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Abstract— We study a fully distributed, reactive algorithm
for deployment and maintenance of a mobile communication
backbone that provides an area around a network gateway with
wireless network access for higher-level agents. Possible applica-
tions of such a network are distributed sensor networks as well
as communication support for disaster or military operations.
The algorithm has minimalist requirements on the individual
robotic node and does not require any localization. This
makes the proposed solution suitable for deployment of large
numbers of comparably cheap mobile communication nodes
and as a backup solution for more capable systems in GPS-
denied environments. Robots keep exploring the configuration
space by random walk and stop only if their current location
satisfies user-specified constraints on connectivity (number of
neighbors). Resulting deployments are robust and convergence
is analyzed using both kinematic simulation with a simplified
collision and communication model as well as a probabilistic
macroscopic model. The approach is validated on a team of
9 iRobot Create robots carrying wireless access points in an
indoor environment.

I. INTRODUCTION

We wish to deploy inexpensive robots with minimalist
capabilities over an area and use the group as a computation,
communication, and sensing backbone. The swarm will
disperse autonomously to create a mobile communication
network with maximum coverage. In this paper, we study
this problem when the swarm of robots is minimalist in
their resources and information — that is, the robots op-
erate by using wireless connectivity only to estimate the
network topology, have no means of localization, and avoid
obstacles using bumper sensors. Applications include first
response operations in areas where the existing computation
and communication infrastructure has been destroyed, and
monitoring remote areas with no infrastructure.

The robots’ information and processing capabilities will
affect the quality of the communication network that they
can establish. The critical resources are (1) knowledge about
the position of other robots (relative range-and bearing),
(2) knowledge about the placement of the robot within the
environment (global localization), and (3) knowledge about
the environment in terms of maps. We see a hierarchy of
capabilities, which ranges from no map, no localization, and
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Fig. 1. A team of iRobot Create robots equipped with IEEE 802.11b
wireless nodes running MIT Proto is deployed to create an ad-hoc network
that covers an area with network access.

local communication to full information on the environment,
global localization, and complete knowledge of the position
of each member in the swarm.

Our long-term goal is to precisely quantify the perfor-
mance benefits as we move across this hierarchy toward
increasingly more capable robots. In this paper, we focus
on studying the lowest level of the hierarchy, that is a group
of robots that can move in space, avoids obstacles, and can
estimate the topology of the network within the range of
its wireless communication device. While such a minimalist
approach offers the advantage to allow for deployment of
large numbers of small and cheap units, building up a system
from the bottom-up will also help us to construct more robust
algorithms that deal better with sensor and actuator noise
present in more capable systems. More generally, designing
a minimalist algorithm helps us to understand better the
information structure of a robot task, that is the information
and ressources which are necessarily needed by a robot
system to accomplish a task.

A. Contribution of this paper

We develop a minimalist distributed algorithm that pro-
vides a scalable and robust solution to maximizing the cov-
erage area of a wireless mesh network solely by relying on
the number of other robots within communication range. We
compare its performance to a hypothetical optimal solution.
Convergence of the algorithm as a function of different
parameter choices is analyzed using kinematic simulation
and a probabilistic model. The results presented in this
paper establish a baseline for the coverage performance
that can be achieved with a robotic platform in its most



basic configuration, and will help us to analyze benefits and
costs of more sophisticated algorithms requiring additional
capabilities. Finally, we present the development of a low-
cost, mobile networking robotic platform running MIT Proto,
an open-source programming language and virtual machine
aimed at swarm robotic applications, which is used for
validating the proposed algorithm in an indoor mesh network
deployment scenario.

B. Related work

Algorithms for deploying large teams of agents can be
well classified using the requirements they pose on the indi-
vidual robotic nodes. For instance, some algorithms require
noise-less, global localization and reliable, global informa-
tion exchange among the nodes. Assuming perfect global
localization and reliable information exchange allows for
leveraging tools from graph and control theory for controller
analysis and design (see also the special issue on networked
control systems [1]). Particularly noteworthy with respect
to the case study considered in this paper are distributed
control approaches which exploit global metrics of graph
connectivity for deriving local control laws [2].

Another class of algorithms are fully decentralized and
reduce the requirements on the individual robotic node to
provide the relative positions of its immediate neighbors and
local information exchange [3]–[6].

Assumptions on the individual robotic platform are further
relaxed by approaches that solely rely on the signal strength
information between nodes [7], [8]. Only few contributions
have adressed the network coverage problem using minimal-
ist robotic nodes. For instance, [9] proposes an algorithm
and analysis for coalescence of a team of robots to a static
gateway based on random walk. As robots never resume
motion once they stopped close to the gateway, this work
is a special case of the algorithm and analysis presented in
this paper.

II. EXPERIMENTAL SETUP

We study the proposed algorithm at four levels of ab-
straction: a hardware implemention (Figure 1), a dynamical
model implemented in the Proto simulator (2), a kinematic
model implemented in Matlab, and an analytical probabilistic
model. Experiments are conducted in the GPS-denied ground
floor of the MIT Stata Center.

A. Hardware

For computation and networking we use an Atheros
radio-on-a-chip MIPS platform running OpenWRT 1 Linux
(180MHz, 32MB RAM, 8MB Flash). The transmission
strength of the radio interface has been artificially limited
to 5 dBm. For locomotion we are using a iRobot Create
differential wheel robot (diameter around 30cm) that pro-
vides coarse odometry, bumpers and cliff sensors. The MIPS
CPU communicates with the Create via a serial interface
in intervals of 50ms. The current retail cost of the overall

1http://www.openwrt.org

system, including NiMH battery and GPS is below $200 and
has potential for further miniaturization.

B. Proto

MIT Proto2 [10] is an open-source language and toolkit
that makes it easy to write complex programs for spatial
computers. A spatial computer is a collection of devices dis-
tributed to fill space, where the difficulty of communicating
between devices is strongly dependent on their geometric
distance. Examples include sensor networks, robotic swarms,
cells during morphogenesis, FPGAs, ad-hoc wireless sys-
tems, biofilms, and distributed control systems. Proto is a lan-
guage we have developed for programming spatial computers
using a continuous space abstraction. Rather than to describe
the behavior of individual devices, the programmer views
the space filled by the devices as an amorphous medium—a
region of continuous space with a computing device at every
point—and describes the behavior of regions of space. These
programs are automatically transformed into local actions
that are executed approximately by the actual network of
devices. When the program obeys the abstraction, these local
actions reliably produce an approximation of the desired
aggregate behavior. MIT Proto is our implementation of
Proto, comprising a compiler, cross-platform virtual machine
including a simulator, code libraries, and tutorial material. A
screenshot of the Proto simulator is shown in Figure 2.

For this paper, we implemented a virtual machine on
the MIPS platform that is able to execute Proto bytecode.
Common to all platforms is the implementation of primitives
for sending and receiving raw packets over the (platform
specific) radio link. On a robotic platform, Proto requires
additional opcodes for driving the robot given a vector as
well as reading its sensor values that are then available as
Proto expressions. The Proto simulator is a virtual machine
running on Linux and implements the most commonly used
sensors and actuators used across the supported platforms.

C. Networking

The Atheros wireless card is configured to provide two vir-
tual devices that both operate on the same physical channel.
One device is used by Proto in monitor mode to exchange
connectivity information, including the number of hops to the
gateway, with its neighbors. A second device is configured
in ad-hoc mode and associates with neighboring nodes. This
device is used by an implementation of the OLSR algorithm
(OLSRd3) to provide TCP/IP routing for the resulting mesh
network.

III. PROBLEM STATEMENT AND PERFORMANCE

METRICS

We are interested in a network that both maximizes
the area covered by the wireless signal as well as being
sufficiently dense in order to be robust to unreliable links
and failure of individual nodes, while being connected to a
static gateway node through a finite number of hops. We are

2http://groups.csail.mit.edu/stpg/proto.html
3http://www.olsr.org



Fig. 2. 10 networked mobile robots in the Proto 3D simulator. The robot
providing the network gateway is highlighted in the center (blue disc), lines
between robots show radio connectivity, and circles around the robots depict
communication range.

thus interested in the sparsest possible deployment, which
still satisfies a certain minimal number of neighboring nodes
for maintaining robustness.

We can summarize these requirements by the following
constraint optimization problem

max
P

C(P ) (1)

s.t. α ≤ ‖Ni‖ ≤ β, ∀i ∈ [1; n0]
ig < ∞, ∃g ∈ G

where C(P ) is the effective area being covered given the
positions of the robots P : R

2n0 of all n0 robots. C(P ) is
given by the union of area covered by all robots

C(P ) =
⋃

i∈[1;n0]

Ai(pi) (2)

with Ai the coverage area of robot i at its position p i ∈ P
and Ni is the set of robots in communcation range of node
i, with ‖Ni‖ its cardinality. The set G comprises a set of
gateway nodes to which a route must exist and ig denotes
the minimal distance from robot i to robot g in hops.

A. Optimal Performance

The theoretical optimal coverage is bounded by A in0. In
this case, however, robots are not connected, as robot-to-
robot distance must not exceed R (assuming a disc-shaped
communication model). In case of a topology with at least
one and not more than two links per robot, which allows
maximal spread, each robot’s coverage area A i is reduced
by 1

3πR2−
√

3
4 R2 (see also the illustration in Figure 3, left),

and the effective coverage area is given by

⋃
i∈[1;n0]

Ai ≈ Ain0 − 2n0

(
1
3
πR2 −

√
3

4
R2

)
(3)

A near-optimal distribution which coverage comes close
to (3) is illustrated in Figure 3, middle. When the topology
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√
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Fig. 3. Relation of effective area coverage and individual coverage for
2-link topologies (middle and left) and a 3-link topology (right).

requires at least 3 links per node, overlap between nodes
increases and effective coverage is even smaller, which is
illustrated in Figure 3, right.

IV. AN ALGORITHM FOR DEPLOYMENT AND

OPTIMIZATION OF A WIRELESS AD-HOC NETWORK

In this section we develop the algortihm that provides a
fully distributed solution to (1). Let Ni be the set of robots
within communication range of robot i. We assume that each
robot can estimate the number of other robots within signal
range ‖Ni‖, avoid collisions with other robots and obstacles,
and that the environment is bounded. We will first describe
the algorithm (Section IV-A) and then propose a kinematic
model (Section IV-C). Convergence of the algorithm is then
proven using a probabilistic model (Section IV-D). Whereas
the kinematic model bases on physical first principles and can
be simulated in MATLAB, the probabilistic model is derived
by associating probabilities with possible state transitions of
the individual robot and allows us to capture the population
dynamics of the whole swarm by a set of difference equa-
tions.

A. Deployment Algorithm

Maximizing ∪Ai is equivalent to minimizing ∩Ai, i.e. the
intersection between the coverage areas and can be obtained
by having the robots randomly walk and mutually avoid
each other for a sufficient amount of time. In a bounded
environment, such behavior eventually leads to a uniform
probability distribution for the robots in the environment.
In order for satisfying the constraints of (1), we let robots
only move if the constraints are not satisfied, i.e. the number
of neighbors of a robot is not within the window given by
[α; β], or a node is not connected to a gateway. By this,
the random walk acts as an unbiased, distributed search
on the configuration space. The algorithm is illustrated by
an example in Figure 4 and summarized in pseudo-code
(Algorithm 1). Robots move with speed vi.

B. Proto implementation

The Proto implementation of this algorithm that will later
be executed on the robots is as follows

(mov (if (> distance-to (gateway)) threshold)
(brownian)
(if (< (num-nbr) alpha)

(brownian)
(if (> (num-nbr) beta)
(brownian)
(tup 0 0)

)
)



Algorithm 1: DEPLOYMENT ALGORITHM (PSEUDO

CODE)
Data: Number of robots ‖Ni‖ within range R of robot i.
Result: A locally optimal deployment.
while true do1

if not connected to gateway or ‖Ni‖ > β or ‖Ni‖ < α2
then

heading = random([0; 2π[)3
speed = vi4

else5
speed=06

move(speed,heading)7

)

Proto is a purely functional language written using s-
expressions very similar to Scheme. A Proto expression pro-
duces a field that maps every point in space to a value. In our
algorithm, the hop-count to the gateway (distance-to)
and the number of neighbors (num-nbr) at the current
location of the robot are mapped into a 2-tupel that defines
direction and speed of the robot to move. If the number of
neighbors is within the range given by alpha and beta,
the expression evaluates to a Null-vector ((tup 0 0)).
Otherwise—or when the distance to the gateway exceeds a
certain threshold (usually the maximum number of robots)—
the expression evaluates to a random vector (brownian) on
the unit circle.

C. Kinematic Model

The kinematics of an individual node are given by

pi(k + 1) = pi(k) + vi

(
cosφi

sin φi

)
(4)

where pi(k) is the position of robot i at time interval k, vi

is a scalar speed, and φi is a random heading (φi ∈ [0; 2π[).
The algorithm is defined in discrete time and one time
interval corresponds to the update speed T of the neighbor
count estimate. In order not to penetrate the boundary of the
environment B ⊂ R

2 that can be detected using the on-board
collision sensor, we set

(pi(k + 1) − pi(k)) |B = 0 (5)

and boundaries are avoided by choosing a new random
heading φi.

The speed vi of each robot is given by

vi =

{
0 if α ≤ ‖Ni‖ ≤ β ∧ ig < ∞, g ∈ G

vi otherwise
(6)

which reflects the constraints from (1).

D. Analysis of Convergence

We will now show convergence of Algorithm 1 by proving
the convergence of a probabilistic model of the robotic
system.
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Fig. 4. Possible configuration during execution of the algorithm. White
nodes are moving (an arrow indicating their random heading), whereas black
and gray nodes are static. The gray node is the static gateway node, lines
depict bi-directional one-hop connections. In this example, robots move if
they have less than α = 2 or more than β = 4 connections or are not
connected to the gateway node by a finite number of hops. Nodes 1–4 are
not connected to 0, whereas nodes 5 and 7 do not satisfy the connectedness
constraints given by α and β, respectively.

Theorem 1: A collective of robots with the behavior de-
scribed in Algorithm 1 will converge into a single cluster,
when β > α, α, β ∈ Z

+ and β < n0 − 1.
Proof: For convergence of the whole team into a

single cluster, we need to show that the number of robots
connecting to the cluster is larger than the number of robots
leaving the cluster for all time intervals k. For this we will
first develop a probabilistic model from the microscopic
perspective of an individual agent (see for instance [11],
[12]), which is inspired by the Master equation in physics
[11], and models the probability for a robot to be in a certain
state as a function of the other robots’s states. We will then
derive a set of macroscopic rate equations, which describe
the average number of robots in a cluster. Convergence is
finally shown by considering certain special cases, which
help us highlight desired properties of the system.

1) Modeling Assumptions: Our analysis bases on the
following assumptions. The environment is bounded, i.e. a
randomly moving node will eventually visit every point in
the environment with non-zero probability [13], and robots
are randomly distributed in the environment according to
a uniform distribution, i.e. the likelihood for encountering
a specific robot is independent from its location in the
environment. Although these assumptions seem to be re-
strictive, they correspond to the worst-case scenario of the
proposed algorithm and predictions from models based on
these assumptions can thus be understood as lower bound
on the performance. Also, if we prove that robots converge
from a random distribution, they will also converge from
a centralized deployment. Using the assumption of spatial
uniform distribution, we assume a constant probability p to
encounter any other node in the environment during one time
interval. The probability p is a function of the environment
size, the sensor range, and the speed with which an individual
node is moving through the environment and can either be
measured in the real system or calibrated as proposed in [12].

2) Microscopic Model: In the algorithm described in
Section IV-A, a node can be in one of the following states:



N0(k)

Nα(k) Ni(k) Nβ(k)

pNc(
k)

pi
i−1∏
j=0

(Nc(k) − j)

pβ
N

c (k)β

pN
0 (k)

pN0(
k − 1)Nβ

(k − 1)
α

‖E‖(k)
β

pN0(k) pN0(k)

pN0(k − 1)Nβ(k − 1) β
‖E‖(k) βpN0(k − 1)Nβ(k − 1) i

‖E‖(k) β

Fig. 5. Markov chain describing the degree distribution dynamics based
on possible states of an individual node.

being mobile or being part of the cluster connected to the
internet via any allowed number of neighbors (given by the
parameters α and β for the lower and upper bound, respec-
tively). Thus, the total number of states of an individual
robot is bounded. The probabilistic finite state machine is
summarized in Figure 5, and its state transition probabilities
are developed as follows.

Given the probability p to encounter another robot (with
pn0 < 1), the probability to encounter one and only one
out of Nc objects in the cluster is given by pNc, and the
probability for a mobile node to encounter exactly i other
nodes in the same time-step is given by

p(i|0) = pi
i−1∏
j=0

(Nc(k) − j), i ∈ [α; β] (7)

When a mobile node encounters i other nodes that are
already part of the cluster, it will gain i neighbors. A mobile
node joining the cluster, however, changes the status of all
other robots it connects with. From the perspective of a robot
with i connections, the probability that it is hit by a searching
robot is pN0(k) with N0(k) the number of mobile robots at
time interval k. Hence, the probability for a robot with i
connections to get an additional connection during a time
interval is given by

p(i + 1|i) = pN0(k), i ∈ [α; β[ (8)

In the case of a robot already having β connections, this
robot will leave the cluster with probability

p(0|β) = pN0(k) (9)

When this happens, all nodes previously connected to
the leaving node will notice a lost connection in the next
time interval. The probability for this event to happen to an
individual node corresponds to the number of robots that
left the cluster during the last time interval (pN0(k−1)). As
connections are removed from all nodes in the cluster with
equal probability, the probability for an individual node to
loose a connection needs to be normalized by the ratio of
own connections and total connections in the cluster ( i

‖E‖(k) ).
Here, ‖E‖(k) corresponds to the total number of edges in the

system and is given by

‖E‖(k) =
∑

i∈[α;β]

iNi(k) (10)

Hence, the probability for a robot with i connections to
loose a connection is given by

p(i − 1|i) = pN0(k − 1)Nβ(k − 1)
i

‖E‖(k)
β, i ∈]α; β]

(11)
As robots only leave the cluster when they are exceeding β
connections, each time a robot leaves, β other nodes loose
a connection. This is reflected by the factors Nβ(k − 1)
and β in the above equation. For robots that have only
α connections (the lower limit of allowed connections),
removing a connection will let this robot resume search.
Thus,

p(0|α) = pN0(k − 1)Nβ(k − 1)
l

‖E‖(k)
β (12)

3) Macroscopic Model: Having established possible node
states and state transition probabilities (see also Figure 5),
we can derive the following set of rate equations:

The number of robots with i connections at time interval
k is given by

Ni(k + 1) = Ni(k) + p(i|0)N0(k) (13)

+ pi
i−1∏
j=0

(Nc(k) − j)Ni−1(k)

+ pN0(k − 1)Nβ(k − 1)
i + 1
‖E‖(k)

βNi+1(k)

− pN0(k)Ni(k)

− pN0(k − 1)Nβ(k − 1)
i

‖E‖(k)
βNi(k)

and is constructed by multiplying the state transition proba-
bilities from and to state i (7), (8) and (11) with the number
of robots in their original state. Equations for Nα, Nβ , and
N0 can be constructed in a similar fashion.

4) Special cases: For α = β = 0, nodes will not be
able to connect to the cluster (as β = 0). For α = 0 and
β ≥ 1, nodes will eventually join the cluster, and the rate of
convergence will be a function of β. For low β, e.g. β = 1,
the influx to N1(k) is given by pN1(k)N0(k) and the outflux
by pN0(k)N1(k) + N1(k)pN0(k − 1) 1

‖E‖(k) . That is, nodes
will leave the cluster at a higher rate than joining it. Similarly,
we can see, that for all α = β = i, Ni = Nc and thus

pi
i−1∏
j=0

(Nc(k) − j)N0(k) < pN0(k) + pN0(k − 1)
i

‖E‖(k)
,

i ∈ [0; n0]
(14)

i.e. the inflow to the cluster is always lower than the outflow.
We will now consider the case α = 0 and β = n0−1. This

corresponds to the scenario described in [9], who considers
β = ∞, i.e. robots never resume motion once connected
to the gateway. Our first observation is that Ni(k) is rather
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Fig. 6. Randomly selected deployments at time interval k = 5000 for
a centralized initial configuration for (α = 1, β = 3) (top row), (α =
2, β = 4) (middle row), and (α = 3, β = 5) (bottom row), and robot
speed vi = 1m

T
. Gray discs depict wirless range of an individual. Higher

values for α and β lead to denser clusters, while topological optimization
leads to instable behavior.

growing due to mobile robots connecting to less connected
nodes than due to mobile nodes simultaneously connecting
to i nodes as

pN0(k) > pi
i−1∏
j=0

(Nc(k) − j) (15)

with p << 1/n0. This leads to

Ni(k) > Ni+1(k), i ∈ [α; β − 1] (16)

Consequently, if ‖α−β‖ > 0, the outflow of the system will
be always smaller than the inflow

pN0(k)Nβ(k) + pN0(k − 1)Nβ(k − 1)Nα(k) <

pN0(k)
∑

i∈[α;β]

Nc!
(Nc − i + 1)!

(17)

as Nc(k) =
∑

i∈[α;β] Ni(k) and pN0(k)Nβ(k) > pN0(k −
1)Nβ(k − 1) for Nβ(0) = 0.

V. RESULTS

We performed a series of simulations of the kinematic
model given by (4)–(6) for both centralized and uniform
initial deployments, as well as bounded and unbounded
environments. In all our simulations, we use n0 = 30 robots,
an arena of 100 · 100m2, and a wireless coverage area of a
robot that is given by a circular disc with radius R = 10m.

Randomly selected topologies out of 100 simulations
(kinematic model) at time k = 5000 for a centralized initial
configuration are shown in Figure 6 and provide a qualitative
idea of the resulting topologies. Stable clusters involving a
large part of the population are usually reached within a few
hundred time intervals.

For quantitatively studying the performance of the pro-
posed algorithm, we measure the average area being covered
by the wireless network, i.e. all robots that are connected
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Fig. 7. Average coverage area vs. time for centralized deployment of 30
robots for (α = 2, β = 4), (α = 1, β = 5), (α = 1, β = 6), (top,
middle, and bottom curve, respectively) for vi = 1m

T
. 100 runs, error bars

show standard deviation. Broadening the window of allowable number of
neighbors leads to faster convergence but lower coverage.

to the gateway node by a finite number of hops, over 100
runs. Figure 7 shows results for increasingly large intervals
of [α; β]. We observe that increasing the range of allowed
neighbors leads to slightly faster convergence at cost of
decreasing coverage. This observation is well reflected in
the probabilistic model as the probability to stop increases
with the number of possible immobile states.

When exploring other intervals [α; β] we observe an
increase in area coverage for lesser connected clusters, i.e.
for lower values of α and β, as robots need to spread out
more in order to satisfy the constraints.

We then simulated random initial distributions in order to
test, whether the algorithm will indeed lead to convergence
independently of the initial conditions. Qualitative results
for random initial positions are depicted in Figure 8 for
various settings of α and β. Figure 9 shows average coverage
performance measured over 100 experiments as well as the
theoretical optimal coverage (α = 1, β = 2). We observe
that random initial deployments converge slower, but tend
to lead to better overall coverage for sparse topologies as
robots tend to connect to the cluster as soon as it becomes
visible and thus better exploit the wireless signal range.
This is not the case for dense topologies, which a) yield
smaller cluster with a lower probability of being encountered
and b) require the robots to come very close to the cluster
before connecting (due to high values of α). We tested the
algorithm also in unbounded environments for centralized
and random deployments (within the 100m x 100m field as
in the other experiments). Figure 10 shows box-plots of the
performance over 100 experiments recorded at time interval
k = 5000. Surprisingly, median coverage is only slightly
lower in unbounded environments. These results suggest high
robustness of the proposed algorithm also in open terrain.

We also conducted experiments in an indoor environment
using real robots. Using a transmission power of 5 dBM, the
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Fig. 8. Random samples showing the resulting topology at k = 15000
for random initial deployments for (α = 1, β = 3), (α = 2, β = 4),
(α = 3, β = 5) (top, middle, and bottom rows, respectively).
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Fig. 9. Average coverage area vs. time for random deployment of 30
robots for (α = 1, β = 3), (α = 2, β = 4), (α = 3, β = 5) (top,
middle, and bottom curve pairs, respectively) for random initial distributions
and vi = 1m

T
. The more connections are required for robots to rest (high

values of α), the slower the system converges. The straight line corresponds
to coverage with a theoretical near-optimal topology.

actual communication range varied between 10-20m. Figure
11 illustrates the workings of our algorithm and the Proto
virtual machine. Robots were dispersed and shut down one
after the other except for two robots. As soon as the neighbor
count reached the upper threshold, the two remaining robots
instantaneously stopped moving and resumed motion only
after the lower threshold was crossed. Figure 12 then shows
sample results from a centralized deployment of 9 robots on
the ground floor of the MIT Stata center. In this experiment,
convergence was achieved (all robots stopped) after around
35 minutes and covering an area of around 500m 2. The
qualitative behavior of the robots was very similar to that
observed in simulation.
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Fig. 10. The box-plots show the distribution of coverage at time interval
k = 5000 for experiments in bounded and unbounded environments for
vi = 1m

T
. Data for unbounded environments is shown on the left of each

pair and data for bounded environments to the right. The three pairs to the
left are from centralized deployments (Figures 7) and the three pairs to the
right are from random deployments (Figure 9).
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Fig. 11. Relation between number of robots within communication range
and mobility for two robots. Robots have been systematically removed from
the experiment, leading to rest of the robots when the number of remaining
robots is within the allowable threshold.

Fig. 12. Deployment of 9 robots on the ground floor of the MIT Stata
Center after convergence. Numbers indicate the number of neighbors. The
experiment lasted around 35 minutes and covers approximately 500m2. The
robot in the center (marked with a black dot) is the static gateway and all
robots were initially deployed around it. The second robot from the right
showed a radio failure and is not counted by any other robot.



VI. DISCUSSION

Extensive simulations show robust behavior with well
shaped topologies, in particular for centralized deployments.
Results from simulations with random deployments suggest
good performance also for a real-world use case (e.g., where
a human or robotic agent [14] deploys the robots according
to some heuristic while exploring the environment).

In general we observe that changing the transmission
power rather effects the robustness towards external distur-
bances (e.g. people passing by) than the effective range.
This makes the space required for conducting meaningful
experiments rather large.

A. Probabilistic modeling

In addition to exhibiting guaranteed convergence, the dy-
namics of the probabilistic model are well in line with those
of the kinematic simulations. For instance, for α being large,
the model suggests slower convergence as the likelihood of
a mobile node connecting to the cluster with α connections
becomes low. Similarly, for large ‖β − α‖, not only the
likelihood of sucessful connection to the cluster increases but
the cluster will store more nodes, and thus increase speed of
convergence.

A limitation of the proposed model is that measuring
the degree distribution only indirectly captures the actual
performance metric (area coverage). Also, the proposed state
transition probabilities do not reflect the actual embodiement
of the cluster. For instance, robots at the boundary of the
cluster will have a much higher probability of connecting
to a bypassing mobile robot. As all robots are connected,
however, state transitions of the boundary robots will quickly
propagate to the inside of the cluster. In order to capture this
effect, the dynamics of the system might be better modeled
by a spatial model, which describes the number of robots i
hops away from the center or captures the spatial probability
density function of the whole system.

VII. CONCLUSION

We studied a wireless coverage algorithm which poses
minimalist requirements on the robotic hardware, namely
knowledge of the number of wireless links and bumper
sensors for collision avoidance. Parameters of the algorithm
are lower and upper bounds on the desired connectivity of
each individual node and the robot speed during deployment.

We explore properties of the algorithm at four different
model abstraction levels. Kinematic simulation with a disc-
shape communication model and a probabilistic, macroscopic
model, which allows us to formally prove convergence.
Convergence of the algorithm shows to be extremely robust
and independent of the initial deployment of robots, and
whether the environment is bounded or unbounded. Although
the proposed algorithm never achieves the theoretical optimal
coverage, all of 100 simulations with topologies with 1
to 3 links per node are within 52% and 81% of optimal
performance, and half of the simulations at 64% of the
optimum. Consequently, we observe similar performance

also in a real-world deployment (given sufficient locomotion
capabilities to explore a large enough environment).

In the future, we are interested to study how additional
ressources such as odometry, global localization or increased
communication will affect performance. Notably, we will
explore odometry and global localization for better-than-
random search and communication for locally estimating the
global topology, which might allow for actively supporting
weak connections in the graph or increase the speed of
convergence by more directed motion. We are also interested
in considering problems in which the gateways themselves
are mobile or where constraints are extended to provide
tethering
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