
The Complexity of Linear Dependence Problems in Vector Spaces

Arnab Bhattacharyya∗

MIT
abhatt@mit.edu

Piotr Indyk
MIT

indyk@mit.edu

David P. Woodruff
IBM Almaden

dpwoodru@us.ibm.com

Ning Xie
MIT

ningxie@csail.mit.edu

Abstract

We study extensions of the natural k-SUM problem to vector spaces over finite fields. Given
a subset S ⊆ Fn

q of size r ≤ qn, an integer k, 2 ≤ k ≤ n, and a vector v ∈ (Fk
q \ {0})k, we define

the TargetSum problem to be the problem of finding k elements xi1 , . . . , xik
∈ S for which∑k

j=1 vjxij
= z, where z may either be an input or a fixed vector. We also study a variant of

this, where instead of finding xi1 , . . . , xik
∈ S for which

∑k
j=1 vjxij

= z, we require that z be in
span(xi1 , . . . , xik

), which we call the (k, r)-LinDependenceq problem.
These problems are natural generalizations of well-studied problems that occur in coding

theory and property testing. Indeed, the (k, r)-LinDependenceq problem is just the Maximum
Likelihood Decoding problem. Also, in the TargetSum problem, if instead of general z we
require z = 0n, then this is the Weight Distribution problem. In property testing, these
problems have been implicitly studied in the context of testing linear-invariant properties.

We give nearly optimal bounds for TargetSum and (k, r)-LinDependenceq for every r, k,
and constant q. Namely, assuming 3-SAT requires exponential time, we show that any algo-
rithm for these problems must run in min(2Θ(n), rΘ(k)) time. Moreover, we give deterministic
upper bounds that match this complexity, up to small factors. Our lower bound strengthens
and simplifies an earlier min(2Θ(n), rΩ(k1/4)) lower bound for both the Maximum Likelihood
Decoding and Weight Distribution problems.

We also give upper and lower bounds for variants of these problems, e.g., for the problem
for which we must find xi1 , . . . , xik

for which z ∈ span(xi1 , . . . , xik
) but z is not spanned by any

proper subset of these vectors, and for the counting version of this problem.

∗Part of this work was done while the author was an intern at IBM Almaden.

0

mailto:abhatt@mit.edu
mailto:indyk@mit.edu
mailto:dpwoodru@us.ibm.com
mailto:ningxie@csail.mit.edu

1 Introduction

We study the computational complexity of algorithms that test if linear combinations of certain-
sized subsets of a set of input vectors equal a desired target vector. This is a fundamental problem
with applications to coding theory, computational geometry, and property testing.

The special case when the field is R, there is only a single dimension, and one wants to find
a sum of k numbers that equals 0 is the well-known k-SUM problem. Many problems, especially
in computational geometry, have been shown to be k-SUM hard for certain k; see, for example,
the works of [20, 21, 22, 25, 38, 42]. Some problems known to be 3-SUM hard include 3-Points-
On-Line, Minimium-Area-Triangle, Separator, Strips-Cover-Box, Triangles-Cover-
Triangle, Planar-Motion-Planning, Dihedral-Rotation, and Polygon-Containment;
see the survey by King [31]. As stated in [5], the body of work on 3-SUM “is perhaps the most
successful attempt at understanding the complexity inside P (polynomial time).” We believe the
study of the extension of this problem to vector spaces over finite fields will likewise result in a
deeper understanding of the complexity of many other problems.

Let F = Fq be the finite field of q elements and let n be a natural number. We assume that q
is a constant independent of n. The main problems we study are the following.

Definition 1 For functions k, r : Z+ → Z+, the (k, r)-ZeroSumq problem takes as input r(n)
many elements x1, . . . , xr(n) ∈ Fn

q and checks if there exist xi1 , . . . , xik(n)
such that i1, . . . , ik(n) ∈

[r(n)] and xi1 + · · ·+ xik = 0.

For functions k, r : Z+ → Z+, the (k, r)-TargetSumq problem takes as input r(n) elements
x1, . . . , xr(n) ∈ Fn

q and z ∈ Fn
q and checks if there exist xi1 , . . . , xik(n)

such that i1, . . . , ik(n) ∈ [r(n)]
and xi1 + · · ·+ xik(n)

= z.

We also study the following slight extension to general linear combinations of input vectors.

Definition 2 For functions k, r : Z+ → Z+ and a family of vectors v = (v1, . . . , vk(n)) ∈ (Fq\{0})k(n)

for every n ≥ 1, the1 (k, r, v)-ZeroSumq problem takes as input r(n) elements x1, . . . , xr(n) ∈ Fn
q

and checks if there exist xi1 , . . . , xik such that i1, . . . , ik ∈ [r] and v1xi1 + · · ·+ vkxik = 0.

For functions k, r : Z+ → Z+ and a family of vectors v = (v1, . . . , vk(n)) ∈ (Fq\{0})k(n) for
every n ≥ 1, the (k, r, v)-TargetSumq problem takes as input r elements x1, . . . , xr ∈ Fn

q and
z ∈ Fn

q and checks if there exist xi1 , . . . , xik such that i1, . . . , ik ∈ [r] and v1xi1 + · · ·+ vkxik = z.

Notice that for q = 2, (k, r, v)-ZeroSumq and (k, r, v)-TargetSumq coincide with (k, r)-ZeroSumq

and (k, r)-TargetSumq, respectively. We also consider the a related problem when it is more useful
to look at the span of vectors than it is to fix a single combination v.

Definition 3 For functions k, r : Z+ → Z+, the (k, r)-LinDependenceq problem takes as input
r elements x1, . . . , xr(n) ∈ Fn

q and z ∈ Fn
q and checks if there exist xi1 , . . . , xik(n)

such that z ∈
span(xi1 , . . . , xik(n)

).

1We allow a slight abuse of notation in allowing v to refer both to the family of vectors and each vector itself.

1

Finally, we consider a variant of this problem which requires the linear dependence to be minimal.
Vectors x1, . . . , xk are said to be minimally linearly dependent if 0 ∈ span(x1, . . . , xk), but 0 cannot
be written as a non-trivial linear combination of any proper subset of {x1, . . . , xk}.

Definition 4 For functions k, r : Z+ → Z+, the (k, r)-MinLinDependenceq problem takes as
input r elements x1, . . . , xr(n) ∈ Fn

q and checks if there exist xi1 , . . . , xik(n)
that are minimally

linearly dependent.

Notice that in all of the above problems, we do not require the i1, . . . , ik in the solution to
be distinct. To understand how these problems are related to existing coding-theoretic problems,
consider first the (k, r)-LinDependenceq problem. If r = O(n) then this is just the Maximum
Likelihood Decoding problem, that is, the problem of determining the most likely transmitted
codeword given a certain received word. This problem is well-studied [6, 18, 19, 23, 28, 44, 49].
Now consider the (k, r)-ZeroSum2 problem. Let A be the n× r matrix whose columns correspond
to the input vectors to this problem. Consider the code C = {x | Ax = 0}. Then C is of dimension
at least r−n, and the (k, r)-ZeroSumq problem has a solution iff there is a codeword of weight k.
This is the Weight Distribution problem in coding theory, a problem studied in [6, 18].

In the property testing literature, these problems have been studied in the context of testing
linear-invariant properties [30], though the model differs from ours in the sense that the input set is
promised to either contain a certain linear dependence or to be far from a set that does. In analogy
to triangles in graphs, we define the triangles in a set S ⊆ Fn

q as the triples 〈x1, x2, x3〉 such that
x1, x2, x3 ∈ S and x1 +x2 +x3 = 0. Similarly, for k ≥ 3 we define the k-cycles [7] in a set S ⊆ Fn

q to
be the k-tuples 〈x1, x2, . . . , xk〉 such that each xi ∈ S for i = 1, 2, . . . , k and x1 + x2 + · · ·+ xk = 0.
Green [27] showed that for constant k, one can distinguish, in constant time, between the case when
the input set is free from k-cycles and the case when a constant fraction of the elements of the set
need to be removed in order to make it free. This result has been generalized in several directions
[7, 8, 32, 33, 47]. In particular, Shapira [47] and Král’, Serra and Vena [32] independently showed
that testing whether a set S is free from containing tuples x = (x1, . . . , xk) ∈ Sk satisfying Mx = b
(where M is a constant-sized matrix over Fq with k columns and b is a vector over Fn

q), or whether
S is far from being such a set, can also be done in constant time. Our work can be viewed as
addressing the classical versions of these problems.

The problems we study are also similar to those of finding subgraphs inside of graphs. For
example, finding solutions to x1 + x2 + · · · + xk = 0 in a set S ⊆ Fn

q and finding k-cliques in
a graph both require finding k items from the input (elements and vertices, respectively) that
satisfy a given constraint. There has been a lot of algorithmic work on the problem of finding
subgraphs [1, 2, 3, 4, 15, 26, 46, 50, 51]. The best known algorithm for finding triangles [4] runs in
time O(min(|E|2ω/(ω+1), nω)) where ω is the matrix multiplication exponent, and the best known
algorithm for finding k-cliques in a graph with n vertices, due to Nešetřil and Poljak [41], runs
in time O(n.792k). It is not known whether algorithms for either of these problems running in
time O(n2) can be ruled out, although an algorithm for k-clique running in time no(k) would
imply a subexponential algorithm for 3-SAT [11, 52]. In contrast, we show that the situation for
our linear algebraic problems is much clearer. We can show nearly tight upper and lower bounds
based on standard complexity assumptions. Additionally, our upper bounds are relatively stronger,
essentially because, while the graph algorithms use fast matrix multiplication which runs in time
n2+0.376... for two n-by-n matrices, we can use fast convolution which runs in time N1+o(1) for two
real-valued functions over a finite field of order N .

2

1.1 Results

Assuming 3-SAT cannot be solved in sub-exponential time, we resolve (up to polynomial factors) the
time complexity of the (k, r)-ZeroSumq, (k, r)-TargetSumq, (k, r, v)-ZeroSumq, (k, r, v)-TargetSumq,
and the (k, r)-LinDependenceq problems. Namely, we show that any deterministic algorithm
must run in min(rΘ(k), 2Θ(n)) time, and we give a deterministic algorithm running in this amount
of time to solve these problems. Our lower bound also holds for randomized algorithms, provided
we assume that 3-SAT cannot be solved in sub-exponential time by a randomized algorithm. This
complexity assumption we use is the well-known Exponential Time Hypothesis conjectured by Im-
pagliazzo, Paturi, and Zane [29], and used in a number of papers to establish hardness results
[12, 13, 24, 34, 35, 36]. It is known that this assumption is equivalent to the assumption that
d-SAT cannot be solved in sub-exponential time for some constant d ≥ 3.

Our lower bound strengthens and simplifies the previous lower bound for both the Maximum
Likelihood Decoding and Weight Distribution problems [18]. In that paper, the authors
start with the Independent Set problem of size k on graphs of n vertices, and produce an instance
of what is called the Perfect Code problem [16, 17] with parameter k2 on graphs containing n2

vertices. Then, the authors obtain a more “robust” version of Perfect Code, with certain properties
of every dominating set in the instance. The new instance has parameter k4 and the corresponding
graphs contain more than n2 vertices, and is used to derive hardness results for coding-theoretic
problems. This last step is Theorem 1 in [18] and is complicated, the proof introducing a number
of gadgets and spanning about 8 pages. Due to the chain of reductions, this implies that the lower
bound obtained for Maximum Likelihood Decoding and Weight Distribution is at best
rΩ(k1/4), and this only holds if the number r of input vectors is at most linear in the dimension
n. Thus, their lower bound leaves open the possibility of algorithms that solve these problems in
time significantly faster than testing all k subsets of r vectors. In contrast, if rk < 2n, then our
min(rΘ(k), 2Θ(n)) lower bound shows one cannot do polynomially better than this testing algorithm.

Once rk > 2n, we provide a much faster algorithm based on the Fast Fourier Transform (FFT).
Even when rk < 2n, we still achieve a slightly better algorithm than the testing algorithm. In this
case our algorithm’s complexity is 2O(k)

(
r

dk/2e
)
poly(n).

For the (k, r)-MinLinDependenceq problem, our min(rΘ(k), 2Θ(n)) lower bound continues to
hold. Here we give a deterministic algorithm that runs in 2O(k2+n) time.

1.2 Techniques and Comparison to Previous Work

1.2.1 Lower Bounds

Our starting point for the lower bound is the recent NΩ(k) bound for the k-SUM problem on N
integers of [43]. We briefly review their proof in order to compare it to ours. At the heart of their
reduction is a way of creating integers from partial assignments to variables of a One-in-Three-
SAT formula, i.e., a formula that evaluates to true iff exactly one literal per clause evaluates to true.
This is done in such a way that a sum of k of the integers is M iff the assignments corresponding to
these integers can be patched together to form a consistent assignment to all variables that causes
the formula to evaluate to true. Here, M is the positive integer that when written in base k + 1,
equals 1k+c, where c is the number of clauses. The idea is to partition the n variables arbitrarily

3

into k equal-sized groups. For each group, the reduction generates an integer for each assignment
to the variables in that group. The integers are interpreted in base k + 1. The first k digits are
set so that the i-th digit is 1 if the integer is associated with the i-th block, otherwise it is 0. The
digit of an integer corresponding to a clause is 1 if the assignment of the variables corresponding
to the integer causes exactly one of the literals of the clause to be true. In order to obtain a sum
of k integers that equals M , one must take an integer associated with each block, so one obtains a
consistent assignment, and each clause must have exactly one literal set to true.

By replacing the word “digits” with “coordinates” and “integers” with “vectors”, the proof
of [43] shows a min(2Θ(n), rΩ(k)) hardness for (k, r)-ZeroSumq and (k, r)-TargetSumq with the
following restrictions:

1. the characteristic of the field Fq must be larger than k, and
2. r belongs to a geometric sequence of numbers, rather than being an arbitrary integer.

We are not able to modify the proof of [43] to remove these restrictions. The issue is that when
the characteristic is small, there are cancellations that lead to false positives in the reduction of
[43]. Indeed, trying to adapt their reduction to binary fields would instead require hardness of
the problem Odd-SAT, the problem of having an odd number of literals evaluate to true in each
clause. However, due to a result of Schaefer [45], this latter problem is actually in P.

We instead base our reduction on the Not-All-Equal-SAT problem, the problem of having
one or two out of three literals evaluate to true in each clause. We again partition the variables
into blocks, but now we want a clause coordinate to be 1 iff one or two of its literals evaluates to
one. The obstacle, though, is that for a given block, not all the variables associated with a clause
may be assigned to that block. For instance, a clause on three variables may have its variables
assigned in three different blocks. It is easy to see that some interaction between the blocks is
needed to enforce consistency. By using a version of Not-All-Equal-SAT in which each variable
occurs a bounded number of times, we are able to introduce a linear number of new variables and
dimensions, which overall have the effect of allowing the blocks to communicate in such a way that
a consistent assignment to variables is enforced.

This approach allows us to conclude hardness for a sequence r0 < r1 < r2 < · · · of values to r.
We show that if there were an r between ri−1 and ri for which the problem were “easy”, this would
contradict the hardness of the problem on ri vectors. This does not follow from standard “padding
arguments”, since we must have distinct vectors and cannot create new dependences.

It is worth pointing out again that our bounds apply for the full range of r and k, in contrast
to previous work.

1.2.2 Upper Bounds

Our algorithms for (k, r)-ZeroSumq, (k, r)-TargetSumq, (k, r, v)-ZeroSumq, (k, r, v)-TargetSumq,
and the (k, r)-LinDependenceq problems are based on the FFT.

Our algorithm for (k, r)-MinLinDependenceq is a bit more involved. We choose a small family
of linear maps from Fqn to Fqk such that for any minimal k-dependence in the input, there is a
linear map h in our family for which the image under h is a minimal k-dependence. We can find
such a minimal k-dependence by testing all minimally k-dependent vectors in Fqk , each test using
several applications of the FFT. The small set of functions can be chosen in a variety of ways, such

4

as using a family of ε-biased sets or pairwise independent hash families. The overall technique of
hashing followed by fast convolution bears a strong similarity to the color-coding method of Alon,
Yuster and Zwick [3] which applies hashing (often) followed by fast matrix multiplication in order
to find copies of a small subgraph inside a given graph.

2 Preliminaries

The following standard claim is useful.

Claim 5 Let q > 2 be a prime power and let x1, . . . , xn be n elements chosen independently and
uniformly at random from Fn

q , then the probability that they are linearly independent is at least e
− 2

q .

Equivalently, a random n by n matrix over Fq is non-singular with probability at least e
− 2

q .

Our upper bounds depend crucially on efficient algorithms that compute the Fourier coefficients
over any abelian group. Fast Fourier Transform (FFT) algorithms first appeared in [14] for the
cyclic group Z/nZ and later were generalized to any abelian groups (see, e.g., the survey article [37]).

Fact 6 (Fast Fourier Transform) Let Fq be the finite field with q elements. Let f : Fn
q → C be a

complex-valued function defined over Fn
q . Then there is a Fast Fourier Transform (FFT) algorithm

which compute all the Fourier coefficients of f in time O(nqn).

Fact 7 Let f1, . . . , fk : Fn
q → {0, 1} be k Boolean functions defined on Fn

q , then the number of
elements (x1, . . . , xk) such that x1 + · · ·+xk = 0 and f1(x1) = · · · fk(xk) = 1 can be computed from
the Fourier coefficient of the convolution of these k functions:

|{〈x1, . . . , xk〉 : x1 + · · ·+ xk = 0 and fi(xi) = 1 for each i = 1, . . . , k }|
= qn(k−1)(f1 ∗ f2 ∗ · · · ∗ fk)(0)

= qn(k−1)
∑

α∈(Fn
q)∗

k∏
j=1

f̂j(α).

3 Hardness

Our main result in this section shows that the (k, r)-TargetSumq problem requires min(rΩ(k), 2Ω(n))
time, unless there is a sub-exponential time algorithm for 3-SAT. Hardness for the other problems
is then shown to follow either as a corollary of this theorem or by modifications of the proof.

Theorem 8 Given function k : Z+ → Z+ such that k(n) < n for all n ∈ Z+ and function
r : Z+ → Z+ such that k(n) < r(n) < qn for all n ∈ Z+, then the (k, r)-TargetSumq problem

requires at least min
((r(n)

βk(n)

)
, 2βn

)
time for some constant β < 1, unless d-SAT on n variables can

be solved in 2O(dn)β1/O(d)
time for any d ≥ 3.

5

Proof Suppose q is a power of some prime p ≥ 2. Let F be an instance of d-SAT with n variables
and m clauses. For some ε > 0 to be specified later, we use the improved Sparsification Lemma of
Calabro, Impagliazzo and Paturi [9] to reduce F to a collection of 2εn d-SAT formulas, with each
formula having n variables and n · (d/ε)O(d) clauses. Next, we use a standard reduction to convert
each d-SAT formula to a 3-SAT formula with f

def= O(nd)(d/ε)O(d) variables and clauses.

Now, we convert each 3-SAT formula to an nae-sat formula by a standard reduction: each
clause (v1∨v2∨v3) is replaced by three clauses (v1∨v2∨x)∧(¬x∨v3∨y)∧(x∨y∨α) where x and y
are new variables and α is a common variable used across the clauses in the formula. Furthermore,
we can ensure that each variable occurs only a constant number of times in each nae-sat formula
by replacing duplicate copies of a variable by distinct variables and introducing equality constraints
(two variables x and y can be constrained to be equal by two nae-sat clauses (¬x∨ y)∧ (x∨¬y)).
The number of variables and clauses in each formula remains O(f).

Next, we reduce each nae-sat formula to a separate (k, rk)-TargetSumq problem, where the
function rk : Z+ → Z+ will be specified later. Fix an arbitrary ordering of the literals inside each
clause of the formula. For any literal `, let us denote by v(`) the variable corresponding to the
literal. To start off the reduction, for each clause (`1 ∨ `2 ∨ `3) in the nae-sat formula, where
`1, `2, `3 are literals, we introduce three, possibly new, variables (v(`1), v(`2)), (v(`2), v(`3)) and
(v(`3), v(`1)). We call each such variable (a, b) a pairvar. The number of pairvars is at most three
times the number of clauses, O(f). Next, for a function k′ : Z+ → Z+ to be specified later, partition
the original set of variables arbitrarily into k′ = k′(n) blocks, of sizes within a constant factor of
each other, and assign an arbitrary ordering among the blocks. For each pairvar (a, b), if both a
and b belong to the same block, we include the pairvar in that block. Otherwise, we include it in
the first block containing either a or b. Thus, each variable (original or pairvar) is contained in
exactly one block. Also, since each variable occurs a constant number of times, each block contains
O(f/k′) original and pairvar variables.

We now generate the (k, rk)-TargetSumq instance. Each block will yield 2O(f/k′) many el-
ements of Fn′

2 , where n′ will be O(f). Consider the i’th block, with i ∈ [k′]. Let Ai be the
set of all possible 0/1-assignments to the set of variables {x | x is an original variable in block i}
∪ {a | ∃ pairvar (a, b) or (b, a), not necessarily in block i, with b in block i}. Note that an assign-
ment in Ai fixes the values of all pairvars in block i. For each assignment α ∈ Ai, we produce an
element xα ∈ Fn′

2 in the following way. The first k′ bits of xα are 0, except for the i’th which is
1. Next, there is a coordinate for each clause C in the formula, called the clause coordinate. If
C = (`1 ∨ `2 ∨ `3), its clause coordinate value is set to be: ∑

i∈[3]: v(`i) in block i

α(`i)−
∑

(i,j)∈[3]2:(v(`i),v(`j)) in block i

α(`i)α(`j)

 mod p.

The rest of the coordinates, called the consistency coordinates, will be set so as to ensure consistency
among assignments to the pairvars by different blocks. We partition the consistency coordinates
into pairs and index each pair with a pairvar. For the pair of coordinates indexed by pairvar (a, b),
if neither a nor b is in block i, then both these coordinates are set to 0, and the same if both a and
b are in block i. Otherwise, if a is in block i but b is not, then the first coordinate is set to α(a)
and the second to −α(b), and similarly, if a is not in block i but b is, then the first coordinate is
set to −α(a) and the second to α(b). This completes the description of xα. The target vector z for

6

the (k, r)-TargetSumq instance is set to 1n′−2p ◦ 02p where p is the total number of pairvars. To
make n′ independent of k′, we can pad all the strings with extra zeroes at the end.

In the above construction, we define functions k′ and rk such that k′(n) = k(n′) and rk(n′) =∑
i∈[k′(n)] |Ai| for every n ≥ 1, where n′ and the Ai’s are as above. Thus, we obtain a valid

(k, rk)-TargetSumq instance, where rk(n) = k(n) · 2O(n/k(n)). To see the correctness of the re-
duction, suppose there are xα1 , . . . , xαk′ such that xα1 + · · ·+ xαk′ = z. First, assume that all the
pairvars are assigned consistently by the assignments α1, . . . , αk′ . Because each xαi has a 1 in only
one of the first k′ coordinates, and z has 1’s on all the first k′ coordinates, each αi is in Ai without
loss of generality. Since consistency of the pairvars assignments is assumed, the partial assignments
αi can be combined to obtain an assignment α to all the original variables. The claim is that α is
a satisfying assignment to the nae-sat formula. Take a clause C = (`1 ∨ `2 ∨ `3) from the nae-sat
formula. If we add up, modulo p, the value of the clause coordinate corresponding to C for each
xαi , then this sum must equal:

SC = (α(`1) + α(`2) + α(`3)− α(`1)α(`2)− α(`2)α(`3)− α(`3)α(`1)) mod p

• If three literals in C are assigned 1, then SC = 1 + 1 + 1− 1− 1− 1 = 0.

• If two literals in C are assigned 1, then SC = 1 + 1 + 0− 1− 0− 0 = 1.

• If one literal in C is assigned 1, then SC = 1 + 0 + 0− 0− 0− 0 = 1.

• If no literal in C is assigned 1, then SC = 0 + 0 + 0− 0− 0− 0 = 0.

Since all the clause coordinates of z are set to 1, it must be the case that α satisfies the nae-sat
formula.

It remains to check that the pairvars are set consistently. For the pair of consistency coordinates
indexed by a pairvar (a, b), either these coordinates are zero in all of the xαi ’s, or there exist i 6= j
such that these coordinates are nonzero in xαi and xαj but they are zero for all the other strings. In
the first case, there is no consistency issue. The second case occurs when one of a and b is in block
i and the other is in block j. But then, because the value of xαi + xαj is zero at the consistency
coordinates indexed by (a, b), it must be the case that αi(a)− αj(a) = 0 and αi(b)− αj(b) = 0.

Thus, the reduction yields 2εn (k, rk)-TargetSumq instances on n′ = O(dn)(d/ε)O(d) many
coordinates, with rk(n′) = k′ · 2O(f/k′) = k′ · 2nd(d/ε)O(d)/k′ = k′ · 2nd/(k′

√
δ) where the last equality

follows by choosing ε = dδ1/γd for an appropriate value of γ. Therefore, if the output of the
reduction can be solved in time

(rk(n′)
δk(n′)

)
, then, using the standard bound

(
a
b

)
≤ (ae/b)b, an arbitrary

d-SAT on n variables can be solved in time 2εn · (e/δ)k2nd
√

δ = 2O(dn)δ1/O(d)
.

We need to show how to reduce a (k, rk)-TargetSumq to a (k, r)-TargetSumq instance for
an arbitrary function r : Z+ → Z+. First consider the case of r(n) ≤ rk(n). For i ∈ [dn/k(n)e],
let ki : Z+ → Z+ be defined so that ki(n) = n/i. Note that ki(n) < n if k(n) < n for all positive
i. Now, apply the reduction above to get an instance of (ki, rki

)-TargetSumq of size ik(n) that
requires

(rki
(ik(n))

δki(ik(n))

)
time, unless d-SAT on n variables can be solved in 2O(dn)δ1/O(d)

time. We can
pad the strings of such an instance with zeroes in order to get an instance of (k, ri)-TargetSumq

of size n with the same hardness guarantee, where ri(n) = rki
(ik(n)) = k(n) · 2O(i). Now, for the

7

given r, suppose ri(n) < r(n) < ri+1(n) for some i ∈ [dn/k(n)e − 1]. We show how to reduce
(k, ri+1)-TargetSumq to (k, r)-TargetSumq. We need the following claim.

Claim 9 For positive integers k < m < n, there exists a collection C of subsets of [n] such that
each subset S ∈ C is of size m and for any subset I ⊂ [n] of size k, there exists S ∈ C containing I.
The size of C is at most (12n/m)k, and it can be constructed deterministically in the same amount
of time.

Proof Arbitrarily partition [n] into nearly equal-sized buckets, each of size either dm/2ke or
bm/2kc. The number of buckets is at most 4nk/m. Consider all subsets of exactly k of these
buckets. There are

(4nk/m
k

)
≤ (4en/m)k many such subsets. For each choice of k buckets, take the

union S of items in these buckets. S contains at most m/2 < m items; add m−|S| many arbitrary
distinct additional items to S so as to make the size of S equal to m. The collection of all S satisfies
our claim.

Apply Claim 9 with k as above, m = r, n = ri+1. The size of the collection C we get is
2O(k). Now, suppose there is an algorithm Ar for (k, r)-TargetSumq. Given x1, . . . , xri+1 and a
target vector z, for every S ∈ C, run Ar with input {xi : i ∈ S} and the same target vector z. If
indeed there exists a solution of (k, ri+1)-TargetSumq, Ar should accept for some choice of S ∈ C.
Hence, if Ar runs in time 2−O(k)

(
r
δk

)
=

(
r

O(δ)k

)
, then (k, ri+1)-TargetSumq can be solved in time(

r
δk

)
≤

(ri+1

δk

)
, implying there is an algorithm for d-SAT running in time 2O(dn)δ1/O(d)

.

It remains to consider the case of r(n) > rk(n). Define ` : Z+ → Z+ so that r(n) − k(n) =
r`(n− k(n)) for every n ≥ 1. First, obtain a hard instance of (`, r`)-TargetSumq of size n− k(n)
by the earlier reduction. The instance consists of r(n) − k(n) vectors x1, . . . , xr−k ∈ Fn−k

q and a
target vector z ∈ Fn−k

q , and say x1, . . . , xs for some s < r − k consists of the vectors that arise
out of assignments to the first block in the reduction from d-SAT. We construct an instance of
(k, r)-TargetSumq of size n, consisting of y1, . . . , yr ∈ Fn

q and target vector w ∈ Fn
q . Set w to

z ◦ 0k. For i ∈ [k], set yr−k+i to 0n−k ◦ ei where ei ∈ Fk
2 has all 0’s except for 1 at the ith

position. For i ∈ [s + 1, r − k], set yi = xi ◦ 0k. Finally, for i ∈ [s], set yi = xi ◦ v where v ∈ Fk
2

is the vector with −1’s in the first k − ` positions and 0’s in the rest. Observe that any solution
to this (k, r)-TargetSumq instance, when restricted to the first r − k coordinates, must yield a
solution to the (`, r`)-TargetSumq instance, and so in particular, must contain one of y1, . . . , ys.
But then, to satisfy the constraints on the last k coordinates, the solution must also contain
{yr−k+1, . . . , yr−`}. This gives a correspondence between solutions to the (`, r`)-TargetSumq

instance and the (k, r)-TargetSumq instance. Hence, unless there is an algorithm to solve d-SAT

in 2O(dn)δ1/O(d)
time, solving (r, k)-TargetSumq requires at least

(r`(n/2)
δ`(n/2)

)
= 2βn time for some

constant β < 1.

Now, consider the (k, r, v)-TargetSumq problem, where k and r are as in Theorem 8 and v
denotes an arbitrary family of vectors in (Fq\{0})n. We observe that the above proof of Theorem
8 also shows hardness for this problem. Specifically, in the reduction from nae-sat, multiply each
vector arising from block i by v−1

i , for every i ∈ [k′(n)]. It is easy to see that this gives a reduction
from nae-sat to (k, rk, v)-TargetSumq for the same function rk as in the above proof. The rest
of the proof goes through straightforwardly, with the only other nontrivial modification occuring

8

in the last paragraph of the proof where we again need to multiply the vectors being appended by
the appropriate scaling factors. We thus have:

Theorem 10 Given k, r : Z+ → Z+ as in Theorem 8 and an arbitrary family of vectors v =
(v1, . . . , vk(n)) ∈ (Fq\{0})k(n) for every n ≥ 1, the (k, r, v)-TargetSumq problem requires at least

min
((r(n)

βk(n)

)
, 2βn

)
time for some constant β < 1, unless d-SAT on n variables can be solved in

2O(dn)β1/O(d)
time for any d ≥ 3.

For the (k, r, v)-ZeroSumq problem, we have already observed that the problem is trivial if
sv =

∑k(n)
i=1 vi = 0 over Fq. But if sv 6= 0, then we can again show the same hardness as above by

reducing from (k, r, v)-TargetSumq. Given x1, . . . , xr and target vector z, define yi = xi − s−1
v z

for every i ∈ [r]. Now, if the instance of (k, r, v)-ZeroSumq with inputs y1, . . . , yr has a solution
ii, . . . , ik ∈ [r] such that

∑k
i=1 viyi = 0, then

∑k
i=1 vixi = z and vice versa. Therefore:

Theorem 11 Given k, r : Z+ → Z+ as in Theorem 8 and a family of vectors v = (v1, . . . , vk(n)) ∈
(Fq\{0})k(n) such that

∑k(n)
i=1 vi 6= 0 for every n ≥ 1, the (k, r, v)-ZeroSumq problem requires at

least min
((r(n)

βk(n)

)
, 2βn

)
time for some constant β < 1, unless d-SAT on n variables can be solved in

2O(dn)β1/O(d)
time for any d ≥ 3. Specifically, this hardness holds for the (k, r)-ZeroSumq problem

if k(n) 6= 0 (mod p) where p is the characteristic of Fq.

For the (k, r)-lindependenceq problem, we can again show the same hardness, this time by
examining the proof of Theorem 8. Observe that for the output of the reduction from the nae-sat
instance in the proof, not only is the generated target vector the sum of k′ vectors iff the nae-sat
formula is satisfiable but actually, the generated target vector is in the span of k′ vectors iff the
nae-sat formula is satisfiable. The rest of the proof goes through straightforwardly.

Theorem 12 Given k, r : Z+ → Z+ as in Theorem 8, the (k, r)-lindependenceq problem requires

at least min
((r(n)

βk(n)

)
, 2βn

)
time for some constant β < 1, unless d-SAT on n variables can be solved

in 2O(dn)β1/O(d)
time for any d ≥ 3.

4 Algorithms for (k, r, v)-TargetSumq and (k, r)-LinDependenceq

We show how to solve the (k, r, v)-TargetSumq problem in min(q, k)O(k)
(

r
dk/2e

)
· poly(n) time,

which is roughly the square root of the
(
r
k

)
· poly(n) time algorithm of exhaustive search. When

the field size q is constant (as in the rest of this paper), the upper bound is 2O(k)
(

r
dk/2e

)
· poly(n).

This implies a solution for (k, r)-TargetSumq, (k, r, v)-ZeroSumq, and (k, r)-ZeroSumq. By
enumerating over different v, it can also be used to solve (k, r)-LinDependenceq with a blowup
of an additional qk factor.

Let v = (v1, . . . , vk) with each vi ∈ Fq \ {0}, and let z ∈ Fn
q be the target vector. Let the input

vectors be x1, . . . , xr ∈ Fn
q , so we want to find a sub-multiset xi1 , . . . , xik for which

∑k
j=1 vjxij = z.

9

In the first stage, for each subset A of the input vectors of size dk/2e, the algorithm considers
a certain set of min(q, k)O(k) sequences (xi1 , . . . , xidk/2e) of dk/2e elements of A with repetition.
Here, some elements of A may not be included in a given sequence in the set. The set is formed as
follows. Partition the set {1, 2, . . . , dk/2e} into q − 1 blocks B`, ` ∈ Fq \ {0}, where the block B`

contains the set of coordinates p ∈ {1, 2, . . . , dk/2e} for which vp = `. Then two sequences are said
to be equivalent if the corresponding blocks are equivalent as sets. The set of sequences we use is a
maximal set of non-equivalent sequences, and we call such a set of sequences a representative set.
The number of such sequences is bounded by min(q, k)O(k). For each sequence in the representative
set, the algorithm computes the vector

∑dk/2e
j=1 vjxij . In the second stage, for each sub-multiset B

of the input vectors of size bk/2c, the algorithm considers all sequences (xi1 , . . . , xibk/2c) of B from

a representative set, and computes
∑bk/2c

j=1 vj+dk/2exij .

Then there is a solution to the (k, q, v)-targetsum problem if and only if there is a vector w
computed in the first stage for which the vector −w + z is computed in the second stage. This can
be tested by sorting in min(q, k)O(k)

(
r

dk/2e
)
· poly(n) time. We thus have:

Theorem 13 (k, r, v)-targetsumq can be solved in deterministic min(q, k)O(k)
(

r
dk/2e

)
· poly(n)

time.

When r = 2Ω(n/k), we can do better and match the lower bound from Theorem 8. Again, suppose
we have an instance of (k, r, v)-TargetSumq with inputs x1, . . . , xr ∈ Fn

q and target vector z ∈ Fn
q .

For i ∈ [k], define the set Si ⊆ Fn
q to be {vixj | j ∈ [r]}, and let fi : Fn

q → {0, 1} be the indicator
function of Si. Now, Fact 7 directly leads to:

Theorem 14 (k, r, v)-targetsumq can be solved in deterministic O(n · log k(n) · qn) time.

5 Algorithms for (k, r)-MinLinDependenceq and Related Problems

5.1 An algorithm for the decision problem

In this section, we show an algorithm for the (k, r)-MinLinDependenceq problem which is tight
for k(n) = O(

√
n) but is not for larger k.

Theorem 15 For functions k, r : Z+ → Z+, the (k, r)-MinLinDependenceq problem can be

solved in O
(
poly(n) ·min

((r(n)
k(n)

)
, qO(n+k2(n))

))
deterministic time.

Proof The algorithm with running time poly(n)
(r(n)
k(n)

)
simply picks each k(n)-sized subset of the

r(n) inputs and checks if they are minimally dependent using Gaussian elimination. For the other
upper bound, we first give a randomized algorithm which is easy to describe, and for which there
is a standard way to derandomize it.

Choose uniformly at random a full-rank linear map L : Fn
q → Fk−1

q . The algorithm passes if
and only if there are xi1 , . . . , xik for i1, . . . , ik ∈ [r] such that: (i) L(xi1), . . . , L(xik−1

) are linearly

10

independent, and (ii) xik ∈ span(xi1 , . . . , xik−1
). We need to justify the success probability of this

algorithm as well as its running time.

Suppose there is no subset of k minimally dependent elements. In this case, note that if
L(xi1), . . . , L(xik−1

) are linearly independent, then xi1 , . . . , xik−1
are also linearly independent.

Therefore, the above algorithm will fail with probability 1. On the other hand, suppose that
the input contains a set of k minimally dependent elements xi1 , . . . , xik . Then, xi1 , . . . , xik−1

are
linearly independent. Therefore, the probability that L(xi1), . . . , L(xik−1

) are linearly independent
is exactly equal to the probability that k − 1 elements, uniformly chosen from Fk−1

q , are linearly
independent. This probability is lower bounded by a constant by Claim 5, and so, the algorithm
passes with constant probability. Finally, note that since the given algorithm is one-sided, we can
amplify the success probability to any required threshold by running it O(1) times and passing if
any of the runs passes.

We now describe how to get the claimed running time. We repeat the following for each choice
of v1, . . . , vk−1 ∈ Fq that are not all zero. For each choice of k − 1 linearly independent elements
yi1 , . . . , yik−1

∈ Fk−1
q , with yk defined as v1yi1 + · · ·+vkyik−1

, we will show how to efficiently check if
there exist any xi1 , . . . , xik such that L(xi1) = yi1 , . . . , L(xik) = yik and x1+· · ·+xk+1 = 0. For each
of the at most

(
qk

k

)
≤ qO(k2) choices of y1, . . . , yk, we will achieve this in Õ(qnpoly(n)) time, proving

our claim. So, fix linearly independent yi1 , . . . , yik−1
∈ Fk

q and set yik to v1yi1 + · · · + vk−1yik−1
.

Let H equal Ker(L) = {x : L(x) = 0}; H is a subspace of dimension n − k + 1. For each
j ∈ [k], we have that L−1(yij) is a coset vj + H. For each j ∈ [k], we define fj : H → {0, 1}
as fj(x) = I(vj + x), where I(x) = 1 if x is one of the r inputs and 0 otherwise. Now, observe
that there exist xi1 ∈ L−1(yi11), . . . , xik ∈ L−1(yik) such that xi1 + · · · + xik = 0 if and only if
(f1 ∗ f2 ∗ · · · ∗ fk)(0) > 0. By Fact 7, we can compute the convolution in O(nqn) time, proving the
running time bound.

We omit a standard derandomization of the algorithm using ε-biased sets, see, e.g. [40]. We
also give an alternative derandomization based on pairwise-independent families in the appendix.

5.2 An approximation algorithm for counting the number of witnesses

Note that the algorithms in Section 4 not only detect solutions to the TargetSum problem but
also count them. It is easy to see this is the case for the first algorithm. For the second FFT-based
algorithm, the output of the convolution itself gives the count. The situation is more complicated
for the FFT-based algorithm for the MinLinDependence problem. Here, we are only able to find
an approximation to the total number of solutions. This algorithm is presented in Appendix B.

We also note that one can find (not just decide the existence of) a witness for each of the
problems we have considered without paying any asymptotic overhead on the decision algorithms.
Namely, we can use self-reducibility to fix the elements xi1 , . . . , xik(n)

sequentially and after each
fixing, check if the restricted problem still has a solution. We pay an extra O(r(n)k(n)) for this,
which is asymptotically negligible.

11

6 Conclusion

In this work we studied a wide range of problems that test if linear combinations of certain-sized
subsets of the input vectors equal a desired target vector. For many of these problems, we resolved
the time complexity (up to polynomial factors) under the Exponential Time Hypothesis. As these
problems are natural extensions of the well-studied and fruitful k-SUM problem, we believe they will
lead to a deeper understanding of the complexity of other problems. One intriguing question that
remains open is the complexity of the problem (k, r)-ZeroLinDependenceq, which for functions
k, r : Z+ → Z+, takes as input r elements x1, . . . , xr(n) ∈ Fn

q and checks if there exist distinct
xi1 , . . . , xik(n)

such that 0n can be written as a non-trivial linear combination of xi1 , . . . , xik(n)
.

This problem is similar to the (k, r)-LinDependenceq problem, but the target vector z = 0n is
fixed. It is also similar to the (k, r)-ZeroSum2 problem, but here we require the k vectors chosen
be distinct. In fact, this problem is equivalent to the parameterized complexity of testing if the
minimum distance of a linear code is at most k. Indeed, if A is the n × r matrix whose columns
correspond to the input vectors, then the code {x | Ax = 0} has minimum distance at most k
iff there is a positive answer to the (k, r)-ZeroLinDependenceq problem. The parameterized
complexity of this problem is listed as an open question in [10] (see the listing under the EvenSet
problem). We note that by combining recent work of Moshkovitz and Raz [39] with a slight variation
of an argument in [19], it is possible to show 2n1−1/poly(log log n)

-hardness for certain r and k, though
the complexity as a function of r and k remains open. One non-trivial property is that by Corollary
3.17 of [48], if r > 2cn/k for a large enough constant c > 0, then there is always a solution to the
(k, r)-ZeroLinDependenceq problem.

Acknowledgements

We would like to thank Ryan Williams for useful conversations.

References

[1] Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. Witnesses for Boolean matrix multipli-
cation and for shortest paths. In FOCS’92: Proceedings of the 33rd Annual IEEE Symposium
on Foundations of Computer Science, pages 417–426, 1992.

[2] Noga Alon and Moni Noar. Derandomization, witnesses for Boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16:434–449, 1996.

[3] Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. Journal of the ACM, 42(4):844–856,
1995.

[4] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algo-
rithmica, 17:209–223, 1997.

[5] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms for 3sum. Algo-
rithmica, 50(4):584–596, 2008.

12

[6] E.R. Berlekamp, R.J. McEliece, and H.C.A. Van Tilborg. On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory, 24:384–386, 1978.

[7] Arnab Bhattacharyya, Victor Chen, Madhu Sudan, and Ning Xie. Testing linear-invariant
non-linear properties. In STACS’09, pages 135–146, 2009.

[8] Arnab Bhattacharyya, Elena Grigorescu, and Asaf Shapira. A unified framework for testing
linear-invariant properties. To appear in FOCS, 2010.

[9] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause width
and clause density for sat. In CCC ’06: Proceedings of the 21st Annual IEEE Conference
on Computational Complexity, pages 252–260, Washington, DC, USA, 2006. IEEE Computer
Society.

[10] Marco Cesati. Compendium of parameterized problems, 2006.

[11] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear fpt reductions and compu-
tational lower bounds. In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing, pages 212–221, New York, NY, USA, 2004. ACM.

[12] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. On the computational hardness
based on linear fpt-reductions. J. Comb. Optim., 11(2):231–247, 2006.

[13] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006.

[14] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[15] Artur Czumaj and Andrzej Lingas. Finding a heaviest triangle is not harder than matrix
multiplication. In SODA’07: Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 986–994, 2007.

[16] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness i:
Basic results. SIAM J. Comput., 24(4):873–921, 1995.

[17] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
ii: On completeness for w[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995.

[18] Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The
parametrized complexity of some fundamental problems in coding theory. SIAM J. Comput.,
29(2):545–570, 1999.

[19] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the minimum
distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37, 2003.

[20] Jeff Erickson. Bounds for linear satisfiability problems. Chicago J. Theor. Comput. Sci., 1999,
1999.

[21] Jeff Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM J.
Comput., 28(4):1198–1214, 1999.

13

[22] Jeff Erickson and Raimund Seidel. Better lower bounds on detecting affine and spherical
degeneracies. Discrete & Computational Geometry, 13:41–57, 1995.

[23] Uriel Feige and Daniele Micciancio. The inapproximability of lattice and coding problems with
preprocessing. J. Comput. Syst. Sci., 69(1):45–67, 2004.

[24] F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurabh. Algorithmic lower bounds for problems
parameterized by clique-width. In SODA, 2010.

[25] Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995.

[26] Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in
sublinear time. In SODA’10: Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2010. to appear.

[27] Ben Green. A Szemerédi-type regularity lemma in abelian groups, with applications. Geom.
Funct. Anal., 15(2):340–376, 2005.

[28] Venkatesan Guruswami and Alexander Vardy. Maximum-likelihood decoding of reed-solomon
codes is np-hard. In SODA, pages 470–478, 2005.

[29] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[30] Tali Kaufman and Madhu Sudan. Algebraic property testing: The role of invariance. In
STOC’08: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages
403–412, 2008.

[31] James King. A survey of 3sum-hard problems, 2004.

[32] Daniel Král’, Oriol Serra, and Llúıs Vena. A removal lemma for systems of linear equations
over finite fields, 2008.

[33] Daniel Král’, Oriol Serra, and Llúıs Vena. A combinatorial proof of the removal lemma for
groups. Journal of Combinatorial Theory, 116(4):971–978, May 2009.

[34] D. Lokshtanov, Daniel Marx, and Saket Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal, 2010.

[35] Dániel Marx. Can you beat treewidth? In FOCS, pages 169–179, 2007.

[36] Dániel Marx. On the optimality of planar and geometric approximation schemes. In FOCS,
pages 338–348, 2007.

[37] David K. Maslen and Daniel N. Rockmore. Generalized FFTs - a survey of some recent results.
In Proceedings of the DIMACS Workshop on Groups and Computation, pages 329–369, 1995.

[38] Joseph S. B. Mitchell and Joseph O’Rourke. Computational geometry column 42. Int. J.
Comput. Geometry Appl., 11(5):573–582, 2001.

[39] Dana Moshkovitz and Ran Raz. Two-query pcp with subconstant error. J. ACM, 57(5), 2010.

14

[40] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. SIAM J. Comput, 22:838–856, 1993.

[41] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2), 1985.

[42] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In STOC, pages
603–610, 2010.

[43] Mihai Pǎtraşcu and Ryan Williams. On the possibility of faster sat algorithms. In SODA,
2010.

[44] Oded Regev. Improved inapproximability of lattice and coding problems with preprocessing.
IEEE Transactions on Information Theory, 50(9):2031–2037, 2004.

[45] Thomas J. Schaefer. The complexity of satisfiability problems. In STOC, pages 216–226, 1978.

[46] Raimund Seidel. On the All-Pairs-Shortest-Path problem. In STOC’92: Proceedings of the
24th Annual ACM Symposium on Theory of Computing, pages 745–749, 1992.

[47] Asaf Shapira. Green’s conjecture and testing linear-invariant properties. In STOC’09: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, pages 159–166, 2009.

[48] Tamir Tassa and Jorge L. Villar. On proper secrets, (t,k)-bases and linear codes. Des. Codes
Cryptography, 52(2):129–154, 2009.

[49] Alexander Vardy. Algorithmic complexity in coding theory and the minimum distance problem.
In STOC, pages 92–109, 1997.

[50] Virginia Vassilevska and Ryan Williams. Finding a maximum weight triangle in n3−δ time,
with applications. In STOC’06: Proceedings of the 38st Annual ACM Symposium on Theory
of Computing, pages 225–231, 2006.

[51] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting weighted sub-
graphs. In STOC’09: Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, pages 455–464, 2009.

[52] Ryan Williams. Algorithms and Resource Requirements for Fundamental Problems. PhD thesis,
Carnegie Mellon University, 2007.

A Derandomization

For the derandomization, alternatively, we can choose a family H of pairwise-independent hash
functions from Fqn to Fq3k as follows. We choose a ∈ Fqn and b ∈ Fq3k arbitrarily, and our map
is [a · x]k + b, where [y]k denotes the restriction to the last k coordinates of y. Then |H| = qn+3k.
Such a family is known to be pairwise-independent. Although the family is not linear, it is affine,
and we know the offset b, so we can perform the above algorithm by looking for sets of k vectors
in the range with the property that any non-trivial linear combination of them that spans a scalar

15

multiple of the offset b must have a non-zero coefficient multiplying every vector, and there is such
a linear combination.

Suppose that S is a set of k items that forms a linear dependence that is not minimal. Then
there is a linear dependence on a proper non-empty subset of these items. It follows that a multiple
of b is in the span of this subset, and so it cannot map to a set of k vectors in the range that we
consider.

Suppose that S is a set of k items that is linearly independent. This set will not be found by
the FFT verification, even if it passes our criterion (e.g., if we look at its image).

Suppose that S is a minimal k-dependence. With probability 1 − k2/q3k, the k vectors map
to distinct images. Moreover, since the map is affine, a linear combination involving all k such
vectors equals a multiple of b. It remains to check that any proper non-empty subset T of S does
not span a multiple of b. There are at most qk elements in the union of such sets T , and none can
be zero since S is a minimal k-dependence. For any fixed element y, the probability that [a · y]k is
a multiple of b is at most q/q3k, and so by a union bound none of these span a multiple of b with
probability at least 1− qk+1/q3k. Hence, by a union bound S will pass the criteria of our procedure
with probability at least 1− k2/q3k − qk+1/q3k.

B Counting Theorem

Theorem 16 For any ε > 0, there exists a randomized algorithm that, with probability at least 2/3,
approximates the number of solutions to (k, r)-MinLinDependenceq to within a multiplicative

factor of (1± ε). The running time of the algorithm is Õ
(
qO(n+k2)poly(n)/ε2

)
.

Proof The algorithm for approximate counting is essentially the same as the algorithm for
detecting! As before, choose a random full-rank linear map L : Fn

q → Fk
q . Suppose there are

s solutions to (k, r)-MinLinDependenceq. By Claim 5, for each such solution xi1 , . . . , xik , the
probability that L(xi1), . . . , L(xik−1

) are linearly independent is at least a constant, say, pk, and so,
the expected number of solutions with linearly independent L(xi1), . . . , L(xik−1

) is spk. We want
to bound the concentration around this mean.

Formally, let C denote the set consisting of all the s solutions. For a given c ∈ C, let χc be
the indicator variable for the event that L maps k − 1 of the elements in c to linearly independent
elements, and let X =

∑
c∈C χc. So, E [χc] = pk and E [X] = spk. Also, Var[X] =

∑
c∈C Var[χc] +∑

c 6=c′∈C Cov(χc, χc′). But note that:

Var[χc] = pk(1− pk) ≤ pk

and
Cov(χc, xc′) = E [χcxc′]− E [χc]E [xc′] ≤ E [χcxc′] ≤ pk

So, Var[X] ≤ spk + s(s− 1)pk = s2pk.

Now, suppose we independently choose s full-rank linear maps L1, . . . , Ls : Fn
2 → Fk

2, and let
Y be the average of the s independent copies of X. Then, E [Y] = E [X] = spk, while Var[Y] =

16

Var[X]/s ≤ s2pk/s. By Chebyshev:

Pr[|Y − spk| > εspk] ≤
Var[Y]
ε2s2p2

k

≤ 1
ε2pks

Thus, choosing s to be O(1/ε2) suffices to make the probability of error less than 2/3.

The algorithm is therefore to independently choose m = O(1/ε2) many full-rank linear maps
L1, . . . , Lm : Fn

q → Fk
q , and for each Lj , compute Xj , the number of linearly dependent ele-

ments xi1 , . . . , xik such that Lj(xi1), . . . , Lj(xik−1
) are linearly independent. Xj is simply the

appropriate scaling of the value of the computed convolution. This makes the running time
O(poly(n)qO(n+k2)/ε2). Finally, we output X1+···+Xm

spk
.

17

	Introduction
	Results
	Techniques and Comparison to Previous Work
	Lower Bounds
	Upper Bounds

	Preliminaries
	Hardness
	Algorithms for (k,r,v)-TargetSumq and (k,r)-LinDependenceq
	Algorithms for (k,r)-MinLinDependenceq and Related Problems
	An algorithm for the decision problem
	An approximation algorithm for counting the number of witnesses

	Conclusion
	Derandomization
	Counting Theorem

