
WikiDo

Nate Kushman

M. Brodsky, S. Branavan, D. Katabi, R. Barzilay,
M. Rinard, N. Van Dyke, and S. Bauer

Computer Usability Is A Mess

• Average user is constantly running into tasks
they don’t know how to do:

– Configure Outlook with their ISP

– Configure Outlook with Gmail

– Setting Facebook privacy settings to fully private

– Configure Remote Desktop on home computer

– Turn on wireless encryption on their home router

They Have the Web

Crowd-sourced solutions average task is covered

Provides only text  hard to use

What they want: Automation

Does not require any expertise, they “just run it”

 easy to use

Can only be produced by expert programmers

Will never scale to the wide diversity of tasks

The Best of Both Worlds

average task covered

Generated by the masses

How do we enable the masses to
collaborate on automating computer tasks

solution easy to use

Runs automatically

Our Approach

Automate By Doing

Use GUI actions as the primitive
instead of text or programming languages

WikiDo: Crowd Sourced Database of Automated Tasks

To contribute to the database:

User performs the task

- either on their own machine or in a VM

- WikiDo records a trace of GUI actions

WikiDo merges multiple traces to create a
canonical solution

To using the database:

WikiDo replays the canonical solution

- Can also walk through step-by-step

How Does WikiDo Record Traces?

Accessibility
API

Button Click

Edit Text Box

Open a Tab

…

Screen Reader

WikiDo

?

Trace 2Trace 1 Trace 3

Canonical Solution

Amy’s
Trace

Environment
Specific

Difference

Spurious
Action

Challenge: How do we differentiate between spurious
actions and environment specific differences?

Generating a Canonical Trace/Handling Differences Between Traces

Actions on GUI widgets can be modeled as:

• Update: pending change to system state
– e.g., check box, editing a text box

• Commit: write pending updates to system state
– e.g., OK/Cancel button

• Navigate: no change to system state

– e.g., opening a dialog box

Solution Idea: Track system state and identity
spurious actions as those that don’t affect final state

Transforming to Abstract Representation

Click Open Dialog

Check Check Box

Click OK

Click Open Dialog

UnCheck Check Box

Click OK

Raw GUI Actions Abstract Actions

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Navigate to Main

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Navigate to Main

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Navigate to Main

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Navigate to Main

3 Pass Removal of Spurious Actions
Pass 1: Removing Unnecessary Updates

Start at the end  See first the final update of each widget
Go backwards  Eliminating all non-final updates

Update (Dialog
i
, Widget

k
)

Navigate to Dialog
i

Commit (Dialog
i
, Widget

k
)

Navigate to Main

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Navigate to Main

3 Pass Removal of Spurious Actions
Pass 2: Removing Unnecessary Commits

Walk Forwards eliminating commits with no pending updates

Commit (Dialog
i
, Widget

k
)

Navigate to Main

Start at Main

Navigate to Dialog
i

Navigate to Main

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Navigate to Main

M

D

DD

D

3 Pass Removal of Spurious Actions
Pass 3: Removing Unnecessary Navigation

Walk forwards  Build a navigation graph
Remove any loops which contain no commits or updates

Navigate to Dialog
i

Start at Main

Start at Main

Navigate to Dialog
i

Update (Dialog
i
, Widget

j
)

Commit (Dialog
i
, Widget

j
)

Navigate to Main

3 Pass Mistake Removal Algorithm

Step 1: if-else execution
- Different Environments require different actions
- Observe the GUI to determine which branch to
take
in real-time

Step 2: Identify User Specific Actions:
- When users enter different values for the same
widget

Handling User Specific Environments

• Leverage wealth of how-to on-line documents

• Ideally we’d like to use fully automated
machine translation

– “Press OK” LEFT_CLICK on BUTTON:OK

• State of the art English to GUI translators are
correct only 37% of the time [Branavan09]

Scaling Beyond Even Crowd Sourcing

Combine Machine Learning With Crowd
Sourcing

Weak
Translator

37% Correct
Translations

63%?

Challenges:
-Don’t know which translations are correct
-Can’t ask humans to translate all remaining 63%

Challenge 1: Don’t know which translations are correct

• Many features help detect hard sentences but
don’t help translate:

– Unfamiliar phrases

– Multiple translations have equal likelihood

– etc.

• Combine these features using an ML Classifier

– Set of features  correct or incorrect

– Currently use a Support Vector Machine (SVM)

Solution Idea:
Hard Sentences Easier to Detect Than Translate

Correct
Translations

Weak
Translator

37% Correct
Translations

Challenge 2: Can’t ask humans for all remaining 63%

Solution Idea:
Also use human translations to retrain ML Trans

63%

Classifier

Iterate

Results

Merging: Experiment Setup

• Asked 12 CS students to each perform 5 tasks

• Recorded tasks using a prototype WikiDo recorder

• Merged together the 12 recordings to create a
single canonical recording

Successful Task Completion

1 2 3 4 5 6 7 8 9 10 11 12

IMAP

DS Print

AD

VScan

FF Cert

Users fail to successfully complete 20% of tasks

Users

0

20

40

60

80

IMAP DS Print AD Vscan Cert

To
ta

l A
ct

io
n

s User Average

WikiDo

Merging: Results

User Min/Max

Translation: Experiment Setup

• Built a prototype version of iterative translator
using an ML translator built by our co-authors

• 120 articles from the Microsoft KB

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

If an Oracle identifies hard sentences, how
much human help needed  100% correct?

%
ag

e
 o

f
D

o
cu

m
e

n
ts

 C
o

rr
e

ct

%age of Actions Performed by Humans
100% correct after humans perform only 7-8% of actions

37%

Classifier Accuracy

– 94% of steps classified correct are actually correct

– 88% of steps classified wrong are actually wrong

WikiDo

• A crowd sourced databased of automated tasks

– Contribute by doing

– Use by playing it back

• Merge together multiple examples to create a
single canonical solution

• Takes advantage of existing text by combining
machine translation with crowd sourcing

Contribute to WikiDo: http://wikido.csail.mit.edu

