

- $\begin{array}{c} 805\\ 806 \end{array}$
- 000

865

866

867

from a laser vibrometer. c, b from 0.5-1.5s. d, b from 11-12s. e, The correlation between the two signals across the videos vs. the root-mean-square (RMS) motion size in millimeters measured by the laser vibrometer. f, The correlation between the two signals across the videos vs. the root-mean-square (RMS) motion size in pixels measured by the laser vibrometer. g, The correlation between the signals vs. focal length (exposure time: 490 µs, excitation magnitude: 15). h, Correlation vs. exposure time (focal length: 85mm, excitation magnitude: 15). Cropped frames from the corresponding videos are shown above. i, Correlation vs. relative excitation magnitude (focal length: 85 mm, exposure time: $490~\mu\text{s}).$ Only motions at the red point in $\mathbf a$ were used in our analysis.

 $1486 \\ 1487 \\ 1488$

1425

14 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXXX

1737	Supporting Information	1799
1738 1739 1740	1. Modal Shapes of a Pipe	1800 1801 1802
$1741 \\ 1741 \\ 1742$	We made a measurement of a pipe being struck by a hammer, viewed end on by a camera, to capture its radial-circumferential vibration	1803 1804
1743 1744	modes. A standard 4" schedule 40 PVC pipe was recorded with a high-speed camera at 24,000 frames per second (fps), at a resolution of	1805 1806
1745 1746 1747	192×192 (SI Appendix, Fig. S10a). SI Appendix, Fig. S10b-f shows frames from the motion magnified videos for different resonant	1807 1808 1800
1748 1749	frequencies showing the mode shapes, a comparison of the quantitatively measured mode shapes with the theoretically derived mode	1803 1810 1811
$1750 \\ 1751$	shapes, and the displacement vs. time of the specific frequency band and the estimated noise standard deviation. The tiny modal	1812 1813
1752 1753	motions are seen clearly. Obtaining vibration data with traditional sensors with the same spatial density would be extremely difficult, and	1814 1815
1754 1755 1756	accelerometers placed on the pipe would alter its resonant frequencies.	1816 1817 1818
1757 1758	This sequence also demonstrates the accuracy of our noise analysis. The noise standard deviations show that the detected motions	1819 1820
$1759 \\ 1760 \\ 1761$	prior to impact, when the pipe is stationary, are likely spurious.	1821 1822 1823
1761 1762 1763	2. Synthetic Validation	1823 1824 1825
1764 1765 1766	We validate the accuracy of our motion estimation on a synthetic dataset and compare its accuracy to NCORR, a digital image correlation	1826 1827 1828
1767 1768	technique (32) used by mechanical engineers (33) . In this experiment, we did not employ temporal filtering.	1829 1830
$1769 \\ 1770$	We created a synthetic dataset of frame pairs with known ground truth motions between them. We took natural images from the	1831 1832
1771 1772	frames of real videos (SI Appendix, Fig. S5a) and warped them according to known motion fields using cubic b-spline interpolation (34).	1833 1834
1773 1774 1775	Sample motions fields, shown in SI Appendix, Fig. S5b, were produced by Gaussian blurring IID Gaussian random variables. We used	1835 1836 1837
1776 1777	Gaussian blurs with standard deviations (SD), ranging from zero (no filtering) to infinite (a constant motion field). We also varied the	1838 1839
1778 1779	root-mean-square (RMS) amplitude of the motion fields from 0.001px to 3px. For each set of motion field parameters, we sampled five	1840 1841
1780 1781	different motion fields to produce a total of 155 motion fields with different amplitudes and spatial coherence. To test the accuracy of the	1842 1843
1782 1783 1784	algorithms rather than their sensitivity to noise, no noise was added to the image pairs.	1844 1845
1784 1785 1786	We ran our motion estimation technique and NCORR on each image pair. We then computed the mean absolute difference between	1840 1847 1848
1787 1788	the estimated and ground truth motion fields. Then, for each set of motion field parameters, we averaged the mean absolute differences	1849 1850
1789 1790	across image pairs and divided the result by the RMS motion amplitude to make the errors comparable over motion sizes. The result is	1851 1852
1791 1792	the average relative error as a percentage of RMS motion amplitude (SI Appendix, Fig. S5c).	1853 1854
1793 1794 1795	Both NCORR and our method perform best when the motions are spatially coherent (filter standard deviations greater than 10 px)	1855 1856 1857
1796 1797	with relative errors under 10%. This reflects the fact that both methods assume the motion field is spatially smooth. Across motion sizes,	1858 1859
1798	our method performs best for sub-pixel motions (5% relative error). This is probably because we assume that the motions are small when	1860

1861 1862	we linearize the phase constancy equation (Eq. 9). NCORR has twice the relative error (10%) for the same motion fields.	1923 1924
$1863 \\ 1864$	The relative errors reported in SI Appendix, Fig. S5c are computed over all pixels including those that are in smooth, textureless	$1925 \\ 1926$
1865 1866	regions where it is difficult to estimate the motions. If we restrict the error metric to only take into account pixels at edges and corners,	1927 1928
1867 1868	the average relative errors for small (< 1px RMS), spatially coherent (filter $SD > 10px$) motions drops by a factor of 2.5 for both methods.	1929 1930
1869 1870 1871	We generated synthetic images that are slight translations of each other and added Gaussian noise to the frames (SI Appendix, Fig. S8a).	1931 1932 1933
1872 1873	For each translation amount, we compute the motion between the two frames over 4000 runs. We compute the sample covariance matrix	$1934 \\ 1935$
$1874 \\ 1875$	over the runs as a measure of the ground truth noise level. We also used our noise analysis to estimate the covariance matrix at the points	$1936 \\ 1937$
1876 1877	denoted in red.	1938 1939
1878 1879 1880	The off-diagonal term of the covariance matrix should be zero for the synthetic frames in SI Appendix, Fig. S8a. For both examples, it	1940 1941 1942
1881 1882	is within 10^{-5} px ² of zero for all translation amounts (SI Appendix, Fig. S8b).	1943 1944
1883 1884	The relative errors of the horizontal and vertical variances vs. translation (SI Appendix, Fig. S8c-d) are less than 5% for sub-pixels	1944 1945 1946
1885 1886	motions. This is likely due to the random nature of the simulation. For motions greater than one pixel, the covariance matrix has relative	1947 1948
1887 1888	error of less than 25%.	$1949 \\ 1950$
1889 1890	3. Relation between Local Phase Differences and Motions	$1951 \\ 1952 \\ 1052$
1891 1892 1893	Fleet and Jepson have shown that contours of constant phase in image subbands such as those in the complex steerable pyramid	1953 1954 1955
1894 1895	approximately track the motion of objects in a video (7). We make a similar <i>phase constancy</i> assumption, in which the following equation	$1956 \\ 1957$
$1896 \\ 1897$	relates the phase of the frame at time 0 to the phase of future frames:	$1958 \\ 1959$
1898 1899 1900	$\phi_{r,\theta}(x,y,0) = \phi_{r,\theta}(x - u(x,y,t), y - v(x,y,t), t), $ [7]	$1960 \\ 1961 \\ 1962$
1901 1902	where $\mathbf{V}(x, y, t) := (u(x, y, t), v(x, y, t))$ is the motion we seek to compute. We Taylor-expand the right-hand side around (x, y) to get	1963 1964
1903 1904 1905	$\Delta\phi_{r,\theta} = \left(\frac{\partial\phi_{r,\theta}}{\partial x}, \frac{\partial\phi_{r,\theta}}{\partial y}\right) \cdot (u,v) + O(u^2, v^2), $ [8]	$1965 \\ 1966 \\ 1967$
1906 1907	where $\Delta \phi_{r,\theta}(x,y,t) := \phi_{r,\theta}(x,y,t) - \phi_{r,\theta}(x,y,0)$, arguments have been suppressed and $O(u^2, v^2)$ represents higher-order terms in the	1968 1969
1908 1909 1910	Taylor expansion. Because we assume the motions are small, higher order terms are negligible and the local phase variations are	1970 1971 1972
1910 1911 1912	approximately equal to only the linear term:	1972 1973 1974
1913 1914	$\Delta\phi_{r,\theta} = \left(\frac{\partial\phi_{r,\theta}}{\partial x}, \frac{\partial\phi_{r,\theta}}{\partial y}\right) \cdot (u, v). $ [9]	$1975 \\ 1976$
$1915 \\ 1916$	Fleet has shown that the spatial gradients of the local phase, $\left(\frac{\partial \phi_{r,\theta}}{\partial x}, \frac{\partial \phi_{r,\theta}}{\partial y}\right)$, are roughly constant within a subband and that they are	$1977 \\ 1978$
1917 1918	approximately equal to the peak tuning frequency of the corresponding subband's filter (35). This frequency is a 2D vector oriented	$1979 \\ 1980$
1919 1920 1921	orthogonal to the direction the subband selects for, which means that the local phase changes only provide information about the motions	1981 1982 1983
1922	perpendicular to this direction.	1984

1985	4. Low-Amplitude Coefficients have Noisy Phase	2047
1986		2048
1987	Each frame of the input video $I(x, y, t)$ is transformed to the complex steerable pyramid representation by being spatially bandpassed by	2049
1988	Each frame of the input video $I(x, y, t)$ is transformed to the complex sceerable pyramid representation by being spatially bandpassed by	2050
1989		2051
1990	a bank of quadrature pairs of filters $g_{r,\theta}$ and $h_{r,\theta}$, where r corresponds to different spatial scales of the pyramid and θ corresponds to	2052
1002		2055
1992	different orientations. We use the filters of Portilla and Simoncelli, which are specified and applied in the frequency domain (26). For one	2054
1994		2056
1995	such filter pair, the result is a set of complex coefficients $S_{r,\theta} + iT_{r,\theta}$ whose real and imaginary part are given by	2050
1996		2058
1997	$S_{-0} = a_{-0} * I \text{ and } T_{-0} = b_{-0} * I $ [10]	2059
1998	$S_{T,\sigma} = g_{T,\sigma} + 1 \text{ and } 1_{T,\sigma} = h_{T,\sigma} + 1 $	2060
1999		2061
2000	where the convolution is applied spatially at each time instant t. This filter pair is converted to amplitude $A_{r,\theta}$ and phase $\phi_{r,\theta}$ by the	2062
2001		2063
2002	operations	2064
2003		2065
2004	$A_{r,\theta} = \sqrt{S_{r,\theta}^2 + T_{r,\theta}^2} \text{ and } \phi_{r,\theta} = \tan^{-1}(T_{r,\theta}/S_{r,\theta})$ [11]	2066
2005	V	2067
2006		2068
2007	$g_{r,\theta}$ and $h_{r,\theta}$ are in quadrature relationship, which means that they select for the same frequencies, but are 90 degrees out of phase	2069
2008		2070
2009	like sin and cos. A consequence is that they are uncorrelated and have equal root mean square (RMS) value. Complex coefficients at	2071
2010		2072
2011	antipodal orientations are conjugate symmetric and contain redundant information. Therefore, we only use a half circle of orientations.	2073
2012		2074
2014	This transform has various properties that we don't use in this work such as perfect invertibility and steerability. Invertibility is used	2076
2015		2077
2016	in motion magnification.	2078
2017		2079
2018	Suppose the observed video $I(x, y, t)$ is contaminated with independent and identically distributed (iid) noise $I_n(x, y, t)$ of variance σ^2 :	2080
2019		2081
2020		2082
2021	$I(x, y, t) = I_0(x, y, t) + I_n(x, y, t) $ [12]	2083
2022		2084
2023	where $I(x, y, t)$ is the underlying pointed as which are supported as the complex strength properties to be point, which are supported as $I(x, y, t)$.	2085
2024	where $I_0(x, y, \iota)$ is the underlying holseless video. This holse causes the complex steerable pyramid coefficients to be holsy, which causes	2086
2025		2087
2026	the local phase to be noisy. We show that the local phase at a point has an approximate Gaussian distribution when the amplitude is high	2088
2027		2089
2028	and is approximately uniformly distributed when the amplitude is low.	2090
2029		2091
2030	The transformed representation has response	2092
2031		2095
2032	$a \rightarrow I + a \rightarrow I$ and $b \rightarrow I + b \rightarrow I$ [19]	2094
2034	$g_{r,\theta} * I_0 + g_{r,\theta} * I_n$ and $n_{r,\theta} * I_0 + n_{r,\theta} * I_n$. [13]	2096
2035		2097
2036	The first term in each expression is the noiseless filter response, which we denote $S_{0,r,\theta} = g_{r,\theta} * I_0$ for the real part and $T_{0,r,\theta} = h_{r,\theta} * I_0$	2098
2037		2099
2038	for the imaginary part. The second term in each expression is filtered noise, which we denote as $S_{n,r,\theta}$ and $T_{n,r,\theta}$. At a single point.	2100
2039		2101
2040	$S_{n,r,\theta}$ and $T_{n,r,\theta}$ are Gaussian random variables with covariance matrix equal to	2102
2041	and the second	2103
2042	$\left(\sum_{n=0}^{\infty} a_n a(x, y)^2 \sum_{n=0}^{\infty} a_n a(x, y) h_n a(x, y) \right)$	2104
2043	$\sigma^{2}\left(\sum_{\alpha}\frac{\sum_{x,y}g_{r,\theta}(x,y)h_{-\alpha}(x,y)}{a_{-\alpha}(x,y)h_{-\alpha}(x,y)}\sum_{\alpha}\frac{\sum_{x,y}g_{r,\theta}(x,y)h_{-\alpha}(x,y)}{b_{-\alpha}(x,y)^{2}}\right) = \sigma^{2}\sum_{x,y}g_{r,\theta}(x,y)^{2}I$ [14]	2105
2044	$\left(\ \angle x, y \ gr, \theta(w, g) \ r, \theta(w, g) \ \angle x, y \ r, \theta(w, g) \ \end{pmatrix} $	2106
2045		2107
2046	where I is the identity matrix and equality follows from the fact that $g_{r,\theta}$ and $h_{r,\theta}$ are quadrature pairs.	2108

2109	We suppress the indices r, θ in this section for readability. From Eq. 11, the noiseless and noisy phase are given by	2171
2110		2172
2111	$\phi_0 = \tan^{-1}(T_0/S_0) \text{ and } \phi = \tan^{-1}((T_0 + T_n)/(S_0 + S_n)).$ [15]	2173
2112	70 100 $(-0/20)$ 100 7 $(-0/20)$ $(-0$	2174
2113		2175
2114	Their difference linearized around (S_0, T_0) is	2176
2115		2177
2116	$\tan^{-1}\left(\frac{T_0+T_n}{T_0}\right) - \tan^{-1}\left(\frac{T_0}{T_0}\right) = \frac{S_n S_0 - T_n T_0}{S_n S_0 - T_n T_0} + O\left(\frac{S_n^2, S_n T_n, T_n^2}{S_n S_n T_n, T_n^2}\right).$ [16]	2178
2117	$(S_0 + S_n) (S_0) = A_0^2 (S_0) = A_0^2 (S_0)^2 = A_0^2 (S_0 + S_n)^2 = A_0^2 (S_0 + S_n)^$	2179
2118		2180
2119	The terms S_n^2 and T_n^2 are expected to be equal to their variance $\sigma^2 \sum g_{r,\theta}(x,y)^2$. Therefore, if $A_0^2 >> \sigma^2 \sum g_{r,\theta}(x,y)^2$, higher order	2181
2120		2182
2121	terms are negligible. In this case, we see that the phase is approximately a linear combination of Gaussian random variables and is	2183
2122		2184
2123	therefore Gaussian. This is illustrated empirically by local phase histograms of the green and blue points in Extended Data Fig. S3a-e	2185
2124	encience equiparte in a single second and single meterical parts in the second and single points in Extended Parts 1.8. But c.	2186
2125		2187
2126	For these high amplitude points, we compute the variance of the phase of a coefficient:	2188
2127		2189
2128	$E\left[\left(\tan^{-1}\left(\frac{I_0+I_n}{\pi}\right)-\tan^{-1}\left(\frac{I_0}{\pi}\right)\right)^2\right]$ [17]	2190
2129	$\begin{bmatrix} ((S_0 + S_n)) & (S_0) \end{pmatrix}$	2191
2130	$\begin{bmatrix} \begin{pmatrix} T, S & S, T \end{pmatrix}^2 \end{bmatrix}$	2192
2131	$\approx E \left[\left(\frac{I_0 S_n - S_0 I_n}{42} \right) \right] $ [18]	2193
2132		2194
2133	$\begin{bmatrix} T^2 S^2 - 2T_0 S_0 S_{-T_0} + S^2 T^2 \end{bmatrix}$	2195
2134	$=E\left[\frac{1}{40}\frac{1}{600}\frac{1}{60000}\frac{1}{100000000000000000000000000000$	2196
2135		2197
2136	$\sigma^2 \sum g_{r,\theta}^2 (T_0^2 + S_0^2)$ [50]	2198
2137	$= \underline{\qquad} A_0^4 $	2199
2138	$\sigma^2 \sum a^2$	2200
2139	$= \frac{1}{42} \sum_{r,\theta} \frac{1}{2} \sum$	2201
2140	A_0^2	2202
2141		2203
2142	The first approximation follows from the linearization of Eq. 16.	2200
2142		2204
2140	When the amplitude is low compared to the noise level $(A_0^2 \ll \sigma^2 \sum g_{r,\theta}(x,y)^2)$, the linearization of Eq. 16 is not accurate. In this	2200
2144		2200
2140	case, $S_0 \approx 0$ and $T_0 \approx 0$ and phase is given by	2201
2140 2147		2200
2147	$\tan^{-1}\left(\frac{T_n}{T_n}\right)$. [22]	2203
2140	(S_n)	2210
2145		2211
2150	T_n and S_n are uncorrelated Gaussian random variables with equal variance, which means that the phase is a uniformly random number	2212
2101		2210
2152	The phase at such points contains no information and intuitively corresponds to places where there is no image content in a given pyramid	2214
2100		2210
2104	level (Extended Data Fig. S3e, red point).	2210
2100		2217
2130	5. Noise Model and Creating Synthetic Video	2210
2107		2219
2158	We should show have a start which is a bight of the start	2220
2159	we adopt a signal-dependent noise model, in which each pixel is contaminated with spatially independent Gaussian noise with variance	2221
2160		2222
2161	f(I) where I is the pixel's mean intensity (27)(36). Liu et al. (27) refer to this function f as a noise level function and we do the same	2223
2162		2224
2163	This reflects that sensor noise is well-modeled by the sum of zero-mean Gaussian noise sources, some of which have variances that depend	2225
2164		2226
2165	on intensity (5). We show that this noise model is an improvement over a constant variance noise model in Extended Data Fig. So	2227
2166		2228
2167	The noise level function f is estimated from terms and constant in the inner state $f(t) = 1$, $f(t) = 1$.	2229
2168	The noise level function f is estimated from temporal variations in the input video, with observed intensities $I(x, y, t)$. Assuming that	2230
2169		2231
2170	I is the sum of noiseless intensity I_0 and a zero-mean Gaussian noise term I_n with variance $f(I_0)$, the temporal variations are given by	2232

2233	the following Taylor expansion	229
2234		229
2235	$I(x, y, t) - I_0(x, y, t) + I_0(x, y, t)$ [2]	229 31
2236	$I(x, y, v) = I_0(x, y, v) + I_n(x, y, v)$ [2]	^o 229
2237		229
2238	$=I_0(x - u(x, y, t), y - v(x, y, t), 0) + I_n(x, y, t)$ [2]	4 230
2239		230
2240	$\approx I_0(x, y, 0) - \frac{\partial I_0}{\partial x} u(x, y, t) - \frac{\partial I_0}{\partial x} v(x, y, t) + I_n(x, y, t). $ [2]	$5] \frac{230}{230}$
2241	∂x ∂y	230
2242	c)	6] 23(
2240	[4	0] 230 230
2245		230
2246	The second equality is the brightness constancy assumption of optical flow (37, 38). We exclude pixels where the spatial gradies	nt 230
2247		230
2248	$\left(\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y}\right)$ has high magnitude from our analysis. At the remaining pixel, temporal variations in I are mostly due to noise	233
2249		233
2250		233
2251	$I(x, y, t) \approx I_0(x, y, 0) + I_n(x, y, t).$ [2]	7] 233
2252		231
2253	At these pixels, we take the temporal variance and mean of I, which in expectation are $f(I_0)$ and I_0 respectively. To increase robustness	ss, 231
2254		233
2255	we divide the intensity range into 64 equally sized bins. For each bin, we take all those pixels with mean inside that bin and take the	ne 231
2256	the arrive one means of range more of equally sheet sheet for each ship the tane an ensee phone with mean more that she tane of	231
2257	mean of the corresponding temporal variances of I to estimate the noise level function f	231
2258	incari of the corresponding temporal variances of 1 to estimate the hoise level function j.	232
2259	With f in hand, we can take frames from existing videos and use them to greate simulated videos with realistic poise, but with know	232
2260	with j in hand, we can take frames from existing videos and use them to create simulated videos with realistic holse, but with know	^{II} , 232
2261		232
2262	zero motion. In Extended Data Fig. Soa, we take a frame $I_0(x, y, 0)$ from a video of the metamaterial, filmed with a Phantom V-10, ar	1d 232
2203		232
2204	add noise to it via the equation	202
2205		202
2200	$I_S(x, y, t) = I_0(x, y, 0) + I_n(x, y, t) \sqrt{f(I_0(x, y, 0))},$ [2]	$8] \frac{232}{239}$
2268		23
2269	where I_n now is Gaussian noise with unit variance. We motion magnify the resulting video 600 times in a 20Hz band centered at 50Hz	to 233
2270		23
2271	show that motion magnified noise can cause spurious motions (Extended Data Fig. S6b).	233
2272	enew enact metter magannea noise can cause sparreas metters (zinemaea zata 118, 505).	233
2273	We use the same simulation to create synthetic videos with which to estimate the covariance matrix of the motion vectors	233
2274	we use the same simulation to create synthesic videos with which to estimate the covariance matrix of the motion vectors.	233
2275	We quantify the point in the motion motion by estimation their complete motions $\Sigma_{i}(x,z)$. These motions reflect invitions in the	233
2276	we quantify the holse in the motion vectors by estimating their covariance matrices $\Sigma_{\mathbf{V}}(x,y)$. These matrices reflect variations in the	233
2277		233
2278	motion caused by noise. It is not usually possible to directly estimate them from the input video because both motions and noise variables.	ry 234
2279		23_{-}
2280	across frames and the true motions are unknown. Therefore, we create a noisy, synthetic video $I_S(x, y, t)$ with known zero true motion	n 234
2281		23^{4}
2282	(Eq. 28, Extended Data Fig. S7a-c).	23_{-}
2283		23_{-}
2284	We estimate the motions in I_S (Extended Data Fig. S7d) using our technique with spatial smoothing, but without temporal filtering	$_{1g}$, 234
2285		234
2286	which we handle in a later step. This results in a set of 2D motion vectors $\mathbf{V}_{S}(x, y, t)$, in which all temporal variations in \mathbf{V}_{S} are due	to $\frac{234}{25}$
2287		234
2288	noise. The sample covariance matrix over the time dimension is	235
2289		238
2290		235
2291	$\Sigma_{\mathbf{V}} = \frac{1}{N-1} \sum \left(\mathbf{V}_S(x, y, t) - \bar{\mathbf{V}}_S(x, y) \right) \left(\mathbf{V}_S(x, y, t) - \bar{\mathbf{V}}_S(x, y) \right)^T $ [2]	9] 235
2292		23
2293		233

²²⁹⁴ where $\bar{\mathbf{V}}_{S}(x,y)$ is the mean over t of the motion vectors. $\Sigma_{\mathbf{V}}$ is a 2 × 2 symmetric matrix, defined at every pixel, with only three unique 2356

$2357 \\ 2358$	components. In Extended Data Fig. S7e, we show these components, the variances of the horizontal and vertical components of the motion	$2419 \\ 2420$
2359	and their covariance.	2421
2360		2422
2361 2362	The motion V projected onto a direction vector $\mathbf{d}_{\theta} := (\cos(\theta), \sin(\theta))$ is $\mathbf{V} \cdot \mathbf{d}_{\theta}$ and has variance $\sigma_V^2(\theta) = \mathbf{d}_{\theta}^T \Sigma_{\mathbf{V}} \mathbf{d}_{\theta}$. Of particular	2423 2424
$2363 \\ 2364$	interest is the direction θ of least variance that minimizes $\sigma_V^2(\theta)$. In the case of an edge in the image, the direction of least variance is	2425 2426
2365		2427
2366	usually normal to the edge.	2428
2307		2429
2369	6. Analytic Justification of Noise Analysis	2430
2370		2432
2371	We analyze only the case when the amplitudes at a pixel in all subbands are large $(A_{r,\theta} >> \sigma^2 \sum q^2)$ because the local phases have a	2433
2372		2434
2373	Gaussian distribution in this case. Such points intuitively correspond to places where there is image content in at least two directions.	2435
2374		2436
2375	In this case, we show that the sample covariance matrix computed using a simulated video with no motions is accurate for videos with	2437
2370 2377		2430 2430
2378	sub-pixel <i>small</i> motions.	2440
2379		2441
2380	We reproduce the linearization of phase constancy equation (Eq. 9) with noise terms added to the phase variations (n_t) and phase	2442
2381		2443
2382	gradient (n_x, n_y) :	2444
2383		2445
2384	$\Delta\phi_{r,\theta} + n_t = (u,v) \cdot \left(\frac{\partial\phi_{r,\theta}}{\partial u} + n_x, \frac{\partial\phi_{r,\theta}}{\partial v} + n_y\right).$ [30]	2446
2386 2386	(Ox Oy /	2447
2387	The total noise term in this equation is $n_t + un_x + vn_y$. The noise terms n_t , n_x and n_y are of the same order of magnitude. Since u and	2449
2388		2450
2389	v are much less than 1px, the predominant source of noise is from n_t and the effects of n_r and n_y are negligible and we can ignore them.	2451
2390		2452
2391	allowing us to write the noisy version of the equation as	2453
2392		2454
2393 2304	$(\partial \phi_{r\theta} \ \partial \phi_{r\theta})$	2400 2456
2394 2395	$\Delta\phi_{r,\theta} + n_t = (u, v) \cdot \left(\frac{\gamma_{r,\theta}}{\partial x}, \frac{\gamma_{r,\theta}}{\partial y}\right). $ [31]	2450
2396		2458
2397	The motion estimate V is the solution to a weighted least squares problem, $\mathbf{V} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{Y}$ (Eq. 3). To simplify notation,	2459
2398		2460
2399	let $\mathbf{B} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}$, the parts of the equation that don't depend on time. Then, the flow estimate is	2461
2400		2462
2401		2463
2402	$\mathbf{V} = \mathbf{B}\mathbf{Y}.$ [32]	2404 2465
2404		2466
2405	where the elements of \mathbf{Y} are the local phase variations over time. \mathbf{X} and \mathbf{W} contains the spatial gradients of phase and amplitude	2467
2406	and a second and an product of the second	2468
2407	respectively. We have demonstrated that \mathbf{X} is close to noiseless (Eq. 31) and our assumption about the amplitudes being large means \mathbf{W}	2469
2408		2470
2409	is also approximately noiseless, which means that B is noiseless.	2471
2410		2472
⊿411 9⊿19	We split Y into the sum of its mean \mathbf{Y}_0 and variance, a multivariate Gaussian random variable, denoted as \mathbf{Y}_n , that has zero-mean	2413 2477
2413		2475
2414	and variance that depends only on image noise and local image content. Then, the flow estimate is	2476
2415		2477
2416		2478
2417	$\mathbf{V} = \underbrace{\mathbf{B}}_{\mathbf{Y}_0} + \underbrace{\mathbf{B}}_{\mathbf{Y}_n} $ [33]	2479
2418	True flow Noise Term (Covariance Matrix)	2480

2481	The noise term doesn't depend on the value of the true flow \mathbf{BY}_0 . Therefore, the estimated covariance matrix is valid even when the	2543
2482		2544
2483	motions are non-zero, but small.	2545
2484		2546
2485		2547
2486	Movie Legends.	2548
2487		2549
2488		2550
2489		2551
2490		2552
2491		2553
2492		2554
2493		2555
2494		2556
2495		2557
2496		2558
2497		2559
2498		2560
2499		2561
2500		2562
2501		2563
2502		2564
2503		2565
2504		2566
2505		2567
2506		2568
2507		2569
2508		2570
2509		2571
2510		2572
2511		2573
2512		2574
2513		2575
2514		2576
2515		2577
2516		2578
2517		2579
2518		2580
2519		2581
2520		2582
2521		2583
2522		2584
2523		2585
2524		2586
2525		2587
2526		2588
2527		2589
2528		2590
2529		2591
2530		2592
2531		2593
2532		2594
2533		2595
2534		2596
2535		2597
2536		2598
2537		2599
2538		2600
2539		2601
2540		2602
2541		2603
2542		2604

Movie S1. Traveling waves of the tectorial membrane revealed. The displacement from mean location of the membrane in the input video on the left was amplified by twenty times to produce the motion magnified video shown on the right. The original video consists of eight frames. The included video repeats these eight frames ten times for 80 rframes and plays the result at 10 frames per second. 2689

Movie S2. The input bridge video is concatenated with two motion magnified videos revealing different modal shapes of the bridge. Motions within a 1.6-1.8 Hz frequency band are amplified 250 times to produce the video on the right, in which the first bending mode is revealed. Motions within a 2.4-2.7 Hz frequency band are amplified 250 times to produce the video on the bottom, in which the first torsional mode is revealed. The impact of the central span (not shown in the video) occurs approximately five seconds after the video's start.

 $\begin{array}{c} 2700\\ 2701 \end{array}$

Movie S5. A probe vibrates the metamaterial at 100 Hz. The successful attenuation of vibrations are revealed in the motion magnified video on the right, in which motions in a frequency band of 90-110 Hz are amplified 250 Hz. The high-speed input video of the metamaterial is shown on the left. It was recorded at 500 FPS and is played back at 30 FPS.

 $2916 \\ 2917$

 $\begin{array}{c} 2902\\ 2903 \end{array}$