
Lower Bounds for Testing Triangle-freeness in Boolean Functions∗

Arnab Bhattacharyya† Ning Xie‡

Abstract

Let f1, f2, f3 : Fn
2 → {0, 1} be three Boolean functions. We

say a triple (x, y, x + y) is a triangle in the function-triple

(f1, f2, f3) if f1(x) = f2(y) = f3(x + y) = 1. (f1, f2, f3) is

said to be triangle-free if there is no triangle in the triple.

The distance between a function-triple and triangle-freeness

is the minimum fraction of function values one needs to

modify in order to make the function-triple triangle-free.

A canonical tester for triangle-freeness repeatedly picks x

and y uniformly and independently at random and checks if

f1(x) = f2(y) = f3(x + y) = 1. Based on an algebraic regu-

larity lemma, Green showed that the number of queries for

the canonical testing algorithm is upper-bounded by a tower

of 2’s whose height is polynomial in 1/ε. A trivial query com-

plexity lower bound of Ω(1/ε) is straightforward to show. In

this paper, we give the first non-trivial query complexity

lower bound for testing triangle-freeness in Boolean func-

tions. We show that, for every small enough ε there exists an

integer n0(ε) such that for all n ≥ n0 there exists a function-

triple f1, f2, f3 : Fn
2 → {0, 1} depending on all the n variables

which is ε-far from being triangle-free and requires (1
ε
)4.847···

queries for the canonical tester. For the single function

case that f1 = f2 = f3, we obtain a weaker lower bound

of (1
ε
)3.409···. We also show that the query complexity of

any general (possibly adaptive) one-sided tester for triangle-

freeness is at least square-root of the query complexity of

the corresponding canonical tester. Consequently, this yields

(1/ε)2.423··· and (1/ε)1.704··· query complexity lower bounds

for multi-function and single-function triangle-freeness re-

spectively, with respect to general one-sided testers.

1 Introduction

Roughly speaking, property testing is concerned with
the existence of an efficient algorithm that queries an

∗A full version of this paper is available as a technical report
at http://eccc.hpi-web.de/report/2009/066/.

†CSAIL, MIT. Research supported in part by a DOE Compu-
tational Science Graduate Fellowship and NSF Awards 0514771,
0728645 and 0732334.

‡CSAIL, MIT. Research supported by NSF Awards 0514771,
0728645 and 0732334. Part of the work done while visiting
ITCS, Tsinghua University and supported by the National Nat-
ural Science Foundation of China Grant 60553001, and the Na-
tional Basic Research Program of China Grant 2007CB807900,
2007CB807901.

input object a small number of times and decides cor-
rectly with high probability whether the object has a
given property or whether it is “far away” from hav-
ing the property. Formally, let D be a finite domain
and R be a finite range. Letting {D → R} denote the
set of all functions from D to R, a property is specified
by a family F ⊆ {D → R} of functions. A tester is
a randomized algorithm which is given a distance pa-
rameter ε and has oracle access to an input function
f : D → R, and accepts with probability at least 2/3
if f ∈ F and rejects (also with probability at least 2/3)
if the function is ε-far from F . Distance between func-
tions f, g : D → R, denoted dist(f, g), is simply the
fraction of the domain where f and g disagree, and
dist(f,F) = ming∈F{dist(f, g)}. For ε ∈ (0, 1), we say f
is ε-far from F if dist(f,F) ≥ ε and ε-close otherwise. A
tester is one-sided if whenever f ∈ F , the tester accepts
with probability 1. The central parameter associated
with a tester is the number of oracle queries it makes
to the function f being tested. In particular, a prop-
erty is called strongly testable if, for every fixed ε, there
is a tester with query complexity that depends only on
the distance parameter ε and is independent of the size
of the domain. Property testing was formally defined
by Rubinfeld and Sudan [29], and the systematic explo-
ration of property testing for combinatorial properties
was initiated by Goldreich, Goldwasser, and Ron [16].
Subsequently, a rich collection of properties have been
shown to be strongly testable [8, 7, 3, 13, 27, 5, 4, 22, 21].

A central quest of research in property testing has
been to characterize properties according to their query
complexity. One can ask, for example, whether a large
class of properties are all strongly testable, and how
the query complexity of a strongly testable property
depends on the distance parameter ε. Such broad
understanding of testability has been achieved for graph
and hypergraph properties. For graph properties, it is
known exactly ([3, 13]) which properties are strongly
testable in the dense graph model. Furthermore, for
an important class of properties, H-freeness for fixed
subgraphs H, it is known exactly for which H, testing
H-freeness requires the query complexity to be super-
polynomial in 1/ε (ε being the distance parameter) and
for which only a polynomial number of queries suffice:
This was proved by Alon [1] for one-sided testers and

by Alon and Shapira that [6] for general (two-sided)
testers. Progress toward similar understanding has also
been made for hypergraph properties [28, 9, 7].

Somewhat ironically, algebraic properties, the main
objects of study in the seminal work of Rubinfeld and
Sudan [29], are not as well understood as (hyper)graph
properties from a high-level perspective. On the one
hand, there has been a lot of work in constructing
low-query testers for specific algebraic properties, such
as linearity and membership in various error-correcting
codes. However, the systematic study of the query
complexity of algebraic properties began only recently
with the work of Kaufman and Sudan [23]. Formally,
the class of properties under consideration here are
linear-invariant properties. In this setting 1, the do-
main D = Fn

2 and range R = {0, 1}, where F2 is
the finite field with two elements. A property F is
said to be linear-invariant if for every f ∈ F and
linear map L : Fn

2 → Fn
2 , it holds that f ◦ L ∈ F .

Roughly speaking, Kaufman and Sudan showed strong
testability of any locally-characterized linear-invariant
and linear2 property. Moreover, the query complex-
ity of all such properties is only poly(1/ε). Nonlinear
linear-invariant properties were studied formally in [12]
where the authors isolated a particular class of non-
linear linear-invariant properties, M-freeness for some
fixed binary matroids M, and showed an infinitely large
set of strongly testable M-freeness properties. Sub-
sequently, Shapira [30] and Král et al [24] indepen-
dently showed that, in fact for any fixed binary ma-
troid M, M-freeness is strongly testable, mirroring the
analogous result of subgraph-freeness testing. However,
unlike the case of graphs where it is known exactly
which subgraph-freeness properties can be tested in time
poly(1/ε) and which cannot, there are no similar results
known for matroid-freeness properties. Indeed, to the
best of our knowledge, prior to our work, there were
no non-trivial lower bounds known for the query com-
plexity (in terms of ε) for any natural linear-invariant
algebraic property.

1.1 Our Results We are interested in the property
of triangle-freeness for Boolean functions. Let f1, f2, f3 :
Fn

2 → {0, 1} be three Boolean functions. We say a triple
(x, y, x+y) is a triangle in the function-triple (f1, f2, f3)
if f1(x) = f2(y) = f3(x + y) = 1. (f1, f2, f3) is said to
be triangle-free if there is no triangle among the three
functions. The canonical tester for triangle-freeness
repeatedly picks x and y uniformly and independently

1[23] considers linear invariance over general fields. In this
paper, we restrict ourselves to Fn

2 for simplicity.
2A property F is linear if for any f and g that are in F

necessarily implies that f + g is in F .

at random and checks if f1(x) = f2(y) = f3(x+ y) = 1.
Note that the canonical tester is a one-sided tester.
Moreover, if the number of triangles is N∆, then to
reject a function-triple that is ε-far from being triangle-
free with constant probability, the canonical tester needs
to make Ω(22n

N∆
) number of queries. Green [19] showed

that the canonical tester for the property of triangle-
freeness does indeed work correctly, though the analysis
is quite different from that of typical algebraic tests
and is more reminiscent of the analysis for tests of
graph properties. In particular, Green developed an
algebraic regularity lemma for the Boolean cube (his
result is much more general, in fact, it works for any
abelian group). The query complexity upper bound
proved by Green has a huge dependency on ε: it is a
tower of 2’s with height polynomial in 1/ε. A more
combinatorial version of Green’s result is that, for any
function-triple ε-far from being triangle-free, there are
at least δ(ε)22n triangles in the function-triple, though
this δ(ε) is only proved to be super tiny. A trivial lower
bound of Ω(1/ε) is straightforward to show. But, to
the best of our knowledge, there is no non-trivial lower
bound for testing triangle-freeness in Boolean functions.
This question was left open in [19].

It is interesting to compare the testability of al-
gebraic triangle-freeness and graphic triangle-freeness.
Using Szemerédi’s regularity lemma, triangle-freeness
in graphs is known to be testable with a tower-type
query complexity upper bound. Alon [1] gave a super-
polynomial query complexity lower bound and it is
the strongest query lower bound for a natural strongly
testable property known to date. However, the proof
technique in [1] does not seem to directly apply to the
algebraic setting due to the inherent additive structures
of the Boolean cubes. More generally, it seems to us
that proving lower bounds for the Boolean function case
is more challenging than that of the graphic case. For
example, the lower bound given in [19] for regularity
partitioning of the Boolean cube, though being of tower-
type, is much weaker than its graphic counterpart shown
in [18] (and is also weaker than the upper bound proved
in the same paper).

In this paper we give the first non-trivial query
lower bounds for testing triangle-freeness in Boolean
functions. In particular, we show that, for every small
enough ε there exists an integer n0(ε) such that for all
n ≥ n0 there exists a function-triple f1, f2, f3 : Fn

2 →
{0, 1} depending on all the n variables which is ε far
from being triangle-free and requires (1

ε)4.847··· queries
for the canonical tester. For the single function case
that f1 = f2 = f3, we obtain a weaker lower bound of
(1

ε)3.409··· for the canonical tester.
The goal of this research should be to understand

the query complexity with respect to general testers. To
this end, we show that if there is a one-sided, possibly
adaptive tester for triangle-freeness with query complex-
ity q, then one can transform that tester into a canoni-
cal one with query complexity at most O(q2). Combin-
ing with our results for canonical testers, this implies a
query complexity lower bound of (1

ε)2.423··· for the multi-
function triangle-freeness problem and of (1

ε)1.704··· for
single-function triangle-freeness, with respect to one-
sided testers. In fact our result is a bit more general:
we prove a polynomial relationship between the query
complexity of the canonical tester and arbitrary one-
sided testers, for any matroid-freeness property. This
is analogous to a result in [2] for one-sided testers of
subgraph-freeness in graphs 3. Another related result
is that of Ben-Sasson, Harsha and Raskhodnikova [11]
who showed that there is no gap between the query com-
plexities of adaptive testers and non-adaptive ones for
testing linear properties.

1.2 Techniques From a combinatorial point of view,
proving a lower bound for the query complexity of
the canonical tester for triangle-freeness amounts to
constructing functions or function-triples which are far
from being triangle-free but contain only a small number
of triangles.

Our lower bound for function-triples is based on
constructing a vertex-disjoint function-triple, meaning
that all the triangles in the triple are pairwise dis-
joint. The property of being vertex-disjoint makes it
simple to calculate the function-triple’s distance from
triangle-freeness as well as counting the number of tri-
angles within the function-triple. We start our construc-
tion of a vertex-disjoint function-triple from three sets,
each of cardinality m, of k-bit binary vectors, {ai}m

i=1,
{bj}m

j=1 and{c`}m
`=1, where k and m are fixed integers.

Next we define three sets, {AI}, {BJ} and{CL}, of mk-
bit vectors, each consisting of the vectors obtained by
concatenating {ai}, {bj} and{c`}, respectively, in all
possible orders. Finally we define our function-triple
(fA, fB , fC) to be the characteristic functions of the
three sets {AI}, {BJ} and{CL}. In order to make the
triangles in this function-triple pairwise disjoint, we im-
pose the constraint that {ai}, {bj} and{c`} satisfy the
1-perfect-matching-free (1-PMF for short) property (see
Section 4.1 for formal definition). To make this con-
struction work for arbitrarily small ε, we concatenate

3Goldreich and Trevisan in [17] prove a polynomial relationship
between the query complexity of two-sided testers and canonical
testers, for any graph property. For the purposes of this paper, our
weaker result is sufficient. However it is an interesting question
to study 2-sided testing algorithms for matroid-freeness, see also
the discussion in Section 6.

with some n′ ≥ 1 copies of each {ai}, {bj} and{c`}
and require them to satisfy the n′-PMF property for
any n′ ≥ 1. It turns out that {ai}, {bj} and{c`} being
PMF is equivalent to a (small) set of homogeneous Dio-
phantine linear equations having no non-trivial solution,
which in turn can be checked by linear programming.
Our numerical computation indicates the existence of
PMF family of vectors for k = 3, 4, and 5. Our findings
show that larger values of k give stronger lower bounds
but unfortunately it was computationally infeasible to
search for PMF families of vectors for k ≥ 6. We con-
jecture that our approach may lead to super-polynomial
query lower bounds for testing multi-function triangle-
freeness.

The lower bound for the single function case relies
on the notion of regular functions. This is a natural
generalization of vertex-disjoint function-triples, in the
sense that the number of triangle passing through each
point is not required to be 1 but can be some uniform
constant. We also employ a notion of tensor product be-
tween functions, which preserves their “triangle-degree
regularity”. In analogy to the blow-up operation on
graphs [1], we tensor with bent functions (see Section 2
for definition) to construct functions on arbitrarily long
bits that actually depend on all these bits. 4

Our result on canonical tester vs. general one-sided
tester for triangle-freeness is an adaptation of the proof
technique from [17] to the algebraic setting. The proof
relies crucially on the fact that both of the testers are
one-sided and the property of being triangle-free is in-
variant under non-singular linear transformations of the
underlying domain Fn

2 . The latter is used to show that,
under a random non-singular linear transformation, all
linearly independent 2-tuples are basically equivalent.
Therefore, in order to have guaranteed performance
for every isomorphic copy of the input function, the
best strategy for any tester (even an adaptive one) for
triangle-freeness is to pick some random points in the
domain to query and check for triangles.

1.3 Multi-function vs. Single-function Green
in [19] used the term “triangle-freeness” to refer to
the case f1 = f2 = f3, what we call the “single-
function case”. Arguably, it is a more natural property
to examine than the multi-function case. However, it
is easily seen (and this has been explicitly observed
previously, for example, in [25]) that Green’s analysis
extends to the multi-function version. Moreover, any
analysis that goes through the route of a regularity
lemma in the usual way should extend to the multi-

4As pointed out by an anonymous referee, taking tensor
products between Boolean functions in our setting is also similar
to taking tensor products in graphs.

function case. Thus, to determine whether a different
notion of regularity is needed for which the number of
partitions can be polynomial in 1/ε, it is reasonable
to examine the (easier) multi-function case first, as we
are doing in this paper. Additionally, testability of
properties of a collection of functions is an interesting,
but largely unexplored, question by itself.

1.4 Organization After some necessary definitions
in Section 2, the the query complexity lower bounds
for testing triangle-freeness in single functions and in
function-triples are presented in Section 3 and Section 4,
respectively. In Section 5, we study the relationship
between the query complexities of the canonical tester
and of a general one-sided tester for a broad class of
algebraic properties.

2 Preliminaries

All logarithms in this paper are base 2. Let N =
{0, 1, . . .} denote the set of natural numbers. Let n ≥ 1
be a natural number. We use [n] to denote the set
{1, . . . , n}. The n× n identity matrix is denoted by In.
We view elements of Fn

2 as n-bit strings, that is elements
of {0, 1}n, alternatively. If x and y are two n-bit strings,
then x+y denotes bitwise addition (i.e. XOR) of x and
y. We use (x, y) to denote the concatenation of two bit
strings x and y.

Definition 2.1. (Tensor Product of Boolean
Functions) Let f1 : Fn1

2 → {0, 1} and f2 : Fn2
2 →

{0, 1}. Then the tensor product of f1 and f2, denoted
by f1 ⊗ f2, is a Boolean function on Fn1+n2

2 such that
f1 ⊗ f2(x1, x2) = f1(x1) · f2(x2) for all x1 ∈ Fn1

2 and
x2 ∈ Fn2

2 .

Note that if f1 depends on all the n1 variables and
f2 depends on all the n2 variables, then f1⊗f2 depends
on all the n1 + n2 input bits.

In order to define and study some properties of bent
functions, first we recall the notion of Fourier transform.

Definition 2.2. (Fourier Transform) Let
f : Fn

2 → R. The Fourier transform f̂ : Fn
2 → R

of f is defined to be f̂(α) = Ex[f(x)χα(x)], where
χα(x) = (−1)

P
i∈[n] αixi . f̂(α) is called the Fourier

coefficient of f at α, and the {χα}α are called
characters.

For α, β ∈ Fn
2 , the inner product between α and

β: 〈χα, χβ〉
def= Ex∈Fn

2
[χα(x)χβ(x)] is 1 if α = β and 0

otherwise. Therefore the characters form an orthonor-
mal basis for Fn

2 , and we thus have the Fourier in-
version formula f(x) =

∑
α∈Fn

2
f̂(α)χα(x) and Parse-

val’s equality
∑

α∈Fn
2
f̂(α)2 = Ex[f(x)2]. For two func-

tions f, g : Fn
2 → R, we define their convolution as

(f ∗ g)(x)def= 1
2n

∑
y∈Fn

2
f(y)g(x− y). By the convolution

theorem, f̂ · g = f̂ ∗ ĝ and f̂ ∗ g = f̂ · ĝ.

Definition 2.3. (Bent Functions) Let φ : Fn
2 →

{0, 1} be a Boolean function and let ψ(x) = (−1)φ(x). φ
is called a bent function if the Fourier coefficients of ψ
satisfy that |ψ̂(α)| = 1

2n/2 for every α ∈ Fn
2 .

Bent functions have many applications in cryptographic
constructions. For more properties of bent functions,
we refer interested readers to [26]. It is well known that
bent functions exist when the number of variables is an
even integer. For example, the inner-product function
φ(x) = x1x2 + x3x4 + · · · + xn−1xn is a bent function
for every even n.

Let f1, f2, f3 : Fn
2 → {0, 1} be a function-triple. We

say (f1, f2, f3) is triangle-free if there is no x and y such
that f1(x) = f2(y) = f3(x + y). We use T-free to
denote the set of triangle-free function-triples.

Let f, g : Fn
2 → {0, 1}. The (relative) distance

between f and g is defined to be the fraction of points
at which they disagree: dist(f, g)def= Prx∈Fn

2
[f(x) 6=

g(x)]. The distance between (f1, f2, f3) and T-free
is the minimum fraction of function values one needs to
modify (f1, f2, f3) to make it triangle-free, i.e.,

dist((f1, f2, f3),T-free)def=
min

(g1,g2,g3)∈T-free
(dist(f1, g1) + dist(f2, g2) + dist(f3, g3)) .

Let f1, f2, f3 be a Boolean function-triple. The
number of triangles passing through f1 at x is
Df1(x)

def= |{y ∈ Fn
2 : f1(x) = f2(y) = f3(x+y) = 1}|. We

define the triangle degree of f1 at x, denoted by df1(x),

to be df1(x)
def=Df1(x)/2

n. Note that if f1(x) = 0 then
df1(x) = 0, however the converse may not be true. Tri-
angle degrees of f2 and f3 are defined identically. The
triangle degree of a single Boolean function f at point x
is defined in a similar way: df (x)def= 1

2n |{y ∈ Fn
2 : f(x) =

f(y) = f(x + y) = 1}|. When the function f is clear
from context, we drop the subscript f and simply write
the triangle degree as d(x).

3 Lower Bound for Triangle-freeness in Single
Functions

Let f : Fn
2 → {0, 1} be a Boolean function. We define

the density of f to be ρf
def= Prx[f(x) = 1]. We say f

is (ρ, d)-regular if ρf = ρ and df (x) = d for all x with
f(x) = 1.

The reason that we are interested in (ρ, d)-regular
functions is because there is an easy lower bound on the
distance between regular functions and T-free.

Proposition 3.1. Let f be a (ρ, d)-regular function on
n variables. Then there are exactly ρd22n

6 triangles of f
and f is ρ/3-far from being triangle-free.

Next we observe that tensor product preserves the
triangle-degree regularity of Boolean functions.

Lemma 3.1. Let f1 : {0, 1}n1 → {0, 1} and f2 :
{0, 1}n2 → {0, 1} such that f1 is (ρ1, d1)-regular and
f2 is (ρ2, d2)-regular. Then f1 ⊗ f2 is (ρ1 · ρ2, d1 · d2)-
regular.

We will use two simple functions defined below as
the basic building blocks of our constructions.

Fact 3.1. The function G on two variables, defined by
G(00) = 0, G(01) = G(10) = G(11) = 1, is (3/4, 1/2)-
regular. Also, the function H on three variables, defined
by H(000) = H(111) = 0 and H(x) = 1 otherwise, is
(3/4, 1/2)-regular.

The next lemma shows that, by tensoring G with
itself appropriate number of times, we obtain a Boolean
function which is far from triangle-free yet does not
contain too many triangles.

Lemma 3.2. For all small enough ε, there is a Boolean
function which is ε-far from being triangle-free and the
query complexity of the canonical triangle-freeness tester
is Ω((1/ε)3.409···).

Proof. Let ` = b log (1
3ε)

log (4/3)c and let fε = G⊗ · · · ⊗G︸ ︷︷ ︸
` times

.

Then fε is a Boolean function on n = 2` variables.
By Lemma 3.1, fε is a (ρ, d)-regular function with
ρ = (3

4)` ≥ 3ε (and also ρ = O(ε)) and d =

(1
2)` = O(ε

log 2
log (4/3)) = O(ε2.409···). By Proposition 3.1,

fε is at least ε-far from being triangle-free and the
number of triangles in fε is ρd22n

6 = O(ε
log 4

log (4/3))22n =
O(ε3.409···)22n. �

In order to construct Boolean functions on arbi-
trarily large Boolean domains, we utilize bent functions
to “stretch” the input bits. We show next that there
are many bent functions which are regular and satisfy
ρ ≈ 1/2 and d ≈ 1/4. Moreover, these regular bent
functions on Fm

2 exist for every even number m ≥ 2.

Lemma 3.3. For every even number m ≥ 2, if φ :
Fm

2 → {0, 1} is a bent function with φ(0) = 0, then
φ is

(
1
2 ±O(2−m/2), 1

4 ±O(2−m/2)
)
-regular.

Combining Lemma 3.1 and Lemma 3.3 gives the
following single function triangle-freeness lower bound.

Theorem 3.1. For every small enough ε there is an
integer n0(ε) such that for all n ≥ n0, there is a
Boolean function f on n variables with the following
properties. f is ε-far from being triangle-free and the
query complexity of the canonical triangle-freeness tester
for f is Ω((1/ε)3.409···). Furthermore, f depends on all
n input variables.

Proof. Given ε > 0, let ` = b log (1
3ε)

log (4/3)c and let fε be the
function constructed in Lemma 3.2 on 2` bits.

If n is even, then m = n − 2` is even. Then we
let φm be the bent function on m bits constructed in
Lemma 3.3, and define a Boolean function on n variables
by f(x) = fε ⊗ φm. If n is odd, then m = n − 2` − 3
is even, we instead define f(x) = fε ⊗ φm ⊗ H. Now
setting n0 = 2`+3 makes our construction works for all
n ≥ n0. Since fε is regular and by Lemma 3.3 φm (or
φm⊗H)is also regular, therefore following Lemma 3.1 f
is a regular function. Moreover, as proved in Lemma 3.3,
ρ(φm) = Θ(1) and d(φm) = Θ(1). Therefore the
triangle degree d and density ρ of the regular function f
still satisfy that d = O(ρ2.409···) as in Lemma 3.2, hence
the same lower bound follows. �

4 Lower Bound for Triangle-freeness in
Function-triples

4.1 Perfect-matching-free Families of Vectors
Our goal in this section is to construct function-triples
such that all the triangles in a function-triple are dis-
joint. In other words, for each of the three functions, we
want the triangle degree at each point to be either 0 or 2.
We will build such function-triples using constructions
of perfect-matching free families of vectors.

Definition 4.1. (Perfect-Matching-Free Fami-
lies of Vectors) Let k and m be integers such that
0 < k < m < 2k. Let {ai}m

i=1 and {bi}m
i=1 be two fami-

lies of vectors, with ai, bi ∈ {0, 1}k for every 1 ≤ i ≤ m.
Let ci = ai + bi.

1. Let {AI}I be the set of (mk)-bit vectors formed by
concatenating the m vectors in {ai} in all possible
orders (there are m! such vectors), where I =
(i1, i2, . . . , im) is a permutation of [m]. Similarly
define {BJ}J and {CL}L as the concatenations of
vectors in {bi} and {ci} with J = (j1, j2, . . . , jm)
and L = (`1, `2, . . . , `m), respectively. We say
the set of vectors {ai, bi, ci} is a (k,m) 1-perfect-
matching-free (abbreviated as 1-PMF) family of
vectors if AI + BJ = CL necessarily implies that
I = J = L (i.e., is = js = `s for every 1 ≤ s ≤ m).

2. Let n′ ≥ 1 be an integer and now let {AI}I , {BJ}J

and {CL}L be the sets of n′mk-bit vectors by con-
catenating n′ copies of {ai}, {bi} and {ci}, respec-
tively, in all possible orders (two concatenations are
regarded the same if they give rise to two identical
strings in {0, 1}n′mk). We say the set of vectors
{ai, bi, ci} is a (k,m) n′-PMF family of vectors if
AI +BJ = CL necessarily implies that I = J = L.

3. Finally we say {ai, bi, ci} is a (k,m)-PMF family
of vectors if it is n′-PMF for all n′ ≥ 1.

In other words, suppose we color all the 3m vectors
in {ai, bi, ci} with m different colors so that ai, bi and
ci are assigned the same color. Suppose further we are
given equal number of copies of {a1, b1, c1; . . . ; am, bm,
cm} and we wish to arrange them in three aligned rows
such that all the ai’s are in the first row, all the bi’s are
in the second row and all the ci’s are in the third row.
Then the only way of making every column summing
to 0k is to take the trivial arrangement in which every
column is monochromatic.

4.2 Construction Based on PMF Families of
Vectors Let {ai, bi, ci} be a (k,m)-PMF family of
vectors. Let n be an integer such that mk|n and let
n′ = n

mk . let {AI}I , {BJ}J and {CL}L be the sets of
n-bit vectors by concatenating n′ copies of {ai}, {bi}
and {ci} respectively. Note that |{AI}| = |{BJ}| =
|{CL}| = (n′m)!

(n′!)m . Now let fA, fB , fC : Fn
2 → {0, 1}

be three Boolean functions which are the characteristic
functions of sets {AI}I , {BJ}J and {CL}L respectively.
That is, fA(x) = 1 iff x ∈ {AI}, fB(x) = 1 iff x ∈ {BJ}
and fC(x) = 1 iff x ∈ {CL}.

Proposition 4.1. All the triangles in the function-
triple (fA, fB , fC) are pairwise disjoint.

Theorem 4.1. If (k,m)-PMF family of vectors exists,
then there exists ε0 = ε0(k,m) such that for all ε < ε0,
there is a n0 = n0(ε) and functions fA, fB , fC : Fn0

2 →
{0, 1} such that (fA, fB , fC) is ε-far from being triangle-
free and testing triangle-freeness in (fA, fB , fC) requires
the canonical tester to query the functions Ω((1

ε)α−o(1))

times, where α = 2− log m
k

1− log m
k

.

Proof. Given a small enough ε > 0, let n′ be the largest

integer such that ε ≤
(n′m)!
(n′!)m

2n′mk . Let fA, fB and fC be
the characteristic functions of {AI}I , {BJ}J and {CL}L

respectively defined above. Set n0 = n′mk and then
fA, fB and fC are Boolean functions on n0 variables.
LetN∆ be the number of triangles in (fA, fB , fC). Then
by Stirling’s formula, for all small enough ε (therefore

large enough n′ since we assume that m and k are fixed
constants),

N∆ =
(n′m)!
(n′!)m

=

√
2πmn′(mn′

e)mn′(1 +O(1
n′))(√

2πn′(n′

e)n′(1 +O(1
n′))

)m

= Θ

(
mmn′

n′
m−1

2

)
= 2(m log m)n′−m−1

2 log n′−o(1)

= 2(β−o(1))n0 ,

where β = log m
k .

By Proposition 4.1, all the triangles in (fA, fB , fC)
are pairwise disjoint, therefore modifying the function-
triple at one point in the domain can remove at most
one triangle. Hence dist((fA, fB , fC),T-free) ≥ N∆

2n0 ≥
ε. Consequently, the query complexity of the canon-
ical tester is at least Ω(22n0

N∆
) = Ω(2(2−β+o(1))n0) =

Ω((1
ε)α−o(1)). �

One can construct fA, fB , fC to be Boolean func-
tions on Fn

2 for any n ≥ n0, by simply making the func-
tions ignore the last n − n0 bits and behave as defined
above on the first n0 bits. In Theorem 4.5, we give a
construction by tensoring with bent functions so that
the resulting functions depend on all n bits.

We conjecture the following to be true.

Conjecture 4.1. There are infinitely many (k,m)-
PMF families of vectors with m ≥ 2k(1−ok(1)) as k (and
hence m as well) tends to infinity.

By Theorem 4.1, Conjecture 4.1 would imply a super-
polynomial query lower bound for testing triangle-
freeness in function-triples using the canonical tester.
To be more specific, if there exists a (k,m)-PMF family
of vectors with m ≥ 2k(1−ok(1)), then query complexity
is at least Ω((1

ε)
1

ok(1)). Moreover, when composed with
Theorem 5.1 it would also give a super-polynomial lower
bound for any one-sided triangle-freeness tester.

4.3 Existence of PMF Families of Vectors In
this section we present an efficient algorithm which,
given a family of vectors {ai, bi, ci}m

i=1, checks if it is
PMF. Let {ai, bi, ci}m

i=1 be a family of vectors such that
ai, bi, ci ∈ Fk

2 and ci = ai + bi for every 1 ≤ i ≤ m.
First we observe that if {ai, bi, ci} is PMF, then all the
vectors in {ai} must be distinct. The same distinctness
condition holds for vectors in {bi} and {ci}. From now
on, we assume these to be true. Next we define a set of
“collision blocks”.

Definition 4.2. (Collision Blocks) Let
{ai, bi, ci}m

i=1 be a family of vectors satisfying the
distinctness condition. We say (i, j, `) is a collision
block if ai + bj = c`, and for simplicity will just call it a
block. We denote the set of all blocks by B. We will call
a block trivial if i = j = ` and non-trivial otherwise.

Since {ai, bi, ci} satisfies the distinctness condition,
clearly |B| < m2. Let r be the number of non-trivial
blocks, and let {bl1, . . . , blr} be the set of non-trivial
blocks. For a collision block bls, we use blas , blbs and blcs
to denote the three indices of the colliding vectors. That
is, if bls = (i, j, `) is a block, then blas = i, blbs = j and
blcs = `.

Now suppose {ai, bi, ci}m
i=1 is not PMF. Then by

the definition of PMF, there exists an integer n′ such
that AI , BJ , CL ∈ {0, 1}n′mk, AI + BJ = CL and I,
J , and L are not the same sequence of indices. We
consider the equation AI + BJ = CL as a tiling of
3 × (n′m) k-bit vectors: the first row consists of the
n′m vectors from {ai} with each ai appearing exactly
n′ times and the ordering is consistent with that of AI .
Similarly we arrange the second row with vectors from
{bi} according to BJ and the third row with vectors
from {ci} according to CL. Observe that when we look
at the columns of the tiling, each column corresponds
to a block in B. Now we remove all the trivial blocks,
then because I, J , and L are not identical sequences
of indices, there are some non-trivial blocks left in the
tiling. Since all the blocks removed are trivial blocks,
the remaining tiling still has equal number of ai, bi and
ci for every 1 ≤ i ≤ m. We denote these numbers by
y1, . . . , ym. Note that yi’s are non-negative integers and
not all of them are zero. Let the number of blocks bli
left in the tiling be xi, 1 ≤ i ≤ r. Again xi’s are non-
negative integers and not all zero. Moreover, we have
the following constraints when counting the number of
ai, bi and ci vectors, respectively, left in the tiling:


∑

j∈[r]:blaj =i xj − yi = 0∑
j∈[r]:blbj=i xj − yi = 0 (for every 1 ≤ i ≤ m)∑
j∈[r]:blcj=i xj − yi = 0

(4.1)

where

xj = number of type j blocks left after removing the
trivial blocks

and

yi = number of vectors ai (equiv. bi or ci) left after
removing the trivial blocks.

Lemma 4.1. {ai, bi, ci}m
i=1 is not PMF if and only there

is a non-zero integral solution to the system of linear
equations (4.1).

Writing equations (4.1) in matrix form, we have

M~Z = ~0,

where M is a 3m × (r + m) integer-valued matrix
(actually all entries are in the set {−1, 0, 1}) and

~Z = [x1, . . . , xr, y1, . . . , ym]T

is an (r + m) × 1 non-negative integer-valued column
vector.

The following observation of Domenjoud [15], which
essentially follows from Carathéodory’s theorem, gives
an exact characterization of when the system of equa-
tions (4.1) has a non-zero integral solution.

Theorem 4.2. ([15]) Let M be an s×t integer matrix,
then the Diophantine linear system of equations M~Z =
~0 with ~Z ∈ Nt has a non-zero solution if and only
if ~0 ∈ Conv(M1, . . . ,Mt), where Mi’s are the column
vectors of M and Conv(M1, . . . ,Mt) denotes the convex
hull of vectors M1, . . . ,Mt.

It is well known that checking point-inclusion in a
convex hull can be solved by Linear Programming, see
e.g. [10]. Put everything together, there is an efficient
procedure to check if a family of vectors {ai, bi, ci}m

i=1

is PMF or not. This enables us to find the following
(k,m)-PMF families of vectors.

Theorem 4.3. There are (3, 4)-PMF, (4, 7)-PMF and
(5, 13)-PMF families of vectors.

Proof. See Appendix A. �

We were unable to check the cases k ≥ 6 since they
are too large to do numerical calculations. However, our
best findings for k = 3, 4, 5 indicates that the exponent
α defined in Theorem 4.1 increases as k increases, which
we view as a supporting evidence for Conjecture 4.1.

Now using the (5, 13)-PMF family of vectors as the
building block, Theorem 4.1 implies the following.

Theorem 4.4. For all small enough ε, there is an n0 =
n0(ε) and functions fA, fB , fC : Fn0

2 → {0, 1} such that
(fA, fB , fC) is ε-far from being triangle-free and testing
triangle-freeness of (fA, fB , fC) requires the canonical
tester to query the functions Ω((1

ε)4.847···) times.

Tensoring regular bent functions on appropriate
number of bits with the function-triples constructed in
Theorem 4.4 yields the following Theorem.

Theorem 4.5. For all small enough ε there is an inte-
ger n0(ε) such that the following holds. For all integers
n ≥ n0, there is a function-triple (f ′A, f

′
B , f

′
C) such that

(f ′A, f
′
B , f

′
C) is ε-far from being triangle-free and testing

triangle-freeness in (f ′A, f
′
B , f

′
C) requires the canonical

tester to query the functions Ω((1
ε)4.847···) times. More-

over, (f ′A, f
′
B , f

′
C) depends on all n input variables.

5 Query Complexities of the Canonical Tester
and General One-sided Testers

In this section, we prove a general result between
the query complexities of an arbitrary one-sided tester
and the canonical tester, for a large class of algebraic
properties. A property in our class is specified 5 by
k vectors v1, . . . , vk in the vector space Fr

2. Following
the notation in [12], we call this set of vectors a rank-r
matroid M 6. An alternative, equivalent notation based
on solutions of systems of linear equations is adopted
in [30].

Definition 5.1. (M∗-free) Given a rank-r matroid
M = (v1, . . . , vk) with each vi ∈ Fr

2, a k-tuple of
Boolean functions f1, . . . , fk : Fn

2 → {0, 1} is said to
be M∗-free if there is no full-rank linear transformation
L : Fr

2 → Fn
2 such that fi(L(vi)) = 1 for every i ∈ [k].

Otherwise, if such an L exists, f1, . . . , fk is said to
contain M at L, or equivalently, L is called a violating
linear transformation of M.

Remark 5.1. Let (e1, . . . , er) be a set of basis vectors
in Fr

2. Each linear map L in the above definition is
then specified by r vectors z1, . . . , zr in Fn

2 such that
L(ei) = zi for every 1 ≤ i ≤ r. The linear map L
is full rank if (z1, . . . , zr) are linearly independent.

To see that this generalizes the triangle-freeness
property, let e1 and e2 be the two unit vectors in F2

2

and consider the matroid (e1, e2, e1 + e2). Then the
three elements of the matroid will be mapped to all
triples of the form (x, y, x + y) by the set of full-rank
linear transformations, where x and y are two distinct
non-zero elements in Fn

2 . Also note that in this case,
r = 2 and k = 3.

The property of being M∗-free is not linear-
invariant. The original notion of M-freeness, as defined
in [12], allows L in the above definition be arbitrary
linear transformations, not restricted to full-rank ones,
and is hence truly linear-invariant. However, from a

5We assume that r is the minimal dimension of the vector
space which preserves the linear dependencies between v1, . . . , vk.
That is, r is the rank of the matrix with v1, . . . , vk as its columns.

6In this paper we do not employ any property of matroids.
Here matroid is simply a synonym for a collection of binary
vectors.

conceptual level, for a fixed matroid M, the property
of being M-free and being M∗-free are very similar. It
is analogous to the distinction between a graph being
free of H as a subgraph and being free of homomorphic
images of H, for a fixed graph H.

In terms of testability, we have some evidence that
the distinction is unimportant, although we are unable
to prove a formal statement at this time. For the
case when M = (e1, e2, e1 + e2), we can show that
a tester for triangle-freeness can be converted to one for
triangle∗-freeness. Consider a function-triple (f1, f2, f3)
that is promised to be either triangle∗-free or ε-far from
being triangle∗-free, where the distance parameter ε is
a constant. Define a new function-triple (f ′1, f

′
2, f

′
3) by

setting, for i = 1, 2, 3, f ′i(0) = 0 and f ′i(x) = fi(x) for
all x 6= 0. Observe that if (f1, f2, f3) is triangle∗-free,
then (f ′1, f

′
2, f

′
3) is triangle-free because setting f ′i(0) = 0

removes all degenerate triangles. On the other hand, if
(f1, f2, f3) is ε-far from triangle∗-free, then (f ′1, f

′
2, f

′
3)

is still ε′ ≥ ε − 3/2n far from triangle∗-free and, hence,
also from triangle-free. Since ε′ approaches ε as n
goes to infinity, assuming the continuity of the query
complexity as a function of the distance parameter, the
query complexity of triangle-freeness is therefore lower-
bounded 7 by the query-complexity of triangle∗-freeness.

For general binary matroids M = (v1, . . . , vk) with
each vi ∈ Fr

2, observe that if a function tuple is far from
being M-free, then almost all the linear maps where
M is contained are full-rank. This is because the main
theorems of [30] and [24] show that if a function tuple
is Ω(1)-far from M-free, then M is contained at Ω(2nr)
many linear maps, while there are only o(2nr) many
linear maps L : Fr

2 → Fn
2 of rank less than r. Therefore,

in fact, any M∗-free function tuple is o(1)-close to M-
free. If there were a more query efficient one-sided tester
for M-freeness than for M∗-freeness, it must be the
case that the few linear maps with rank less than r
where M is contained can somehow be discovered more
efficiently than the full-rank maps. But on the other
hand, we know of a large class of matroids M for which
there exist functions that are far from M-free but do
not contain M at any non-full-rank linear map. More
precisely, letting Ck = (e1, . . . , ek−1, e1 + · · ·+ek−1) be
the graphic matroid of the k-cycle, Theorem 1.3 in [12]
proves that for any odd k ≥ 5, there exist functions
which are far from Ck-free but contain Ck only at full-
rank linear maps (by showing a separation between the
classes Ck-free and Ck−2-free). So, for these reasons, it
seems unlikely that the query complexities of testing

7The other direction is easy to show in general: for any binary
matroid M and constant ε, an ε-tester for M∗-freeness can be
used to ε-test M-freeness (again assuming continuity of the query
complexity function).

M∗-freeness properties are very different from those
of testing M-freeness properties. We conjecture that
the query complexities of testing M-freeness and M∗-
freeness properties are the same 8 and leave this as an
open problem.

We first observe a simple fact about the behavior of
any one-sided tester for M∗-freeness.

Lemma 5.1. Let M be a matroid of k vectors. Then
any one-sided tester T for M∗-freeness rejects if and
only if it detects a violating full-rank linear transforma-
tion L of M.

Next, we define the canonical tester for M∗-
freeness, which naturally extends the previously de-
scribed canonical tester for triangle-freeness.

Definition 5.2. (Canonical Tester) Let M =
(v1, . . . , vk), with each vi ∈ Fr

2, be a rank-r matroid of
k vectors. A tester T for M∗-freeness is canonical if T
operates as follows. Given as input a distance parame-
ter ε and oracle access to k-tuple of Boolean functions
f1, . . . , fk : Fn

2 → {0, 1}, the tester T repeats the follow-
ing process independently `(ε) times: select uniformly
at random a rank-r linear transformation L : Fr

2 → Fn
2

and check if f contains M at L. If so, T rejects and
halts. If T does not reject after `(ε) iterations, then T
accepts. The query complexity of the canonical tester is
therefore at most `(ε) · k.

Our main theorem in this section is the following.

Theorem 5.1. For a given rank-r matroid M =
(v1, . . . , vk) with each vi ∈ Fr

2, suppose there is a
one-sided tester for M∗-freeness with query complexity
q(M, ε). Then the canonical tester for M∗-freeness has
query complexity at most O(k · q(M, ε)r).

Proof. Since the rank of M is r, without loss of gener-
ality, we assume that v1, . . . , vr are the r basis vectors
e1, . . . , er. Thus, any linear transformation L : Fr

2 → Fn
2

is uniquely determined by L(v1), . . . , L(vr).
Suppose we have a one-sided, possibly adaptive,

tester T for M-freeness with query complexity q(M, ε).
We say T operates in steps, where at each step i ∈
[q(M, ε)], T selects an element yi from Fn

2 (based on
a distribution that depends arbitrarily on internal coin
tosses and oracle answers in previous steps) and then

8It seems possible that some functions may have quite different
query complexities for these two properties. However, the query
complexities in our conjecture are measured as (non-increasing)
functions of the distance parameter ε, which are worst-case query
complexities among all input functions that are ε-far from the
corresponding properties.

queries the oracle for the value of fj(yi), for some
1 ≤ j ≤ k.

We convert the tester T into another tester T ′ that
operates as follows. Given oracle access to a function
tuple f1, . . . , fk : Fn

2 → {0, 1}, T ′ first selects, uniformly
at random, a non-singular linear map Π : Fn

2 → Fn
2 , and

then invokes the tester T , providing it with fj(Π(y))
whenever it queries for fj(y). For convenience the linear
map may be generated on-the-fly in the following sense.
Suppose in the first i−1 queries, T queries (y1, . . . , yi−1)
and T ′ queries (x1, . . . , xi−1). Now if T chooses a new
point yi to query, tester T ′ picks a Π uniformly at
random from all non-singular maps that are consistent
with all the points queried previously, that is, maps
satisfying Π(y1) = x1, . . . ,Π(yi−1) = xi−1, and feeds
the query result at Π(yi) to the original tester T .

Claim 5.1. T ′ is also a tester of (f1, . . . , fk) for M∗-
freeness with the same query complexity as T .

For convenience, let us fix the following notation.
At a step i ∈ [q(M, ε)], the element whose value is
requested by T is denoted yi, and the element of Fn

2

queried by T ′ (and whose value is supplied to T) is
denoted xi. Both xi and yi are of course random
variables, and also xi = Π(yi). We now make the simple
observation that at each step, no matter how cleverly T
selects the yi’s, each xi is either uniformly distributed
outside or lies inside the span of elements selected at
previous steps. More precisely:

Lemma 5.2. Fix an integer i ∈ [q(M, ε)]. Let y1, . . . , yi

be the elements in Fn
2 requested by T in the first i stages,

and elements x1, . . . , xi−1 be the points queried by T ′ in
the first i−1 steps. Then, xi, the element queried by T ′

at the ith step is either an element in span(x1, . . . , xi−1)
or is uniformly distributed in Fn

2 − span(x1, . . . , xi−1).

Due to Lemma 5.2, we may divide the queries of
T into two types: staying query if the newly queried
point is in the span of the previously queried points, and
expanding query if the newly queried point is a random
point outside the span of previously queried points. Let
the number of expanding queries of T ′ be t, t ≤ q(M, ε)
and let the subspace spanned by (x1, . . . , xq(M,ε)) be
VT ′ , then clearly dim(VT ′) = t and the expanding query
points generate VT ′ (i.e., the set of expanding queries
(xi1 , . . . , xit) form a basis for VT ′). Therefore, as a
corollary to Lemma 5.2, we have the following property
of VT ′ .

Corollary 5.1. The subspace VT ′ spanned by the
query points of tester T ′ is a random subspace of di-
mension t in Fn

2 .

Since each non-singular linear transformation is
determined by the images of the first r vectors in the
matroid, it suffices to study the distribution of these
r-tuples. The next Lemma shows, when we look at
any fixed linearly independent r-tuple inspected by T ,
the corresponding r-tuple queried by T ′ after a random
non-singular transformation of the space Fn

2 , distributes
uniformly over all linearly independent r-tuples.

Lemma 5.3. Let VT ′ be a random subspace in Fn
2 of di-

mension t < n generated by picking uniformly at ran-
dom a set of t linearly independent vectors (b1, . . . , bt) 9

in Fn
2 as basis. Let x = (x1, . . . , xr) be any fixed lin-

early independent r-tuple, r ≤ t, given by a set of linear
combinations of the basis vectors (b1, . . . , bt). Then x
is uniformly distributed over all linearly independent r-
tuples in (Fn

2)r.

By Lemma 5.1, T ′ rejects if and only if it detects
a violating full-rank linear transformation. Notice that
each full-rank linear transformation L : Fr

2 → Fn
2 corre-

sponds to a linearly independent r-tuple (z1, . . . , zr) ∈
(Fn

2)r, where the corresponding linear transformation
is given by Lz1,...,zr (u1, . . . , ur) =

∑r
i=1 uizi. Thus,

T ′ rejects iff it finds a linearly independent r-tuple
(z1, . . . , zr) such that the corresponding linear trans-
formation is violating. Furthermore, because v1 =
e1, . . . , vr = er, the elements z1, . . . , zr must lie in
the set of samples made by T ′. Then, since T ′ makes
q(M, ε) queries, the total number of linearly indepen-
dent r-tuples T ′ can check is at most q(M, ε)·(q(M, ε)−
1) · · · (q(M, ε) − r + 1) < q(M, ε)r. Let δ be the
fraction of violating linearly independent r-tuples z =
(z1, . . . , zr) ∈ (Fn

2)r. By Lemma 5.3, each linearly in-
dependent r-tuple checked by T ′ is drawn uniformly
at random from the set of all linearly independent r-
tuples in (Fn

2)r. That is, the probability that T ′ rejects
after checking any non-singular linear transformation
it inspects is exactly δ. By union bound, the proba-
bility that T ′ rejects (f1, . . . , fk) after q(M, ε) queries
is at most δq(M, ε)r. In order to reject with proba-
bility at least 2/3, the query complexity of T ′ is at
least q(M, ε) ≥ (2

3δ)1/r. Now consider the canoni-
cal tester T ′′ that runs in ` independent stages which,
at each stage, selects uniformly at random a linearly
independent r-tuple (z1, . . . , zr) and checks for viola-
tion of M∗-freeness. How many queries does T ′′ need
to make to achieve the same rejection probability on
(f1, . . . , fk) as T ′ does after q(M, ε) queries? Clearly
the probability that T ′′ rejects (f1, . . . , fk) after ` stages
is 1− (1− δ)` ≥ 2/3, for all ` ≥ `0 = 2

δ = O(q(M, ε)r).

9One may think of the basis of VT ′ as the set of expanding
query points (xi1 , . . . , xit) of tester T ′.

Since T ′′ makes k queries in each stage, the total num-
ber of queries T ′′ makes is at most k`0 = O(k·q(M, ε)r).

�

6 Concluding Remarks and Open Problems

We have given polynomial lower bounds on the query
complexities of canonical triangle-free tester for both
the triple function case and single function case. We
strongly believe that there exist super-polynomial lower
bounds for both of these problems. One possible ap-
proach is try to prove Conjecture 4.1 for the triple func-
tion case. It seems that one of the main difficulties
in understanding triangle-freeness lower bound is that
there is no good characterization of the distance be-
tween a Boolean function and the set of triangle-free
functions (as opposed to the linearity case, where the
distance is exactly characterized by the Fourier coeffi-
cients of the function). It is also interesting to study
the query complexities of (cycle) Cr-freeness for r ≥ 4.

Another interesting problem is whether the tower of
2’s type query upper bound of testing triangle-freeness
can be improved. Is it possible that some two-sided
testers can achieve much better upper bound? Finally,
is there a separation between multi-function and single-
function versions of triangle-freeness or other matroid-
freeness properties?

Acknowledgments

We thank Victor Chen and Madhu Sudan for collabo-
ration during the early stages of this research as well
as enlightening discussions. We are indebted to Ilan
Newman for asking a question that initiated the work
presented in Section 5. We thank Avinatan Hassidim,
Ronitt Rubinfeld and Andy Yao for helpful discussions
and Alex Samorodnitsky and an anonymous referee for
valuable comments.

References

[1] Noga Alon. Testing subgraphs in large graphs. Ran-
dom Structures and Algorithms, 21(3-4):359–370, 2002.

[2] Noga Alon, Eldar Fischer, Michael Krivelevich, and
Mario Szegedy. Efficient testing of large graphs. Com-
binatorica, 20(6):451–476, 2000.

[3] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf
Shapira. A combinatorial characterization of the
testable graph properties: it’s all about regularity. In
STOC’06: Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing, pages 251–260, 2006.

[4] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon
Litsyn, and Dana Ron. Testing low-degree polynomials
over GF(2). In Proceedings of Random 2003, pages
188–199, 2003.

[5] Noga Alon, Michael Krivelevich, Ilan Newman, and
Mario Szegedy. Regular languages are testable with
a constant number of queries. SIAM Journal on
Computing, 30(6):1842–1862, 2000.

[6] Noga Alon and Asaf Shapira. Testing subgraphs in
directed graphs. Journal of Computer and System
Sciences, 69(3):354–382, 2004.

[7] Noga Alon and Asaf Shapira. A characterization
of the (natural) graph properties testable with one-
sided error. In FOCS’05: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer
Science, pages 429–438. IEEE Computer Society, 2005.

[8] Noga Alon and Asaf Shapira. Every monotone graph
property is testable. In Harold N. Gabow and Ronald
Fagin, editors, STOC’05: Proceedings of the 37th
Annual ACM Symposium on Theory of Computing,
pages 128–137. ACM, 2005.

[9] Tim Austin and Terence Tao. On the testability and
repair of hereditary hypergraph properties. http:

//arxiv.org/abs/0801.2179, 2008.
[10] Thomas Bailey and John Cowles. A convex hull

inclusion test. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 9(2):312–316, 1987.

[11] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhod-
nikova. Some 3CNF properties are hard to test. SIAM
Journal on Computing, 35(1):1–21, 2005. Early version
in STOC’03.

[12] Arnab Bhattacharyya, Victor Chen, Madhu Sudan,
and Ning Xie. Testing linear-invariant non-linear
properties. In STACS’09, pages 135–146, 2009.

[13] Christian Borgs, Jennifer T. Chayes, László Lovász,
Vera T. Sós, Balázs Szegedy, and Katalin Veszter-
gombi. Graph limits and parameter testing. In
STOC’06: Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing, pages 261–270, 2006.

[14] Henri Cohen. A Course in Computational Algebraic
Number Theory. Springer, 2000.

[15] Eric Domenjoud. Solving systems of linear diophan-
tine equations: an algebraic approach. In In Proc. 16th
Mathematical Foundations of Computer Science, War-
saw, LNCS 520, pages 141–150. Springer-Verlag, 1991.

[16] Oded Goldreich, Shafi Goldwasser, and Dana Ron.
Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750,
1998.

[17] Oded Goldreich and Luca Trevisan. Three theorems
regarding testing graph properties. Random Structures
and Algorithms, 23(1):23–57, 2003.

[18] Timothy Gowers. Lower bounds of tower type for
Szemerédi’s uniformity lemma. Geom. Funct. Anal.,
7(2):322–337, 1997.

[19] Ben Green. A Szemerédi-type regularity lemma in
abelian groups, with applications. Geom. Funct. Anal.,
15(2):340–376, 2005.

[20] Peter Gruber. Convex and Discrete Geometry.
Springer, New York, 2007.

[21] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra,
and David Zuckerman. Testing low-degree polynomials

over prime fields. In FOCS’04: Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer
Science, pages 423–432, 2004.

[22] Tali Kaufman and Dana Ron. Testing polynomials over
general fields. In FOCS’04: Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer
Science, pages 413–422, 2004.

[23] Tali Kaufman and Madhu Sudan. Algebraic property
testing: The role of invariance. In STOC’08: Proceed-
ings of the 40th Annual ACM Symposium on Theory
of Computing, pages 403–412, 2008.

[24] Daniel Král’, Oriol Serra, and Llúıs Vena. A removal
lemma for systems of linear equations over finite fields,
2008.

[25] Daniel Král’, Oriol Serra, and Llúıs Vena. A combina-
torial proof of the removal lemma for groups. Journal
of Combinatorial Theory, 116(4):971–978, May 2009.

[26] Florence J. MacWilliams and Neil J.A. Sloane. The
Theory of Error-Correcting Codes. North-Holland,
1977.

[27] Michal Parnas, Dana Ron, and Alex Samorodnitsky.
Testing basic Boolean formulae. SIAM Journal on
Discrete Mathematics, 16(1):20–46, 2003.

[28] Vojtěch Rödl and Mathias Schacht. Generalizations of
the removal lemma. Combinatorica, To appear. Earlier
version in STOC’07.

[29] Ronitt Rubinfeld and Madhu Sudan. Robust charac-
terizations of polynomials with applications to program
testing. SIAM Journal on Computing, 25(2):252–271,
1996.

[30] Asaf Shapira. Green’s conjecture and testing linear-
invariant properties. In STOC’09: Proceedings of the
41st Annual ACM Symposium on Theory of Comput-
ing, pages 159–166, 2009.

A Proof of Theorem 4.3

Proof. [Proof of Theorem 4.3] By numerical calculation,
the following set of vectors is (3, 4)-PMF:

a1 = 110 b1 = 001
a2 = 010 b2 = 100
a3 = 101 b3 = 111
a4 = 011 b4 = 011.

The following set of vectors is (4, 7)-PMF:

a1 = 1101 b1 = 0011
a2 = 0001 b2 = 1011
a3 = 0010 b3 = 0111
a4 = 0110 b4 = 1001
a5 = 0000 b5 = 0000
a6 = 0111 b6 = 0100
a7 = 1001 b7 = 0101.

http://arxiv.org/abs/0801.2179
http://arxiv.org/abs/0801.2179

The following set of vectors is (5, 13)-PMF:

a1 = 11101 b1 = 01101
a2 = 11001 b2 = 11101
a3 = 11000 b3 = 10011
a4 = 00101 b4 = 10001
a5 = 10010 b5 = 00101
a6 = 11110 b6 = 10100
a7 = 10000 b7 = 10000
a8 = 01000 b8 = 01111
a9 = 00011 b9 = 01010
a10 = 11100 b10 = 00111
a11 = 00010 b11 = 11010
a12 = 01100 b12 = 10010
a13 = 01010 b13 = 11111. �

	1. Introduction
	Our Results
	Techniques
	Multi-function vs. Single-function
	Organization

	2. Preliminaries
	3. Lower Bound for Triangle-freeness in Single Functions
	4. Lower Bound for Triangle-freeness in Function-triples
	Perfect-matching-free Families of Vectors
	Construction Based on PMF Families of Vectors
	Existence of PMF Families of Vectors

	5. Query Complexities of the Canonical Tester and General One-sided Testers
	6. Concluding Remarks and Open Problems
	Appendix A. Proof of Theorem 4.3

