
KarDo: Configuration Independent
Automation by Non-Experts

Nate Kushman & Dina Katabi

http://web.mit.edu/graphicidentity/symbols/logo.html
http://web.mit.edu/graphicidentity/symbols/logo.html

Users constantly run into
computer tasks they
don’t know how to do

Sync with iPod

Enable security on wireless router

Defragment hard drive

Tether to Blackberry

Set up VPN
…

Today, we repeatedly solve
the same computer problems!

Why?

No easy way to automate across
machine configurations!

Kardo

• Produces solution that works across configurations

• Observes users actions as they perform a task

KarDo

Collects a separate trace for every

possible configuration

A Naïve Strawman

But …

Space of Configurations is Huge

Config 2 Config 3 Config 1

Different Apps

Different App
configuration

Different
default settings

A task has multiple steps, and multiple options per step

Unlikely to have more than a few traces
for the majority of tasks

How do we handle configuration diversity
with just a few traces per task?

KarDo Can Generalize Using a Few Traces

Trace

click
Outlook
icon

out of office

From menu
out of office

Java updatesclick away
Java updater

Turn on out-of-office e-mails in Outlook

Trace

click
Outlook
icon

out of office

Automation machine

From menu
out of office ?

Java updatesclick away
Java updater

Turn on out-of-office e-mails in Outlook

KarDo Can Generalize Using a Few Traces

Java updaterclick away
Java updater

Trace

click
Outlook
icon

out of office

Automation machine

From menu
out of office ?

Different Task

change
view

Insight 1:
Can learn non-state-modifying actions
from traces for any task

Need far fewer traces!

Turn on out-of-office e-mails in Outlook

KarDo Can Generalize Using a Few Traces

Trace

click
Outlook
icon

out of office

Automation machine

From menu
out of office

?
No java
updates

Java updatesclick away
Java updater

change
view

Turn on out-of-office e-mails in Outlook

KarDo Can Generalize Using a Few Traces

Java updaterclick away
Java updater

Trace

click
Outlook
icon

out of office

Automation machine

From menu
out of office

change
view

Insight 2:
Can skip non-state-modifying actions
in the original trace

Allows us to remove
unnecessary dependencies

Turn on out-of-office e-mails in Outlook

KarDo Can Generalize Using a Few Traces

Contributions
• A system that automates across configurations,

with a few traces per task

• Requires no kernel or app modifications

• Used it to automated tasks from MS Help & eHow

E-mail
Turn off E-mail Read Receipts
Automatically forward e-mail to another address
Restore the unread mail folder
Highlight all messages sent only to me
Change an e-mail filtering rule
Add an e-mail filter rule
Make the recipient column visible in the Inbox
Order e-mail message by sender
Create an Outlook Search Folder
Turn on threaded message viewing in Outlook
Mark all messages as read
Automatically empty deleted items folder
Empty junk e-mail folder
Turn off Junk e-mail filtering
Consider people e-mailed to be safe senders
Send an e-mail with a receipt request
File Outlook contacts by last name
Set Outlook to start in Calendar mode
Add a new RSS feed
Change the Name of an RSS feed
Turn off Outlook Desktop Alerts
Reduce the size of a .pst file
Turn off notification sound
Switch calendar view to 24-hour clock

Office
Delete a worksheet in Excel
Turn on AutoSave in Excel
Disable add-ins in Word

Web
Browser Install Firefox
Configure SSL Proxy
Set Default Http Proxy

Networking
Enable firewall exceptions
Enable Windows firewall
Disable Windows firewall notifications
Disable Windows firewall
Disable IPv6 to IPv4 tunnel
Show the current IPv4 routing table
Show the current IPv6 routing table
Use OpenDNS
Stop caching DNS replies
Use Google’s Public DNS servers
Use DNS server from DHCP
Configure system to pick routes based on link speed
Set routing interface metric

System
Analyze hard drive for errors
Defragment hard drive
Enable Automatic Updates
Set Up Remote Desktop
Hide the Outlook icon in the System tray
Change to Classic UI
Delete an Item from the Task Bar
Change desktop background color
Enable Accessibility Options
Auto-Hide the Taskbar
Change date to Long Format
Set Visual Effects for Performance
Set Outlook as default E-mail program
Enable Password on Screen Saver

Use Google’s public DNS server

Defragment hard drive

Configure SSL proxy

Turn on AutoSave in Excel

Automatically forward e-mail to another address

Contributions
• A system that automates across configurations,

with a few traces per task

• Requires no kernel or app modifications

• Used it to automated tasks from MS Help

• Using only 2 traces per task,

– KarDo automates 84% of configurations

– A baseline that tries both traces automates
only 18% of configurations

KarDo

Tracing
User

Actions

Generalizing to a Canonical
Solution

Replay
Tracing

User
Actions

Can’t rely on windowing layer:

- many applications use custom widget libraries

Challenge:
OS gives us only mouse clicks and keypresses
which are meaningless for other machines

For each widget:
Type: check box

Value: checked

Location: x1,y1, x2,y2

Text: “Enable IMAP”

Window Hierarchy: in view V, in window W,…

Solution:
Accessibility Interface

Uniquely identify each widget

Map mouse clicks & key-presses to GUI actions,
which are meaningful across machines

KarDo

Tracing
User

Actions

Generalizing to a canonical
solution

Replay
Tracing

User
Actions

Generalizing to a Canonical
Solution

Generalization
Distinguish state modifying actions from

non-state modifying actions

Update
pending change to state
- e.g. check a check box

Commit
write pending updates to state
- e.g. click “OK” button

Navigate
make new widgets available
- e.g. move to a new tab

State- Modifying

Non-State-
Modifying

Learn within a task

Learn across tasks

But which action is which?

Challenge:
How do we automatically map a GUI action
to Update, Commit or Navigate ?

Solution:
Machine Learning Classifier

SVM
Classifier

Action Label
Update
Commit

Navigate

(Widget type
Opens window
Changes state…

Solution:
Machine Learning Classifier

SVM
Classifier

Action Label
Update
Commit

Navigate

(Widget type
Opens window
Changes state

Text: “OK”)

…

We can differentiate state-
modifying from non-state modifying

But, how do we generalize across
configurations?

Task 1 Task 2 Task 3

KarDo’s Generalization Framework

Task 1 Task 2 Task 3

KarDo’s Generalization Framework

Generalize Navigation
across all tasks

KarDo’s Generalization Framework

Generalize Navigation
across all tasks

out-of
office

Generalize State Mods.
within a task

Automated
solution

KarDo’s Generalization Framework

Generalize Navigation
across all tasks

Generalize State Mods.
within a task

out-of
office

KarDo’s Generalization Framework

Generalize Navigation
across all tasks

Generalize State Mods.
within a task

out-of
office

KarDo’s Generalization Framework

Generalize Navigation
across all tasks

Generalize State Mods.
within a task

out-of
office

KarDo

Tracing
User

Actions

Generalizing to a canonical
solution

Replay

KarDo

Tracing
User

Actions
Replay

Generalizing
State-Modifying

Actions

Generalizing
Navigation Actions

Generalizing Navigation

Generalizing Navigation

Global Navigation Graph

During replay,
Breadth first search from the widget in
automated solution to any widget on the screen

KarDo

Tracing
User

Actions
Replay

Generalizing
Navigation Actions

Generalizing
State-Modifying

Actions

Generalizing State-Modifying Actions

Are all Update and Commit actions necessary?

Open Word

Copy+Paste in Word

Close Word

Open Notepad

Copy+Paste into Notepad

Save in Notepad

Close Notepad

Update

Unnecessary

Generalizing State-Modifying Actions

Are all Update and Commit actions necessary?

Open Word

Copy+Paste in Word

Close Word

Open Notepad

Copy+Paste into Notepad

Save in Notepad

Close Notepad

Update

Update
Commit

Unnecessary

Unnecessary Actions

 Unnecessary Dependencies

Challenge:
How do we remove unnecessary updates
and commits?

Solution Idea:
Remove any action that does not contribute to
final system state

Click Open Dialog

Check Check Box

Click OK

Click Open Dialog

Click OK

Click Open Dialog

UnCheck Check Box

Click Cancel

Algorithm for Removing Unnecessary Actions

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Navigate to Main

Navigate to Dialog
i

Commit (Dialog
i
, Widget

k
)

Navigate to Main

Navigate to Dialog
i

Update (Dialog
i
, Widget

k
)

Navigate to Main

Algorithm for Removing Unnecessary Actions

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Update (Dialog
i
, Widget

k
)

Algorithm for Removing Unnecessary Actions

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Update (Dialog
i
, Widget

k
)

Pass 1: Unnecessary Updates
Go backwards Eliminate

updates with no commit

Update (Dialog
i
, Widget

k
)

Algorithm for Removing Unnecessary Actions

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)Commit (Dialog

i
, Widget

k
)

Removing Unnecessary Actions

Pass 2: Unnecessary Commits
Go forwards Eliminate all
commits w/o pending updates

Pass 1: Unnecessary Updates
Go backwards Eliminate

updates with no commit

Update (Dialog
i
, Widget

k
)

Commit (Dialog
i
, Widget

k
)

Removing Unnecessary Actions

Pass 2: Unnecessary Commits
Go forwards Eliminate all
commits w/o pending updates

Pass 1: Unnecessary Updates
Go backwards Eliminate

updates with no commit

Creating a Canonical Solution

A per task state-modifying graph, with if-then
branches

But how do we decide which branch to take for
a given configuration?

Creating a Canonical Solution

A per task state-modifying graph, with if-then
branches

Dynamically evaluate branches

KarDo

Tracing
User

Actions
Replay

Generalizing
Navigation Actions

Generalizing
State-Modifying

Actions

KarDo

Tracing
User

Actions
Replay

Generalizing
Navigation Actions

Generalizing
State-Modifying

Actions

Replay
Global Navigation

Graph
Per Task

Commit/Update Graph

Navigation
actions to Navigation

to next …
…

Experiments

Experimental Setup

• Implemented KarDo as thin client and a server

• Tested on 57 Tasks from eHow and MS Help sites

E-mail
Turn off E-mail Read Receipts
Automatically forward e-mail to another address
Restore the unread mail folder
Highlight all messages sent only to me
Change an e-mail filtering rule
Add an e-mail filter rule
Make the recipient column visible in the Inbox
Order e-mail message by sender
Create an Outlook Search Folder
Turn on threaded message viewing in Outlook
Mark all messages as read
Automatically empty deleted items folder
Empty junk e-mail folder
Turn off Junk e-mail filtering
Consider people e-mailed to be safe senders
Send an e-mail with a receipt request
File Outlook contacts by last name
Set Outlook to start in Calendar mode
Add a new RSS feed
Change the Name of an RSS feed
Turn off Outlook Desktop Alerts
Reduce the size of a .pst file
Turn off notification sound
Switch calendar view to 24-hour clock

Office
Delete a worksheet in Excel
Turn on AutoSave in Excel
Disable add-ins in Word

Web
Browser Install Firefox
Configure SSL Proxy
Set Default Http Proxy

Networking
Enable firewall exceptions
Enable Windows firewall
Disable Windows firewall notifications
Disable Windows firewall
Disable IPv6 to IPv4 tunnel
Show the current IPv4 routing table
Show the current IPv6 routing table
Use OpenDNS
Stop caching DNS replies
Use Google’s Public DNS servers
Use DNS server from DHCP
Configure system to pick routes based on link speed
Set routing interface metric

System
Analyze hard drive for errors
Defragment hard drive
Enable Automatic Updates
Set Up Remote Desktop
Hide the Outlook icon in the System tray
Change to Classic UI
Delete an Item from the Task Bar
Change desktop background color
Enable Accessibility Options
Auto-Hide the Taskbar
Change date to Long Format
Set Visual Effects for Performance
Set Outlook as default E-mail program
Enable Password on Screen Saver

Use Google’s public DNS server

Defragment hard drive

Configure SSL proxy

Turn on AutoSave in Excel

Automatically forward e-mail to another address

Experimental Setup

• Implemented KarDo as thin client and a server

• Tested on 57 Tasks from eHow and MS Help sites

• 20 diversely configured VMs

– 10 training VMs and 10 test VMs

• Each task performed manually on 2 training VMs

Testing

• Given 2 traces, automate using

–KarDo

–Baseline that runs both traces and
succeeds if either automates the task

• Test each solution on the 10 test VMs

18%

84%

Baseline KarDo

%
a
ge

 S
uc

ce
ss

fu
l

V
M

-
T
a
sk

 P
a
ir
s

Automation Success Rate

84%

Pe
rc

e
nt

ag
e
 o

f
V

M
-T

as
k

Pa
ir

s

0

20

40

60

80

100

0 10 20 30 40 50

%
 S

uc
ce

ss
fu

l
V

M
s

(Ordered) Task Id

Automation Success Rate
18% successBaseline:

0

20

40

60

80

100

0 10 20 30 40 50

(Ordered) Task Id

Automation Success Rate
Baseline: 18% successKarDo: 84% success

%
 S

uc
ce

ss
fu

l
V

M
s

Errors

4%
5%

7%

0%

2%

4%

6%

8%

Navigation

Mistakes

Missing Steps Classifier Errors

Conclusion

• KarDo automates tasks across configurations
based on just a few traces

• Using two traces it successfully automated MS
and eHow tasks on 84% of configurations

• Applicable to a wide variety of problems:
– Automated Helpdesk, Automation of repetitive

tasks, Automated GUI testing, etc.

