications using

libasync-mp, and compares it to the speedup achieved by existing similar applications.

We also evaluate usability in terms of the amount of programmer e�ort required to

modify existing event-driven programs to get good parallel speedup.

The two sample applications are the SFS �le server and a caching web server. SFS

is an ideal candidate for achieving parallel speedup using libasync-mp: it is written

using libasync and performs compute intensive cryptographic tasks. Additionally, the

SFS server maintains state that can not be replicated among independent copies of the

server. A web server is a less promising candidate: web servers do little computation

and all state maintained by the server can be safely shared. Accordingly we expect

good SMP speedup from the SFS server and a modest improvement in performance

from the web server.

All tests were performed on a SMP server equipped with four 700 MHz Pentium

III Xeon processors. Each processor has 1MB of cache and the system has 1 GB

of main memory. The disk subsystem consists of a single ultra-wide 10,000 RPM

SCSI disk. Load was generated by four fast PCs running Linux, each connected to

the server via a dedicated full-duplex gigabit Ethernet link. Processor scaling results

were obtained by completely disabling all but a certain number of processors on the

server.

The server runs a slightly modi�ed version of Linux kernel 2.4.18. The modi�ca-

tion removes a limit of 128 on the number of new TCP connections the kernel will

queue awaiting an application's call to accept(). This limit would have prevented
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good server performance with large numbers of concurrent TCP clients.

5.1 HTTP server

To explore whether we can use libasync-mp to achieve multi-processor speedup in

applications where the majority of computation is not concentrated in a small portion

of the code, we measured the performance of an event-driven HTTP 1.1 web server.

We expect the speedup achieved by this application to be miminal: this experiment

represents the baseline performance increases one can expect to achieve using libasync-

mp.

The web server uses an NFS loop-back server to perform non-blocking disk I/O.

The server process maintains two caches in its memory: a web page cache and a �le

handle cache. The former holds the contents of recently served web pages while the

latter caches the NFS �le handles of recently accessed �les. Both of these structures

must be protected from simultaneous access.

5.1.1 Parallelizing the HTTP server

Figure 5-1 illustrates the concurrency present in the web server when it is serving

concurrent requests for pages not in the cache. Each vertical set of circles represents

a single callback, and the arrows connect successive callbacks involved in processing

a request. Callbacks that can execute in parallel for di�erent requests are indicated

by multiple circles. For instance, the callback that reads an HTTP request from the

client can execute in parallel with any other callback. Other steps involve access to

shared mutable data such as the page cache; callbacks must execute serially in these

steps.

When the server accepts a new connection, it colors the callback that reads the

connection's request with its �le descriptor number. The callback that writes the

response back to the client is similarly colored. The shared caches are protected by

coloring all operations that access a given cache the same color. Only one callback

may access each cache simultaneously; however, two callbacks may access two distinct

caches simultaneously (i.e. one request can read the page cache while another reads

the �le handle cache). The code that sends RPCs to the loop-back NFS server to read

�les is also serialized using a single color. This was necessary since the underlying RPC

machinery maintains state about pending RPCs which could not safely be shared. The
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5.1.2 HTTP server performance

To demonstrate that the web server can take advantage of multiprocessor hardware,

we tested the performance of the parallelized web server on a cache-based workload

while varying the number of CPUs available to the server. The workload consisted of

700 4K �les; these �les �t completely into the server's in-memory page cache. Four

machines simulated a total of 800 concurrent clients. A single instance of the load

generation client is capable of reading 20MB/s from the web server. Each client made

5 requests over a persistent connection before closing the connection and opening a

new one. The servers were started with cold caches and run for 30 seconds under load.

The server's throughput was then measured for 20 seconds, to capture its behavior

in the steady state.

Figure 5-2 shows the performance (in terms of total throughput) with di�erent

numbers of CPUs for the libasync-mp web server. Even though the HTTP server

has no particularly processor-intensive operations, we can still observe noticeable

speedup on a multi-processor system: the server's throughput is 1.36 times greater

on two CPUs than it is on one and 1.54 times greater on four CPUs.

To provide an upper bound for the multiprocessor speedup we can expect from

the libasync-mp-based web server we contrast its performance with N independent

copies of a single process version of the web server (where N is the number of CPUs

provided to the libasync-mp-based server). This single process version is based on an

unmodi�ed version of libasync and thus does not su�er the overhead associated with

the libasync-mp library (callback queue locking, etc). Each copy of the N-copy server

listens for client connections on a di�erent TCP port number.

The speedup obtained by the libasync-mp server is well below the speedup ob-

tained by N copies of the libasync server. Even on a single CPU, the libasync based

server achieved higher throughput than the libasync-mp server. The throughput of

the libasync server was 24.8 MB/s while the libasync-mp server's throughput was 22.8

MB/s.

The reduced performance of the libasync-mp server is partly due to the fact that

many of the libasync-mp server's operations must be serialized, such as accepting

connections and checking caches. In the N-copy case, all of these operations run in

parallel. In addition, locking overhead penalizes the libasync-mp server. Because the

server relies heavily on the reference counted garbage collection provided by libasync,

it performs a large number (approximately 100 per request) of expensive atomic
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Figure 5-2: The performance of the libasync-mp web server serving a cached workload
and running on di�erent number of CPUs relative to the performance on one CPU
(light bars). The performance of N copies of a libasync web server is also shown
relative the performance of the the libasync server's performance on one CPU (dark
bars)

increment and decrement instructions. Locking of shared structures (such as the

callback queue) also adds overhead. Pro�ling revealed that up to 50 percent of total

CPU time was spent acquiring mutexes or performing atomic increment/decrement

operations when the server is run on four CPUs.

The speedup achieved by multiple copies of a web server represents an upper

bound for possible speedup obtained by the libasync-mp server. To provide a more

realistic performance goal, we compared the libasync-mp server with two commonly

used HTTP servers. Figure 5-3 shows the performance of Apache 2.0.36 and Flash

v0.1 990914 on di�erent numbers of processors. Apache is a multi-process server: it

was con�gured to run with at least 256 servers and up to 512. Flash is an event-driven

server; when run on multiprocessors it forks to create N independent copies.

These servers show better absolute performance than the libasync-mp server. They

also show better speedup than the libasync-mp server: Flash achieves 1.73 speedup

on four CPUs while the libasync-mp server is 1.54 times faster on four CPUs. The
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Figure 5-3: The performance several web servers on multiprocessor hardware. Shown
are the throughput of the libasync-mp based server (light bars), Apache 2.0.36 (dark
bars), and Flash (black bars) on 1,2,3 and 4 processors.

di�erences in multiprocessor speedup as well as absolute performance are due to heavy

use of atomic operations.

Like the libasync-mp server, Flash and Apache do not show the same speedup

achieved by the N-copy server which is 2.50 times faster on four CPUs than on one.

Although these servers fully parallelize access to their caches and do not perform

locking internally, they do exhibit some shared state. For instance, the servers must

serialize access to the accept() system call since all requests arrive on a single TCP

port.

The main reason to parallelize a web server is to increase its performance under

heavy load. A key part of the ability to handle heavy load is stability: non-decreasing

performance as the load increases past the server's point of peak performance. To

explore whether servers based on libasync-mp can provide stable performance, we

measured the web server's throughput with varying numbers of simultaneous clients.

Each client repeatedly requests a randomly chosen 4KByte �le; the �les all �t in the

server's cache. Figure 5-4 shows the results. As we expect, the event-driven HTTP
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Figure 5-4: The performance of the web server on a cached workload as the number
of concurrent clients is varied.

server o�ers consistent performance over a wide variety of loads.

5.2 SFS server

To evaluate the performance of libasync-mp on existing libasync programs, we modi-

�ed the SFS �le server [12] to take advantage of a multi-processor system.

The SFS server is a single user-level process. Clients communicate with it over per-

sistent TCP connections. All communication is encrypted using a symmetric stream

cipher, and authenticated with a keyed cryptographic hash. Clients send requests

using an NFS-like protocol. The server process maintains signi�cant mutable per-

�le-system state, such as lease records for client cache consistency. The server per-

forms non-blocking disk I/O by sending NFS requests to the local kernel NFS server.

Because of the encryption, the SFS server is compute-bound under some heavy work-
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loads and therefore we expect that by using libasync-mp we can extract signi�cant

multiprocessor speedup.

5.2.1 Parallelizing the SFS server

We used the pct[3] statistical pro�ler to locate performance bottlenecks in the original

SFS �le server code. Encryption appeared to be an obvious target, using 75% of

CPU time. We modi�ed the server so that encryption operations for di�erent clients

executed in parallel and independently of the rest of the code. The resulting parallel

SFS server spent about 65% of its time in encryption. The reduction from 75% is

due to the time spent coordinating access to shared mutable data structures inside

libasync-mp, as well as to additional memory-copy operations that allow for parallel

execution of encryption.

The modi�cations to the SFS server are concentrated in the code that encrypts,

decrypts, and authenticates data sent to and received from the clients. We split the

main send callback-function into three smaller callbacks. The �rst and last remain

synchronized with the rest of the server code (i.e. have the default color), and copy

data to be transmitted into and out of a per-client bu�er. The second callback

encrypts the data in the client bu�er, and runs in parallel with other callbacks (i.e.,

has a di�erent color for each client). This involved modifying about 40 lines of code in

a single callback, largely having to do with variable name changes and data copying.

Parallelization of the SFS server's receive code was slightly more complex because

more code interacts with it. About 50 lines of code from four di�erent callbacks were

modi�ed, splitting each callback into two. The �rst of these two callbacks received

and decrypted data in parallel with other callbacks (i.e., with a di�erent color for

every client), and used cpucb() to execute the second callback. The second callback

remained synchronized with the rest of the server code (i.e., had the default color),

and performed the actual processing of the decrypted data.

5.2.2 Performance improvements

We measured the total throughput of the �le server to all clients, in bits per second,

when multiple clients read a 200 MByte �le whose contents remained in the server's

disk bu�er cache. We repeated this experiment for di�erent numbers of processors.

This test reects how SFS is used in practice: an SFS client machine sends all of its
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Figure 5-5: Performance of the SFS �le server using di�erent numbers of CPUs,
relative to the performance on one CPU. The light bars indicate the performance of
the server using libasync-mp; dark bars indicate the performance of n separate copies
of the original server. Each bar represents the average of three runs; the variation
from run to run was not signi�cant.

requests over a single TCP connection to the server.

The bars labeled \libasync-mp" in Figure 5-5 show the performance of the paral-

lelized SFS server on the throughput test. On a single CPU, the parallelized server is

0.95 times as fast as the original uniprocessor server. The parallelized server is 1.62,

2.18, and 2.55 times as fast as the original uniprocessor server on two, three and four

CPUs, respectively.

The absence of signi�cant speedup for the 4-processor case is due to the way we

chose to parallelize the server. Because only 65% of the cycles (just encryption) have

been parallelized, the remaining 35% creates a bottleneck. In particular, when the

remaining 35% of the code runs continuously on one processor, we can achieve a

maximum utilization of 1

0:35
= 2:85 processors. This number is close to the maximum

speedup (2.55) of the parallelized server. Other activities, such as interrupt handlers

and the NFS server, run in parallel with the SFS server and account for the slight

increase in performance between 3- and 4-processor cases. Further parallelization of
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the SFS server code would allow it to incrementally take advantage of more processors.

To explore the performance limits imposed by the hardware and operating system,

we also measured the total performance of multiple independent copies of the original

libasync SFS server code, as many separate processes as CPUs. In practice, such a

con�guration would not work unless each server were serving a distinct �le system.

An SFS server maintains mutable per-�le-system state, such as attribute leases, that

would require shared memory and synchronization among the server processes. This

test thus gives an upper bound on the performance that SFS with libasync-mp could

achieve.

The results of this test are labeled \N-copy" in Figure 5-5. The SFS server with

libasync-mp closely follows the aggregate performance of multiple independent server

copies for up to three CPUs. The performance di�erence for 2- and 3-processor cases

is due to the penalty incurred due to shared state maintained by the server, such as

�le lease data, user ID mapping tables, and so on.

Despite comparatively modest changes to the SFS server to expose parallelism,

the server's parallel performance was close to the maximum speedup o�ered by the

underlying operating system (as measured by the speedup obtained by multiple copies

of the server).
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Chapter 6

Related Work

There is a large body of work exploring the relative merits of thread-based I/O con-

currency and the event-driven architecture [14, 7, 9]. This thesis does not attempt

to argue that either is superior. Instead, it presents a technique which improves the

performance of the event-driven model on multiprocessors. The work described below

also considers performance of event-driven software.

Pai et al. characterized approaches to achieving concurrency in network servers

in [15]. They evaluate a number of architectures: multi-process, multi-threaded,

single-process event-driven, and asymmetric multi-process event-driven (AMPED).

In this taxonomy, libasync-mp could be characterized as symmetric multi-threaded

event-driven; its main di�erence from AMPED is that its goal is to increase CPU

concurrency rather than I/O concurrency.

Like libasync-mp, the AMPED architecture introduces limited concurrency into

an event driven system. Under the AMPED architecture, a small number of helper

processes are used to handle �le I/O to overcome the lack of non-blocking support for

�le I/O in most operating systems. In contrast, libasync-mp uses additional execution

contexts to execute callbacks in parallel. libasync-mp achieves greater CPU concur-

rency on multiprocessors when compared to the AMPED architecture but places

greater demands on the programmer to control concurrency. Like the AMPED-based

Flash web server, libasync-mp must also cope with the issue of non-blocking �le I/O:

libasync-mp uses an NFS-loopback server to access �les asynchronously. This allows

libasync-mp to use non-blocking local RPC requests rather than blocking system calls.

The Apache web server serves concurrent requests with a pool of independent

processes, one per active request [2]. This approach provides both I/O and CPU
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concurrency. Apache processes cannot easily share mutable state such as a page

cache.

The staged, event-driven architecture (SEDA) is a structuring technique for high-

performance servers [20]. It divides request processing into a series of well-de�ned

stages, connected by queues of requests. Within each stage, one or more threads de-

queue requests from input queue(s), perform that stage's processing, and enqueue the

requests for subsequent stages. A thread can block (to wait for disk I/O, for example),

so a stage often contains multiple threads in order to achieve I/O concurrency. SEDA

can take advantage of multiprocessors, since a SEDA server may contain many con-

current threads. One of SEDA's primary goals is to dynamically manage the number

of threads in each stage in order to achieve good I/O and CPU concurrency but avoid

unstable behavior under overload. The major di�erence between SEDA and libasync-

mp is that SEDA achieves I/O concurrency with concurrent blocking threads, while

libasync-mp uses non-blocking callbacks. Both systems use a mixture of events and

concurrent threads; from a programmer's perspective, SEDA exposes more thread-

based concurrency which the programmer may need to synchronize, while libasync-mp

tries to preserve the serial callback execution model.
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Chapter 7

Conclusions and Future Work

7.1 Future Work

The libasync-mp library can be potentially improved in a few ways. The shared

callback queue can become a performance bottleneck for systems with large numbers

of processors (over four). Implementing per-processor callback queues will allow each

processor to execute independently for longer periods of time without synchronizing

with other processors. Callback-to-processor aÆnity can be implemented by placing

new callbacks onto the queue of the processor where callbacks of this color have last

executed.

Priority levels in libasync-mp can be augmented with a better scheduling algorithm

that tries to maximize system throughput. By choosing callbacks that have the

most frequently occuring color in the callback queue, the scheduler can minimize the

probability of color conicts resulting in idle worker threads in the future. Other

more complex maximal matching algorithms could also be applied to devise better

scheduling algorithms.

A key feature of libasync-mp is the separation of the event-driven core from the

callback queueing and execution layer. Current event-driven systems tend to execute

event callbacks right away, leaving little room for scheduling policies and priorities.

On the other hand, a separate callback queueing and execution layer allows for more

involved scheduling policies, since event callbacks, and the event-polling loop itself,

can be prioritized and potentially executed out of order. For example, certain call-

backs may receive higher priority so that important events are serviced even when

the overall system is overloaded and cannot handle the o�erred load. This allows for
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more �ne-grained priority control in event-driven systems, as a parallel to priority

mechanisms typically available to multi-threaded systems.

Explicit event callback scheduling allows for explicit load-shedding in the face

of overload, similar to some of the mechanisms used by SEDA [20]. Typical event-

driven systems have no explicit load-shedding strategy; event callbacks are executed

as usual, accumulating an excess of events waiting to be serviced, in hopes that the

clients will back o� due to increased latency. Due to the nature of the event-polling

loop, the system is not aware that it is overloaded; all that can be noticed is that

there are always events to be serviced. By using a callback queue, such as that used

by libasync-mp, overload conditions can be observed as the queue length increases

past a certain threshold. Overload can be handled by executing a special light-weight

drop callback for callbacks that are queued beyond a certain depth threshold in the

callback queue.

The drop callback would be optionally provided by the application, along with

the normal event-handling callback. When executed, the drop callback would clean

up any state held by the associated callback and inform the client that the server is

unable to service the request due to overload. Such behavior may be better suited for

clients in some situations. Additionally, this allows the server to only keep state for

clients it expects to service, and free the memory used by clients it does not expect

to be able to service.

The callback queue framework can also be used to provide for a more general-

ized way of handling overlapping disk I/O on UNIX systems than AMPED[15], by

spawning more worker threads than the number of available processors.

7.2 Conclusion

This paper describes a library that allows event-driven programs to take advantage of

multiprocessors. When high loads make multiple events available for processing, the

library can execute event handler callbacks on multiple CPUs. To control the concur-

rency between events, the programmer can specify a color for each event: events with

the same color (the default case) are handled serially; events with di�erent colors

can be handled in parallel. The programmer can incrementally expose parallelism

in existing event-driven applications by assigning di�erent colors to computationally-

intensive events that don't share mutable state.
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Experience with libasync-mp demonstrates that applications can achieve multi-

processor speedup with little programming e�ort. Parallelizing the cryptography in

the SFS �le server required about 90 lines of changed code in two modules, out of

a total of about 12,000 lines. Multiple clients were able to read large cached �les

from the libasync-mp SFS server running on a 4-CPU machine 2.55 times as fast

as from an unmodi�ed uniprocessor SFS server on one CPU. Applications without

computationally intensive tasks also bene�t: an event-driven web server achieves 1.54

speedup on four CPUs with multiple clients reading small cached �les relative to its

performance on one CPU.
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