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Abstract

For Boolean functions that are ε-far from the set of linear functions, we study the lower
bound on the rejection probability (denoted by rej(ε)) of the linearity test suggested by Blum,
Luby and Rubinfeld. This problem is arguably the most fundamental and extensively studied
problem in property testing of Boolean functions.

The previously best bounds for rej(ε) were obtained by Bellare, Coppersmith, H̊astad,
Kiwi and Sudan. They used Fourier analysis to show that rej(ε) ≥ ε for every 0 ≤ ε ≤ 1/2.
They also conjectured that this bound might not be tight for ε’s which are close to 1/2. In
this paper we show that this indeed is the case. Specifically, we improve the lower bound of
rej(ε) ≥ ε by an additive constant that depends only on ε: rej(ε) ≥ ε + min{1376ε3(1 −
2ε)12, 1

4ε(1 − 2ε)4}, for every 0 ≤ ε ≤ 1/2. Our analysis is based on a relationship between
rej(ε) and the weight distribution of a coset code of the Hadamard code. We use both Fourier
analysis and coding theory tools to estimate this weight distribution.

1 Introduction

Property testing [22, 12] studies the robust characterizations of various algebraic and combinato-
rial objects. It often leads to a new understanding of some well-studied problems and yields insight
to other areas of computer science (see survey articles [11, 20, 21] for more on property testing).
The first problem that was studied under the framework of property testing, as well as being one
of the most extensively investigated property testing problems, is linearity testing. A Boolean
function f : {0, 1}m → {0, 1} is called linear if for all x, y ∈ {0, 1}m, f(x) + f(y) = f(x + y),
where addition is performed modulo 2. A function f is said to be ε-away from linear functions
if one needs to change f ’s value on an ε-fraction of its domain to make f linear. Blum, Luby
and Rubinfeld [9] considered the following randomized algorithm (henceforth referred to as the
“BLR test”) to test if a function is linear: Given a function f : {0, 1}m → {0, 1}, choose uni-
formly at random x, y ∈ {0, 1}m and reject if f(x) + f(y) 6= f(x+ y). We call the probability of
the test accepting linear functions the completeness of the test while the probability of rejecting
non-linear functions soundness. Note that in general, among other things, soundness depends on
the distance parameter ε.

In retrospect, it is quite surprising that the analysis of such a natural test turned out to be far
from simple. Much effort has been devoted to understanding the rejection probability behavior
of the BLR test [9, 3, 6, 4] due to its relation to the hardness of approximating some NP-hard
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problems [10, 6, 7, 5]. Other sequence of works considered the optimal tradeoff between query
complexity and soundness of some variants of the BLR test [28, 27, 24, 14, 25] and randomness
needed for linearity tests over various groups [8, 26]. Many generalizations and extension of the
BLR test were also studied; for example, testing linear consistency among multiple functions [2],
testing polynomials of higher degree or polynomials over larger fields [22, 1, 17, 15, 23], and
testing Long Codes [5, 13].

It is clear that the completeness of the BLR test is one, i.e., if f is linear, then the BLR
test always accepts. The most important quantity for the BLR test (and for many other tests as
well) is the soundness, since this parameter indicates how robust the test characterizes the objects
being tested. The soundness analysis of the BLR test was found to be pretty involved. Indeed,
various papers studied the following question: For every integer m > 0, real number ε ∈ [0, 1/2]
and all Boolean functions f : {0, 1}m → {0, 1} that are ε-away from linear functions, what is the
minimum rejection probability of the BLR linearity test. We denote this lower bound by rej(ε).
That is, if we let the probability that the BLR test rejects f by Rej(f) and denote the set of
linear functions by LIN, then

rej(ε)def= min
dist(f,LIN)=ε

Rej(f).

Understanding the behavior of rej(ε) as a function of ε is important not only because its relation
to the hardness of approximating some NP-hard problems but also due to the fact that it is a
natural and fundamental combinatorial problem. The hardest cases are those where 1

4 ≤ ε < 1
2 .

In this paper, by combining Fourier analysis and coding theoretic tools, we improve the pre-
viously known best lower bound for rej(ε) by an additive term depending only on ε for all
ε ∈ [1/4, 1/2). When combined with previously known bounds, our result shows that the cel-
ebrated Fourier analysis based soundness bound [4], rej(ε) ≥ ε, is suboptimal by an additive
term that depends only on ε for all ε ∈ (0, 1

2). In other words, we show that, for every constant
ε ∈ [14 ,

1
2), there exists a constant δ(ε) > 0 that is independent of m such that rej(ε) ≥ ε+ δ.

A key ingredient of our proof is viewing the Fourier coefficients in terms of the weight distribu-
tion of codewords and applying coding bounds to them. It is hoped that techniques developed in
coding theory may find other places to improve results on Boolean functions obtained by Fourier
analysis.

1.1 Related research

Blum, Luby and Rubinfeld [9] first suggested the BLR linearity test and showed, based on a
self-correction approach, that rej(ε) ≥ 2

9ε for every ε. Using a combinatorial argument, Bellare
et al. [6] proved that rej(ε) ≥ 3ε − 6ε2. This bound is optimal for small ε but is very weak
for ε’s that are close to 1

2 . Bellare and Sudan [7] further showed that rej(ε) ≥ 2
3ε when ε ≤ 1

3
and rej(ε) ≥ 2

9 when ε > 1
3 . All these mentioned results hold over general fields. This series of

works culminated in [4], where Fourier transform techniques found their first use in PCP-related
analysis. The results obtained by [4] hold for the binary field and they are the following:

rej(ε) ≥


3ε− 6ε2 0 ≤ ε ≤ 5

16 ;
45
128

5
16 ≤ ε ≤ 45

128 ;
ε 45

128 ≤ ε < 1
2 .

The results of [4] show that the bounds are tight for ε ≤ 5
16 . Numerical simulation results

of [4] suggested that the lower bound rej(ε) ≥ ε for ε > 5
16 may be improved, but not by too

much. Kiwi [18] and Kaufman and Litsyn [16] gave alternative proofs for the fact that rej(ε) ≥ ε
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for every ε (up to an additive term of O( 1
2m )). Their proofs are more coding theory oriented.

Specifically, the proofs are based on studying the weight distribution of the Hadamard code and
its ε-away coset as well as various properties of Krawtchouk polynomials.

1.2 The main result

In the following, we present our main result showing an improved bound for rej(ε). Specifically,
we prove

Theorem 1.1. Let ∆(γ) = 5γ
8 − γ2

32 . For all ε, 1/4 ≤ ε < 1/2 and for all γ, 0 < γ ≤ 1,

rej(ε) ≥ ε+ min{4096 (1−∆(γ))3 ε3(1− 2ε)12,
γ

2
ε(1− 2ε)4}.

As a simple corollary by plugging in γ = 1/2 and combining our new result with known bounds
for 0 ≤ ε ≤ 1

4 (i.e., rej(ε) ≥ 3ε− 6ε2), we get

Corollary 1.2. For all ε, 0 ≤ ε < 1/2,

rej(ε) ≥ ε+ min{1376ε3(1− 2ε)12,
1
4
ε(1− 2ε)4}.

Note that for every constant ε ∈ [14 ,
1
2), Theorem 1.1 improves upon rej(ε) ≥ ε by an additive

constant. Our result improves over all previously known bounds for every ε ∈ [ 45
128 ,

1
2), but

only by a very small quantity. For example, for ε = 0.4, our improvement of rej(ε) is about
1.024× 10−7. We believe our bound can be further improved systematically (we remark that our
current approach already gives bounds better than that stated in the Main Theorem for ε’s such
that 1/(1−2ε)2 are far from integers). However, as the numerical results shown in [4], one can not
expect to see too much improvement over rej(ε) ≥ ε. Our improvement over rej(ε) ≥ ε vanishes
at ε = 1

2 . This is indeed as expected since we know that rej(1
2) = 1

2 .1

1.3 Proof overview

The proof has three key ingredients. We use C to denote the Hadamard code of block length
n = 2m whose codewords are exactly the set of all linear functions.

The coset code C + f . There are two equivalent ways of viewing the BLR test: one is to
think of f as a Boolean function mapping {0, 1}m to {0, 1} and the BLR test simply picks x and
y uniformly at random and check if f(x) + f(y) = f(x + y). This functional viewpoint leads
naturally to the beautiful Fourier analysis approach of [4], which shows that 1 − 2rej(ε) can be
exactly expressed as a cubic sum of Fourier coefficients of the function (−1)f . Another way to
study the BLR test, first suggested in [18] and followed by [16], is to treat f as a vector f (by
abuse of notation) of length n with n = 2m. Since the set of linear functions may be viewed as
the set of codewords of the Hadamard code C, the BLR test can be viewed as picking a random
weight-3 codeword from C⊥ (which denotes the dual code of C) and checking if it is orthogonal
to f . 2 We combine these two viewpoints together by reinterpreting the Fourier analytic result in

1Although there are functions that are at distance exactly 1/2 from linear functions (e.g., the complements of
all linear functions), the bound rej( 1

2
) = 1

2
is only known to be met by some functions asymptotically [4].

2Recall that the scalar product between two vectors u, v ∈ {0, 1}m is u · vdef
=

Pm
i=1 uivi (mod 2). u and v are

called orthogonal if u · v = 0.
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the coding theoretic setting. Our simple but important observation is that the Fourier coefficients
of f are equivalent to the weights of the codewords in a coset of C. Therefore 1− 2rej(ε) can be
expressed as a simple function of the weight distribution of the code C+f . Specifically, 1−2rej(ε)
can be written as a normalized sum of cubes

∑
c∈C x

3
c , each xc is the weight of a codeword in

C + f , where C + f is an ε-away coset3 of the Hadamard code C.

Maximization Problem. In order to obtain a lower bound on rej(ε), we need to obtain an
upper bound on a sum that involves the weight distribution of C+f . To this end, we reformulate
our problem as a Maximal Sum of Cubes Problem, in which we look for an upper bound on
the sum of cubes of a set of integers under certain constraints. The bound rej(ε) = ε obtained
by [4] corresponds to the simple optimal configuration in which all the codewords of C + f are of
weight 1

2n except a constant number (i.e. 1
(1−2ε)2

) of them are of weight εn (one can use coding
theory argument to show that there can’t be more than 1

(1−2ε)2
codewords of weight εn). Moreover,

this is the unique configuration that meets the bound rej(ε) = ε. Any deviation from the optimal
configuration implies an improved lower bound on rej(ε). Our strategy thus is to show that this
optimal weight distribution is not achievable for C + f due to some special properties of the code
C + f . In particular, we will focus on the following two ways in which the optimal configuration
may break down:

1. There exists a codeword of weight larger than n
2 in C + f .

2. The number of codewords in C + f of weight at most (ε+ η)n is less than 1
(1−2ε)2

, for some
positive number η.

A natural tool to show that one of the above properties holds is the well-known Johnson Bound.
Roughly speaking, the Johnson bound offers a bound on the maximum number of codewords of
a specific weight in a code with some specific minimum distance. However, it turns out that the
Johnson bound does allow the optimal configuration for the code C + f (which yields rej(ε) = ε
as discussed above), so we fail to get any improvement by applying the Johnson bound directly
to C+ f . The way we overcome this is by considering a new code C|F of shorter block length and
applying to it a slightly stronger variant of the commonly used Johnson bound (a variant which
enables us to bound the number of codewords of at least (or at most) a specific weight). The
possible switch from the code C + f to the code C|F turns out to be crucial in our analysis.

From the code C + f to the code C|F . We consider the code C|F of block length n′ = εn,
obtained from C by restricting it to the εn non-zero coordinates of f . This code is a linear code
and in general has the same number of codewords as the original code C + f . Indeed we show
that if it contains fewer codewords, then an improved lower bound on rej(ε) is immediate. A
nice property of this new code is that there is a one-to-one correspondence between the weight
of a codeword in C|F and the weight of the corresponding codeword in C + f . Since C|F is a
linear code, its minimum distance equals the minimum weight of its codewords. If this minimum
weight is small, then by the one-to-one relation between the weights of C + f and that of C|F ,
the heaviest codeword in C + f will have a large weight, which yields an improved lower bound

3To make this clear, we remind the reader that the weight distribution of a code C is a set of integers that
represent the numbers of codewords in C of different weights, where the weight of a codeword is the number of
coordinates at which the codeword is non-zero. A vector f is ε-away from a code C if one needs to change an
ε-fraction of f ’s coordinates to make it belong to C. An ε-away coset of C is obtained by adding a vector f to every
codeword in C, where f is ε-away from C.
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for rej(ε) according to Condition 1 from above. However, if the maximum weight of C + f is
small, or equivalently, the minimum distance of C|F is large, then by applying the Johnson bound
to C|F , we get that the number of codewords lying between weight εn and (ε + η)n in C + f is
less than the optimal bound 1

(1−2ε)2
, which also yields an improved lower bound for rej(ε) by

Condition 2 mentioned before.
The intuitive reason that we benefit from applying the Johnson bound to C|F rather than to

C+f is straightforward: The block length of C|F is much smaller than the block length of C+f ,
but the number of codewords in C|F is the same as C + f .4

The relations between the three codes in consideration, namely C, C+ f , and C|F (for a code
C and a vector f that is ε-away from C), as well as the idea of looking at a restricted code of
smaller block length in order to get better coding bounds, might have other applications.

1.4 Organization

Section 2 introduces necessary notation and definitions. In Section 3 we show that, for every f
that is ε-away from linear, Rej(f) can be expressed as a function of the weight distribution of a
coset of the Hadamard code. Then we reformulate the problem of lower bounding rej(ε) as a
maximization problem in Section 4. In Section 5 we study the weight distribution of a restricted
code of the coset code and then prove the Main Theorem in Section 6. Several technical claims
appear in the Appendix.

2 Preliminaries

We write [n] for the set {1, . . . , n}, where n is a positive integer. Let v be a vector in {0, 1}n.
We use v(i) to denote the ith bit of v for every 1 ≤ i ≤ n. The weight of v, denoted wt(v) is the
number of non-zero bits in v. A code C of block length n is a subset of {0, 1}n. C is called a linear
code if C is a linear subspace. Let u, v ∈ {0, 1}n. The distance between u and v is defined to be
the number of bits at which they disagree: dist(u, v) = |{i ∈ [n] | u(i) 6= v(i)}| = wt(u− v). The
minimum distance of a code C is minu,v∈C,u 6=v dist(u, v). If C is a linear code, then the minimum
distance of C equals the minimum weight of codewords in C. Let C be a code of block length n.
The distance of v ∈ {0, 1}n from code C is the minimum distance between v and codewords in C,
i.e., dist(v, C)def= minc∈C dist(v, c). By abuse of notation, in the following, we use C to denote the
Hadamard code and C⊥ to denote its dual Hamming code.

Recall that a function c : {0, 1}m → {0, 1} is linear if for all x, y ∈ {0, 1}m, c(x) + c(y) =
c(x + y). An equivalent characterization is: c is linear if and only if c(x) = α · x =

∑m
i=1 αixi

(mod 2) for some α ∈ {0, 1}m, and we denote this linear function by cα and denote the set of all
such functions by LIN. Let f, g : {0, 1}m → {0, 1}. The (relative) distance between f and g is
defined to be the fraction of points at which they disagree: dist(f, g)def=Prx∈{0,1}m [f(x) 6= g(x)].
The distance between a function f and linear functions is the minimum distance between f and

4The reason we are able to improve the bound rej(ε) ≥ ε by a constant is more subtle: For 1
4
≤ ε ≤ 1

2
, there

is a “reciprocal” relationship between the relative weights of codeword in C and corresponding codeword in C|F ;
that is, the smaller the relative weight in C, the larger the relative weight in C|F , and vice versa. Note that the
denominator of the expression in the Johnson bound is d

n
− 2w

n
(1− w

n
) after dividing by n2. Therefore the Johnson

bound will give better bounds when w
n

(1− w
n

) gets smaller, or, when w/n is very close to either 0 or 1. By switching

from C to C|F , w
n

is mapped to w′

n′ . The advantage of changing to C|F is that it makes the distance between w′

n′

and 1 smaller than the distance between w
n

and zero. This advantage disappears at ε = 1/2, therefore we get no
improvement at that point, as expected.
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any linear function: dist(f,LIN)def= ming∈LIN dist(f, g). A function f is said to be ε-away from
linear functions if its distance from linear functions is ε, and is said to be ε-far from linear functions
if the distance is at least ε.

Next we introduce some basic notions in Fourier analysis. We will focus on functions defined
over the Boolean cube. Note that the set of functions f : {0, 1}m → R forms a vector space of
dimension 2m. A convenient orthonormal basis for this vector space is the following collection of
functions called characters: ψα(x) = (−1)α·x = (−1)cα(x), where α ∈ {0, 1}m. Consequently, any
f(x) : {0, 1}m → R can be expanded as

f(x) =
∑

α∈{0,1}m

f̂αψα(x),

where f̂α = 〈f, ψα〉
def= 1

2m

∑
x∈{0,1}m f(x)ψα(x) is called the α-th Fourier coefficient of f . Define

h(x) = (−1)f(x). Note that the range of h(x) is {−1, 1}.
One can encode f as an n = 2m bit codeword in {0, 1}n by enumerating all its values on

the Boolean cube, and by abuse of notation we denote this codeword by f . The same encoding
applied to the set of linear functions {cα}α gives rise to the Hadamard code C, in which we
(abusing notation again) denote the corresponding codewords by {cα}α.

For 0 ≤ ε ≤ 1/2, we let β = 1− 2ε.
We are going to use the following two elementary inequalities in our analysis. The proofs of

these inequalities can be found in the Appendix.

Lemma 2.1. For all real y with 0 ≤ y ≤ 1/2,

1
1− y

− y ≥ 1√
1− 2y2

.

Lemma 2.2. Let γ be a constant with 0 ≤ γ ≤ 1. Then for all real y with 0 ≤ y ≤ 1/2,

1
(1− y)2

− 1
1− 2y2

− γ
y

1− y
≥ (8− 5γ)y2.

3 The coset code C + f

Using Fourier analytic tools, Bellare et al. proved the following result in their seminal paper.

Lemma 3.1 ([4]). Let f : {0, 1}m → {0, 1} and h(x) = (−1)f(x). Then (recall that Rej(f) is the
probability that BLR test rejects f)

Rej(f) =
1
2

1−
∑

α∈{0,1}m

ĥ3
α

 .

Sometimes reformulating a Boolean function problem as a coding theoretic problem offers
new perspectives. To this end, we need to introduce the standard notion of coset codes. Let
D be a linear code of block length n and let f ∈ {0, 1}n such that f /∈ D, the f -coset of D is
D + f

def={c+ f | c ∈ D}. Note that |D + f | = |D|. The weight distribution or spectrum of a code
D is BD = (BD

0 , B
D
1 , · · · , BD

n ), where BD
i = |{c ∈ D | wt(c) = i}|.

Now we switch the viewpoint from Boolean functions to vectors in the Boolean cube. That
is, we transform Boolean function f : {0, 1}m → {0, 1} into a vector f ∈ {0, 1}n by evaluating
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the Boolean function f on every point in the Boolean cube. Using the relation between linear
functions and Hadamard code, we have the following coding theoretic formula for Rej(f):

Lemma 3.2. Let f ∈ {0, 1}n, then5

Rej(f) =
1
2

(
1− 1

n3

n∑
i=0

BC+f
i (n− 2i)3

)
. (1)

Proof. By the definition of Fourier coefficient,

ĥα = 〈h, ψα〉 = 〈(−1)f , (−1)cα〉 =
1

2m

∑
x∈{0,1}m

(−1)f(x)+cα(x)

= Prx[f(x) = cα(x)]− Prx[f(x) 6= cα(x)]

= 1− 2dist(f, cα)
n

=
n− 2wt(f + cα)

n
, (2)

where in the last step we use the fact that, for binary vectors u and v, dist(u, v) = wt(u − v) =
wt(u+ v). Lemma 3.1 now gives

Rej(f) =
1
2

1−
∑

α∈{0,1}m

ĥ3
α

 =
1
2

1−
∑

α∈{0,1}m

(n− 2wt(f + cα))3

n3


=

1
2

(
1−

∑
c∈C

(n− 2wt(f + c))3

n3

)

=
1
2

(
1−

∑n
i=0B

C+f
i (n− 2i)3

n3

)
,

where in the last step we change summation over codewords in C to summation over weights of
the codewords in C + f .

This relation between the Fourier coefficients of (−1)f and the weight distribution of the coset
code C+ f as employed in (2) and (1) seems to be new and may find applications in other places.

Since Rej(f) is now expressed as a weight distribution of the coset code C + f , our next step
is to study how the codewords in C + f are distributed so that to make the rejection probability
minimum.

4 Maximization problem

Note that we can rewrite Lemma 3.2 as

Rej(f) =
1
2
−
∑

c∈C (n− 2wt(c+ f))3

2n3
=

1
2
− 1

2n3

∑
c∈C

x3
c ,

5In fact we can state Lemma 3.2 in terms of xc (see definition in next Section) directly and without invoking
the notion of weight distribution of the coset code. However, we prefer to state it this way because studying the
spectrum of the coset code was the starting point of this research and we hope this connection may find applications
in other places.
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where
xc

def=n− 2wt(c+ f),

for every c ∈ C and there are n codewords in C. In order to prove an improved bound rej(ε) ≥
ε + δ, all we need to show is, for every f that is ε-away from linear functions, Rej(f) ≥ ε + δ.
Hence our goal of getting a better lower bound than ε for rej(ε) is equivalent to, for every vector f
with dist(f, C) = εn, getting a better upper bound than 1− 2ε for 1

n3

∑
c∈C x

3
c . This observation

motivates the following measure of improvement (gain) and reformulating the problem of lower
bounding rej(ε) as a Maximal Sum of Cubes Problem.

Definition 4.1. Let xc = n− 2wt(c+ f) for every c ∈ C. Define

gain(f) =
1
n3

(
(1− 2ε)n3 −

∑
c∈C

x3
c

)
.

Consequently, if dist(f, C) = εn, then Rej(f) = ε+ 1
2gain(f).

Since f is ε-away from C, it follows that xc ≤ (1 − 2ε)n for all c ∈ C. We further observe
another constraint on the set of integers {xc}c∈C is that their Euclidean norm is n2.

Claim 4.2. We have
∑

c∈C x
2
c = n2.

This claim follows directly from Parseval’s equality. An alternative proof, based on the norm-
preserving property of the Hadamard matrix, was given in [16].

The following lemma shows, if these two constraints are the only constraints on {xc}c∈C , then
the bound rej(ε) ≥ ε is essentially optimal. However, as we will see in the next section, since
{xc}c∈C are related to the weight distribution of C + f , the properties of the code C + f impose
more constraints on {xc}c∈C , thus making this optimal bound unattainable.

Lemma 4.3. Consider the following Maximal Sum of Cubes Problem: Let 0 < β ≤ 1 be a
constant and n be a large enough integer. For a set of n integers {xc}c∈C , find the maximum of∑

c∈C x
3
c under the constraints: ∑

c∈C

x2
c = n2

∀c ∈ C : xc ≤ βn.

The maximum is achieved at the following optimal configuration6: 1
β2 of the xc’s are assigned the

maximum value βn, and the rest are assigned the value zero. The maximum thus obtained is βn3.

Proof. Let {xc}c∈C be a set of integers satisfying the constraints in the Maximal Sum of Cubes
Problem. Then xc ≤ βn for all c ∈ C. Since x2

c ≥ 0, it follows that x3
c ≤ βnx2

c for all c ∈ C and
furthermore, equality holds if and only if xc = 0 or xc = βn. Now summing over c in C implies
that ∑

c∈C

x3
c ≤ βn

∑
c∈C

x2
c = βn3. (3)

Moreover, the equality in (3) is attained only if all of the values of xc are either zero or βn. This is
possible only if 1

β2 of the xc’s equal βn, and the rest equal zero. In that case
∑

c∈C x
3
c = βn3.

6Another requirement necessary to attain the optimal bound is that 1
β2 is an integer. Therefore we already see

some improvement upon rej(ε) ≥ ε without any further calculation for all ε such that 1
(1−2ε)2

is not an integer.
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Note that in our setting xc = n − 2wt(c + f), so β = 1 − 2ε and consequently
∑

c∈C x
3
c ≤

(1 − 2ε)n3, where 0 ≤ ε ≤ 1/2. We will employ the following two lemmas on gain(f) to obtain
improvement upon the bound rej(ε) ≥ ε.

Lemma 4.4. Let {xc}c∈C be a set of integers satisfying the constraints in the Maximal Sum of
Cubes Problem stated in Lemma 4.3. If there exists an xc̃ such that xc̃ = −δn for some δ > 0,
then gain(f) ≥ min{2δ3, 2β3}.

Proof. We first consider the case that δ ≤ β. Note that if we replace xc̃ with −xc̃ and keep other
integers unchanged, then the new set of integers satisfy all the constraints in the Maximal Sum
of Cubes Problem, so we have

βn3 ≥
∑

c∈C,c 6=c̃

x3
c + (−xc)3 =

∑
c∈C

x3
c + 2|xc̃|3 =

∑
c∈C

x3
c + 2(δn)3.

It follows that gain(f) ≥ 2δ3. Now consider the case that δ > β. Note that
∑

c 6=c̃ x
2
c = (1− δ2)n2

and xc ≤ βn for every c ∈ C, it follows immediately that
∑

c 6=c̃ x
3
c ≤ βn

∑
c 6=c̃ x

2
c = β(1 − δ2)n3.

Therefore,

gain(f) =
1
n3

(βn3 −
∑
c∈C

x3
c) ≥ βδ2 + δ3 ≥ 2β3.

Lemma 4.5. Let η > 0 and {xc}c∈C be a set of integers satisfying the constraints in the Maximal
Sum of Cubes Problem stated in Lemma 4.3. If the number of xc̃’s such that xc̃ ≥ (β − η)n is
at most b 1

β2 c − 1, then gain(f) ≥ β2η.

Proof. Set M = b 1
β2 c. Let {y1, . . . , yn} be a permutation of {xc}c∈C such that βn ≥ y1 ≥ · · · ≥ yn.

We have y2
1 + · · ·+ y2

n = n2 and yM ≤ (β − η)n. Define T to be: T = y2
1 + · · ·+ y2

M−1. Then we
have T ≤ (M − 1)(βn)2 ≤ ( 1

β2 − 1)β2n2, and y2
M + · · ·+ y2

n = n2 − T . Therefore,

∑
c∈C

x3
c =

n∑
i=1

y3
i ≤ (

M−1∑
i=1

y2
i )βn+ (

n∑
i=M

y2
i )(β − η)n

= n2(β − η)n+ ηnT

≤ n2(β − η)n+ ηn(
1
β2

− 1)β2n2

= βn3 − β2ηn3.

5 From the code C + f to the code C|F
We denote by F the set of coordinates at which f is non-zero, i.e., F = {i ∈ [n] | f(i) = 1}.
Note that |F| = wt(f). In the following we consider a code C|F which will enable us to get some
insight into the weight distribution of the code C + f .

First observe that, since we are only interested in the weight distribution of C + f , without
loss of generality, we may assume that wt(f) = εn. To see this, suppose that c′ ∈ C is the closest
codeword to f (if there are more than one such codeword, then we may pick one arbitrarily).
Since dist(f, C) = εn, f can be written as f = c′ + cεn, with wt(cεn) = εn. Since C is a linear
code, C + f = {c + f | c ∈ C} = {c + c′ + cεn | c ∈ C} = {c̃ + cεn | c̃ ∈ C} = C + cεn, where
c̃
def= c+ c′.
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Definition 5.1. Let C be a code of block length n and f ∈ {0, 1}n be a vector of weight εn. We
define the code C|F of block length εn to be the code obtained by restricting code C to the non-zero
coordinates of f . For convenience of notation, we will use C ′ = C|F from now on and call it the
“restricted code” of C.

Recall that C is the Hadamard code of block length n. We denote the codeword 0n ∈ C by
c0. For every codeword c ∈ C, we use c′ to denote the corresponding codeword in the restricted
code C ′.

The following lemma shows a one-to-one correspondence between the weight of a codeword in
C + f and the weight of the corresponding codeword in C ′.

Lemma 5.2. Let c be a codeword in the Hadamard code C and c′ ∈ C ′ be the restriction of c to
coordinates in F . Let xc = n− 2wt(c+ f), then

xc =

{
(1− 2ε)n, if c = c0,
4wt(c′)− 2εn, otherwise,

where 0 ≤ ε ≤ 1/2.

Proof. For c = c0, wt(c0 + f) = wt(f) = εn, hence xc0 = (1 − 2ε)n. Next we consider the case
that c 6= c0. Since C is a Hadamard code, wt(c) = n/2, i.e., there are n/2 ones and n/2 zeros in c.
Because c has wt(c′) ones in coordinates that are in F , c has n/2−wt(c′) ones in coordinates that
are in [n] \ F . Note that f does not flip the bits in [n] \ F , therefore c+ f also has n/2− wt(c′)
ones in coordinates that are in [n] \ F . Since |f | = εn, c has εn − wt(c′) zeros in coordinates
that are in F , therefore c + f has εn − wt(c′) ones in coordinates that are in F . It follows that
wt(c+ f) = n/2− wt(c′) + εn− wt(c′) = (1/2 + ε)n− 2wt(c′) and xc = 4wt(c′)− 2εn.

Lemma 5.3. Either C ′ is a linear code or gain(f) ≥ 2(1− 2ε)3, for every 1/4 ≤ ε ≤ 1/2.

Proof. Since C ′ is a restriction of linear code C, C ′ is a linear code if and only if all the codewords
in C ′ are distinct. If C ′ is not a linear code, then there exist two distinct codewords c1 and c2
such that c1 = c2. This implies that there is a codeword c′3 different from c′0 such that c′3 = ~0. By
Lemma 5.2, xc′3

= −2εn. Since 2ε ≥ 1− 2ε, by Lemma 4.4, gain(f) ≥ 2(1− 2ε)3.

Since 2(1 − 2ε)3 is always larger than the gain we are going to prove, from now on, we will
focus on the case that C ′ is a linear code. Let n′ = εn be the block length of C ′, and d′ be the
minimum distance of C ′. Note that C ′ contains n codewords. The following simple bound is
useful.

Theorem 5.4 (Plotkin bound [19]). Let D be a binary code of block length n and minimum
distance d. If d ≥ n/2, then D has at most 2n codewords.

Applying this bound to the restricted code C ′ yields the following:

Claim 5.5. For every 1/4 ≤ ε < 1/2, the minimum distance of C ′ satisfies d′ < n′/2.

Proof. Suppose d′ ≥ n′/2, then by the Plotkin bound stated in Theorem 5.4, C ′ has at most
2n′ = 2εn < n codewords, a contradiction.

10



6 Proof of the Main Theorem

In this section, we give a proof of the main theorem.

Theorem 1.1 (Main Theorem). Let ∆(γ) = 5γ
8 − γ2

32 . For all ε, 1/4 ≤ ε < 1/2 and for all γ,
0 < γ ≤ 1,

rej(ε) ≥ ε+ min{4096 (1−∆(γ))3 ε3(1− 2ε)12,
γ

2
ε(1− 2ε)4}.

Our proof will rely on the following basic coding theorem which bounds the number of code-
words of weight at least w. This is a slightly stronger variant of the well-known Johnson bound,
for a proof see, e.g., the Appendix in [5].

Theorem 6.1 (Johnson bound). Let D be a binary code of block length n and minimum distance
d. Let B(n, d, w) denote the maximum number of codewords in D of weight at least w. Suppose
nd > 2w(n− w), then

B(n, d, w) ≤ nd

nd− 2w(n− w)
. (4)

Remark on notation. In the following, by abuse of notation, we write gain(ε) for the minimum
of gain(f), where f ranges over all functions that are ε-away from linear functions.

The basic idea of the proof is the following. Since there is a one-to-one correspondence between
the weight of the codewords in C + f and that of C ′, we can safely work with the spectrum of
C ′ for the purpose of proving lower bound on gain(ε). Because C ′ is a linear code, its minimum
distance d is equal to the minimum weight of its codewords. If d is small (much smaller than
n′/2), then there is a low weight codeword in C ′. Consequently, there is an xc = −δn for some
positive δ, which implies a large gain by Lemma 4.4. However, if d is large (very close to n′/2),
then we can apply the Johnson bound in Theorem 6.1 to C ′ to show that the number of xc such
that xc ≥ (1− 2ε− η)n is less than 1

(1−2ε)2
for some positive η. This also implies a large gain by

Lemma 4.5. Moreover, as shown below in Lemma 6.2, there is a trade-off relation between these
two gains: If δ is small then η is large and vice versa. This trade-off enables us to prove that
gain(ε) = Ω(1) for every 1/4 ≤ ε < 1/2.

Now we fill in the details of the proof. Let 1/4 ≤ ε < 1/2 be a fixed constant, define a
quadratic function

G(x)def=(x− 1
4ε

)(x− 1
4ε

+ 1) +
1− 3(1− 2ε)2

4(1− 2(1− 2ε)2)
.

By Lemma 5.2, for all c 6= c0 it holds that 4wt(c′) − 2εn = xc ≤ (1 − 2ε)n, or equivalently
wt(c′) ≤ n

4 = n′

4ε . Suppose the minimum distance of C ′ is d = (1/2 − δ′)n′. By Claim 5.5, δ′ is
positive.

Note that xc0 = (1 − 2ε)n and for all c 6= c0, xc ≥ (1 − 2ε − η)n iff wt(c′) ≥ ( 1
4ε − η′)n′,

where η′ = η
4ε . Therefore, in order to apply Lemma 4.5, it suffices to show that there are at most

1
(1−2ε)2

− 2 codewords in C ′ of weight at least ( 1
4ε − η′)n′ for some η′ > 0. In the next lemma,

we show a trade-off relation between δ′ and η′. More specifically, there is a monotone decreasing
function F (·) relates δ′ and η′.

Lemma 6.2 (Trade-off Lemma). For every ε, 1
4 ≤ ε < 1

2 , there exist two positive numbers δ0 and
η0 which depend only on ε, and a function F which is parameterized only by ε and is monotone
decreasing in [0, η0], such that the following holds: For all δ′ with 0 < δ′ < δ0, let η′ = F (δ′), and
if the minimum distance of code C ′ is (1

2 − δ′)n′, then C ′ has at most 1
(1−2ε)2

− 2 codewords of
weight at least ( 1

4ε − η′)n′.

11



Proof. Let η′ = F (δ′) where F will be defined later. We apply the Johnson bound stated in
Theorem 6.1 to the restricted code C ′. Plugging in minimum distance d = (1/2 − δ′)n′ and
minimum weight w′def=( 1

4ε − η′)n′ into the right-hand side of (4), we impose that δ′ and η′ satisfy
the following:

1
2 − δ′

(1
2 − δ′)− 2( 1

4ε − η′)(1− 1
4ε + η′)

=
1

(1− 2ε)2
− 2. (5)

If we solve (5) to get F (δ′) = η′, then the statement in the lemma about η′ is also true for all
η′′ ≤ η′, provided η′ is not too large7. By some elementary algebraic manipulations, we have

δ′ =
1
2
− 2(

1
4ε

− η′)(1− 1
4ε

+ η′)
1− 2(1− 2ε)2

1− 3(1− 2ε)2

=
2(1− 2(1− 2ε)2)
1− 3(1− 2ε)2

G(η′). (6)

Note that since 1/4 ≤ ε < 1/2, we have both 1 − 2(1 − 2ε)2 and 1 − 3(1 − 2ε)2 are positive.
Therefore, whenever there are positive values η′ to make G(η′) positive, the corresponding δ′ will
be positive as well.

Rewrite G(η′) as G(η′) = η′2 − b̄η′ + c̄, where b̄ = 1
2ε − 1 > 0 and c̄ = 1−3(1−2ε)2

4(1−2(1−2ε)2)
− 1

4ε + 1
16ε2

.

Since b̄2 − 4c̄ = (1−2ε)2

1−2(1−2ε)2
> 0, there are two distinct real roots for G(η′) = 0. Denote these two

roots by η1 and η2 with η1 > η2. Then G(η′) assumes positive values for η′ > η1 and η′ < η2. Since
η1 >

1
4ε−

1
2 but we are bounding the number of codewords of weight at least w′ = ( 1

4ε−η
′)n′ > 1

2n
′,

which requires η′ < 1
4ε −

1
2 , so we only need to look at the region where η′ < η2. Therefore, we

have:

There are positive η′ to make G(η′) positive
⇐⇒ η2 > 0
⇐⇒ c̄ > 0

⇐⇒ 1− 3(1− 2ε)2

4(1− 2(1− 2ε)2)
− 1

4ε
+

1
16ε2

> 0

⇐⇒ (
1
2ε

− 1)2 >
(1− 2ε)2

1− 2(1− 2ε)2

⇐⇒ ε > 1/6.

That is, for all ε, 1/4 ≤ ε < 1/2, η2 > 0. Note that G(η′) is monotone decreasing in [0, η2], so the
inverse of G exists, which we denote by G−1. Finally, we set F (δ′) = G−1

(
1−3(1−2ε)2

2(1−2(1−2ε)2)
δ′
)
, δ0 =

2(1−2(1−2ε)2)
1−3(1−2ε)2

c̄ = 2(1−2(1−2ε)2)
1−3(1−2ε)2

(
1−3(1−2ε)2

4(1−2(1−2ε)2)
− 1

4ε + 1
16ε2

)
, and η0 = η2 to complete the proof.

Combining this Trade-off Lemma with the two lemmas regarding gain(ε), Lemma 4.4 and
Lemma 4.5, immediately implies a lower bound for gain(ε). However, such a lower bound is
of the form some minimum over the interval (0, η0). Due to the monotonicity of the two gain
functions we proved in Lemma 4.4 and Lemma 4.5, the next Lemma (Gain Lemma) shows that
the lower bound is at least the minimum of the two gain functions at any η′ in (0, η0), thus making

7That is, we require that x
def
= 1

4ε
− η′ > 1

2
. Since the function x(1 − x) is monotone decreasing for 1

2
< x < 1,

plugging some η′′ < η′ into (5) will only make the LHS smaller thus changing the equality into an inequality.

12



it easier to obtain a closed form for gain(ε). Note that since F is monotone in [0, η0], the inverse
of F exists in this interval and we denote it by F−1.

Lemma 6.3 (Gain Lemma). Let 1/4 ≤ ε < 1/2. For all η′ ∈ (0, η0), let δ′ = F−1(η′), then
gain(ε) ≥ min{128(εδ′)3, 4ε(1− 2ε)2η′}.

Proof. As before, we set δ = 4εδ′ and η = 4εη′. In the following, we consider ε to be any
fixed value in [14 ,

1
2). Suppose the minimum distance of C ′ is (1

2 − δ′)n′. Then on one hand,
there is an xc, such that xc = −4εδ′n = −δn. On the other hand, by Lemma 6.2, there are
at most 1

(1−2ε)2
− 2 codewords of weight at least ( 1

4ε − η′)n′ in C ′, which implies that there
are at most 1

(1−2ε)2
− 1 xc’s such that xc ≥ (1 − 2ε − 4εη′)n = (1 − 2ε − η)n (recall that the

codeword c0 is of weight zero but satisfies xc0 = (1 − 2ε)n). Denote the gains as functions
of η′ given in Lemma 4.4 and Lemma 4.5 by gainδ and gainη, respectively. Then we have8

gainδ(η′) = 2δ3 = 128ε3δ′3 and gainη(η′) = (1 − 2ε)2η = 4ε(1 − 2ε)2η′. Therefore gain(ε) ≥
min0<η′<η0 max{gainδ(η′),gainη(η′)}. Because G(η′) is monotone decreasing in [0, η0], then δ′

is monotone decreasing in [0, η0] by (6). Since gainδ is monotone increasing in δ′, it follows
that gainδ(η′) is monotone decreasing in [0, η0]. Also note that gainη(η′) is monotone increasing
in η′. Now at one end η′ = 0, gainδ(η′) > 0 and gainη(η′) = 0; at the other end η′ = η0,
gainδ(η′) = 0 and gainη(η′) > 0. Combining these facts we conclude that there exists an
η′′, 0 < η′′ < η0, such that gainδ(η′′) = gainη(η′′) = min0<η′<η0 max{gainδ(η′),gainη(η′)} ≤
gain(ε). By monotonicity of gainδ(η′) and gainη(η′) again, gain(ε) ≥ gainδ(η′′) = gainη(η′′) ≥
min{gainδ(η′),gainη(η′)} = min{128(εδ′)3, 4ε(1− 2ε)2η′}, for every η′ ∈ (0, η0).

In the following, our task is to derive an explicit bound for gain(ε). We begin with a simple
lower bound for η0.

Claim 6.4. For all 1/4 ≤ ε < 1/2 and let η0 be as defined in the Trade-off Lemma (Lemma 6.2),
then

η0 ≥
(1− 2ε)2

2
.

Proof. By definition,

η0 = η2 =
1
2

(
1
2ε

− 1−

√
(1− 2ε)2

1− 2(1− 2ε)2

)
=

1− 2ε
2

(
1
2ε

− 1√
1− 2(1− 2ε)2

)
.

Now change the variable from ε to y = 1−2ε and apply Lemma 2.1, the desired bound follows.

Set η′ = γ (1−2ε)2

4 , where 0 < γ ≤ 1 is a constant. Plugging η′ into G(η′) and after some
straightforward calculations, we get

G(η′) =
(1− 2ε)2

4

(
γ2

4
(1− 2ε)2 − γ

1− 2ε
2ε

+
1

4ε2
− 1

1− 2(1− 2ε)2

)
.

8Here once again we focus on the worst case: If δ > β, or equivalently, gainδ(η
′) = 2β3 = 2(1 − 2ε)3, then the

gain implied will be larger than that we are going to show.
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By changing variable to y = 1− 2ε and applying Lemma 2.2, we arrive at

G(η′) =
y2

4

(
γ2

4
y2 − γ

y

1− y
+

1
(1− y)2

− 1
1− 2y2

)
≥ y2

4

(
γ2

4
y2 + (8− 5γ)y2

)
= 2(1−∆(γ))(1− 2ε)4,

where ∆(γ)def= 5γ
8 − γ2

32 . Therefore,

δ′ =
2(1− 2(1− 2ε)2)
1− 3(1− 2ε)2

G(η′) ≥ 2G(η′) ≥ 4(1−∆(γ))(1− 2ε)4.

Plugging η′ and δ′ into Lemma 6.3, we get

gain(ε) ≥ min{8192(1−∆(γ))3ε3(1− 2ε)12, γε(1− 2ε)4}.

This completes the proof of the Main Theorem.
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A Proofs of Lemma 2.1 and Lemma 2.2

Lemma 2.1. For all real y with 0 ≤ y ≤ 1/2,

1
1− y

− y ≥ 1√
1− 2y2

.

The following proof is simpler than our original one and was suggested by an anonymous
referee.

Proof. Since 1
1−y − y = 1−y+y2

1−y it suffices to show that
√

1− 2y2 ≥ 1−y
1−y+y2 , or equivalently that

(1− y + y2)2(1− 2y2) ≥ (1− y)2. However,

(1− y + y2)2(1− 2y2)

= (1− y + y2)2 − 2y2(1− y + y2)2

= (1− y)2 + 2y2(1− y) + y4 − 2y2(1− y + y2)2.

To conclude, it suffices to show that

g(y)def=2(1− y) + y2 − 2(1− y + y2)2 ≥ 0.

Some simple calculations yield that g(y) = y(2−5y+4y2−2y3) = y
(
(2− y)(1− 2y) + 2y2(1− y)

)
.

The desired conclusion now follows since both y(2 − y)(1 − 2y) and 2y3(1 − y) are non-negative
for all 0 ≤ y ≤ 1/2.

Lemma 2.2. Let γ be a constant with 0 ≤ γ ≤ 1. Then for all real y with 0 ≤ y ≤ 1/2,

1
(1− y)2

− 1
1− 2y2

− γ
y

1− y
≥ (8− 5γ)y2.

Proof. We break the proof into two parts: First we show that the inequality holds for 0 ≤ y ≤ 2/7,
then we prove it for the interval 2/7 ≤ y ≤ 1/2.
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Proposition A.1. For all y and γ with 0 ≤ y ≤ 2
7 and 0 ≤ γ ≤ 1,

1
(1− y)2

− 1
1− 2y2

− γ
y

1− y
≥ (8− 5γ)y2.

Proof. By Taylor expansion,
1

(1− y)2
− 1

1− 2y2
− γ

y

1− y
− (8− 5γ)y2

=
∞∑

k=0

(k + 1)yk −
∞∑

k=0

(2y2)k − γ

∞∑
k=1

yk − (8− 5γ)y2

= (2− γ)y − (7− 4γ)y2 + (4− γ)y3 + (1− γ)y4 +
∞∑

k=5

(k + 1− γ)yk −
∞∑

k=3

(2y2)k

≥ (2− γ)y − (7− 4γ)y2 + (4− γ)y3 + (1− γ)y4 − 8y6

1− 2y2

≥ (2− γ)y − (7− 4γ)y2 + 3y3 − 8y6

1− 2y2
.

Since 0 ≤ y ≤ 2
7 , (2− γ)y ≥ 7

2(2− γ)y2 = (7− 7
2γ)y

2 ≥ (7− 4γ)y2, 8y6

1−2y2 ≤ 8y6

1−2( 2
7
)2
≤ 10y6, and

3y3 ≥ 3(7
2)3y6 ≥ 10y6, this completes the proof of the Proposition.

Proposition A.2. For all y and γ with 2
7 ≤ y ≤ 1

2 and 0 ≤ γ ≤ 1,

1
(1− y)2

− 1
1− 2y2

− γ
y

1− y
≥ (8− 5γ)y2.

Proof. Let z = 1 − 2y. After substituting z into the expression and some simplification, we see
that proving the original inequality is equivalent to proving, for 0 ≤ z ≤ 3

7 ,

4
(1 + z)2

− 2
2− (1− z)2

− γ
1− z

1 + z
≥ (2− 5

4
γ)(1− z)2.

Or, after dividing (1− z)2 on both sides,
4

(1− z2)2
− 2

2(1− z)2 − (1− z)4
− γ

1
1− z2

≥ 2− 5
4
γ.

Note that since 0 ≤ z ≤ 3
7 , we have γ

1−z2 ≤ γ

1−( 3
7
)2

= 49
40γ ≤

5
4γ, so the only thing that remains to

show is that 4
(1−z2)2

− 2
2(1−z)2−(1−z)4

≥ 2. Indeed,

4
(1− z2)2

− 2
2(1− z)2 − (1− z)4

≥ 2

⇐⇒ 4
(1− z2)2

− 2
1− (2z − z2)2

≥ 2

⇐⇒ 2
(1− z2)2

≥ 2− z2(2− z)2

1− z2(2− z)2

⇐⇒ 2(1− z2(2− z)2) ≥ (1− z2)2(2− z2(2− z)2)

⇐⇒ 2(1 + 2z − z2) ≥ 2(1 + z)2 − z2(1 + z)2(2− z)2

⇐⇒ (1 + z)2(2− z)2 ≥ 4
⇐⇒ z(1− z) ≥ 0.

This finishes the proof of the Proposition.
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Now combining Proposition A.1 and Proposition A.2 together completes the proof of Lemma 2.2.
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