
Optimal Iterative Pricing over Social Networks

Hessameddin Akhlaghpour ∗ Mohammad Ghodsi ∗

Nima Haghpanah † Hamid Mahini ∗ Vahab S. Mirrokni ‡

Afshin Nikzad ∗

Abstract

We study the optimal pricing for revenue maximization over social networks
in the presence of positive network externalities. In our model, the value of a dig-
ital good for a buyer is a function of the set of buyers who have already bought
the item. In this setting, a decision to buy an item depends on its price and also
on the set of other buyers that have already owned that item. The revenue maxi-
mization problem in the context of social networks has been studied by Hartline,
Mirrokni, and Sundararajan [9], following the previous line of research on opti-
mal viral marketing over social networks [11, 12, 13].

We consider the Bayesian setting in which there are some prior knowledge
of the probability distribution on the valuations of buyers. In particular, we study
two iterative pricing models in which a seller iteratively posts a new price for
a digital good (visible to all buyers). In one model, re-pricing of the items are
only allowed at a limited rate. For this case, we give a FPTAS for the optimal
pricing strategy in the general case. In the second model, we allow very frequent
re-pricing of the items. We show that the revenue maximization problem in this
case is inapproximable even for simple deterministic valuation functions. In the
light of this hardness result, we present constant and logarithmic approximation
algorithms for a special case of this problem when the individual distributions
are identical.

1 Introduction

Despite the rapid growth, online social networks have not yet generated significant
revenue. Most efforts to design a comprehensive business model for monetizing such
social networks [15, 16], are based on contextual display advertising [20]. An alterna-
tive way to monetize social networks is viral marketing, or advertising through word-
of-mouth. This can be done by understanding the externalities among buyers in a
social network. The increasing popularity of these networks has allowed companies to
collect and use information about inter-relationships among users of social networks.

∗Department of Computer Engineering, Sharif University of Technology,
{akhlaghpour,mahini,nikzad}@ce.sharif.edu, ghodsi@sharif.edu

†Northwestern University, EECS Department, nima.haghpanah@eecs.northwestern.edu
‡Google Research NYC, 76 9th Ave, New York, NY 10011, mirrokni@google.com

1



In particular, by designing certain experiments, these companies can determine how
users influence each others’ activities.

Consider an item or a service for which one buyer’s valuation is influenced by
other buyers. In many settings, such influence among users are positive. That is, the
purchase value of a buyer for a service increases as more people use this service. In this
case, we say that buyers have positive externalities on each other. Such phenomena
arise in various settings. For example, the value of a cell-phone service that offers extra
discounts for calls among people using the same service, increases as more friends buy
the same service. Such positive externality also appears for any high-quality service
through positive reviews or the word-of-mouth advertising.

By taking into account the positive externalities, sellers can employ forward-looking
pricing strategies that maximize their long-term expected revenue. For this purpose,
there is a clear trade-off between the revenue extracted from a buyer at the beginning,
and the revenue from future sales. For example, the seller can give large discounts
at the beginning to convince buyers to adopt the service. These buyers will, in turn,
influence other buyers and the seller can extract more revenue from the rest of the pop-
ulation, later on. Other than being explored in research papers [9], this idea has been
employed in various marketing strategies in practice, e.g., in selling TiVo digital video
recorders [19].

In an earlier work, Hartline, Mirrokni, and Sundararajan [9] study the optimal
marketing strategies in the presence of such positive externalities. They study optimal
adaptive ordering and pricing by which the seller can maximize its expected revenue.
However, in their study, they consider the marketing settings in which the seller can go
to buyers one by one (or in groups) and offer a price to those specific buyers. Allowing
such price discrimination makes the implementation of such strategies hard. Moreover,
price discrimination, although useful for revenue maximization in some settings, may
result in a negative reaction from buyers [14].

Preliminaries. Consider a case of selling multiple copies of a digital good (with no
cost for producing a copy) to a set V of n buyers. In the presence of network exter-
nality, the valuation of buyer i for the good is a function of buyers who already own
that item, vi : 2V → R, i.e., vi(S) is the value of the digital good for buyer i, if set S
of buyers already own that item. We say that users have positive externality on each
other, if and only if vi(S) ≤ vi(T ) for each two subsets S ⊆ T ⊆ V . In general, we
assume that the seller is not aware of the exact value of the valuation functions, but
she knows the distribution fi,S with an accumulative distribution Fi,S for each random
variable vi(S), for all S ∈ V and any buyer i. Also, we assume that each buyer is in-
terested only in a single copy of the item. The seller is allowed to post different prices
at different time steps and buyer i buys the item in a step t if vi(St) − pt ≥ 0, where
St is the set of buyers who own the item in step t, and pt is the price of the item in that
step. Note that vi(∅) does not need to be zero; in fact vi(∅) is the value of the item for
a user before any other buyer owns the item and influence him.

We study optimal iterative pricing strategies without price discrimination during k
time steps. In particular, we assume an iterative posted price setting in which we post

2



a public price pi at each step i for 1 ≤ i ≤ k. The price pi at each step i is visible to
all buyers, and each buyer might decide to buy the item based on her valuation for the
item and the price of the item in that time step. An important modeling decision to be
made in a pricing problem is whether to model buyers as forward-looking (strategic)
or myopic (impatient). For the most of this paper, we consider myopic or impatient
buyers who buy an item at the first time in which the offered price is less than their
valuations. We discuss this issue along with forward-looking buyers in more details in
Appendix A after stating our results for myopic buyers.

In order to formally define the problem, we should also define each time step.
A time step can be long enough in which the influence among users can propagate
completely, and we can not modify the price when there is a buyer who is interested
to buy the item at the current price. On the other extreme, we can consider settings
in which the price of the item changes fast enough that we do not allow the influence
amongst buyers to propagate in the same time step. In this setting, as we change the
price per time step, we assume the influence among buyers will be effective on the
next time step (and not on the same time step). In the following, we define these two
problems formally.

Definition 1. The Basic(k) Problem: In the Basic(k) problem, our goal is to find a
sequence p1, . . . , pk of k prices in k consecutive time steps or days. A buyer decides
to buy the item during a time step as soon as her valuation is more than or equal to
the price offered in that time step. In contrast to the Rapid(k) problem, the buyer’s
decision in a time step immediately affects the valuations of other buyers in the same
time step. More precisely, a time step is assumed to end when no more buyers are
willing to buy the item at the price at this time step.

Note that in the Basic(k) problem, the price sequence will be decreasing. If the
price posted at any time step is greater than the previous price, no buyer would pur-
chase the product at that time step.

Definition 2. The Rapid(k) Problem: Given a number k, the Rapid(k) problem is
to design a pricing policy for k consecutive days or time steps. In this problem, a
pricing policy is to set a public price pi at the start of time step (or day) i for each
1 ≤ i ≤ k. At the start of each time step, after the public price pi is announced, each
buyer decides whether to buy the item or not, based on the price offered on that time
step 1 and her valuation. In the Rapid(k) problem, the decision of a buyer during a
time step is not affected by the action of other buyers in the same time step 2.

One insight about the Rapid(k) model is that buyers react slowly to the new price
and the seller can change the price before the news spreads through the network. On
the other hand, in the Basic(1) model, buyers immediately become aware of the new

1In discussions for both Basic(k) and Rapid(k) problems, we use the terms time step and day inter-
changeably. The definition should be clear in the context

2Note that in the Rapid(k) problem, a pricing policy is adaptive in that the price pi at time step i may
depend on the actions of buyers in the previous time steps.

3



state of the network (the information spreads fast), and therefore respond to the new
state of the world before the seller is capable of changing prices. For more insight
about the above two models, see the example in Appendix B.

A common assumption studied in the context of network externalities is the as-
sumption of submodular influence functions. This assumption has been explored and
justified by several previous work in this framework [6, 9, 11, 13]. In the context of
revenue maximization over social networks, Hartline et. al. [9] state this assumption
as follows: suppose that at some time step, S is the set of buyers who have bought
the item. We use the notion of optimal (myopic) revenue of a buyer for S, which is
Ri(S) = maxp p · (1− Fi,S(p)). Following Hartline et.al [9], we consider the optimal
revenue function as the influence function, and assume that the optimal revenue func-
tions (or influence functions) are submodular, which means that for any two subsets
S ⊂ T , and any element j 6∈ S, Ri(S∪{j})−Ri(S) ≥ Ri(T ∪{j})−Ri(T ). In other
words, submodularity corresponds to a diminishing return property of the optimal rev-
enue function which has been observed in the social network context [6, 11, 13].

Definition 3. We say that all buyers have identical initial distributions if there exists a
distribution F0 so that the valuation of a player given that the influence set is equal to
S is the sum of two independent random variables, one from F0, and another one from
Fi,S , with Fi,∅ = 0.

Definition 4. A probability distribution f with accumulative distribution F satisfies
the monotone hazard rate condition if the function h(p) = f(p)/(1− F (p)) is mono-
tone non-decreasing. Several natural distributions like uniform distributions and ex-
ponential distributions satisfy this condition.

Our Contributions. We first show that the deterministic Basic(k) problem is polynomial-
time solvable. Moreover, for the Bayesian Basic(k) problem, we present a fully
polynomial-time approximation scheme. We study the structure of the optimal solution
by performing experiments on randomly generated preferential attachment networks
(appendix E). In particular, we observe that using a small number of price changes, the
seller can achieve almost the maximum achievable revenue by many price changes. In
addition, this property seems to be closely related to the role of externalities. In par-
ticular, the density of the random graph, and therefore the role of network externalities
increases, fewer number of price changes are required to achieve almost optimal rev-
enue.

Next we show that in contrast to the Basic(k) problem, the Rapid(k) problem is
intractable. For the Rapid(k) problem, we show a strong hardness result: we show that
the Rapid(k) problem is not approximable within any reasonable approximation fac-
tor even in the deterministic case unless P=NP. This hardness result holds even if the
influence functions are submodular and the probability distributions satisfy the mono-
tone hazard rate condition. In light of this hardness result, we give an approximation
algorithm using a minor and natural assumption. We show that the Rapid(k) problem
for buyers with submodular influence functions and probability distributions with the
monotone hazard rate condition, and identical initial distributions admits logarithmic

4



approximation if k is a constant and a constant-factor approximation if k ≥ n
1
c for any

constant c. We propose several future research directions in appendix C.
Related work. Optimal pricing mechanisms in the presence of network externalities
have been considered in the economics literature [3, 4, 7, 10]. Carbal, Salant, and
Woroch [4] consider an optimal pricing problem with network externalities when the
buyers are strategic, and study the properties of equilibrium prices. In their model,
buyers tend to buy the product as soon as possible because of a discount factor, which
reduces the desirability of late purchases. Previous work in economic literature such as
[8, 5, 17] had shown that without network externalities, the equilibrium prices decrease
over time. On the other hand, Carbal et.al. show that in a social network the seller
might decide to start with low introductory prices to attract a critical mass of players,
when the players are large (i.e, the network effect is significant). They observe that this
pattern (of increasing prices) also happens when there is uncertainty about customer
valuations, no matter how strong the network effect is.

Optimal viral marketing over social networks have been studied extensively in the
computer science literature [12]. For example, Kempe, Kleinberg and Tardos [11]
study the following algorithmic question (posed by Domingos and Richardson [6]):
How can we identify a set of k influential nodes in a social network to influence such
that after convincing this set to use this service, the subsequent adoption of the service
is maximized? Most of these models are inspired by the dynamics of adoption of
ideas or technologies in social networks and only explore influence maximization in
the spread of a free good or service over a social network [6, 11, 13]. As a result, they
do not consider the effect of pricing in adopting such services. On the other hand, the
pricing (as studied in this paper) could be an important factor on the probability of
adopting a service, and as a result in the optimal strategies for revenue maximization.

2 The Basic(k) Problem

We define B1(S, p) := {i|vi(S) ≥ p}∪S. Assume a time step where at the beginning,
we set the global price p, and the set S of players already own the item. So B1(S, p)
specifies the set of buyers who immediately want to buy (or already own) the item.
As B1(S, p) will own the item before the time step ends, we can recursively define
Bk(S, p) = B1(Bk−1(S, p), p) and use induction to reason that Bk(S, p) will own
the item in this time step. Let B(S, p) = Bk̂(S, p), where k̂ = max{k|Bk(S, p) −
Bk−1(S, p) 6= ∅}, knowing that all buyers in B(S, p) will own the item before the time
step ends. One can easily argue that the set B(S, p) does not depend on the order of
users who choose to buy the item.
Solving Deterministic Basic(1): First, we state the following lemma, which can be
proved by induction.

Lemma 1. For any a and b such that a < b, B(∅, b) ⊆ B(∅, a).

In the Basic(1) problem, the goal is to find a price p1 such that p1 · |B(∅, p1)| is
maximized. Let βi := sup{p|i ∈ B(∅, p)} and β := {βi|1 ≤ i ≤ n}. WLOG we

5



assume that β1 > β2 . . . > βn. Using Lemma 1, player i will buy the item if and only
if the price is set to be less than or equal to βi.

Lemma 2. The optimal price p1 is in the set β.

Now we provide an algorithm to find p1 by finding all elements of the set β and
considering the profit βi ·B(∅, βi) of each of them, to find the best result. Throughout
the algorithm, we will store a set S of buyers who have bought the item and a global
price g. In the beginning S = ∅ and g = ∞. The algorithm consists of |β| steps. At
the i-th step, we set the price equal to the maximum valuation of remaining players,
considering the influence set to be S. We then update the state of the network until
it stabilizes, and moves to the next step. Our main claim is as follows. At the end of
the i-th step, the set who own the item is B(∅, βi), and the maximum valuation of any
remaining player is equal to βi+1.

Generalization to Deterministic Basic(k): We attempt to solve the Basic(k)
problem by executing the Basic(1) algorithm consisting of m steps and by using a
dynamic algorithm. We are looking for an optimal sequence (p1, p2, . . . , pk) in order
to maximize

∑k
i=1 |B(∅, pi)−B(∅, pi−1)| · pi.

We claim that an optimal sequence exists such that for every i, pi = βj for some
1 ≤ j ≤ |β|. This can be shown by a proof similar to that of lemma 2. Thus the
problem Basic(k) can be solved by considering the subproblem A[k′,m] where we
must choose a non-increasing sequence π of k′ prices from the set {β1, β2, . . . βm}, to
maximize the profit, and setting the price at the last day to βm. This subproblem can
be solved using the following dynamic program:

A[k′,m] = max
1≤t<m

A[k′ − 1, t] + |B(∅, βm)−B(∅, βt)| · βm

FPTAS for the Bayesian setting: For the Bayesian (or probabilistic) Basic(k)
problem, we run a similar dynamic program, but the main difficulty for this problem
is that the space of prices is continuous, and we do not have the same set of candidate
prices as we have for the deterministic case. To overcome this issue, we employ a
natural idea of discritizing the space of prices. Then we estimate the expected revenue
by a sampling technique (see appendix D).

3 The Rapid(k) Problem

3.1 Identical Initial distributions

As we will see in section 3.2, the Rapid(k) problem is hard to approximate even with
submodular influence functions and probability distributions satisfying the monotone
hazard rate condition. So we consider the Rapid(k) problem with submodular influ-
ence functions and probability distributions satisfying the monotone hazard rate con-
dition, and buyers have identical initial distributions. For this problem, we present
an approximation algorithm whose approximation factor is logarithmic for a constant
k and its approximation factor is constant for k ≥ n

1
c for any constant c > 0. The

algorithm is as follows:

6



1. Compute a price p0 which maximizes p(1−F0(p)) (the myopic price of F0), and
let R0 be this maximum value. Also compute a price p1/2 such that F0(p1/2) =
0.5. With probability 1

2 , let c = 1, otherwise c = 2.

2. If c = 1, set the price to the optimal myopic price of F0 (i.e, p0) on the first time
step and terminate the algorithm after the first time step.

3. if c = 2, do the following:

(a) Post the price p1/2 on the first time step.
(b) Let S be the set of buyers that do not buy in the first day, and let their

optimal revenues be R1(V − S) ≥ R2(V − S) ≥ . . . ≥ R|S|(V − S).

(c) Let pj be the price which achieves Rj(V − S), and Prj be the probability
with which j accepts pj for any 1 ≤ j ≤ |S|. Thus we have Rj(V − S) =
pjPrj .

(d) Let d1 < d2 < . . . < dk−1 be the indices returned by lemma 7 as an
approximation of the area under the curve R(V − S).

(e) Sort the prices
pdj

e for 1 ≤ j ≤ k − 1, and offer them in non-increasing
order in days 2 to k.

To analyze the expected revenue of the algorithm, we need the following lemmas:

Lemma 3. Let S be the set formed by sampling each element from a set V indepen-
dently with probability at least p. Also let f be a submodular set function defined over
V , i.e., f : 2V → R. Then we have E[f(S)] ≥ pf(V ) [9].

Lemma 4. If the valuation of a buyer is derived from a distribution satisfying the
monotone hazard rate condition, she will accept the optimal myopic price with proba-
bility at least 1/e [9].

Lemma 5. Suppose that f , defined over [a, b], is a probability distribution satisfying
the monotone hazard rate condition, with expected value µ and myopic revenue R =
maxp p(1− F (p)). Then we have R(1 + e) ≥ µ.

Lemma 6. Let i be the index maximizing iai in the set {a1, a2, . . . , am}. Then we
have iai ≥

∑m
j=1 aj/(dlog(m + 1)e).

Lemma 7. For a set {a1 ≥ a2 ≥ . . . ≥ an}, let D = {d1 ≤ d2 ≤ . . . ≤ dk} be the
set of indices maximizing S(D) =

∑k
j=1(dj − dj−1)adj (assuming d0 = 0), over all

sequences of size k. Then we have S(D) ∈ Θ(
∑

i ai

logk n).

Proof idea: We present an algorithm that iteratively selects rectangles, such that after
the m-th step the total area covered by the rectangles is at least m/ log n using 4m− 1
rectangles. At the start of the m-th step, the uncovered area is partitioned into 4m−1

independent parts. In addition, the length of the lower edge of each of these parts is ep

which is at most n/(2m−1). The algorithm solves each of these parts independently
as follows. We use 3 rectangles for each part in each step. First, using lemma 6 we

7



know that we can use a single rectangle to cover at least 1/ log ep of the total area of
part. Then, we cover the two resulting uncovered parts by two rectangles, which each
equally divide the lower edge of the corresponding part. The complete proof appears
in the appendix F.2.

Theorem 1. The expected revenue of the above pricing strategy A as described above
is at least 1

8e2(e+1) logk n
of the optimal revenue.

Proof: For simplicity assume that we are allowed to set k+1 prices. In case c = 1, we
set the optimal myopic price of all players and therefore achieve the expected revenue
of nR0. If c = 2, consider the second day of the algorithm. By lemma 4, we know
that each remaining buyer accepts her optimal myopic price with probability at least
1/e, so for every j we have Prj ≥ 1/e ≥ Pri/e. In addition, we know that for each
j ≤ i, Rj(V − S) ≥ Ri(V − S) ≥ pi/e. We also know that Rj(V − S) ≤ pj . As a
result, pj ≥ pi/e, for each j ≤ i. Therefore, if we offer the player j ≤ i the price pi/e,
she will accept it with probability at least Pri/e (she would have accepted pj with
probability at least Prj ≥ Pri/e; offering a lower price of pi/e will only increase the
probability of acceptance).

For now suppose that we are able to partition players to k different groups, and
offer each group a distinct price. Ignore the additional influence that players can have
on each other. In that case, we can find a set d1 < d2 < . . . < dk maximizing∑k

j=1(dj − dj−1) · Rdj (V − S). Assume that Di is the set of players y with di−1 <
y ≤ di. As we argued above, if we offer each of these players the price pdi

/e, she
will accept it with probability at least Prdi/e. So the expected value of each of the
players in Di when offered pdi/e is at least Prdi/e · pdi/e = Rdi(V − S)/e2. The
total expected revenue in this case will be

∑k
j=1(di − di−1) ·Rdj (V − S)/e2, which,

using lemma 7 is at least
∑

i Ri(V −S)/(e2 logk n). An important observation is that,
if the expected revenue of a player when she is offered a price p is R, her expected
revenue will not decrease when she is offered a non-increasing price sequence P which
contains p . As a result, we can sort the prices that are offered to different groups, and
offer them to all players in non-increasing order.

Finally, using Lemma 3, and since every player buys at the first day independently
with probability 1/2, we conclude that any buyer i that remains at the second day
observe an expected influence of Ri(V )/2 from all other buyers.

As a result, the expected revenue of our algorithm is nR0/2 (from setting p0 with
probability 1/2 in the first day) plus

∑
i Ri(V ) · (1/8) · (1/(e2 logk n)). Since we set

p1/2 with probability 1/2, a player does not buy at first day with probability 1/2, and
we achieve 1/(e2 logk n) of the value of remaining players in the second day. We
also know that the expected revenue that can be extracted from any player i is at most
E(F0)+E(Fi,V ). Thus, using lemma 5, we conclude that the approximation factor of
the algorithm is 8e2(e + 1) logk n.

8



3.2 Hardness

In this section, we prove the hardness of the Rapid(k) problem even in the determin-
istic case with additive (modular) valuation functions. Specifically, we consider the
following special case of the problem: (i) k = n; (ii) The valuations of the buyers
are deterministic, i.e., fi,S is an impulse function, and its value is nonzero only at
vi(S); and finally (iii) The influence functions are additive; ∀i, j, S such that i 6= j
and i, j /∈ S we have vi(S ∪ {j}) = vi(S) + vi({j}), also each two buyers i 6= j,
vi({j}) ∈ {0, 1}, and each buyer has a non-negative initial value, i.e, vi(∅) ≥ 0.

We use a reduction from the independent set problem; We show that using any
1

n1−ε -approximation algorithm for the specified subproblem of Rapid(k), any instance
of the independent set problem can be solved in polynomial time.

For the special case of additive influence functions, it is convenient to use a graph
to represent the influence among buyers, i.e., a directed graph G∗ has node set V (G∗)
equal to the set of all buyers, and (j, i) ∈ E(G∗) if and only if vi({j}) = 1. Now
we show how to construct an instance of Rapid(k), the graph G∗, from an instance
G = (V, E) of the the independent set problem. Our goal is to determine whether
there exists an independent set of vertices, larger than a given K. Let N = |V |. The
set of vertices of G∗ is formed from the union of five sets, denoted by A, F , C, X , and
Y . In the first set A, there are two vertices di and ai for each vertex i in G (see figure
1). As we will see later, selling the item to di corresponds to selecting i as a member
of the independent set. The activator of vertex i, ai, is used to activate (will be made
clear shortly) the next vertex, di+1. The initial values of d1 and a1 are K − 1 + ε and
K−1+2ε, respectively. For i > 1, the initial values of di and ai are K−2+(2i−1)ε
and K− 2+2iε, respectively. There are two edges from ai to di+1, and ai+1, for each
i < n. We observe that initially, the first couple have the highest valuations. We can
consider selling the item to ai, di couples in order. On day i, we sell the item to ai

and we can choose to sell or not to sell to di. But we do not sell the item to any other
buyer. Then next day (day i+1), with the influence of the ai buyer on the next couple,
which we referred to as activation, the (i + 1)-th couple will have the highest values.
This allows us to sell to both of them, or only the activator, without having any other
buyer buy the item. Thus we can use the set A to show our selection of vertices for
the independent set as follows. Start from d1 and a1 and visit vertices in order. When
visiting the i-th couple, if we want vertex i of G to be in the independent set, we set
the price to K − 1 + (2i − 1)ε (causing both di and ai to buy). Otherwise, set the
price to K − 1 + 2iε. In both cases the activator will buy, and makes the next couple
have the highest values. From now on, by selecting {i1, i2, . . . , il} from G or selecting
{di1 , di2 , . . . , dil} from G∗, we mean selling to {di1 , di2 , . . . , dil}.

The set F is used to represent the edges in E. There is a vertex fe in F for each
edge e in E. The initial values of all these vertices are K−2. Let e = (i, j) be an edge
in E. There is one edge from di, and one from dj to fe. In this way, if two endpoints
of an edge e are selected to be in the independent set, the value of the corresponding
buyer fe increases to K. Otherwise, it would be either K − 1, or K − 2. We are going
to build the rest of the graph in a way that if the value of any vertex in F increases

9



ai(K − 2 + 2iε)

A

activators

e
c(K − 2)

X(K − 1) Y (K − 1)

F (K − 2)

aj

b1(0) b2(0)
C

di(K − 2 + (2i− 1)ε)

Figure 1: The reduction of subsec-
tion 3.2. The number in the paren-
theses next to the name of a vertex
(set of vertices) is the initial val-
uation of that vertex (vertices). In
this instance, the edge e is adjacent
to vertices i and j (in graph G of
independent set problem).

to K, we lose a big value. This will prevent the optimal algorithm from selecting two
adjacent vertices.

The set C consists of only three vertices, the two counters b1 and b2, and another
vertex c. The initial values of the counters are zero, and the initial value of c is K − 2.
There are two edges from each di going to b1 and b2. Also there is an edge from b1

and b2 to c (note that b1 and b2 are completely identical). The selection of any vertex
di will increase the value of the counters by one. So we can use the counters to keep
track of the number of vertices selected from the set A.

Finally there are two important sets of X = {x1, x2, . . . , xL} and Y = {y1, y2, . . . , yL},
where L is a large number to be determined later. The initial value of all the vertices
in X and Y is K − 1. There is one edge from c to each vertex in X . There is also an
edge from each vertex in F , to each vertex in Y . Finally we add an edge from each
vertex in X to each vertex in Y . These L2 edges are so important that if we do not take
advantage of them when possible, we will be unable to approximate the revenue by the

1
n1−ε factor; we must sell the item for price at least L to all buyers in Y , if possible.
To do so, we have no choice but to select at least K independent vertices from the G.
First observe that all the vertices in X are identical, and so are all the vertices in Y . So
the prices with which any buyer in X buys the item, is equal to the price with which
any other buyer in X buys the item. The same argument is true for buyers in Y . In
addition, the initial values of all the vertices in X and Y are equal. In order to take
advantage of the L2 edges, we have to find a way to increase the value of the buyers
in X to some value more than the value of the buyers in Y . To do this, we should
activate the only incoming edges of X without activating any of the incoming edges
of Y . This is only possible by selling to c, and not selling to any of the vertices in F .
We are going to see that the only possible scenario is to increase the value of b1 and b2

to K by selecting K vertices from V , and making sure that the selected vertices form
an independent set.

Theorem 2. The Rapid(k) problem with additive influence functions can not be ap-
proximated within any multiplicative factor unless P=NP (see appendix F.3).

10



References

[1] N. Bansal, N. Chen, N. Cherniavsky, A. Rudra, B. Schieber, and M. Sviridenko.
Dynamic pricing for impatient bidders. In SODA, pages 726–735, 2007.

[2] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Sci-
ence, 286:509, 1999.

[3] B. Bensaid and J.-P. Lesne. Dynamic monopoly pricing with network external-
ities. International Journal of Industrial Organization, 14(6):837–855, October
1996.

[4] L. Cabral, D. Salant, and G. Woroch. Monopoly pricing with network externali-
ties. Industrial Organization 9411003, EconWPA, Nov. 1994.

[5] R. H. Coase. Durability and monopoly. Journal of Law & Economics, 15(1):143–
49, April 1972.

[6] P. Domingos and M. Richardson. Mining the network value of customers. In
KDD ’01, pages 57–66, New York, NY, USA, 2001. ACM.

[7] J. Farrell and G. Saloner. Standardization, compatibility, and innovation. RAND
Journal of Economics, 16(1):70–83, Spring 1985.

[8] O. Hart and J. Tirole. Contract renegotiation and coasian dynamics. Review of
Economics Studies, 55:509–540, 1988.

[9] J. Hartline, V. S. Mirrokni, and M. Sundararajan. Optimal marketing strategies
over social networks. In WWW, pages 189–198, 2008.

[10] M. L. Katz and C. Shapiro. Network externalities, competition, and compatibil-
ity. American Economic Review, 75(3):424–40, June 1985.

[11] D. Kempe, J. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In KDD ’03, pages 137–146, New York, NY, USA,
2003. ACM.

[12] J. Kleinberg. Cascading behavior in networks: algorithmic and economic issues.
Cambridge University Press, 2007.

[13] E. Mossel and S. Roch. On the submodularity of influence in social networks. In
STOC ’07, pages 128–134, New York, NY, USA, 2007. ACM.

[14] R. L. Oliver and M. Shor. Digital redemption of coupons: Satisfying and dissat-
isfying eects of promotion codes. Journal of Product and Brand Management,
12:121–134, 2003.

[15] E. Oswald. http://www.betanews.com/article/
Google Buy MySpace Ads for 900m/1155050350.

11



[16] K. Q. Seeyle. www.nytimes.com/2006/08/23/technology/23soft.html.

[17] J. Thpot. A direct proof of the coase conjecture. Journal of Mathematical Eco-
nomics, 29(1):57 – 66, 1998.

[18] G. van Ryzin and Q. Liu. Strategic capacity rationing to induce early purchases.
Management Science, 54:1115–1131, 2008.

[19] R. Walker. http://www.slate.com/id/1006264/.

[20] T. Weber. http://news.bbc.co.uk/1/hi/business/6305957.stm?lsf.

A Myopic vs. Strategic Buyers

An important modeling decision to be made in a pricing problem is whether to model
buyers as forward-looking (strategic) or myopic (impatient). Forward-looking players
will choose their strategies based on the prices that are going to be set in the future.
As a result, they might decide not to buy an item although the offered price is less
than their valuations. On the other hand, myopic players are supposed to buy the
item in the first day in which the offered price is less than their valuations. Buyers
might be impatient for several reasons. This happens when the good can be consumed
(food, beverage, . . .), when the customers make impulse purchases ([18]), or when
the item is offered in limited amount (so that it might not be available in the future).
Also, players might be myopic when the effect of the discount factor is stronger than
the possible decrement in prices in the future (that is why we buy electronic devices
although we are aware of the discounted prices in the future). Optimal pricing for
myopic or impatient buyers have been also studied from algorithmic point of view in
the computer science literature. For example, Bansal et. al. [1] study dynamic pricing
problems for impatient buyers, and design approximation algorithms for this revenue
maximization for this problem.

In this paper, we focused on the myopic or impatient buyers, and presented all our
algorithms and models in this model. We also ignored the role of discount factors in
the valuation of players. It can be shown that some of our results can be extended to
take into account forward-looking behaviors and also discount factors, but we do not
discuss them in this paper.

B Example

Example. For more insight about the Basic(k) and Rapid(k) models and their differ-
ences, we study the following example: Consider n buyers numbered 1 to n. For buyer
i (1 ≤ i ≤ n), vi(∅) is ε · (i−1). Any purchase by any buyer i 6= 1 increases buyer 1’s
valuation by L. The valuations of the rest of the buyers does not change (See Figure
2).

12



...

0

(n− 1)ε

ε

2ε

3ε

Figure 2: Each node represents a buyer. The numbers written next to each buyer i is
vi(∅). The arrows represent influences of L. L (and ε) are arbitrarily large (and small)
numbers respectively.

Consider the Rapid(n) problem on this example. One may think the Rapid(n)
problem can be easily solved by posting the highest price that anyone is willing to buy
the product for it. Using this naive approach for this example, in the second time step,
the seller would sell the product for price L to buyer 1. But if she decides to post a
public price ε on the first time step, she can sell the product for price (n−1)L to player
1 afterwards. For the Basic(n) problem, no matter what the seller does, she can not
sell the product to buyer 1 for more than 1 + (n − 1)ε. This example shows that the
seller can get much more revenue in the Rapid(n) problem compared to the Basic(n)
problem.

C Concluding Remarks

In this paper, we introduce new models for studying the optimal pricing and market-
ing problems over social networks. We study two specific models and show a major
difference between the complexity of the optimal pricing in these settings. This paper
leaves many problems for future study. (i) We presented preliminary results for strate-
gic buyers, but many problems remain open in this setting. Studying optimal pricing
strategies for strategic or patient buyers is an interesting problem. In fact, one can
model the pricing problem for the seller and the optimal strategy for buyers as a game
among buyers and the seller, and study equilibria of such a game. (ii) We present
insights from simulation results. Proving these insights in general settings is an in-
teresting problem. (iii) Our results for the Basic(k) problem are for the non-adaptive
pricing strategy in which the sequence of prices are decided at the beginning. It would
be interesting to study adaptive pricing strategies in which the seller decides about the
price at each step by looking at the history of buyers’ re-actions to the previous price
sequence. (iv) We studied a monopolistic setting in which a seller does not compete
with other sellers. It would be nice to study this problem non-monpolistic settings in
which other sellers may provide similar items over time, and the seller should compete
with other sellers to attract parts of the market. (v) An important research direction
for marketing over social networks is to combine the pricing algorithms with learning

13



algorithms to learn the externalities of buyers on each other in the context of social
networks. Such a model should combine an exploration and explotation phases in a
careful manner.

Finally, studying optimal advertising strategies over social networks is closely re-
lated to our marketing problems and is an interesting subject for future research.

D FPTAS for Basic(k)

Here, we extend the dynamic programming approach and present an FPTAS for the
Basic(k) problem.

We assume a minimum price pmin = 1 for the item, and design pricing algorithms
that optimize the revenue using a minimum price of 1$. Let ROUND be the running
time of simulating one trial of the buying process during one time step (given proba-
bility distributions f(i, S) for each user i and each subset S of users). We first observe
a simple FPTAS for Basic(1), and then use it to solve Basic(k). In the Basic(1) prob-
lem, our goal is to find a price p that maximizes the expected revenue of the seller
when she sets the price to p. Let Cp and Xp be random variables for the revenue and
number of buyers who buy the item when we set the price to p. Our goal is to find a
price p that maximizes E[Cp] = pE[Xp]. Note that we can estimate E[Xp] using a
standard sampling method, i.e., by sampling from the random process using a price p
for a polynomial number of trials and and taking the average of the number of buyers
who bought the item in each trial. Since 0 ≤ Xp ≤ |V |, using Chernoff-Hoeffding
concentration inequality, we can easily show that E[Xp] can be computed within an
error factor of ε with high probability.

Using the sampling method, we estimate E[Cp] with high probability for any given
p. Assuming values pmin = 1 and a maximum price pmax such that pmin ≤ pOPT ≤
pmax, the idea is to check some specific price values between pmin and pmax and
choose one of them with respect to their estimated revenue. The algorithm is as fol-
lows:

1. Let imax = logpmax/pmin

1+ε +1.

2. Define values pi = (1 + ε)ipmin for any integer i, 0 ≤ i < imax, and compute
E[Cpi ] for each pi.

3. Return pi with the maximum calculated E[Cpi ].

Theorem 3. For every m ≥ 3 and t ≥ 1, there exists an polynomial time algorithm
which finds a price p such that E[Cp] ≥ E[CpOPT ] 1−ε

(1+ε)2
with high probability.

Now, we are ready to design an algorithm for solving Basic(k) problem. In this
problem, we have k time steps and we need to set a price pi in time step i. Let
Xp1,p2,...,pt be the number of buyers who buy the item at time step t when the price is
pi at time step i ≤ t. Thus, the total revenue is

revenue = p1Xp1 + p2Xp1,p2 + ... + pkXp1,p2,...,pk
.

14



In Basic(k), our goal is to maximize the expected revenue, which is: E[revenue] =
p1E[Xp1 ] + p2E[Xp1,p2 ] + ... + pkE[Xp1,p2,...,pk

].
Using standard sampling technique and Chernoff-Hoeffding bound, we can esti-

mate E[Xp1,p2,...,pt ] within a small error with high probability (since 0 ≤ Xp1,p2,...,pt ≤
n).

Given any set of valuations, the set of all buyers who have bought the item after
time step t, is the same as the set of buyers who have bought the item when we have
only one time step in which we set the price to be pt. Thus, Xp1 + Xp1,p2 + ... +
Xp1,p2,...,pt = Xpt which implies Xp1,p2,...,pt = Xpt −Xpt−1 . Thus, E[Xp1,p2,...,pt ] =
E[Xpt ]− E[Xpt−1 ].

First, we present a simple dynamic program with a polynomial running time in
pmax. Then we modify it and design an FPTAS for the problem. As a warm-up
example, let’s assume that E[Xp] can be computed precisely for every p, and we are
allowed to offer only integer prices. We design a dynamic programming algorithm to
solve the problem. Consider the state of the network when we set the price to p and
wait until the network becomes stable. In this state, some subset of buyers has bought
the item. We call this state of the network, Net-Stable(p). We define A[t, p] as the
maximum expected revenue when we have t time steps and the state of the network is
Net-Stable(p). In order to calculate A[t, p] we can search for the price to be offered
in the first time step. It could be any price below p. The recurrence relation for the
dynamic program is as follows:

A[t, p] = max
0<p′<p

{A[t− 1, p′] + p′(E[Xp′ ]− E[Xp])} (1)

Note that in state Net-Stable(pmax + 1), no buyer has bought the item and the network
is in the initial state. Therefore our solution is stored in A[k, pmax + 1]. The above
algorithm is based on some unrealistic assumption and its running time is polynomial
in terms of to pmax.
A 1−ε

2(1+ε) -approximation Algorithm. Let imax = dlog(pmax)e. First we observe that
if k ≥ imax + 1, one can easily design a 1

2 -approximation algorithm: Offer price
pi = 2imax−i at time step i. Assume that in the optimum solution, we offer price po

i at
time step i. Consider the set of buyers who has bought the item in Net-Stable(p) and
call this set Sp. It is clear that Sp ⊆ Sp′ for p ≥ p′. Let buyer x be a buyer who has
bought the item at price 2r ≤ px < 2r+1 in the optimum solution. Thus buyer x will
buy the item when the price is 2r in our solution. Since 2r ≥ px/2, the above simple
algorithm is a 1

2 -approximation algorithm for the case k ≥ imax + 1. But how can we
solve the problem for the case of k ≤ imax?

Assume that we are only allowed to set prices among values 1, 2, ..., 2imax at each
time step. As discussed above, we can show that the optimum expected revenue in
this case will be at least 1

2 of the optimum expected revenue in the general case. Now,
we propose an algorithm which solves the problem in the case that we are allowed to
set prices to one of values 1, 2, ..., 2imax in each time step. Let B[t, q] be the max-
imum expected revenue when we have t time steps and the state of the network is

15



Net-Stable(2q). In this situation, we can set the price to 2q′ in the first time step for
q′ < q. Thus, we can calculate B[t, q] as follows:

B[t, q] = max
0≤q′<q

{B[t− 1, q′] + 2q′(E[X2q′ ]− E[X2q ])}. (2)

An issue with the above equation is that we do not have E[X2q′ ] − E[X2q ] pre-
cisely, but we can estimate it within a small error with high probability using standard
sampling and Chernoff-Hoeffding bound. Let matrix Bs be the matrix corresponding
to equation 2 when we use an estimate value for E[X2q′ ]−E[X2q ] instead of its exact
value in this equation. Since the estimation value for E[X2q′ ] − E[X2q ] is within a
small error of the exact value with high probability, using union bound, we can show
that the following inequalities also hold with high probability:

(1− ε)B[t, q] ≤ Bs[t, q] ≤ (1 + ε)B[t, q].

At the end, the expected revenue of the solution will be stored in Bs[k, imax + 1].
In order to compute the sequence of prices, we can store the index q′ which maximizes
Bs[t−1, q′]+2q′(E[X2q′ ]−E[X2q ]) while computing Bs[t, q]. By storing these values,
we can compute the price at time step 1 ≤ i ≤ t by following an appropriate sequence
of [t, q] pairs in the dynamic program. Since B[q, t] is between of (1− ε)Bs[q, t] and
(1+ε)B[q, t] with high probability, the above algorithm produces a sequence of prices
(2p1 , 2p2 , . . . , 2pk) whose expected revenue is within a (1−ε)

2(1+ε) of the optimum.
Changing the algorithm to an FPTAS. We can easily change the constant-factor
dynamic-programming-based algorithm discussed above and give an algorithm with
approximation factor 1−ε

(1+ε)2
. To do so, we should consider the prices of form (1 + ε)i

instead of 2i. The term log pmax will be replaced with logpmax
1+ε in the running time and

the approximation factor is 1−ε
(1+ε)2

.

E Experiments for Preferential Attachmant Networks

In addition to finding efficient algorithms, studying the structural properties of the
problem and optimal solutions are desirable. Equipped with the FPTAS presented in
the paper, we present experimental results studying the form of the optimal solution
and its connection to the underlying social network. Throughout our simulation re-
sults, we obtain insights about properties of the optimal price sequence, e.g., the seller
achieves a large proportion of the maximum achievable revenue using a small number
of price changes.

We now describe our simulation framework. We first describe how we generate a
random network using the preferential attachment process [2]. In this process, nodes
of the social network are added one by one to the graph. Each new node is connected
to a number of nodes in the existing graph, where the probability of connecting to an
existing node is proportional to the degree of that node in the graph. The random graph
has degree parameter, `, which is a constant and is the number of edges attached to a
new node. Formally, to generate a network of n nodes, we start the process with a
complete graph of size `, and then expand this graph to an n-node graph in n− ` steps

16



������������
� �� �� �� �� ��� �� 	


��
������������������

Figure 3: The optimal price sequence for uniform distribution.

by adding a new node at each step, and connecting this node to ` existing nodes at
random, proportional to the degree of each existing node.

Given a social network with the neighborhood set Ni for any node i in the network,
we consider the special case of valuation functions in which the value of the item for a
node i only depends on the number of neighbors of node i already adopting the item,
i.e, the valuation depends on |Ni ∩ S| where S is the set of players already adopting
the item. Formally, we define the valuation of a player i to be :

vi(S) = v1
i + v2

i,d,

where v1
i and v2

i,d are random variables with distributions F 1 and F 2
d , and d = |Ni∩S|.

v1
i shows the initial (individual) valuation of the node i, and v2

i,d shows the external-
ity that her neighborhood imposed on her. We consider uniform and Normal distri-
butions. In case of uniform distributions, F 1 is uniform on [0, 2m] and in case of
Normal distribution, F 1 is defined to be the Normal distribution with mean m and
standard deviation m/2, for some value m. To define F 2

d , we consider a function f as
a function of d. More specifically, in case of uniform distributions, F 2

d is uniform on
[0, 2f(αd)] and in case of Normal distribution, F 2

d is defined to be the Normal distri-
bution with mean f(αd) and standard deviation f(αd)/2, where α is a fixed scaling
factor. In our simulations, we consider the case where f(x) = xc for some constant c,
or f(x) = log(x + 1). In all examples, α = 20, mean of distributions F 1 is 100, and
the number of nodes in the network is 200.

Figure 3 shows the optimal price sequence for the case of uniform distributions. In
this example, the number of days (or price changes) is 50. As can be observed in the
figure, no matter what the function f is, the optimal price sequence decreases almost
linearly for uniform distributions.

In Figure 4, we study the increase in the expected revenue as a function of the
number of price changes. In other words, we modify the maximum number of price
changes (or days), and observe the maximum revenue that can be achieved as the num-
ber of price changes increases. This figure shows that with a limited number of price
changes (say between 10 and 15 days), the seller can extract the revenue that is achiev-
able by many more price changes (like 100 days). In particular, we observe that no

17



����������������
� �� ��� 	
� ��� ��� ��	�� �� �

����
������� ����� !" #�$% &'( �)� *+�,-�%.

/0� 1�/0� 1234� 5�
Figure 4: Maximum achievable revenue vs. the allowed number of price changes.

���������������������
� � �� �� � �� 	
� ��� ��� ��	�� �� �

����
�� � ��� ���

���  !���  "#$% &�'� (
Figure 5: Maximum achievable revenue vs. the density of the network.

matter what the influence functions or the distributions are, the maximum achievable
revenue increases very fast at the beginning as we increase the number of allowed price
changes, and then it does not increase much. Moreover, one can observe that the more
the influence is, the less number of price changes is required to achieve the maximum
achievable revenue (e.g., for f(x) = x0.9 the achievable revenue does not increase
much after 8 days, as opposed to 16 days for f(x) = x0.1).

Finally, we study the effect of the density of the social network and the amount of
the influence by neighbors on the maximum achievable revenue. As seen in figure 5,
as the externality effects increase, the revenue becomes more sensitive to the density
of the graph.

F Missing Proofs

F.1 Missing Proofs of Section 2

Proof of Lemma 2: By increasing p to the smallest price in β which is larger than p,
we would achieve a better revenue without losing any customers. For the extreme case
where p > β1, we can decrease p to β1 to achieve a better revenue.

18



1

1− F (x)S1

S2

pa b

1− F (p)

Figure 6: the graph of 1 − F (x). The expectation of f is the area under the graph,
partitioned to S1 and S2, and p is the value maximizing p(1− F (p)).

F.2 Missing Proofs of Section 3.1

Proof of Lemma 5: We know that µ =
∫ b
a 1 − F (t)dt, which is the area under

the graph of figure 6. Also, R is the area of the largest rectangle under that graph.
Let p be the price for which p(1 − F (p)) is maximized. The area under the graph is
the sum of two parts, first the integral from a to p, named S1, and then from p to b,
named S2. According to lemma 4, we know that 1 − F (p) ≥ 1/e. As a result, we
can conclude that S1 ≤ 1 · p ≤ e(1− F (p))p = eR. Also, p is the value maximizing
p(1−F (p)), so we have h(p) = 1/p (by setting p(1−F (p))′ = 1−F (p)−pf(p) = 0).
Also, since h(p) is a non-decreasing function, we know that for any p′ ≥ p, we have
h(p′) ≥ h(p). Therefore, we conclude that h(p′) = f(p′)

1−F (p′) ≥ h(p) = 1/p, and

thus f(p′) ≥ (1 − F (p′))/p. Integrating both sides from p to b we have
∫ b
p f(t)dt ≥

(1/p)
∫ b
p (1 − F (t))dt. But

∫ b
p (1 − F (t)) is equal to S2, and

∫ b
p f(t)dt is equal to

1−F (p). Therefore we have S2 ≤ p(1−F (p)). So the area under the graph, S1 +S2,
is at most (1 + e)R. Note that we do not have any conditions on a and b.

Proof of Lemma 6: Assume for each 1 ≤ j ≤ m, aj <
∑m

j=1 aj

j dlog(m+1)e . By summing
these inequalities we have:

∑m
j=1 aj < (

∑m
j=1 aj)(

∑m
j=1

1
j dlog(m+1)e) ⇒ dlog(m +

1)e <
∑m

j=1
1
j , a contradiction.

Proof of Lemma 7: To give some intuition on the problem, assume the function
f : [0, n] → R such that for x between i − 1 and i, f(x) = ai. Our problem is to fit
k rectangles under the graph of f , such that the total covered area by the rectangles is
maximized.

We present an algorithm that iteratively selects rectangles, such that after the m-th
step the total area covered by the rectangles is at least m/ log n using 4m − 1 rect-
angles. At the start of the m-th step, the uncovered area is partitioned into 4m−1

independent parts. In addition, the length of the lower edge of each of these parts is
at most n/(2m−1). The algorithm solves each of these parts independently as follows.
For each part p ≤ 4m−1, we use sp to denote the area of that part, and ep to denote the
length of the lower edge of that part (see figure 7). We use 3 rectangles for each part in
each step. First, using lemma 6 we know that we can use a single rectangle to cover at
least 1/ log ep of the total area of part p. Then, we cover the two resulting uncovered

19



ep

Sp

Figure 7: The darker rectangles are selected at the first step, and the lighter ones at the
second step.

parts by two rectangles, which each equally divide the lower edge of the corresponding
part. As a result, four new uncovered parts are created, each with a lower edge with
length less than ep/2, therefore satisfying the necessary conditions for the next step.

The area that we cover in each step of the algorithm is at least
∑

p
sp

log ep
≥

∑
p sp

log n−(m−1) (since ep ≤ n
2m−1 ). The fraction of the total covered area by the algo-

rithm after step m, assuming that at each step we cover exactly 1
log n−(m−1) of the

remaining area, is
∑m

i=1
1

log n−(i−1) · log n−(i−1)
log n = m−1

log n . And if at any step i we cover
more than 1

log n−(i−1) of the remaining area, the algorithm still covers at least m−1
log n of

the entire area after m steps. As a result, after step m, we have used 4m − 1 = k
rectangles, and have covered m−1

log n ∈ Θ( log k
log n) of the entire area.

F.3 Missing Proofs of Section 3.2

In order to prove Theorem 2, we should prove following lemmas.

Lemma 8. If an independent set of size K exists in G, the maximum revenue is at least
L2.

Proof: We shall describe an algorithm that uses the independent set S to gain a
revenue of at least L2. The algorithm works as follows. For the first N days, at day
i, if i /∈ S it sets the price to be an amount so that only ai (and not di) would buy.
Otherwise the price is set so that only di and ai would buy. Stop this at the day D
in which the the K-st buys. We can no longer sell to the players in A because the
valuations of b1 and b2 are now K.

Knowing that all vertices in S are independent, there is no vertex in F with a
valuation more that K − 1; no two endpoints of any edge in G has been chosen. On
the other hand, |S| = K, hence the value of b1 and b2 is equal to K. So on day D + 1
we can sell the item to both of the b buyers, without selling it to any other buyer, by
setting the price to be K. Then these two buyers would increase the value of buyer c
up to K, again allowing us to sell only to c at the next day.

20



When we manage to sell to c without selling to any of the vertices in F , the valua-
tions of vertices in X increases to K, while keeping the valuations of vertices in Y at
K − 1. We set the price to be K on day D + 3, causing all the vertices in X to buy.
This results in an large influence on each of the vertices in Y ; the value of the those
buyers would rise to L+K− 1. If we set the price to that value on day D +4 (the last
day), all of the L buyers y1 . . . yL would buy the item, and we can gain a total revenue
of more than L2.

Lemma 9. If there is no independent set of size K in G, it is impossible to sell the item
to the buyers in X before the buyers in Y buy it.

Proof: Let d be the day the buyers in X buy the item. Note that they all buy at the
same day, if they do buy at all. At that day, none of the buyers in Y should have been
influenced by any of the buyers in F , otherwise the value of the buyers in Y would
have risen to K, which is equal to the upper bound for the value of any buyer in X .

To have the buyers in X buy the item before the buyers in Y do, we must sell the
item to c before we sell to any yi. This is because initially the value of any buyer in X
is equal to the value of any buyer in Y and the only edge going into any buyer of X
comes from c. It is obvious that before day d, we can not set a price equal to or less
than K − 1, or else the y buyers would have bought it. Therefore c must have paid
more than K− 1 for the item. The only edges entering c are from b1 and b2. So before
day d − 1 buyers b1 and b2 must have bought the item. Similarly, these two buyers
have paid more than K − 1 for the item. Since their value is always an integer, they
should have paid at least K. This means that before day d − 2, at least K of the di

buyers have bought the item. If any of these di buyers represent two endpoints of any
edge in G. In this case, the valuation of at least one of the players in F will increase to
K, and she will buy no later than c, which will cause the players in Y to be influenced.

Therefore if the item can be sold to the buyers of X before the buyers of Y buy it,
there exists a set of at least K vertices in G which are independent.

Theorem 4. The special variant of the Rapid(k) problem defined in the section 3.2
can be approximated within a factor 1

n1−ε using a polynomial-time algorithm only if
the independent set problem is solvable in polynomial time.

Proof: Our goal is to set L to be so large, that the L2 edges between X and Y becomes
unavoidable. More specifically, if the optimal revenue is greater than or equal to L2,
we have no choice but to sell the item to all the Y buyers for price at least L; the
revenue that is achievable from the rest of the buyers is negligible (less the 1

n1−ε · L2).
Although we should make sure that L is polynomial relative to N = |V |; otherwise
our reduction algorithm would not be polynomial.

We first need to find a suitable value for L. Assuming the maximum revenue is at
least L2, our revenue must be at least 1

n1−ε L
2. If we do not sell the item for price L

to all y buyers, the maximum revenue would be (n− L− 2)K + L(N2 + N) + 2N .
The upper bound of the value of any buyer is K, except b1 and b2 and buyers in Y .

21



The counters have an upper bound of N , and the Y buyers have an upper bound of
|E|+K−1 ≤ N2 +N . We must specify L to be such that 1

n1−ε L
2 > (n−L−2)K +

L(N2 + N) + 2N holds true. We know that (n − L − 2)K + L(N2 + N) + 2N <
n(N2 + N) + 2N < 2nN2. Therefore it is enough to prove 1

n1−ε L
2 > 2nN2 which

is equivalent to L2 > 2n2−εN2. Now considering that n = 2L + 2N + |E| + 3 ≤
2L+2N +N2 +3, if we assume L ≥ N2 +2N +3, we conclude n ≤ 3L. Therefore
it is enough to show that L2 > (2 · 32−ε)L2−εN2. Taking a logarithm from both sides
and replacing L by Nα we get α > 1

ε (2 + log(2·32−ε)
log N ).

So the lemma is correct if we set L to be the maximum of (N2 + 2N + 3) and

N
1+ 1

ε
(2+

log(2·32−ε)
log N

).
Now we prove the theorem. If such an approximation algorithm exists, we can

solve the independent set problem by the described reduction. By running the algo-
rithm on the constructed instance, and based on lemmas 8 and 9, the independent set
problem has a positive answer iff the maximum revenue from the instance is at least
L2.

Having proved the hardness of approximation for the unweighted graphs in which
vi({j}) ∈ {0, 1}, we now show that the problem cannot be approximated within any
multiplicative factor when the edges of the corresponding graph are allowed to have
arbitrary weights.

Proof of Theorem 2: We observed that the edges from set X to Y are the key to
discriminate the instances of independent set problem; the only instances that have
independent sets of size k can be transformed to instances of the Rapid(k) problem
that can use the value of the edges from X to Y . We can use this idea to construct
instances of the Rapid(k) problem that are hard to approximate. Simply replace sets
X and Y by single nodes x and y. Let ∆ be the weight of the edge going from x to
y. Let the weight of all the other edges of G∗ remain the same. From the previous
lemmas, we know that we can have the revenue of at least ∆ if there is an independent
set of size k in G. Otherwise, the revenue is at most the value of other edges and nodes
in the graph, which is at most 2N2. As a result, if Rapid(k) is approximable with a
factor of α, we will be able to discriminate between the cases if we set ∆/α > 2N2,
and solve the independent set problem.

22


