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the laser vibrometer. g, The correlation between the signals vs. focal length (exposure time: 490 µs, excitation magnitude: 15). h, Correlation vs. exposure time (focal length:
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exposure time: 490 µs). Only motions at the red point in a were used in our analysis.
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Supporting Information

1. Modal Shapes of a Pipe

We made a measurement of a pipe being struck by a hammer, viewed end on by a camera, to capture its radial-circumferential vibration

modes. A standard 4" schedule 40 PVC pipe was recorded with a high-speed camera at 24,000 frames per second (fps), at a resolution of

192 × 192 (SI Appendix, Fig. S10a). SI Appendix, Fig. S10b-f shows frames from the motion magnified videos for different resonant

frequencies showing the mode shapes, a comparison of the quantitatively measured mode shapes with the theoretically derived mode

shapes, and the displacement vs. time of the specific frequency band and the estimated noise standard deviation. The tiny modal

motions are seen clearly. Obtaining vibration data with traditional sensors with the same spatial density would be extremely difficult, and

accelerometers placed on the pipe would alter its resonant frequencies.

This sequence also demonstrates the accuracy of our noise analysis. The noise standard deviations show that the detected motions

prior to impact, when the pipe is stationary, are likely spurious.

2. Synthetic Validation

We validate the accuracy of our motion estimation on a synthetic dataset and compare its accuracy to NCORR, a digital image correlation

technique (32) used by mechanical engineers (33). In this experiment, we did not employ temporal filtering.

We created a synthetic dataset of frame pairs with known ground truth motions between them. We took natural images from the

frames of real videos (SI Appendix, Fig. S5a) and warped them according to known motion fields using cubic b-spline interpolation (34).

Sample motions fields, shown in SI Appendix, Fig. S5b, were produced by Gaussian blurring IID Gaussian random variables. We used

Gaussian blurs with standard deviations (SD), ranging from zero (no filtering) to infinite (a constant motion field). We also varied the

root-mean-square (RMS) amplitude of the motion fields from 0.001px to 3px. For each set of motion field parameters, we sampled five

different motion fields to produce a total of 155 motion fields with different amplitudes and spatial coherence. To test the accuracy of the

algorithms rather than their sensitivity to noise, no noise was added to the image pairs.

We ran our motion estimation technique and NCORR on each image pair. We then computed the mean absolute difference between

the estimated and ground truth motion fields. Then, for each set of motion field parameters, we averaged the mean absolute differences

across image pairs and divided the result by the RMS motion amplitude to make the errors comparable over motion sizes. The result is

the average relative error as a percentage of RMS motion amplitude (SI Appendix, Fig. S5c).

Both NCORR and our method perform best when the motions are spatially coherent (filter standard deviations greater than 10 px)

with relative errors under 10%. This reflects the fact that both methods assume the motion field is spatially smooth. Across motion sizes,

our method performs best for sub-pixel motions (5% relative error). This is probably because we assume that the motions are small when
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we linearize the phase constancy equation (Eq. 9). NCORR has twice the relative error (10%) for the same motion fields.

The relative errors reported in SI Appendix, Fig. S5c are computed over all pixels including those that are in smooth, textureless

regions where it is difficult to estimate the motions. If we restrict the error metric to only take into account pixels at edges and corners,

the average relative errors for small (< 1px RMS), spatially coherent (filter SD > 10px) motions drops by a factor of 2.5 for both methods.

We generated synthetic images that are slight translations of each other and added Gaussian noise to the frames (SI Appendix, Fig. S8a).

For each translation amount, we compute the motion between the two frames over 4000 runs. We compute the sample covariance matrix

over the runs as a measure of the ground truth noise level. We also used our noise analysis to estimate the covariance matrix at the points

denoted in red.

The off-diagonal term of the covariance matrix should be zero for the synthetic frames in SI Appendix, Fig. S8a. For both examples, it

is within 10−5px2 of zero for all translation amounts (SI Appendix, Fig. S8b).

The relative errors of the horizontal and vertical variances vs. translation (SI Appendix, Fig. S8c-d) are less than 5% for sub-pixels

motions. This is likely due to the random nature of the simulation. For motions greater than one pixel, the covariance matrix has relative

error of less than 25%.

3. Relation between Local Phase Differences and Motions

Fleet and Jepson have shown that contours of constant phase in image subbands such as those in the complex steerable pyramid

approximately track the motion of objects in a video (7). We make a similar phase constancy assumption, in which the following equation

relates the phase of the frame at time 0 to the phase of future frames:

φr,θ(x, y, 0) = φr,θ(x− u(x, y, t), y − v(x, y, t), t), [7]

where V(x, y, t) := (u(x, y, t), v(x, y, t)) is the motion we seek to compute. We Taylor-expand the right-hand side around (x, y) to get

∆φr,θ =
(
∂φr,θ

∂x
,
∂φr,θ

∂y

)
· (u, v) +O(u2, v2), [8]

where ∆φr,θ(x, y, t) := φr,θ(x, y, t)− φr,θ(x, y, 0), arguments have been suppressed and O(u2, v2) represents higher-order terms in the

Taylor expansion. Because we assume the motions are small, higher order terms are negligible and the local phase variations are

approximately equal to only the linear term:

∆φr,θ =
(
∂φr,θ

∂x
,
∂φr,θ

∂y

)
· (u, v). [9]

Fleet has shown that the spatial gradients of the local phase,
(
∂φr,θ
∂x

,
∂φr,θ
∂y

)
, are roughly constant within a subband and that they are

approximately equal to the peak tuning frequency of the corresponding subband’s filter (35). This frequency is a 2D vector oriented

orthogonal to the direction the subband selects for, which means that the local phase changes only provide information about the motions

perpendicular to this direction.
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4. Low-Amplitude Coefficients have Noisy Phase

Each frame of the input video I(x, y, t) is transformed to the complex steerable pyramid representation by being spatially bandpassed by

a bank of quadrature pairs of filters gr,θ and hr,θ, where r corresponds to different spatial scales of the pyramid and θ corresponds to

different orientations. We use the filters of Portilla and Simoncelli, which are specified and applied in the frequency domain (26). For one

such filter pair, the result is a set of complex coefficients Sr,θ + iTr,θ whose real and imaginary part are given by

Sr,θ = gr,θ ∗ I and Tr,θ = hr,θ ∗ I [10]

where the convolution is applied spatially at each time instant t. This filter pair is converted to amplitude Ar,θ and phase φr,θ by the

operations

Ar,θ =
√
S2
r,θ

+ T 2
r,θ

and φr,θ = tan−1(Tr,θ/Sr,θ) [11]

gr,θ and hr,θ are in quadrature relationship, which means that they select for the same frequencies, but are 90 degrees out of phase

like sin and cos. A consequence is that they are uncorrelated and have equal root mean square (RMS) value. Complex coefficients at

antipodal orientations are conjugate symmetric and contain redundant information. Therefore, we only use a half circle of orientations.

This transform has various properties that we don’t use in this work such as perfect invertibility and steerability. Invertibility is used

in motion magnification.

Suppose the observed video I(x, y, t) is contaminated with independent and identically distributed (iid) noise In(x, y, t) of variance σ2:

I(x, y, t) = I0(x, y, t) + In(x, y, t) [12]

where I0(x, y, t) is the underlying noiseless video. This noise causes the complex steerable pyramid coefficients to be noisy, which causes

the local phase to be noisy. We show that the local phase at a point has an approximate Gaussian distribution when the amplitude is high

and is approximately uniformly distributed when the amplitude is low.

The transformed representation has response

gr,θ ∗ I0 + gr,θ ∗ In and hr,θ ∗ I0 + hr,θ ∗ In. [13]

The first term in each expression is the noiseless filter response, which we denote S0,r,θ = gr,θ ∗ I0 for the real part and T0,r,θ = hr,θ ∗ I0

for the imaginary part. The second term in each expression is filtered noise, which we denote as Sn,r,θ and Tn,r,θ. At a single point,

Sn,r,θ and Tn,r,θ are Gaussian random variables with covariance matrix equal to

σ2
( ∑

x,y
gr,θ(x, y)2

∑
x,y

gr,θ(x, y)hr,θ(x, y)∑
x,y

gr,θ(x, y)hr,θ(x, y)
∑

x,y
hr,θ(x, y)2

)
= σ2

∑
x,y

gr,θ(x, y)2I [14]

where I is the identity matrix and equality follows from the fact that gr,θ and hr,θ are quadrature pairs.

Wadhwa et al.

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046

2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108

PNAS | January 15, 2017 | vol. XXX | no. XX | 17



DRAFT

We suppress the indices r, θ in this section for readability. From Eq. 11, the noiseless and noisy phase are given by

φ0 = tan−1(T0/S0) and φ = tan−1((T0 + Tn)/(S0 + Sn)). [15]

Their difference linearized around (S0, T0) is

tan−1
(
T0 + Tn

S0 + Sn

)
− tan−1

(
T0

S0

)
= SnS0 − TnT0

A2
0

+O

(
S2
n, SnTn, T

2
n

A4
0

)
. [16]

The terms S2
n and T 2

n are expected to be equal to their variance σ2
∑

gr,θ(x, y)2. Therefore, if A2
0 >> σ2

∑
gr,θ(x, y)2, higher order

terms are negligible. In this case, we see that the phase is approximately a linear combination of Gaussian random variables and is

therefore Gaussian. This is illustrated empirically by local phase histograms of the green and blue points in Extended Data Fig. S3a-e.

For these high amplitude points, we compute the variance of the phase of a coefficient:

E

[(
tan−1

(
T0 + Tn

S0 + Sn

)
− tan−1

(
T0

S0

))2
]

[17]

≈E

[(
T0Sn − S0Tn

A2
0

)2
]

[18]

=E
[
T 2

0 S
2
n − 2T0S0SnTn + S2

0T
2
n

A4
0

]
[19]

=
σ2
∑

g2
r,θ(T 2

0 + S2
0)

A4
0

[20]

=
σ2
∑

g2
r,θ

A2
0

. [21]

The first approximation follows from the linearization of Eq. 16.

When the amplitude is low compared to the noise level (A2
0 << σ2

∑
gr,θ(x, y)2), the linearization of Eq. 16 is not accurate. In this

case, S0 ≈ 0 and T0 ≈ 0 and phase is given by

tan−1
(
Tn

Sn

)
. [22]

Tn and Sn are uncorrelated Gaussian random variables with equal variance, which means that the phase is a uniformly random number.

The phase at such points contains no information and intuitively corresponds to places where there is no image content in a given pyramid

level (Extended Data Fig. S3e, red point).

5. Noise Model and Creating Synthetic Video

We adopt a signal-dependent noise model, in which each pixel is contaminated with spatially independent Gaussian noise with variance

f(I) where I is the pixel’s mean intensity (27)(36). Liu et al. (27) refer to this function f as a noise level function and we do the same.

This reflects that sensor noise is well-modeled by the sum of zero-mean Gaussian noise sources, some of which have variances that depend

on intensity (5). We show that this noise model is an improvement over a constant variance noise model in Extended Data Fig. S9.

The noise level function f is estimated from temporal variations in the input video, with observed intensities I(x, y, t). Assuming that

I is the sum of noiseless intensity I0 and a zero-mean Gaussian noise term In with variance f(I0), the temporal variations are given by
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the following Taylor expansion

I(x, y, t) =I0(x, y, t) + In(x, y, t) [23]

=I0(x− u(x, y, t), y − v(x, y, t), 0) + In(x, y, t) [24]

≈I0(x, y, 0)− ∂I0

∂x
u(x, y, t)− ∂I0

∂y
v(x, y, t) + In(x, y, t). [25]

[26]

The second equality is the brightness constancy assumption of optical flow (37, 38). We exclude pixels where the the spatial gradient(
∂I0
∂x

, ∂I0
∂y

)
has high magnitude from our analysis. At the remaining pixel, temporal variations in I are mostly due to noise

I(x, y, t) ≈ I0(x, y, 0) + In(x, y, t). [27]

At these pixels, we take the temporal variance and mean of I, which in expectation are f(I0) and I0 respectively. To increase robustness,

we divide the intensity range into 64 equally sized bins. For each bin, we take all those pixels with mean inside that bin and take the

mean of the corresponding temporal variances of I to estimate the noise level function f .

With f in hand, we can take frames from existing videos and use them to create simulated videos with realistic noise, but with known,

zero motion. In Extended Data Fig. S6a, we take a frame I0(x, y, 0) from a video of the metamaterial, filmed with a Phantom V-10, and

add noise to it via the equation

IS(x, y, t) = I0(x, y, 0) + In(x, y, t)
√
f(I0(x, y, 0)), [28]

where In now is Gaussian noise with unit variance. We motion magnify the resulting video 600 times in a 20Hz band centered at 50Hz to

show that motion magnified noise can cause spurious motions (Extended Data Fig. S6b).

We use the same simulation to create synthetic videos with which to estimate the covariance matrix of the motion vectors.

We quantify the noise in the motion vectors by estimating their covariance matrices ΣV(x, y). These matrices reflect variations in the

motion caused by noise. It is not usually possible to directly estimate them from the input video because both motions and noise vary

across frames and the true motions are unknown. Therefore, we create a noisy, synthetic video IS(x, y, t) with known zero true motion

(Eq. 28, Extended Data Fig. S7a-c).

We estimate the motions in IS (Extended Data Fig. S7d) using our technique with spatial smoothing, but without temporal filtering,

which we handle in a later step. This results in a set of 2D motion vectors VS(x, y, t), in which all temporal variations in VS are due to

noise. The sample covariance matrix over the time dimension is

ΣV = 1
N − 1

∑
t

(
VS(x, y, t)− V̄S(x, y)

) (
VS(x, y, t)− V̄S(x, y)

)T [29]

where V̄S(x, y) is the mean over t of the motion vectors. ΣV is a 2× 2 symmetric matrix, defined at every pixel, with only three unique
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components. In Extended Data Fig. S7e, we show these components, the variances of the horizontal and vertical components of the motion

and their covariance.

The motion V projected onto a direction vector dθ := (cos(θ), sin(θ)) is V · dθ and has variance σ2
V (θ) = dTθ ΣVdθ. Of particular

interest is the direction θ of least variance that minimizes σ2
V (θ). In the case of an edge in the image, the direction of least variance is

usually normal to the edge.

6. Analytic Justification of Noise Analysis

We analyze only the case when the amplitudes at a pixel in all subbands are large (Ar,θ >> σ2
∑

g2) because the local phases have a

Gaussian distribution in this case. Such points intuitively correspond to places where there is image content in at least two directions.

In this case, we show that the sample covariance matrix computed using a simulated video with no motions is accurate for videos with

sub-pixel small motions.

We reproduce the linearization of phase constancy equation (Eq. 9) with noise terms added to the phase variations (nt) and phase

gradient (nx, ny):

∆φr,θ + nt = (u, v) ·
(
∂φr,θ

∂x
+ nx,

∂φr,θ

∂y
+ ny

)
. [30]

The total noise term in this equation is nt + unx + vny . The noise terms nt, nx and ny are of the same order of magnitude. Since u and

v are much less than 1px, the predominant source of noise is from nt and the effects of nx and ny are negligible and we can ignore them,

allowing us to write the noisy version of the equation as

∆φr,θ + nt = (u, v) ·
(
∂φr,θ

∂x
,
∂φr,θ

∂y

)
. [31]

The motion estimate V is the solution to a weighted least squares problem, V = (XTWX)−1XTWY (Eq. 3). To simplify notation,

let B = (XTWX)−1XTW, the parts of the equation that don’t depend on time. Then, the flow estimate is

V = BY. [32]

where the elements of Y are the local phase variations over time. X and W contains the spatial gradients of phase and amplitude

respectively. We have demonstrated that X is close to noiseless (Eq. 31) and our assumption about the amplitudes being large means W

is also approximately noiseless, which means that B is noiseless.

We split Y into the sum of its mean Y0 and variance, a multivariate Gaussian random variable, denoted as Yn, that has zero-mean

and variance that depends only on image noise and local image content. Then, the flow estimate is

V = BY0︸︷︷︸
True flow

+ BYn︸︷︷︸
Noise Term (Covariance Matrix)

[33]
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The noise term doesn’t depend on the value of the true flow BY0. Therefore, the estimated covariance matrix is valid even when the

motions are non-zero, but small.

Movie Legends.
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Movie S1. Traveling waves of the tectorial membrane revealed. The displacement from mean location of the membrane in the input video on the left was amplified by twenty
times to produce the motion magnified video shown on the right. The original video consists of eight frames. The included video repeats these eight frames ten times for 80
frames and plays the result at 10 frames per second.

Movie S2. The input bridge video is concatenated with two motion magnified videos revealing different modal shapes of the bridge. Motions within a 1.6-1.8 Hz frequency band
are amplified 400 times to produce the video on the right, in which the first bending mode is revealed. Motions within a 2.4-2.7 Hz frequency band are amplified 250 times to
produce the video on the bottom, in which the first torsional mode is revealed. The impact of the central span (not shown in the video) occurs approximately five seconds after
the video’s start.
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Movie S3. The input pipe video concatenated with five motion magnified videos revealing different modal shapes of the pipe. The sub-videos were scaled up using bicubic
interpolation by a factor of 50%. The video was recorded at 24,096 FPS and played back at 30 FPS.

Movie S4. A probe vibrates the metamaterial at 50Hz. The input high speed video is shown on the left. Motions within a 40-60 Hz frequency band are amplified 80 times to
produce the video on the right, in which the propagation of the vibrations is revealed. The video was recorded at 500 FPS and is played back at 30 FPS.
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Movie S5. A probe vibrates the metamaterial at 100 Hz. The successful attenuation of vibrations are revealed in the motion magnified video on the right, in which motions in a
frequency band of 90-110 Hz are amplified 250 Hz. The high-speed input video of the metamaterial is shown on the left. It was recorded at 500 FPS and is played back at 30
FPS.
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