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Abstract

We consider a multi-dimensional screening problem of selling a product with multiple quality

levels. We show that only offering the highest quality is the revenue optimal mechanism if high

valued customers are relatively less sensitive to quality. For a class of instances where values are

perfectly correlated, our condition is also necessary for optimality of only offering the highest

quality. Our main methodological contribution is a framework to design multi-dimensional

virtual values. A challenge of designing virtual values for multi-dimensional agents is that

a mechanism that pointwise optimizes virtual values resulting from a general application of

integration by parts is not incentive compatible, and no general methodology was previously

known for selecting the right paths for integration by parts. We resolve this issue by imposing

additional restrictions on the problem so that the virtual value for the high quality product

is uniquely defined, which pins down the paths and, consequently, the virtual values for other

products. The correlation condition on the distribution implies that the derived virtual values

are indeed pointwise optimized by the mechanism that only offers highest quality. Our method

of solving for virtual values is general, and as a second application we use it to derive conditions

of optimality for selling only the grand bundle of items to an agent with additive preferences.

∗A preliminary version of this paper, under the title “Reverse Mechanism Design”, appeared in the proceedings

of the 16th ACM Conference on Electronic Commerce EC’15.



1 Introduction

A monopolist seller can extract more of the surplus from consumers with heterogeneous tastes

through second-degree price discrimination. While the optimal mechanism for a non-differentiated

product is a posted pricing, optimal mechanisms for a differentiated product can be complex and

even generally require the pricing of lotteries over the variants of the product. This paper gives

sufficient conditions under which the simple pricing of a non-differentiated product is optimal even

when product differentiation is possible. These conditions allow multi-dimensional tastes to be

projected to a single dimension where the pricing problem is easily solved by the classic theory. The

identified conditions are natural and far more comprehensive than the previous known conditions.

The main technical contribution of the paper, from which these sufficient conditions are iden-

tified, is a method for proving the optimality of a family of mechanisms for agents with multi-

dimensional preferences. This method extends the single-dimensional theory of virtual values of

Myerson (1981) to multi-dimensional preferences. The main challenge of multi-dimensional mecha-

nism design is that the paths (in the agent’s type space) on which the incentive constraints bind is

a variable; thus a straightforward attempt to generalize single-dimensional virtual values to multi-

dimensional agents is under constrained. To resolve this issue we introduce an additional constraint

on the virtual value functions that is imposed by the optimality of mechanism in the family if point-

wise optimization of virtual values is indeed to result in a such a mechanism. This constraint pins

down a degree of freedom in the derivation of virtual value functions. The family of mechanisms is

optimal if there exists virtual values that satisfy the additional as well as the standard constraints

on virtual values. Importantly, this framework leaves the paths on which the incentive constraints

bind as a variable and solves for them.

Consider a monopolist who can sell a high-quality or low-quality product. The values of a

consumer for these differentiated products can be seen as a point in the plane. It will be convenient

to write the consumer’s value for these two versions of the product as a base value for the high-

quality product and the same base value times a discount factor for the low-quality product. It is

a standard result of Stokey (1979) and Riley and Zeckhauser (1983) (and of Myerson, 1981, more

generally) that when the base value is private but the discount factor is public, i.e., the values of

the agent for the two qualities of products are distributed on a line through the origin, then selling

only the high-quality good is optimal (and it is done by a posted price). The analysis of Armstrong

(1996), applied to this setting, generalizes this result to the case where the base value and discount

factor are independently distributed but both private to the agent. His result follows from solving

the problem on every line from the origin, as if the discount factor was public, and observing that

these solutions are consistent, i.e., they do not depend on the discount factor, and therefore the

same mechanism is optimal even when the discount factor is private.

Our sufficient conditions generalize these results further to distributions where the base value

and discount factor are positively correlated.1 Notice that allowing arbitrary correlations between

base value and discount factor is completely general as a multi-dimensional screening problem for

1In this paragraph we assume that the marginal distribution of the base value is regular, i.e., Myerson’s virtual

value is monotone; and positive correlation is defined by first-order stochastic dominance. Generalizations are given

later in the paper.
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a high- and low-quality product. Further, the example of Thanassoulis (2004), which we review in

detail subsequently, shows that the single-dimensional projection, i.e., selling only the high-quality

product is not generally optimal with correlated base value and discount factor. Consider the

special case where base value and discount factor are perfectly correlated, i.e., the values for the

differentiated products lie on a curve from the origin. In this case, the agent’s type is actually

single-dimensional but her tastes are multi-dimensional. We prove that if the curve only crosses

lines from the origin from below, i.e., the discount factor is monotonically non-decreasing in the

base value, then selling only the high-quality product is optimal. On the other hand, if the discount

factor is not monotone in the base value then we show that there exists a distribution for the base

value for which it is not optimal to sell only the high-quality product. Perfect correlation with a

monotone discount factor is a special case of positive correlation which we show remains a sufficient

condition for optimality of selling only the high-quality product.

From the analysis of the perfectly correlated case, we see that the analyses of Armstrong (1996)

where the discount factor is independent of the base value, and Stokey (1979) and Riley and

Zeckhauser (1983) where the discount factor is known, are at the boundary between optimality and

non-optimality of selling only the high-quality product. Thus, these results are brittle with respect

to perturbations in the model. Our result shows that pricing only the high-quality product remains

optimal for any positive correlation; the more positively correlated the model is the more robust

the result is to perturbations of the model.

Our characterization of positive correlation of the base value and discount factor as sufficient

for the optimality of selling only the high-quality product is intuitive. Price discrimination can

be effective when high-valued consumers are more sensitive to quality than low-valued consumers.

These high-valued consumers would then prefer to pay a higher price for the high-quality product

than to obtain the low-quality product at a lower price. Positive correlation between the base value

and discount factor eliminated this possibility. It implies that high-valued agents are less sensitive

to quality than low-valued agents.

As a qualitative conclusion from this work, optimal second-degree price discrimination, which

is complex in general, cannot improve a monopolists revenue over a non-differentiated product un-

less higher-valued types are more sensitive (with respect to the ratio of their values for high- and

low-quality products) to product differentiation than lower-valued types. This simplification, for

consumers that exhibit positive correlation, generalizes from monopoly pricing to general mecha-

nism design. For example, a (monopolist) auctioneer on eBay has no advantage of discriminating

based on expedited or standard delivery method if high-valued bidders discount delayed delivery

less than low valued bidders.

The above characterizations show that the multi-dimensional pricing problem reduces to a

single-dimensional projection where the agent’s type is, with respect to the examples above, her

base value. Our proof method instantiated for this problem is the following. We need to show the

existence of a virtual value function for which (a) point-wise optimization of virtual surplus gives a

mechanism that posts a price for the high-quality product and (b) expected virtual surplus equals

expected revenue when the agent’s type is drawn from the distribution. If the single-dimensional

projection is optimal and (b) holds then it must be that the virtual value of the high-quality product
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is equal to the single-dimensional virtual value according to the marginal distribution of agent’s

value for the high-quality product. This pins down a degree of freedom in problem of identifying

a virtual value function (which is generally given by integration by parts on the paths in type

space, e.g., Rochet and Chone, 1998); the virtual value for the low-quality product can then be

solved for from the high-quality virtual value and a differential equation that relates them. It then

suffices to check that (a) holds, which in this case requires that, at any pair of values for the high

and low qualities, (a.1) if the virtual value for the high-quality product is positive then it is at

least the virtual value of the low-quality product and (a.2) if it is negative then they are both

negative. Analysis of the constraints imposed by (a.1) and (a.2) then gives sufficient conditions on

the distribution on types for optimality of the single-dimensional projection.

Our result above applies generally to a risk-neutral agent with quasi-linear utility over multiple

outcomes, and identifies conditions for optimality of a mechanism that simply posts a uniform price

for all outcomes (i.e., the only non-trivial outcome assigned to each type is its favorite outcome).

Applied to setting where the consumer can buy multiple items and outcomes correspond to bundles

of items, this result indirectly gives conditions for optimality of posting a price for the grand bundle

of items. If a uniform price is posted for all bundles, the consumer will only buy the grand bundle,

or nothing (assuming free disposal).

The special case of this bundle pricing problem where the consumer’s values are additive across

the items has received considerable attention in the literature (Adams and Yellen, 1976; Hart and

Nisan, 2012; Daskalakis et al., 2014) and our framework for proving optimality of single-dimensional

projections can be applied to it directly. For this application, we employ a more powerful method

of virtual values which is analogous to the ironing approach of Myerson (1981). We show that, for

selling two items to a consumer with additive value, grand-bundle pricing is optimal when higher

value for the grand bundle is negatively correlated with the ratio of values for the two items, i.e.,

when higher valued consumers have more heterogeneity in their tastes. This result formalizes a

connection that goes back to Adams and Yellen (1976). This second application of our framework

for proving the optimality of simple mechanisms further demonstrates its general applicability.

1.1 Related Work

The starting point of work in multi-dimensional optimal mechanism design is the observation that

an agent’s utility must be a convex function of his private type, and that its gradient is equal to

the allocation (e.g., Rochet, 1985, cf. the envelope theorem). The second step is in writing revenue

as the difference between the surplus of the mechanism and the agent’s utility (e.g., McAfee and

McMillan, 1988; Armstrong, 1996). The surplus can be expressed in terms of the gradient of the

utility. The third step is in rewriting the objective in terms of either the utility (e.g., McAfee and

McMillan, 1988; Manelli and Vincent, 2006; Hart and Nisan, 2012; Daskalakis et al., 2013; Wang

and Tang, 2014; Giannakopoulos and Koutsoupias, 2014) or in terms of the gradient of the utility

(e.g., Armstrong, 1996; Alaei et al., 2013; and this paper). This manipulation follows from an

integration by parts. The first category of papers (rewriting objective in terms of utility) performs

the integration by parts independently in each dimension, and the second category (rewriting

objective in terms of gradient of utility, except for ours) does the integration along rays from the
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origin. In our approach, in contrast, integration by parts is performed in general and is dependent

on the distribution and the form of the mechanism we wish to show is optimal.

Closest to our work are Wilson (1993), Armstrong (1996), and Alaei et al. (2013) which use

integration by parts along paths that connect types with straight lines to the zero type (which has

value zero for any outcome) to define virtual values. Wilson (1993) and Armstrong (1996) gave

closed form solutions for multi-dimensional screening problems. Their results are for nonlinear

problems that are different from our model. Alaei et al. (2013) used integration by parts to get

closed form solutions with independent and uniformly distributed values; our results generalize this

one. Importantly, the paths for integration by parts in all these works is fixed a priori. In contrast,

the choice of paths in our setting varies based on the distribution. Rochet and Chone (1998)

showed that the general application of integration by parts (with parameterized choice of paths)

characterizes the solutions of the relaxed problem where all but local incentive constraints are

removed. However, the characterization is implicit and includes the choice of paths as parameters.

They use the characterization to show that since bunching can happen, the solution to the relaxed

problem is generically not incentive compatible.2 Importantly, the observation is based on the

placement of the outside option, in the form of a price for a certain allocation, that is the zero

allocation in our setting. Compared to the above papers, our work is the first to use the variability

of paths to derive explicit conditions of optimality (see Rochet and Stole, 2003, for an accessible

survey).

There has been work looking at properties of single-agent mechanism design problems that are

sufficient for optimal mechanisms to make only limited use of randomization. For context, the

optimal single-item mechanism is always deterministic (e.g., Myerson, 1981; Riley and Zeckhauser,

1983), while the optimal multi-item mechanism is sometimes randomized (e.g., Thanassoulis, 2004;

Pycia, 2006). For agents with additive preferences across multiple items, McAfee and McMillan

(1988), Manelli and Vincent (2006), and Giannakopoulos and Koutsoupias (2014) find sufficient

conditions under which deterministic mechanisms, i.e., bundle pricings, are optimal. Pavlov (2011)

considers more general preferences and a more general condition; for unit-demand preferences, this

condition implies that in the optimal mechanism an agent deterministically receives an item or not,

though the item received may be randomized. Our approach is different from these works on multi-

dimensional mechanism design in that it uses properties of a pre-specified family of mechanisms to

pin down multi-dimensional virtual values that prove that mechanisms from the family are optimal.

A number of papers consider the question of finding closed forms for the optimal mechanism for

an agent with additive preferences and independent values across the items. One such closed form

is grand-bundle pricing. For the two item case, Hart and Nisan (2012) give sufficient conditions for

the optimality of grand-bundle pricing; these conditions are further generalized by Wang and Tang

(2014). Their results are not directly comparable to ours as our results apply to correlated distri-

butions. Daskalakis et al. (2014) and Giannakopoulos and Koutsoupias (2014) give frameworks for

proving optimality of multi-dimensional mechanisms, and find the optimal mechanism when values

are i.i.d. from the uniform distribution (with up to six items). Daskalakis et al. (2014) establish a

strong duality theorem between the optimal mechanism design problem with additive preferences

2Bunching refers to the case where different types are assigned the same allocation.
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and an optimal transportation problem between measures (similar to the characterization of Rochet

and Chone, 1998. Using this duality they show that every optimal mechanism has a certificate of

optimality in the form of transformation maps between measures. They use this result to show

that when values for m ≥ 2 items are independently and uniformly distributed on [c, c + 1] for

sufficiently large c, the grand bundling mechanism is optimal, extending a result of Pavlov (2011)

for m = 2 items. In comparison, a simple corollary of our theorem states that grand bundling is

optimal for uniform draws from [a, b] truncated such that the sum of the values is at most a + b,

for any a ≤ b.

2 Preliminaries

We consider a single-agent mechanism design problem with allocation space X ⊆ [0, 1]m, and a

bounded connected type space T ⊂ Rm with Lipschitz continuous boundary, for a finite m. The

utility of the agent with type t ∈ T for allocation x ∈ X and payment p ∈ R is t ·x− p.3 Our main

results are for the following outcome spaces X.

• The multi-outcome setting (Section 4): We assume X = {x ∈ [0, 1]m |
∑

i xi ≤ 1}. Here m

is the number of outcomes, and an allocation is a distribution over outcomes (1 −
∑

i xi is

the probability of selecting a null outcome for which the agent has zero value). For example,

m may be the number of possible configurations, e.g., quality or delivery method, of a single

item to be sold. As another example, m = 2k may be the number of possible bundles of k

items to be allocated.

• The multi-product setting with additive preferences (Section 5): We assume X = [0, 1]m. Here

m is the number of items, and an allocation specifies the probability xi of receiving each item.4

The cost to the seller for producing outcome x is denoted c(x) and the sellers profit for (x, p) is

p− c(x).

We use the revelation principle and focus on direct mechanisms. A single-agent mechanism is

a pair of functions, the allocation function x : T → X and the payment function p : T → R. A

mechanism is incentive compatible (IC) if no type of the agent increases his utility by misreporting,

t · x(t)− p(t) ≥ t · x(t̂)− p(t̂), ∀t, t̂ ∈ T.

A mechanism is individually rational (IR) if the utility of every type of the agent is at least zero,

t · x(t)− p(t) ≥ 0, ∀t ∈ T.

A single agent mechanism (x, p) defines a utility function u(t) = t · x(t)− p(t). The following

lemma connects the utility function of an IC mechanism with its allocation function.

3Throughout the paper we maintain the convention of denoting a vector v by a bold symbol and each of its

components vi by a non-bold symbol.
4This setting is a special case of the multi-outcome setting with 2m outcomes. The additivity structure allows us

to focus on the lower dimensional space of items instead of outcomes.
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Lemma 1 (Rochet, 1985). Function u is the utility function of an agent in an individually-rational

incentive-compatible mechanism if and only if u is convex, non-negative, and non-decreasing. The

allocation is x(t) = ∇u(t), wherever the gradient ∇u(t) is defined.5

Notice that the payment function can be defined using the utility function and the allocation

function as p(t) = t · x(t)− u(t). Applying the above lemma, we can write payment to be p(t) =

t · ∇u(t) − u(t). In the profit maximization problem the objective is to maximize the expected

revenue minus cost, when the types are drawn at random from a distribution over T with density

f > 0. Using Lemma 1, the problem can be written as the following mathematical program.

max
x,u

∫
t

[
t · x(t)− u(t)− c(x(t))

]
f(t) dt (1)

u is convex;u ≥ 0

∇u = x ∈ X.

The primary task of this paper is to identify condition that imply the optimality of single-

dimensional projection mechanisms. In a single-dimensional projection mechanism the preferences

can be summarized by a mapping of the multi-dimensional type t into a single-dimensional value.

In particular, in the multi-outcome setting (Section 4) we will study the optimality of the class

of favorite-outcome projection mechanisms where xi(t) > 0 only if i is the favorite outcome, i =

arg maxj tj . For such a mechanism, the only relevant information a type contains is the value for

the favorite outcome. In the multi-product setting with additive preferences (Section 5) we study

sum-of-values projection mechanisms where xi(t) = xj(t) for all i and j, and the value for the grand

bundle
∑

i ti summarizes the preferences. The optimization over these classes can be done using

standard methods from single-dimensional analysis (Myerson, 1981; Riley and Zeckhauser, 1983),

where we know the optimal mechanism is non-stochastic. The optimal favorite-outcome projection

mechanism is a uniform pricing, i.e., the same price is posted on all non-trivial outcomes; the

optimal multi-product sum-of-values projection mechanism is a grand bundle pricing, i.e., a price

is posted for the grand bundle only. This paper develops a theory for proving that these single-

dimensional projections are optimal among all multi-dimensional mechanisms.

The seller’s cost c(x) for producting outcome x can generally be internalized into the consumer’s

utility and thus ignored. In our analysis we will expose only a uniform service cost, i.e., c when the

agent is served any non-trivial outcome (as discussed further in Section 3.2). For the multi-outcome

setting this service cost can be written as c
∑

i xi and for the multi-product setting it can be written

as cmaxi xi.

3 Amortizations and Virtual Values

This section codifies the approach of incentive compatible mechanism design via virtual values and

extends it to agents with multi-dimensional type spaces. A standard approach to understanding

optimal mechanisms via multi-dimensional virtual values is to require that virtual surplus equate

5If u is convex, ∇u(t) is defined almost everywhere, and the mechanism corresponding to u is essentially unique.
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to revenue for the optimal mechanism (see survey by Rochet and Stole, 2003). For this approach to

be as directly useful as it has been in single-dimensional settings, we depart from this literature and

impose two additional conditions. We require virtual surplus to relate to (in particular, as an upper

bound)6 revenue for all incentive compatible mechanisms, we call this condition amortization;7 and

that pointwise optimization of virtual surplus without the incentive compatibility constraint gives

incentive compatibility for free. The amortization conditions are relatively easy to satisfy, essentially

from integration by parts on paths that cover type space; while the incentive compatibility condition

is not generally satisfied by an amortization. An exception is the single dimensional special case,

with m = 1 non-trivial outcome, where the integration by parts is unique and often incentive

compatible.

Definition 1. A vector field φ̄ : T → Rm is an amortization of revenue if expected virtual surplus

(without costs)8 is an upper bound on the expected revenue of all individually-rational incentive-

compatible mechanisms, i.e., ∀(x̂, p̂), E[φ̄(t) · x̂(t)] ≥ E[p̂(t)]; it is tight for incentive-compatible

mechanism (x, p) if the inequality above is tight, i.e., E[φ̄(t) · x(t)] = E[p(t)].

Definition 2. An amortization of revenue φ̄ : T → Rm is a virtual value function if a pointwise

virtual surplus maximizer x, i.e., x(t) ∈ arg maxx̂∈X x̂ ·φ̄(t)−c(x̂), ∀t ∈ T ,9 is incentive compatible

and tight for φ̄, i.e., there exists a payment rule p such that the mechanism (x, p) is incentive

compatible, individually rational, and tight for φ̄.

Proposition 2. For any mechanism design problem that admits a virtual value function, the virtual

surplus maximizer is the optimal mechanism.

Proof. Denote the virtual surplus maximizer of Definition 2 by (x, p) and any alternative IC and

IR mechanism by (x̂, p̂); then,

E
[
p(t)− c(x(t))

]
= E

[
φ̄(t) · x(t)− c(x(t))

]
≥ E

[
φ̄(t) · x̂(t)− c(x̂(t))

]
≥ E

[
p̂(t)− c(x̂(t))

]
.

The expected profit of the mechanism is equal to its expected virtual surplus (by tightness). This

expected virtual surplus is at least the virtual surplus of any alternate mechanism (by pointwise

optimality). The expected virtual surplus of the alternative mechanism is an upper bound on its

expected profit (an amortization gives an upper bound on expected profit).

6Relaxing from equality to an upper bound enables our analysis to (a) generalize to mechanisms without binding

participation constraints and to (b) allow for a generalization of the “ironing” procedure of Myerson (1981).
7This terminology comes from the design and analysis of algorithms in which an amortized analysis is one where

the contributions of local decisions to a global objective are indirectly accounted for (see the textbook of Borodin and

El-Yaniv, 1998). The correctness of such an indirect accounting is often proven via a charging argument. Myerson’s

construction of virtual values for single-dimensional agents can be seen as making such a charging argument where a

low type, if served, is charged for the loss in revenue from all higher types.
8Equivalently with costs, the same holds for expected profit, i.e., ∀(x̂, p̂), E[φ̄(t)·x̂(t)−c(x̂(t))] ≥ E[p̂(t)−c(x̂(t))].
9Often this virtual surplus maximizer is unique up to measure zero events, when it is not then these conditions

must hold for one of the virtual surplus maximizers and we refer to this one as the virtual surplus maximizer.
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u > 0

u = 0 α

α1 = 0

Figure 1: α/f is the loss in revenue from all higher types on the path.

3.1 Canonical Amortizations

There is a canonical family of amortizations given by writing expected utility as an integral and

integrating it by parts on paths that cover type space. Intuitively, this integration by parts at-

tributes to each type on a path the loss in revenue from all higher types on the path when this type

is served by the mechanism. For single-dimensional agents the path is unique and, thus, so is the

canonical amortization (Myerson, 1981); for multi-dimensional agents neither paths nor canonical

amortizations are unique. The latter integration by parts on paths can be expressed as a multi-

dimensional integration by parts with respect to a vector field α that satisfies two properties (see

Rochet and Chone, 1998):

• divergence density equality : ∇ ·α = −f for all types t ∈ T , and

• boundary inflow : (α · η)(t) ≤ 0 for all types t ∈ ∂T where ∂T denotes the boundary of type

space T .

The divergence density equality condition requires α to correspond to distributing the required

density f on paths. In the integration by parts on paths, intuitively, each path begins with an inflow

of probability mass, and it distributes this along the path according to the density function to the

end of the path. Thus, the direction of α(t) is the direction of the path at type t and its magnitude

is the remaining probability mass to be distributed on the path. The initial inflow of probability

mass at the origin of the path should be set so that none is left when the path terminates. With

this interpretation the boundary inflow condition is satisfied: on boundary types that originate

paths there is an inflow, on boundary types t parallel to paths the dot product (α · η)(t) is zero,

and on boundary types that terminate paths the magnitude is zero.10 See Figure 1. The following

lemma recasts a result of Rochet and Chone (1998) into our framework.

Lemma 3. For a vector field α : T → Rm satisfying the divergence density equality and boundary

inflow, the vector field φ(t) = t − α(t)/f(t) is an amortization of revenue; moreover, it is tight

for any incentive compatible mechanism for which the participation constraint is binding for all

boundary types with strict inflow, i.e., u(t) = 0 for t ∈ ∂T with (α · η)(t) < 0.11

10The boundary inflow condition also allows inflow at the terminal types, the amortization from such an α will

not generally be tight for non-trivial mechanisms. Without loss we do not consider amortizations constructed from

such α to be canonical here, or below in Definition 3.
11Rochet and Chone (1998) prove this lemma by taking the first order conditions of program (1) relaxing the

constraint that utility is convex. A result of such analysis is that α can be alternatively viewed as the Lagrangians
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Proof. The following holds for any incentive compatible mechanism. Integration by parts allows

expected utility E[u(t)] to be rewritten in terms of gradient ∇u and vector field α satisfying the

divergence density equality.12∫
t∈T
∇u(t) ·α(t) dt = −

∫
t∈T

u(t) (∇ ·α(t)) dt+

∫
t∈∂T

u(t)(α · η)(t) dt

=

∫
t∈T

u(t) f(t) dt+

∫
t∈∂T

u(t)(α · η)(t) dt.

By Lemma 1, which implies that the allocation rule of the mechanism is the gradient of the utility,

i.e., x(t) = ∇u(t), and the definition of expectation:

E
[
α(t)
f(t) · x(t)

]
= E

[
u(t)

]
+

∫
t∈∂T

u(t)(α · η)(t) dt. (2)

Individual rationality implies that u(t) ≥ 0 for all t ∈ T ; combined with the assumed boundary

inflow condition, the last term on the right-hand side is non-positive. Thus,

E
[
α(t)
f(t) · x(t)

]
≤ E

[
u(t)

]
.

Revenue is surplus less utility; thus, φ(t) = t−α(t)/f(t) is an amortization of revenue, i.e.,

E
[
φ(t) · x(t)

]
≥ E

[
p(t)

]
.

Finally, notice that if the last term of the right-hand side of equation (2) is zero, which holds for all

mechanisms for which the individual rationality constraint is binding for types t on the boundary

at which the paths specified by α originate, then the inequalities above are equalities and the

amortization is tight.

Definition 3. A canonical amortization of revenue is φ(t) = t − α(t)/f(t) with α satisfying the

divergence density inequality and boundary inflow.10

For a single-dimensional agent with value v in type space T = [v, v̄], the canonical amortization

of revenue that is tight for any non-trivial mechanism is unique and given by φ(v) = v − 1−F (v)
f(v) .13

When it is monotone, pointwise virtual surplus maximization is incentive compatible, and thus the

canonical amortization φ is a virtual value function.

of the local incentive compatibility constraints. We will mainly focus on the interpretation of α as the direction of

paths for integration by parts.
12Integration by parts for functions h : Rk → R and α : Rk → Rk over a set T with Lipschitz continuous boundary

is as follows ∫
t∈T

(∇h ·α)(t) dt = −
∫
t∈T

h(t)(∇ ·α(t)) dt+

∫
t∈∂T

h(t)(α · η)(t) dt,

where ∇ · α(t) is the divergence of α and is defined as ∇ · α = ∂1α1 + . . . + ∂kαk, and η(t) is the normal to the

boundary at t.
13Divergence density equality implies that α(v) = α(v)−F (v). Tightness requires that α(v̄)u(v̄) = (α(v)−1)u(v̄) =

0. Since u(v̄) > 0 for any non-trivial mechanism, we must have α(v) = 1 and thus α(v) = 1 − F (v). Tightness also

requires that α(v)u(v) = 0, which is satisfied for any mechanism with binding participation constraint u(v) = 0.
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3.2 Reverse Engineering Virtual Value Functions

Multi-dimensional amortizations of revenue, themselves, do not greatly simplify the problem of

identifying the optimal mechanism as they are not unique and in general virtual surplus maximiza-

tion for such an amortization is not incentive compatible. The main approach of this paper is to

consider a family of mechanisms and to add constraints imposed by tightness and virtual surplus

maximization of this family of mechanisms to obtain a unique amortization. First, we will search

for a single amortization that is tight for all mechanisms in the family. Second, we will consider

virtual surplus maximization with a class of cost functions and require that a mechanism in the

family be a virtual surplus maximizer for each cost (see Section 2). These two constraints pin

down a degree of freedom in an amortization of revenue and allow us to solve for the amortization

uniquely. The remaining task is to identify the sufficient conditions on the distribution such that a

mechanism in the family is a virtual surplus maximizer. Subsequently in Section 4, we will identify

sufficient conditions on the distribution of types for the family of uniform pricing mechanisms to

be optimal.

Our framework also allows for proving the optimality of mechanisms when no canonical amor-

tization of revenue is a virtual value function. In the single-dimensional case, the ironing method

of Mussa and Rosen (1978) and Myerson (1981), can be employed to construct, from the canonical

amortization φ, another (non-canonical) amortization φ̄ that is a virtual value function. The multi-

dimensional generalization of ironing, termed sweeping by Rochet and Chone (1998), can similarly

be applied to multi-dimensional amortizations of revenue. The goal of sweeping is to reshuffle the

amortized values in φ to obtain φ̄ that remains an amortization, but additionally its virtual surplus

maximizer is incentive compatible and tight. Our approach in this paper will be to prove a family

of mechanisms is optimal for any uniform service costs by invoking the following proposition, which

follows directly from the definition of amortization (Definition 2).

Proposition 4. A vector field φ̄ is an amortization of revenue if, for all incentive compatible

mechanisms (x̂, p̂) and some other amortization of revenue φ, it satisfies E[φ̄(t) · x̂(t)] ≥ E[φ(t) ·
x̂(t)].

We adopt the sweeping approach in Section 5 (and Theorem 10 which extends the main result of

Section 4). Just as there are many paths in multi-dimensional settings, there are many possibilities

for the multi-dimensional sweeping of Rochet and Chone (1998). Our positive results using this

approach will be based on very simple single-dimensional sweeping arguments.

4 Optimality of Favorite-outcome Projection

In this section we study conditions that imply a favorite-outcome projection mechanism is optimal

in the multi-outcome setting (see Section 2). In that case, the problem collapses to a monopoly

problem with a single parameter (the value for the favorite outcome), where we know from Riley

and Zeckhauser (1983) that the optimum mechanism is uniform pricing : all nontrivial outcomes

are deterministically and uniformly priced.

10



As discussed in Section 3.2, we use a class of cost functions to restrict the admissible amortiza-

tions. Throughout this section we assume uniform constant marginal costs, that is, c(x) = c
∑

i xi
for some constant service cost c ≥ 0.14 For simplicity we focus on the case of two outcomes (ex-

tension in Section 4.3). To warm up, we will start with a simple class of problems where values for

outcomes are perfectly correlated and derive necessary conditions for optimality of uniform pricing.

Our main theorem later identifies complementary sufficient conditions for general distributions.

4.1 Perfect Correlations and Necessary Conditions

Consider a simple class of perfectly correlated instances where the value t1 for outcome 1 pins down

the value for outcome 2, t2 = Ccor(t1). Assume Ccor(t1) ≤ t1, that is, outcome 1 is favored to

outcome 2 for all types. We say that a curve Ccor is ratio-monotone if Ccor(t1)/t1 is monotone

increasing in t1. Let Fmax be the distribution of value for outcome 1. A distribution Fmax is regular

if its (canonical) amortization of revenue φmax(t1) = t1 − 1−Fmax(t1)
fmax(t1)

is monotone non-decreasing

in t1 (see the discussion of amortizations of revenue for single-dimensional agents in Section 3).

We investigate optimality of uniform pricing for this class by comparing the profit from a uniform

price with the profit from other mechanisms (discounted prices for the less favored outcome or

distributions over outcomes).15

Theorem 5. For any value mapping function Ccor, Ccor(t1) ≤ t1 that is not ratio-monotone, there

exists a regular distribution Fmax such that uniform pricing is not optimal for the perfectly correlated

instance jointly defined by Fmax and Ccor.

Proof. Let the cost c = 0. Consider p where Ccor(t1)/t1 is decreasing at t1 = p, and any regular

distribution Fmax such that p maximizes p(1 − Fmax(p)). We will show that the revenue of the

optimum uniform price p can be improved by another mechanism.

Consider the change in revenue as a result of supplementing a price p for the outcome 1 with a

price Ccor(p)− ε for outcome 2. The results of this change are twofold (Figure 2): On one hand, a

set of types with value slightly less than p for outcome 1 will pay Ccor(p)−ε for this new discounted

offer. Non-monotonicity at p implies that this set lies above the ray connecting (0, 0) to Ccor(p)/p.

Therefore, for small ε the positive effect is at least

(Ccor(p)− ε)× (fmax(p) · εp

Ccor(p)
) = fmax(p)εp.

On the other hand, a set of types with value slightly higher than p for outcome 1 will change their

decision from selecting outcome 1 to outcome 2. Non-monotonicity at p implies that the negative

effect is at most

(p− Ccor(p) + ε)× (fmax(p) · εp

p− Ccor(p)
) = fmax(p)εp.

14Any instance with non-uniform marginal costs can be converted to an instance with zero cost by redefining value

as value minus cost.
15With a uniform price when outcome 1 is favored to outcome 2 for all types, the offer for outcome 2 will not be

taken.
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t2

t1

Ccor

Ccor(p)/p

p

ε

εp
Ccor(p)

εp
p−Ccor(p)

(a) Discount price for outcome 2

t2

t1

θ

Ccor

(b) ratio-monotonicity

Figure 2: (a) As a result of adding an offer with price Ccor(p)− ε for outcome 2 to the existing offer of price p for

outcome 1, the types in darker shaded part of curve Ccor will change decisions and contribute to a change in revenue.

The lengths of the projected intervals on the t1 axis of the types contributing to loss and gain in revenue are lower-

and upper-bounded by εp
Ccor(p)

and εp
p−Ccor(p)

, respectively. (b) For any θ, t1, F (θ|t1, 1) = 1 if Ccor(t1)/t1 ≤ θ, and

F (θ|t1, 1) = 0 otherwise. Therefore, ratio-monotonicity is equivalent to monotonicity of F (θ|t1, 1) in t1.

It follows that offering a discount for the less favored outcome strictly improves revenue for small

enough ε.

As discussed in Section 3, a challenge of multi-dimensional mechanism design is that the paths

for integration by parts are unknown. The above theorem highlights another challenge: even if the

paths are known (along the curve for the perfectly correlated class), the incentive compatibility

of the mechanism that pointwise optimizes the resulting canonical amortization must be carefully

analyzed. The analysis is a main part of our main theorem in the next section. In contrast to

the above theorem, a corollary of our main theorem shows that ratio-monotonicity of Ccor and

regularity of Fmax imply the optimality of uniform pricing.

4.2 General Distributions and Sufficient Conditions

We will now state the main theorem of this section which identifies sufficient conditions for op-

timality of uniform pricing for general distributions. We say that a distribution over T ⊂ R2

is max-symmetric if the distribution of maximum value v = max(t1, t2), conditioned on either

t1 ≥ t2 or t2 ≥ t1, is identical.16 Let Fmax(v) and fmax(v) be the cumulative distribution and

the density function of the value for favorite outcome. As described in Section 3, the amortiza-

tion of revenue for a single-dimensional agent is φmax(v) = v − 1−Fmax(v)
fmax(v)

. Let F (θ|v, i) be the

conditional distribution of the value ratio θ(t) := min(t1, t2)/max(t1, t2) on v = ti ≥ t−i, that is,

F (θ|v, i) = Prt[θ(t) ≤ θ|v = ti ≥ t−i].

Theorem 6. Uniform pricing is optimal with m = 2 outcomes and any service cost c ≥ 0 for any

max-symmetric distribution where (a) the favorite-outcome projection has monotone non-decreasing

16As examples, any distribution with a domain t ∈ R2, t1 ≥ t2 is max-symmetric (since the distribution conditioned

on t2 ≥ t1 is arbitrary), as is any symmetric distribution over R2.
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t2

t1v →
(a)

θ

t2

t1v̄

C

v

θ

(b) (c)
v̄

t2

t1v

θ

v1 v2

Figure 3: (a) As v increases, relatively more mass is packed towards the 45 degree line. (b) A class of distribution

satisfying the correlation condition of Theorem 6. When t1 ≥ t2, mass is distributed uniformly above a ratio-monotone

curve C. (c) A class of distributions not satisfying the correlation condition of Theorem 6, since 0 = F (θ|v1, 1) <

F (θ|v2, 1).

amortization of revenue φmax(v) = v − 1−Fmax(v)
fmax(v)

and (b) the conditional distribution F (θ|v, i) is

monotone non-increasing in v for all θ and i.

Monotonicity of F (θ|v, i) in v is correlation of θ and v in first order stochastic dominance sense.17

It states that as v increases, more mass should be packed between a ray parameterized by θ, and

the 45 degree line connecting (0, 0) and (1, 1) (Figure 3). In other words, a higher favorite value

makes relative indifference between outcomes, measured by θ, more likely.

Note the contrast with Theorem 5. For a perfectly correlated instance, F (θ|v, 1) = 1 if

Ccor(v)/v ≤ θ, and F (θ|v, 1) = 0 otherwise (Figure 2). Monotonicity of F (θ|v, 1) in v is there-

fore equivalent to ratio-monotonicity of Ccor. Theorem 6 states that for any ratio-monotone Ccor,

uniform pricing is optimal for the perfectly correlated instance jointly defined by Ccor and any

regular distribution Fmax. As another class of distributions satisfying the conditions of Theorem 6,

one can draw the maximum value v from a regular distribution Fmax, and the minimum value

uniformly from [C(v), v], for a ratio-monotone function C satisfying C(v) ≤ v (Figure 3). On the

other hand, a distribution where values for outcomes are uniformly and independently drawn from

[v, v̄], with v > 0, does not satisfy the conditions (when v = 5, v̄ = 6, Thanassoulis, 2004, showed

that uniform pricing is not optimal). As another example, if t1 and t2 are drawn independently

from a distribution with density proportional to eh(log(x)) for any monotone non-decreasing convex

function h, then the distribution satisfies the conditions of the theorem (see Appendix A.2).

Notice that the conditional distributions F (θ|v, i) jointly with Fmax are alternative represen-

tations of any max-symmetric distribution as follows: with probability Pr[t1 ≥ t2], draw t1 from

Fmax, θ from F (·|t1, 1), and set t2 = t1θ (otherwise assign favorite value to t2 and draw θ from

F (·|t2, 2)). As a result, the requirements of Theorem 6 on Fmax and F (θ|v, i) are orthogonal. This

view is particularly useful since it is natural to define several instances of the problem in terms of

17Stronger correlation conditions, such as Inverse Hazard Rate Monotonicity, affiliation, and independence of

favorite value v and the non-favorite to favorite ratio are also sufficient (Milgrom and Weber, 1982; Castro, 2007).
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t2

t1

α1 = 0
α · η = 0

α1 ≥ 0

α · η = 0

(a) Boundary conditions of α
α · η = 0⇒ α2 = −α1η1/η2

∆α2 =
∫
∂2α2

(b) Definition of α2

Figure 4: (a) In addition to the divergence density equality ∇ · α = −f , α must be boundary orthogonal at all

boundaries except possibly the left boundary, and an inflow at the left boundary. (b) Given α1, we solve for α2

to satisfy boundary orthogonality at the bottom and divergence density equality. Boundary orthogonality uniquely

defines α on the bottom boundary. Integrating the divergence density equality ∂2α2 = −f − ∂1α1 defines α2

everywhere.

distributions over parameters v and θ. For example, in the pricing with delay model discussed in

the introduction, θ has a natural interpretation as the discount factor for receiving an item with

delay. We will revisit the conditions of Theorem 6 in Section 4.3.

The rest of this section proves the above theorem by constructing the appropriate virtual value

functions. Notice that max-symmetry allows us to focus on only the conditional distribution when

the favorite outcome is outcome 1. If a single mechanism, namely uniform pricing, is optimal for

each case (of outcome 1 or outcome 2 being the favorite outcome), the mechanism is optimal for

any probability distribution over the two cases. Therefore for the rest of this section we work with

the distribution conditioned on t1 ≥ t2. In particular, T is a bounded subset of R2 specified by

an interval [t1, t̄1] of values t1 and bottom and top boundaries t2(t1) and t̄2(t1) satisfying t2(t1) ≤
t̄2(t1) ≤ t1. The proof follows the framework of Section 3. In Definition 4 we define φ and α from

the properties they must satisfy to prove optimality of uniform pricing. Lemma 7 shows that φ

is a canonical amortization and is tight for any uniform pricing. Lemma 8 shows that given the

conditions of Theorem 6 on the distribution, the allocation of uniform pricing maximizes virtual

surplus pointwise with respect to φ. The theorem follows from Proposition 2.

A uniform pricing p ∈ [t1, t̄1] implies x(t) = 0, u(t) = 0 if t1 ≤ p, and x(t) = (1, 0), u(t) > 0

otherwise (recall the assumption that t1 ≥ t2). Therefore, in order to satisfy the requirement of

Lemma 3 that u(t)(α·η)(t) = 0 everywhere on the boundary and for all uniform pricings p ∈ [t1, t̄1],

α must be boundary orthogonal, (α ·η)(t) = 0, except possibly at the left boundary, where u(t) = 0

(Figure 4). With this refinement of Lemma 3 of the boundary conditions of α we now define α

and φ.

Definition 4. The two-dimensional extension φ of the amortization for the favorite-outcome pro-

jection φmax(v) = v − 1−Fmax(v)
fmax(v)

is constructed as follows:

(a) Set φ1(t) = φmax(t1) for all t ∈ T .
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(b) Let α1(t) = (t1 − φ1(t)) f(t) = 1−Fmax(t1)
fmax(t1)

f(t).18

(c) Define α2(t) uniquely to satisfy divergence density equality ∂2α2 = −f − ∂1α1 and boundary

orthogonality of the bottom boundary.

(d) Set φ2(t) = t2 − α2(t)/f(t).

An informal justification of the steps of the construction is as follows:

(a) First, φ1(t) may only be a function of t1; otherwise, if φ1(t) > φ1(t
′) with t1 = t′1, maximizing

virtual surplus pointwise with cost c satisfying φ1(t) > c > φ1(t
′) implies x1(t

′) = 0, and either

x1(t) > 0 or x2(t) > 0 (if φ2(t) > φ1(t) > c). Such an allocation x is not the allocation of

uniform pricing.19 Second, given the first point, the expected virtual surplus of uniform pricing

p is
∫
t1≥p[φ1(t1)fmax(t1)−c] dt1, which by tightness we need to be equal to (p−c)(1−Fmax(p)).

Solving this equation for all p gives φ1(t) = φmax(t1).

(b) We obtain α1 from φ1 by Definition 3.

(c) Given α1, α2 is defined to satisfy divergence density equality, ∂2α(t) = −f(t) − ∂1α(t), and

boundary orthogonality at the bottom boundary (i.e., t2 = t2(t1)). Integrating and employing

boundary orthogonality on the bottom boundary of the type space, which requires thatα·η = 0,

gives the formula (Figure 4). For example, if t2(t1) = 0, boundary orthogonality requires that

α2(t1, 0) = 0, and thus α2(t) = −
∫ t2
y=0

(
f(t1, y) + ∂1α1(t1, y)

)
dy.

(d) We obtain φ2 from α2 by Definition 3.

For φ to prove optimality of uniform pricing, we need the allocation of uniform pricing to

optimize virtual surplus pointwise with respect to φ. This additional requirement demands that

φ1(t) ≥ φ2(t) for any type t ∈ T for which either φ1(t) or φ2(t) is positive. A little algebra shows

that this condition is implied by the angle of α(t) being at most the angle of t with respect to the

horizontal t1 axis, that is, t2α1(t) ≤ t1α2(t) (Lemma 8, below). The direction of α corresponds to

the paths on which incentive compatibility constraints are considered. Importantly, our approach

does not fix the direction and allows any direction that satisfies the above constraint on angles.

The following lemma is proved by the divergence theorem, and specifies the direction of α.

Definition 5. For any q ∈ [0, 1], define the equi-quantile function Cq(t1) such that conditioned on

t1, the probability that t2 ≤ Cq(t1) is equal to q (see Figure 5). More formally, Cq is the upper

boundary of Tq, where

Tq = {t|Prt′
[
t′2 ≤ t2|t′1 = t1, t

′
1 ≥ t′2

]
:=

∫
t′2≤t2

f(t1, t
′
2)dt

′
2∫

t′2≤t1
f(t1, t′2)dt

′
2

≤ q}.

18Our assumption that f > 0 and the regularity assumptions on T imply that fmax > 0 everywhere except

potentially at the left boundary if the left boundary is a singleton. We treat this case separately in the upcoming

proof of the theorem.
19This argument applies only if φ1(t) > 0. Nevertheless, we impose the requirement that φ1(t) = φ1(t1) everywhere

as it allows us to uniquely solve for φ.
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t1

0.5

5/8C0.5

t2

t10 1t1

Cq

T (t1, q)

Figure 5: (a) The density in the darker region is twice the density in lighter region. For example, C0.5(t1) = 5t1/8,

meaning given t1, the probability that t2 ≤ 5t1/8 is 1/2. (b) T (t1, q) is the set of types below Cq and to the right of

t1. The four curves that define the boundary of T (t1, q) are {TOP, RIGHT, BOTTOM, LEFT}(t1, q). For simplicity

the picture assumes T is the triangle defined on (0,0), (1,0), and (1,1).

For example, notice that for the perfectly correlated class, the equi-quantile curves Cq are

identical to Ccor.

Lemma 7. The vector field φ of Definition 4 is a tight canonical amortization for any uniform

pricing. At any t, α(t) is tangent to the equi-quantile curve crossing t.

Proof. Tightness follows directly from the definition of φ1 (see the justification for Step (a) of

the construction). The divergence density equality and bottom boundary orthogonality of α are

automatically satisfied by Step (c) of the construction. Orthogonality of the right boundary (t1 =

t̄1) requires that α(t̄1, t2) ·(1, 0) = 0, which is α1(t̄1, t2) = 0. This property follows directly from the

definitions since φ1(t̄1, t2) = φmax(t̄1) = t̄1, and therefore α1(t̄1, t2) = (t̄1 − φ1(t̄1, t2)) f(t̄1, t2) = 0.

At the left boundary, α · η ≤ 0 since α1 ≥ 0 from definition and the normal vector is (−1, 0). The

only remaining condition, the top boundary orthogonality, is implied by the tangency property of

the lemma as follows. The top boundary is C1. Tangency of α to C1 implies that α is orthogonal

to the normal, which is the top boundary orthogonality requirement. It only remains to prove the

tangency property.

The strategy for the proof of the tangency property is as follows. We fix t1 and q and apply

the divergence theorem to α on the subspace of type space to the right of t1 and below Cq.
20 More

formally, divergence theorem is applied to the set of types T (t1, q) = {t′ ∈ T |t′1 ≥ t1;F (t2|t1) ≤ q}
(see Figure 5). The divergence theorem equates the integral of the orthogonal magnitude of vector

field α on the boundary of the subspace to the integral of its divergence within the subspace. As

the upper boundary of this subspace is Cq, one term in this equality is the integral of α(t′) with

the upward orthogonal vector to Cq at t′. Differentiating this integral with respect to t1 gives the

20The divergence theorem for vector field α is
∫
t∈T (∇ ·α)(t) dt =

∫
t∈∂T (α · η)(t) dt.
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desired quantity.∫
t′∈TOP(t1,q)

η(t′) ·α(t′) dt′

=

∫
t′∈T (t1,q)

∇ ·α(t′) dt′ −
∫
t′∈{RIGHT,BOTTOM,LEFT}(t1,q)

η(t′) ·α(t′) dt′. (3)

Using divergence density equality and boundary orthogonality the right hand side becomes

= −
∫
t′∈T (t1,q)

f(t′) dt′ −
∫
t′∈{LEFT}(t1,q)

η(t′) ·α(t′) dt′

= −q(1− Fmax(t1))−
∫
t′∈{LEFT}(q)

η(t′) ·α(t′) dt′

where the last equality followed directly from definition of T (t1, q). By definition of α, and since

normal η at the left boundary is (−1, 0),∫
t′∈{LEFT}(t1,q)

η(t′) ·α(t′) dt′ = −1− Fmax(t1)

fmax(t1)

∫
t′2≤Cq(t1)

f(t1, t
′
2) dt′2

= −1− Fmax(t1)

fmax(t1)
qfmax(t1)

= −(1− Fmax(t1))q.

As a result, the right-hand side of equation (3) sums to zero, and we have∫
t′∈TOP(t1,q)

η(t′) ·α(t′) dt′ = 0.

Since the above equation must hold for all t1 and q, we conclude that α is tangent to the equi-

quantile curve at any type.

The following lemma gives sufficient conditions for uniform pricing to be the pointwise maxi-

mizer of virtual surplus given any cost c. These conditions imply that whenever φ1(t) ≥ c then

φ1(t) ≥ φ2(t), and that φ1(t) ≥ c if and only if t1 is greater than a certain threshold (implied by

monotonicity of φ1(t) ≥ c).

Lemma 8. The allocation of a uniform pricing mechanism optimizes virtual surplus pointwise with

respect to φ = t−α/f of Definition 4 and any non-negative service cost c if the equi-quantile curves

are ratio-monotone and φ1(t) is monotone non-decreasing in t.

Proof. Tangency of α to the equi-quantile curves (Lemma 7) implies that t2
t1
α1(t1, t2)−α2(t1, t2) ≤ 0

if all equi-quantile curves are ratio-monotone. From the assumption t2
t1
α1(t1, t2) − α2(t1, t2) ≤ 0

and Definition 4 we have

t2
t1
φ1(t) =

t2
t1

(
t1 −

α1(t)

f(t)

)
= t2 −

t2
t1
· α1(t)

f(t)
≥ t2 −

α2(t)

f(t)
= φ2(t).
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Thus, for t with φ1(t) ≥ c, φ1(t) ≥ φ2(t) and pointwise virtual surplus maximization serves the

agent outcome 1. Since φ1(t) is a function only of t1 (Definition 4), its monotonicity implies that

there is a smallest t1 such that all greater types are served. Also, if φ1(t) ≤ c, again the above

calculation implies that φ2(t) ≤ c and therefore the type is not served. This allocation is the

allocation of a uniform pricing.

Proof of Theorem 6. We show that φ = t − α/f of Definition 4 is a virtual value function for a

uniform pricing and invoke Proposition 2. Lemma 7 showed that φ is a tight amortization for any

uniform pricing.21 Lemma 8 showed that the allocation of a uniform pricing pointwise maximizes

virtual surplus with respect to φ.

4.3 Extensions

This section contains extensions of Theorem 6 to m ≥ 2 outcomes, n ≥ 1 agents, and distributions

where the favorite-outcome projection may not be regular.

First, Theorem 6 can be extended to the case of more than two outcomes and more than one

agent. The positive correlation property becomes a sequential positive correlation where the ratio

of the value of any outcome to the favorite outcome is positively correlated with the value of

favorite outcome, conditioned on the draws of the lower indexed outcomes. A distribution over

types [0, 1]m is max-symmetric if the distribution of v = maxi ti stays the same conditioned on any

outcome having the highest value. For j 6= i, define qij(t) to be the quantile of the distribution of

tj conditioned on i being the favorite outcome, and conditioned on the values t<j = (t1, . . . , tj−1)

of the lower indexed outcomes. Formally, qij(t) = Prt′ [t
′
j ≤ tj |t′<j = t<j , t

′
i = ti = maxk t

′
k]. Define

F (θj |ti, i, q<j) = Prt′ [t
′
j/t
′
i ≤ θj |q<j = qi<j(t

′), t′i = ti = maxk t
′
k] to be the distribution of the value

ratio of jth to favorite outcome, conditioned on i being the favorite outcome and given vector q<j
of the quantiles of the lower indexed outcomes. In the multi-agent problem with a configurable

item, a single item with m configurations is to be allocated to at most one of the agents.22

Theorem 9. A favorite-outcome projection mechanism is optimal for an item with m ≥ 1 configu-

rations, multiple independent agents, and any service cost c ≥ 0, if the distribution of each agent is

max-symmetric and (a) the favorite-outcome projection has monotone non-decreasing amortization

φmax(v) = v− 1−Fmax(v)
fmax(v)

and (b) F (θj |v, i, q<j) is monotone non-increasing in v for all i, j, θj, and

q<j.

21Special attention is needed in case that the left boundary is a singleton, since in that case fmax(t1)) = 0 and α1

is unbounded. In this case our analysis showed that α · η = 0 everywhere except possibly at (t1, t2(t1)). Divergence

theorem states that ∫
t∈∂T

(α · η)(t) dt = −
∫
t∈T

f(t) dt = −1, (4)

which implies that α · η is a negative Dirac delta at (t1, t2(t1)). The integral of u(α · η) over the boundary is thus

−u(t1, t2(t1)) = 0.
22We assume that the item has the same possible configurations for each agent. This can be achieved by defining

the set of configurations to be the union over the configurations of all agents.
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Figure 6: The connection between convexity and ratio-monotonicity of equi-quantile curves. (a) Convexity implies

ratio-monotonicity. (b) ratio-monotonicity does not imply convexity.

The proof of the above theorem is in Appendix A.1. From Myerson (1981) we know that if a

favorite-outcome projection mechanism is optimal, the optimum mechanism is to allocate the item

to the agent with highest φmax(v) (no ironing is required as we are assuming regularity), and let

the agent choose its favorite configuration. With a single agent, the configurable item setting is

identical to the original model with multiple outcomes. The above theorem implies it is optimal to

offer a single agent a price for its choice of outcome, generalizing Theorem 6 to m ≥ 2 outcomes. A

special case of the correlation above is when the ratios are independent of each other conditioned

on the value of the favorite outcome, that is, each θj = tj/v for j 6= i is drawn independently of

others from a conditional distribution F (θ|v, i) that is monotone in v.

The second extension removes the regularity assumption of Theorem 9 by assuming a slightly

stronger correlation assumption, and designs a virtual value function with a simple sweeping pro-

cedure in a single dimension (proof in Appendix A.3). In particular, we only iron the canonical

amortization φ along the equi-quantile curves.

Theorem 10. A favorite-outcome projection mechanism is optimal for an item with m = 2 config-

urations, multiple independent agents, and any service cost c ≥ 0, if the distribution of each agent

is max-symmetric with convex equi-quantile curves.

From Myerson (1981), optimality of a favorite-outcome projection mechanism implies optimality

of allocating to the agent with highest ironed virtual value. Figure 6 depicts how convexity of equi-

quantile curves is stronger than the stochastic dominance requirement of Theorem 6. Convexity

states that the line connecting any two points, namely (0, 0) and (t1, t1θ), lies above the curve for

all t′1 ≤ t1, and below the curve for all t′1 ≥ t1. As a result, for any t′1 ≥ t1, F (θ|t′1) ≤ F (θ|t1), and

the other direction holds for t′1 ≤ t1 (see Figure 6).
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5 Grand Bundle Pricing for Additive Preferences

In single-agent multi-product settings with free disposal (i.e., value for a set of items does not

decrease as more items are added), optimality of a favorite-outcome projection mechanism is equiv-

alent to optimality of posting a single price for the grand bundle of items. Thus, Theorem 9 can be

used to obtain conditions for optimality of grand bundle pricing. For example, in the case of two

items, when the value for the bundle is v and value for individual items are vδ1 and vδ2, Theorem 9

identifies a sufficient positive correlation condition. Note that the theorem does not require any

structure on values, such as additivity (value for a bundle is the sum of the values of items in it)

or super- or sub-additivity, other than free disposal. If the preference is indeed additive, we have

δ2 = 1 − δ1, and Theorem 9 requires that δ1 be both positively and negatively correlated with v.

The only admissible case is independence.23 In this section we apply the framework of Section 3

to prove optimality of grand bundle pricing for additive preferences, and obtain conditions of opti-

mality that are more permissive than independence by constructing a virtual value function φ̄ from

a canonical amortization φ that is tight for any grand bundle pricing and is constructed to satisfy

conditions of Lemma 3. In this section we consider a single agent, m = 2 items. As discussed in

Section 3.2 and similar to Section 4, we use a class of cost functions to restrict the admissible amor-

tizations. In particular, we assume that the cost of an allocation x ∈ [0, 1]2 is c(x) = cmax(x1, x2)

for a c ≥ 0.

Similar to Section 4, we first study a family of instances with perfect correlation to obtain

necessary conditions of optimality. In particular, let Fsum be a distribution over value s for the

bundle (in the case of two items we refer to the grand bundle simply as the bundle), and θ(s) be

the ratio of the value of item 2 to item 1 when value for the bundle is s, that is, value for item 1 is

t1 = s/(1 + θ), and value for item 2 is t2 = θs/(1 + θ).24 The following theorem shows that if θ(s)

is not monotone non-increasing in s, then bundling is not optimal for some distribution Fsum. The

proof is similar to Theorem 5 and is omitted.

Theorem 11. If θ(s) is not monotone non-increasing in s, then there exists a regular distribution

Fsum over s such that grand bundle pricing is not optimal for the perfectly correlated instance jointly

defined by Fsum and θ(·) and with zero costs.

The main theorem of this section states sufficient conditions for optimality of pricing the bundle.

A symmetric distribution is identified by a marginal distribution Fsum of value for the bundle s as

well as a conditional distribution F (θ|s) of the ratio θ(t) = max(t1, t2)/min(t1, t2) conditioned on

value for the bundle s. The main theorem of this section states that regularity of Fsum and negative

correlation of s and θ in the first order stochastic dominance sense is sufficient for optimality of

bundling.

23Let t1 = v be the value for the bundle, and t2 = δv and t3 = (1 − δ)v the values for the two items. Let δ(q, v)

be the inverse of the quantile mapping, i.e., Pr[δ ≤ δ(q, v)|v] = q. Theorem 9 demands that δ(q, v) be monotone

non-decreasing and F (1− δ ≤ θ2|v, δ = δ(q, v)) be monotone non-increasing in v for all q, θ2. The only possible case

is independence of v and δ, that is, δ(q, v) is a constant.
24Because of the additivity structure imposed on preferences, two parameters are sufficient to define values for

three outcomes. For example, t1 and t2 define the value for the bundle s = t1 + t2. Alternatively, s and θ define the

value for individual items.
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0 s̄

θ

Figure 7: The conditional distribution F (θ|s) is monotone for a monotone non-increasing θ(s) where conditioned

on s, the values are uniform from the set {t|t1 + t2 = s,min(t1, t2)/max(t1, t2) ≥ θ(s)}. For example, for any δ ≤ s̄/2,

setting θ(s) = δ(1 + s)/s defines the set of types to be the triangle t1, t2 ∈ [δ, s̄− δ], t1 + t2 ≤ s̄.

Theorem 12. For a single agent with additive preferences over two items, bundle pricing is optimal

for any costs cmax(x1, x2), c ≥ 0, and any symmetric distribution where (a) Fsum has monotone

amortization φsum and (b) the conditional distribution F (θ|s) is monotone non-decreasing in s.

The following is an example class of distributions satisfying the conditions of Theorem 12.

Draw the value for the bundle s from a regular distribution Fsum, and value for the items t1 and

t2 uniformly such that t1 + t2 = s, max(t1, t2)/min(t1, t2) ≥ θ(s), for any monotone non-increasing

function θ(s) (see Figure 7).

Similar to Section 4, it is sufficient to prove the statement assuming t1 ≥ t2. As in Section 4

the sum-of-values projection, via the divergence density equality (of Lemma 3), pins down an

amortization φ that is tight for any grand bundle pricing. This tight amortization may fail to be

a virtual value function because virtual surplus with respect to φ is not pointwise optimized by a

grand bundle pricing. For this reason, we directly define φ̄ and then prove that it is a virtual value

function for the grand bundle pricing mechanism by comparing the virtual surplus with respect to

φ̄ and φ.

Definition 6. The two-dimensional extension φ̄ of the amortization of the sum-of-values projection

φsum(s) = s− 1−Fsum(s)
fsum(s) is:

φ̄1(t) =
t1

t1 + t2
φsum(t1 + t2) = t1 −

t1
t1 + t2

1− Fsum(t1 + t2)

fsum(t1 + t2)
,

φ̄2(t) =
t2

t1 + t2
φsum(t1 + t2) = t2 −

t2
t1 + t2

1− Fsum(t1 + t2)

fsum(t1 + t2)
.

The following lemma provides conditions on vector field φ̄ such that bundle pricing maximizes

virtual surplus pointwise with respect to φ̄ (proof in Appendix B.1). These conditions are satisfied

for φ̄ of Definition 6, if φsum(s) is monotone non-decreasing.

Lemma 13. The allocation of a bundle pricing mechanism pointwise optimizes virtual surplus with

respect to vector field φ̄ for all costs cmax(x1, x2) if and only if: φ̄1(t) and φ̄2(t) have the same

sign, φ̄1(t) + φ̄2(t) is only a function of t1 + t2 and is monotone non-decreasing in t1 + t2.
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Given Lemma 13, the remaining steps in proving that φ̄ is a virtual value function is showing

that it is a tight amortization for grand bundle pricing. The following lemma proves tightness

(proof in Appendix B.2).

Lemma 14. The expected revenue of a bundle pricing is equal to its expected virtual surplus with

respect to the two-dimensional extension φ̄ of the sum-of-values projection (Definition 6).

The rest of this section shows that φ̄ provides an upper bound on revenue of any mechanism.

For that, we study the existence of a tight canonical amortization φ such that the virtual surplus

of any incentive compatible mechanism with respect to φ̄ upper bounds its virtual surplus with

respect to φ (any such φ must be tight for any bundle pricing since φ̄ is) and invoke Proposition 4.

Define the equi-quantile function Cq(s) such that conditioned on s, the probability that t2 ≤ Cq(s)
is equal to q.

Lemma 15. If the conditional distribution F (θ|s) is monotone non-decreasing in s, then there

exists a canonical amortization φ(t) = t − α(t)/f(t) such that E[x(t) · (φ̄(t) − φ(t))] ≥ 0 for all

incentive compatible mechanisms. For any t, α(t) is tangent to the equi-quantile curve crossing t.

We show the following refinement of Proposition 4, for any incentive compatible allocation x

and sum s,

E
[
x(t) · (φ̄(t)− φ(t)) | t1 + t2 = s

]
≥ 0. (5)

That is, we use a sweeping process in a single dimension and along lines with constant sum of values

s (see Section 3.2). Consider the amortization φ that, like φ̄, sets φ1(t) + φ2(t) = φsum(t1 + t2)

but, unlike φ̄, splits this total amortized value across the two coordinates to satisfy the divergence

density equality. Equation (5) can be expressed in terms of this relative difference φ̄1 − φ1 since

x · (φ̄ − φ) = (x1 − x2)(φ̄1 − φ1). We will first show that to satisfy equation (5) for all incentive

compatible x it is sufficient for φ, relative to φ̄, to place less value on the favorite coordinate, i.e.,

φ1 ≤ φ̄1. Notice that since φ1 + φ2 = φ̄1 + φ̄2 and φ̄1
t2
t1

= φ̄2, the condition φ1 ≤ φ̄1 is equivalent

to the condition φ1
t2
t1
≤ φ2.

To calculate the expectation in equation (5), it will be convenient to change to sum-ratio

coordinate space. For a function h on type space T , define hSR to be its transformation to sum-

ratio coordinates, that is

h(t1, t2) = hSR(t1 + t2,
t2
t1

).

Our derivation of sufficient conditions for the two-dimensional extension of the sum-of-values

projection to be an amortization exploits two properties. First, by convexity of utility (Lemma 1),

the change in allocation probabilities of an incentive compatible mechanism, for a fixed sum s as

the ratio θ increases, can not be more for coordinate one than coordinate two, that is, xSR1 (s, θ)−
xSR2 (s, θ) must be non-increasing in θ (Lemma 16). Second, if φ shifts value from coordinate one to

coordinate two relative to the vector field φ̄, then, it also shifts expected value from coordinate one

to coordinate two, conditioned on sum t1 + t2 = s and ratio t2/t1 ≤ θ. We then use integration by

parts to show that the shift in expected value only hurts the virtual surplus of φ relative to φ̄ and
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equation (5) is satisfied (Lemma 17, proof in Appendix B.3). Later in the section we will describe

sufficient conditions on the distribution to guarantee existence of φ where this sufficient condition

that φ1
t2
t1
≤ φ2, is satisfied (Lemma 18).

Lemma 16. The allocation of any differentiable incentive compatible mechanism satisfies

d

dθ
xSR(s, θ) · (−1, 1) ≥ 0.

Proof. The proof follows directly from Lemma 1. In particular, convexity of the utility function

implies that the dot product of any vector, here (−1, 1), and the change in gradient of utility x in

the direction of that vector, here d
dθx

SR(s, θ), is positive.

Lemma 17. The two-dimensional extension of the sum-of-values projection φ̄ is an amortization

if there exists an amortization φ with φ1(t) + φ2(t) = φsum(t1 + t2) that satisfies φ1(t)
t2
t1
≤ φ2(t).

To identify sufficient conditions for φ̄ to be an amortization it now suffices to derive conditions

under which there exists a canonical amortization φ satisfying φ1(t) + φ2(t) = φsum(t1 + t2) and

the condition of Lemma 17, i.e., φ1(t)
t2
t1
≤ φ2(t). Notice that α1

t2
t1
≥ α2 implies that φ1

t2
t1
≤ φ2

because

t2
t1
φ1(t) =

t2
t1

(
t1 −

α1(t)

f(t)

)
=
t2
t1

(
t1 −

α1(t)

f(t)

)
≤ t2 −

α2(t)

f(t)
= φ2(t).

Thus, it suffices to identify conditions under which α1
t2
t1
≥ α2.

The following constructs the canonical amortization φ and specifies the direction of α. Similar

to Section 4, α is tangent to the equi-quantile curve, that in the section are defined by conditioning

on the value for bundle s. The proof is similar to the proof of Lemma 7 and is deferred to

Appendix B.4.

Lemma 18. A canonical amortization φ = t−α/f satisfying φ1(t) + φ2(t) = φsum(t1 + t2) exists

and is unique, where α(t) is tangent to the equi-quantile curve crossing t.

Proof of Lemma 15. The assumption that F (θ|s) is monotone implies that the equi-quantile curves

are ratio-monotone. The tangency property of Lemma 18 implies that α1
t2
t1
≥ α2 and subsequently

φ1(t)
t2
t1
≤ φ2(t). Lemma 17 then implies that φ̄ is an amortization.

Proof of Theorem 12. Lemma 15 showed that φ̄ is an amortization. Lemma 13 showed that the

allocation of bundle pricing maximizes virtual surplus with respect to φ̄, and Lemma 14 showed

that φ̄ is tight for bundle pricing. Invoking Proposition 2 completes the proof.

6 Discussion

We briefly discuss the generality of the design of virtual values can be applied to prove optimality

of mechanisms. In the context of the simple favorite outcome mechanism studied in this paper, the

method gives very general and nearly tight conditions of optimality. However, the approach has
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certain limitations. For example, with linear values and costs, pointwise optimization of surplus

can result only in deterministic outcomes, whereas randomized outcomes are know to be optimal

in various settings.25 In spite of that, virtual surplus optimization can create internal allocations

with nonlinear valuations and costs, as studied for example by Armstrong (1996) and Rochet and

Chone (1998).
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A Proofs from Section 4

This section includes proofs from Section 4.

A.1 Proof of Theorem 9

Theorem 9. A favorite-outcome projection mechanism is optimal for an item with m ≥ 1 configu-

rations, multiple independent agents, and any service cost c ≥ 0, if the distribution of each agent is

max-symmetric and (a) the favorite outcome projection has monotone non-decreasing amortization

φmax(v) = v − 1−Fmax(v)
fmax(v)

and (b) F (θj |v, i, q<j) is monotone non-increasing in v for all i, j, θj , and

q<j .

Proof. The construction extends the construction of Theorem 6. Let outcome 1 be the favorite

outcome. For q, let Cq(t1) be a function that maps t1 to (t2, . . . , tm) such that q(t) = q. Define

α by integrating by parts along the curves Cq(t1). This defines α1(t) = 1−Fmax(t1)
fmax(t1)

f(t), and

αi(t) = α1(t)∂t1C
q
i (t1). The assumptions of the theorem also implies that αi(t)− (ti/t1)α1(t) ≤ 0.

As a result, φi(t) ≤ (ti/t1)φ1(t).

With multiple agents, m ≥ 1, and uniform service cost c, ex-post optimization of virtual surplus

allocates the agent with the highest positive virtual value. The argument above shows that the

highest positive virtual value of any agent corresponds to the favorite outcome of that agent, and

is equal to the virtual value of the single-dimensional projection.

A.2 Product Distributions Over Values

In this section we derive conditions that prove optimality of the single-dimensional projection for

product distributions over values.

Theorem 19. Uniform pricing is optimal for any cost c for an instance with two outcomes where

the value for each outcome is drawn independently from a distribution with density proportional to

eh(log(x)).

We will show that the distribution satisfies the conditions of Theorem 9. In order to show

that F (θ|v) is monotone in v, we show that the joint distribution of θ and v satisfies the stronger

property of affiliation. That is,

fMR(t1, θ)× fMR(t′1, θ
′) ≥ fMR(t1, θ

′)× fMR(t′1, θ), ∀t1 ≤ t′1, θ ≤ θ′,

where fMR(t1, θ) = f(t1, t1θ) is the joint distribution of t1 and v. Since the distribution is a product

one, this implies that fMR(t1, θ) = f1(t1)f2(t1θ). Notice that pair of values tθ′ and t′θ have the

same geometric mean as the pair tθ, t′θ′. Also given the assumptions, tθ ≤ t′θ, tθ′ ≤ t′θ′. Since

f(x) = η · eh(log(x)),

f2(t1θ)× f2(t′1θ′) ≥ f2(tθ′)× f2(t′θ).

Multiplying both sides by f1(t1)× f1(t′1) we get

f1(t1)f2(t1θ)× f1(t′1)f2(t′1θ′) ≥ f1(t1)f2(t1θ′)× f1(t′1)f2(t′1θ),
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which since the distribution is a product distribution implies that

fMR(t1, θ)× fMR(t′1, θ
′) ≥ fMR(t1, θ

′)× fMR(t′1, θ).

To complete the proof, we need to show that Fmax is regular. This is the case because fmax(v) =

F (v)f(v), f(v) = η · eh(log(v)) is monotone in v by monotonicity of h.

A.3 Proof of Theorem 10

Theorem 10. A favorite-outcome projection mechanism is optimal for an item with m = 2 config-

urations, multiple independent agents, and any service cost c ≥ 0, if the distribution of each agent

is max-symmetric with convex equi-quantile curves.

We will design a virtual value function φ̄ from the canonical amortization φ satisfying conditions

of Lemma 3. Importantly, φ̄ satisfies the monotonicity of φ̄1 without requiring regularity of the

distribution of the favorite item projection. We will start by defining a mapping between the type

space and a two-dimensional quantile space. We will then use Myerson’s ironing to pin down the first

coordinate φ̄1 of the amortization. The second component φ̄2 is then defined such that the expected

virtual surplus with respect φ̄ upper bounds revenue for all incentive compatible mechanisms. To

do this, we invoke integration by parts along curves defined by the quantile mapping, and then use

incentive compatibility to identify a direction that the vector φ̄−φ may have for φ̄ to be an upper

bound on revenue. We use this identity to solve for φ̄2, and finally identify conditions such that

optimization of φ̄ gives uniform pricing.

We first transform the value space to quantile space using following mappings. Recall from

Section 4 that Fmax and fmax are the distribution and the density functions of the favorite item

projection. Define the first quantile mapping

q1(t1, t2) = 1− Fmax(t1)

to be the probability that a random draw t′1 from Fmax satisfies t′1 ≥ t1, and the second quantile

mapping

q2(t1, t2) = 1−

∫ t2
t′2=0 f(t1, t

′
2) dt′2

fmax(t1)

where fmax(t1) =
∫ t1
0 f(t1, t

′
2) dt′2 to the probability that a random draw t′ from a distribution with

density f , conditioned on t′1 = t1, satisfies t′2 ≥ t2. The determinant of the Jacobian matrix of the

transformation is ∣∣∣∣∣∣
∂q1
∂t1

∂q1
∂t2

∂q2
∂t1

∂q2
∂t1

∣∣∣∣∣∣ =

∣∣∣∣∣∣−fmax(t1) 0
∂q2
∂t1

− f(t1,t2)
fmax(t1)

∣∣∣∣∣∣ = f(t1, t2).

As a result, we can express revenue in quantile space as follows∫ ∫
x(t) · φ(t) f(t) dt =

∫ 1

q1=0

∫ 1

q2=0
xQ(q) · φQ(q) dq,
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where xQ and φQ are representations of x and φ in quantile space. In particular, φQ1 (q) =

φmax(t1(q1)) might not be monotone in q1. In what follows we design the amortization φ̄
Q

using

φQ.

We now derive φ̄
Q

from the properties it must satisfy. In particular, we require φ̄Q1 (q) = φ̄Q1 (q1)

to be a monotone non-decreasing function of q1, and that φ̄Q1 (q) ≥ φ̄Q2 (q) whenever either is

positive. These properties will imply that a point-wise optimization of φ̄
Q

will result in an incentive

compatible allocation of only the favorite item, such that xQ1 (q) = xQ1 (q1), and xQ2 (q) = 0 (which

is the case for the allocation of uniform pricing). Note that for any such allocation,∫ 1

q1=0

∫ 1

q2=0
xQ(q) · φQ(q) dq =

∫
q1

xQ1 (q1)φ
Q
1 (q1) dq1.

Similarly, for any such allocation,∫ 1

q1=0

∫ 1

q2=0
xQ(q) · φ̄Q(q) dq =

∫
q1

xQ1 (q1)φ̄
Q
1 (q1) dq1.

We can therefore use Myerson’s ironing and define φ̄Q1 to be the derivative of the convex hull of

the integral of φQ1 . This will imply that φ̄
Q

upper bounds revenue for any allocation that satisfies

xQ1 (q) = xQ1 (q1), and xQ2 (q) = 0, with equality for the allocation that optimizes φ̄
Q

pointwise.

We will next define φ̄Q2 such that φ̄
Q

upper bounds revenue for all incentive compatible alloca-

tions. That is, we require that for all incentive compatible x,∫ ∫
xQ(q) · (φ̄Q − φQ)(q) dq ≥ 0.

Using integration by parts we can write∫ ∫
xQ(q) · (φ̄Q − φQ)(q) dq =

∫
q2

∫
q1

d

dq1
xQ(q) ·

∫
q′1≥q1

(φ̄
Q − φQ)(q′1, q2) dq′1 dq1 dq2.

Incentive compatibility implies that the dot product of any vector and the change in allocation

rule in the direction of that vector is non-negative (Lemma 1). In particular this must be true for

the tangent vector to equi-quantile curve parameterized by q2. Thus incentive compatibility of x

implies that the above expression is positive if the vector that is multiplied by d
dq1
xQ(q) is tangent

to the equi-quantile curve (t1(q
′
1, q2), t2(q

′
1, q2)), 0 ≤ q′1 ≤ q1 at q′1 = q1,∫

q′1≥q1
(φ̄Q2 − φ

Q
2 )(q′1, q2) dq′1∫

q′1≥q1
(φ̄Q1 − φ

Q
1 )(q′1, q2) dq′1

=

d
dq1
t2(q)

d
dq1
t1(q)

.

We will set φ̄Q2 to satisfy the above equality. In particular, define for simplicity µ(q) =
d

dq1
t2(q)

d
dq1

t1(q)
and

take derivative of the above equality with respect to q1

φ̄Q2 (q) = φQ2 (q) + (φ̄Q1 − φ
Q
1 )(q) · µ(q)−

∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ·

d

dq1
µ(q).

As a result, φ̄
Q

defined above is a tight amortization if its optimization indeed gives uniform

pricing. The next lemma formally states the above discussion.
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Lemma 20. The virtual surplus, with respect to φ̄
Q

of any incentive compatible allocation x upper

bounds its revenue. If x1 is only a function of q1 (equivalently t1), x′1(q1) = 0 whenever
∫
q′1≥q1

(φ̄Q1 −

φQ1 )(q′1) dq′1 > 0, and x2(q) = 0 for all q, the expected virtual surplus with respect to φ̄
Q

equals

revenue.

We will finally need to verify that φ̄
Q

also satisfies the properties required for ex-post optimiza-

tion. Lemma 22 below identifies convexity of equi-quantile curves as a sufficient condition. The

proof requires the following technical lemma.

Lemma 21. The amortization φ̄ satisfies φ̄1(t) ≤ t1.

Proof. In un-ironed regions, that is whenever φ̄1 = φ1, by definition we have φ̄1(t) = t1 −
1−Fmax(t1)
fmax(t1)

≤ t1. If the curve is ironed between q1 and q′1 ≥ q1, then φ̄Q1 is the derivative of

convex hull of φQ1 , which is
∫ q
0 t1(q

′)− q
fmax(t1(q))

dq′ = qt1(q). Thus, for all q′′1 with q1 ≤ q′′1 ≤ q′1 we

have

φ̄Q1 (q′′1) =
q′1t
′
1(q
′
1)− q1t1(q1)
q′1 − q1

≤ q′1t1(q
′
1)− q1t1(q′1)
q′1 − q1

= t1(q
′
1) ≤ t1(q′′1).

Lemma 22. If the equi-quantile curves are convex for all q2, the amortization φ̄
Q

defined above

satisfies θ(q)φ̄Q1 (q) ≥ φ̄Q2 (q). As a result, φ̄Q1 ≥ φ̄
Q
2 whenever either is positive.

Proof. Lemma 7 showed thatα is tangent to the equi-quantile curves. This implies that φQ1 (q)µ(q)−
φQ2 (q) = t1(q)µ(q)− t2(q). By rearranging the definition of φ2 we get

φ̄Q1 (q)µ(q)− φ̄Q2 (q) = φQ1 (q)µ(q)− φ2(q) +

∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ·

d

dq1
µ(q)

= t1(q)µ(q)− t2(q) +

∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ·

d

dq1
µ(q)

≥ t1(q)µ(q)− t2(q),

where the inequality followed since by definition of φ̄Q1 , we have
∫
q′1≥q1

(φ̄Q1 − φ
Q
1 )(q′1, q2) dq′1 ≥ 0,

and d
dq1
µ(q) ≥ 0 by the assumption of the lemma. We can now rearrange the above inequality and

write

t2(q)− φ̄Q2 (q) ≥ µ(q)(t1(q)− φ̄Q1 (q))

≥ θ(q)(t1(q)− φ̄Q1 (q)),

where the inequality followed since convexity of equi-quantile curves imply that µ(q) ≥ θ(q), and

by Lemma 21, t1(q)− φ̄Q1 (q) ≥ 0.
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We can now use the above inequality to write

θ(q)φ̄Q1 (q) = θ(q)(t1(q) + (φ̄Q1 (q)− t1(q))

= t2(q) + θ(q)(φ̄Q1 (q)− t1(q))

≥ t2(q) + φ̄Q2 (q)− t2(q)

= φ̄Q2 (q).

Proof of Theorem 10. Combining Lemma 20 and Lemma 22 proves the theorem.

B Proofs from Section 5

This section contains proofs from Section 5.

B.1 Proof of Lemma 13

Lemma 13. The allocation of a bundle pricing mechanism pointwise optimizes virtual surplus

with respect to vector field φ̄ for all costs cmax(x1, x2) if and only if: φ̄1(t) and φ̄2(t) have the

same sign, φ̄1(t) + φ̄2(t) is only a function of t1 + t2 and is monotone non-decreasing in t1 + t2.

Proof. We need to show that for the uniform price p, the allocation function x of posting a price

p for the bundle optimizes φ pointwise. Pointwise optimization of x · φ̄ will result in x = (1, 1)

whenever φ̄1 + φ̄2 ≥ c, and x = (0, 0) otherwise.

B.2 Proof of Lemma 14

Lemma 14. The expected revenue of a bundle pricing is equal to its expected virtual surplus with

respect to the two-dimensional extension φ̄ of the sum-of-values projection (Definition 6).

Proof. Let xp be the allocation corresponding to posting price p for the bundle, that is xp1(t) =

xp2(t) = 1 if t1 + t2 ≥ p, and xp1(t) = xp2(t) = 0 otherwise. We will show that the virtual surplus of

xp is equal to the revenue of posting price p, R(p) = p(1− Fsum(p)). The virtual surplus is∫
t∈T

(xp · φf)(t) dt =

∫
t∈T

xp(t1, t2) · φ(t1, t2)f(t1, t2) dt

=

∫
t∈T,t1+t2≥p

φsum(t1 + t2)f(t1, t2) dt.

= −
∫
s≥p

d

ds
(s(1− Fsum(s)) ds

= R(p)−R(1) = R(p).
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B.3 Proof of Lemma 17

Lemma 17. For any symmetric distribution over values for items, the two-dimensional extension

of the sum-of-values projection φ̄ is an amortization of revenue if there exists an amortization of

revenue φ with φ1(t) + φ2(t) = φsum(t1 + t2) that satisfies φ1(t)
t2
t1
≤ φ2(t).

Proof. Without loss of generality, in proving equation (5) we can assume that the allocation is

symmetric. This is because by symmetry of the distribution, there exists an optimal mechanism

that is also symmetric. Therefore, it is sufficient to prove the lemma only for symmetric incentive

compatible allocations (in particular, we assume that x1(t1, t1) = x2(t1, t1) for all t1).
26

Fix the sum s = t1 + t1. Denote the expected difference between φ̄ and φ conditioned on

t2/t1 ≤ θ by:

Γ(s, θ) =

∫ θ

θ′=0
[φ̄− φ]SR(s, θ′)fSR(s, θ′)

s

1 + θ
dθ′.

We will only be interested in three properties of Γ:

(a) Γ2(s, θ) = −Γ1(s, θ), i.e., this is the expected amount of value shifted from coordinate one to

coordinate two of φ̄ relative to φ. This follows from the fact that φ1(t)+φ2(t) = φ̄1(t)+φ̄2(t) =

φsum(t1 + t2).

(b) Γ2(s, θ) ≥ 0, i.e., this shift is non-negative according to the assumption of the lemma.

(c) Γ(s, 0) = 0, as the range of the integral is empty at θ = 0.

Write the left-hand side of equation (5) as:

E
[
x(t) · (φ̄(t)− φ(t)) | t1 + t2 = s

]
=

∫ 1

θ=0
xSR(s, θ) · [φ̄− φ]SR(s, θ)fSR(s, θ)

s

1 + θ
dθ

=

∫ 1

θ=0
xSR(s, θ) · d

dθ

∫ θ

θ′=0
[φ̄− φ]SR(s, θ′)fSR(s, θ′)

s

1 + θ′
dθ′ dθ.

Substituting Γ into the integral above, we have

=

∫ 1

θ=0
xSR(s, θ) · d

dθ
Γ(s, θ) dθ

= xSR(s, θ) · Γ(s, θ)
∣∣∣1
θ=0
−
∫ 1

θ=0

d

dθ
xSR(s, θ) · Γ(s, θ) dθ.

= −
∫ 1

θ=0

d

dθ
xSR(s, θ) · Γ(s, θ) dθ ds

≥ 0.

26In general, when optimal mechanisms are known to satisfy a certain property, the inequality of amortization

needs to be shown only for mechanisms satisfying that property.

31



The second equality is integration by parts. The third equality follows because the first term

on the left-hand side is zero: For θ = 0, Γ(s, θ) = 0 by property (c); for θ = 1, xSR1 (s, θ) =

xSR2 (s, θ) by symmetry, and Γ1(s, θ) = −Γ2(s, θ) by property (a). The final inequality follows from

− d
dθx

SR(s, θ) · (1,−1) ≥ 0 (Lemma 16) and properties (a) and (b).

B.4 Proof of Lemma 18

Lemma 18. A canonical amortization φ = t−α/f satisfying φ1(t) +φ2(t) = φsum(t1 + t2) exists,

is unique, where α(t) is tangent to the equi-quantile curve crossing t.

Proof. We assume that φ satisfying the requirements of the lemma exists, derive the closed form

suggested in the lemma, and then verify that the derived φ indeed satisfies all the required prop-

erties. We fix s and q and apply the divergence theorem to α on the subspace of type space to

the right of t1 + t2 = s and below Cq. More formally, divergence theorem is applied to the set of

types T (s, q) = {t′ ∈ T |t′1 + t′2 ≥ s;F (t2|s) ≤ q}. The divergence theorem equates the integral of

the orthogonal magnitude of vector field α on the boundary of the subspace to the integral of its

divergence within the subspace. As the upper boundary of this subspace is Cq, one term in this

equality is the integral of α(t′) with the upward orthogonal vector to Cq at t′. Differentiating this

integral with respect to t1 gives the desired quantity.∫
t′∈TOP(s,q)

η(t′) ·α(t′) dt′

=

∫
t′∈T (s,q)

∇ ·α(t′) dt′ −
∫
t′∈{RIGHT,BOTTOM,LEFT}(s,q)

η(t′) ·α(t′) dt′. (6)

Using divergence density equality and boundary orthogonality the right hand side becomes

= −
∫
t′∈T (s,q)

f(t′) dt′ −
∫
t′∈{LEFT}(s,q)

η(t′) ·α(t′) dt′

= −q(1− Fsum(s))−
∫
t′∈{LEFT}(q)

η(t′) ·α(t′) dt′

where the last equality followed directly from definition of T (s, q). By definition of α, and since

normal η at the left boundary is (−1,−1),∫
t′∈{LEFT}(s,q)

η(t′) ·α(t′) dt′ = −1− Fsum(s)

fsum(s)

∫
t′2≤Cq(t1)

f(t1, t
′
2) dt′2

= −1− Fsum(s)

fsum(s)
qfsum(s)

= −(1− Fsum(s))q

As a result, the right hand side of equation (6) sums to zero, and we have∫
t′∈TOP(s,q)

η(t′) ·α(t′) dt′ = 0.
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Since the above equation must hold for all s and q, we conclude that α is tangent to the equi-quantile

curve at any type.
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