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1. Replacement for Laplacian Pyramid

In this section, we describe our method of designing a
new pyramid like the Laplacian pyramid, but with a better
inverse. Our method is inspired by Simoncelli and Freeman
and we review constraints and motivation from their paper
[6]. We use their techniques to design a 1D version of our
new pyramid. We then show how it can be converted to a
2D pyramid using the McClellan transform [4], that is more
efficient to compute than Simoncelli and Freeman’s original
replacement with non-separable filters.

The Laplacian pyramid decomposes an image into sub-
bands corresponding to different scales [1]. It does this by
decomposing an image into the sum of a high frequency
component and a low frequency component. The low fre-
quency component is then downsampled and the decompo-
sition is recursively applied to the downsampled image. The
levels of the pyramid form an overcomplete representation
of the image, in which each level corresponds to a different
set of spatial frequencies. The pyramid can be inverted by
upsampling the lowest level, adding it to the second low-
est level to form a new lowest level on which the inversion
process can then be recursively applied.

While the inversion is exact when the Laplacian pyra-
mid representation of the image is unmodified, it is less
than ideal when the pyramid is modified, such as for the
purposes of image compression or phase-based video mag-
nification [2]. If we view the modifications as noise and
the Laplacian pyramid as a linear transform T , then the
mean squared error optimal inverse is the pseudoinverse
(TTT )−1TT . When the downsampling and upsampling fil-
ters are separable Gaussian blurs, the inverse we described
in the previous paragraph is not the pseudoinverse and is
therefore suboptimal. In addition, the pseudoinverse is dif-
ficult to compute directly due to the matrix multiplications
and inversions. As a result, we seek to design a new pyra-
mid in which TTT = I , so that the pseudoinverse is simply
the transpose of the transform. We do this by adopting the
construction scheme proposed by [6], in which T is chosen
such that TTT = I and both T and TT can be evaluated
using a series of recursively applied convolutions and sub-
sampling operations.

Specifically, the pyramid we construct is specified by a
highpass filter hH [n] and a lowpass filter hL[n]. The image
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Figure 1. A signal processing diagram of our pyramid construc-
tion showing how a lowpass and highpass filter can be recursively
used with subsampling to produce a sequence of critically sampled
bandpassed images. The blocks ↓ 2 and ↑ 2 denote downsampling
and upsampling by a factor of 2 in both x and y. L and H denote
linear shift invariant lowpass and highpass filters respectively.

is highpassed to form the top level of the pyramid. Then, it
is lowpassed and downsampled. The decomposition is re-
cursively applied to the downsampled image to build the
pyramid (Fig. 1). The transpose of this operation when
viewed as a matrix multiplication is to upsample the down-
sampled image, lowpass it again and then add it to a high-
passed version of the next level up. To ensure that the in-
verse reconstructs the input image perfectly, we require that
the frequency responses of the lowpass and highpass filters,
HL(ω) and HH(ω) satisfy

|HL(ω)|2 + |HH(ω)|2 = 1 (1)

In addition, we do not want the downsampled images to be
aliased, which imposes the additional requirement that

|HL(ω)| = 0 for |ω| > π/2 (2)

Our construction is different than Simoncelli and Freeman
[6] because we first design a 1D pyramid and then convert it
to 2D using the McClellan transform. This will also allow
us to evaluate the filters in an efficient manner, described
below.

We follow [6] and [3] and find filters that satisfy these
constraints by setting up an optimization problem in which
the deviation from Eq. 1 and Eq. 2 is penalized by the L1

norm. That is the mean of the deviation is penalized. We
also include constraints to ensure that the lowpass filter has
energy near the DC component and that the highpass filter
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has energy near the Nyquist frequency. We minimize this
objective function using Matlab’s fminunc to give the fil-
ters hL and hH shown in Table 1(a).

After designing the 1D filters, we convert them to 2D
filters using the McClellan transformation [4], which con-
verts a 1D symmetric FIR filter into a 2D FIR filter, which
is approximately radially symmetric. We briefly review this
transformation now. The frequency response of a one di-
mensional filter hL[k] with 2N + 1 taps can be written as a
trigonometric polynomial:

HL(ω) =

N∑
k=−N

hL[k] cos(kω) =

N∑
n=0

bL[n](cos(ω))
n

(3)
where bL[n] is determined by hL[k] via Chebyshev polyno-
mials [4].

In the McClellan transformation, the cos(ω) is replaced
by a 3 × 3 two dimensional filter t[x, y] with frequency re-
sponse T (ωx, ωy). The result is a 2D filter

HL(ωx, ωy) =

N∑
k=0

bL[k](T (ωx, ωy))
n (4)

that has contours lines equal to those of T (ωx, ωy). A good
choice for t is the 3 × 3 filter specified in Table 1. In this
case, T (ωx, ωy) is approximately circularly symmetric.

Eq. 4 suggests an efficient way to jointly lowpass and
highpass an image. Specifically, the input image i[x, y] is
repeatedly convolved with t,N times to yield the quantities:

i, t ∗ i, . . . , t ∗ . . . ∗ t︸ ︷︷ ︸
N times

∗i (5)

or in the frequency domain

I(ωx, ωy), T (ωx, ωy)I(ωx, ωy), . . . , T (ωx, ωy)
NI(ωx, ωy)

(6)
From this and Eq. 4, it becomes clear that we can take a
linear combination of Eq. 5 to get the lowpass and high-
pass filter responses. The linear combination coefficients
are bL[k] for the lowpass filter and bH [k] for the highpass
filter. bL, bH and the full 9×9 filter taps are shown in Table
1(c-e).

In addition to being invertible, our new pyramid has
wider filters, which allows for larger amplification factors
in phase based motion magnification as described in Fig. 5
of the main paper.

2. Approximating the Riesz Transform
In this section, we show how we can replace the expen-

sive Fourier domain implementation of the Riesz transform
with an approximate Riesz transform that is implemented
with simple primal domain filters. We also briefly go over
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Table 2. Riesz transform taps for a few sizes. Only one of the Riesz
transform filters is shown. The other is given by the transpose.

the cost of this approximation and how spatial smoothing of
the phase signal alleviates this cost.

The Riesz transform can be computed in the Fourier do-
main by using the transfer function

−i (ωx, ωy)√
ω2
x + ω2

y

. (7)

In the paper, we demonstrated that the finite difference fil-
ter [−0.5, 0, 0.5] and [−0.5, 0, 0.5]T were good approxima-
tions to the Riesz transform when the input is a subband.
Here, we further motivate this approximation and provide a
method to design spatial domain filters that approximate the
Riesz transform of image subbands.

We present an optimization procedure, inspired by Si-
moncelli [5], to find the taps of spatial domain filters for the
Riesz pyramid. The method works by finding taps that mini-
mize the weighted mean squared error between the DTFT of
the filter and the Riesz transform transfer function ωy√

ω2
x+ω2

y

.

We choose the weights W (ωx, ωy) to be the transfer func-
tion of a subband filter times the expected inverse square
spectrum of images. The Riesz transform filters are 90 de-
grees symmetric, so we only need to design one of the fil-
ters. In addition, each filter is anti-symmetric in one direc-
tion and symmetric in the other. This greatly reduces the
number of filter taps we need to specify. We will design
the filter that is anti-symmetric in y. The objective function
then becomes

∫ ∫
W (ωx, ωy)

2

Da(ωx, ωy)−
ωy√

ω2
x + ω2

y

2

dωxdωy

(8)
whereDa is the DTFT of the 2n+1×2m+1 filter a, given
by

n∑
i=1

m∑
j=0

2aij cos(jωx) sin(iωy). (9)

The symmetries of a imply that aij = −a−i,j and ai,j =
ai,−j .

This is a weighted linear least squares problem and can
be solved using standard techniques. The solution for 3×1,
5 × 1 and 3 × 3 filters are given in Table 1. Note that in



Lowpass: -0.0209 -0.0219 0.0900 0.2723 0.3611 0.2723 0.0900 -0.0219 -0.0209
Highpass: 0.0099 0.0492 0.1230 0.2020 -0.7633 0.2020 0.1230 0.0492 0.0099

(a) One dimensional filter taps (hL[k] and hH [k]

0.125 0.250 0.125
0.250 -0.500 0.250
0.125 0.250 0.125

Lowpass: 0.1393 0.6760 0.6944 -0.1752 -0.3344
Highpass: -0.9895 0.1088 0.3336 0.3936 0.1584

(b) t[x, y] (McClellan Transform) (c) bL[k] and bH [k]

-0.0001 -0.0007 -0.0023 -0.0046 -0.0057 -0.0046 -0.0023 -0.0007 -0.0001
-0.0007 -0.0030 -0.0047 -0.0025 -0.0003 -0.0025 -0.0047 -0.0030 -0.0007
-0.0023 -0.0047 0.0054 0.0272 0.0387 0.0272 0.0054 -0.0047 -0.0023
-0.0046 -0.0025 0.0272 0.0706 0.0910 0.0706 0.0272 -0.0025 -0.0046
-0.0057 -0.0003 0.0387 0.0910 0.1138 0.0910 0.0387 -0.0003 -0.0057
-0.0046 -0.0025 0.0272 0.0706 0.0910 0.0706 0.0272 -0.0025 -0.0046
-0.0023 -0.0047 0.0054 0.0272 0.0387 0.0272 0.0054 -0.0047 -0.0023
-0.0007 -0.0030 -0.0047 -0.0025 -0.0003 -0.0025 -0.0047 -0.0030 -0.0007
-0.0001 -0.0007 -0.0023 -0.0046 -0.0057 -0.0046 -0.0023 -0.0007 -0.0001

(d) Taps for direct form of lowpass filter

0.0000 0.0003 0.0011 0.0022 0.0027 0.0022 0.0011 0.0003 0.0000
0.0003 0.0020 0.0059 0.0103 0.0123 0.0103 0.0059 0.0020 0.0003
0.0011 0.0059 0.0151 0.0249 0.0292 0.0249 0.0151 0.0059 0.0011
0.0022 0.0103 0.0249 0.0402 0.0469 0.0402 0.0249 0.0103 0.0022
0.0027 0.0123 0.0292 0.0469 -0.9455 0.0469 0.0292 0.0123 0.0027
0.0022 0.0103 0.0249 0.0402 0.0469 0.0402 0.0249 0.0103 0.0022
0.0011 0.0059 0.0151 0.0249 0.0292 0.0249 0.0151 0.0059 0.0011
0.0003 0.0020 0.0059 0.0103 0.0123 0.0103 0.0059 0.0020 0.0003
0.0000 0.0003 0.0011 0.0022 0.0027 0.0022 0.0011 0.0003 0.0000

(e) Taps for direct form of highpass filter

Table 1. The filter taps for our pyramid filters specified one dimension (a), in terms of the McClellan transformation (b-c) and direct form
(d-e).

the main paper, we round the 3× 1 filter to [−0.5, 0, 0.5]T .
Also, note that filters of this form are often used to approxi-
mate gradients or derivatives. This makes sense for images,
which have most of their spectral content at low frequen-
cies. Image subbands have much of their spectral content at
mid-range frequencies, which is why these filters are better
approximations of the Riesz transform.

Limitations Unlike the exact Riesz transform, the ap-
proximate Riesz transform does not necessarily preserve the
amplitude of a signal. For example, the signal cos(ωx) may
get mapped to ((1 + ε) sin(ωx), 0). As a result, the phase
signal may not be exactly ωx, but ωx + O(ε)f(x). This
means that different parts of the sinusoid get magnified dif-
ferently. This is illustrated in the second and third rows of
Fig. 2. We use spatial smoothing to smooth these errors to
properly motion magnify the input sequence. As a result,

the difference between the three tap Riesz transform filter
and the larger filter is negligible (Fig. 2(n)), which justifies
our use of the three tap filter as an approximation. We in-
clude also include a sweep over amplification in a video in
the supplementary materials.
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(a) Frame 1 (b) Frame 2 (Shifted 0.05px) (c) Ground Truth (300x)

(d) Phase (3× 1) (e) Phase (5× 1) (f) Phase (3× 3)

(g) 300x (3× 1) (h) 300x (5× 1) (i) 300x (3× 3)
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Figure 2. A comparison of several approximate Riesz transform for phase-based motion magnification with and without spatial smoothing.
A sinusoid (a) and a shifted copy (b) are motion magnified 300 times. In the second and third rows, we show the phase signal obtained with
three different Riesz transforms and the resulting motion magnified frames. In the fourth and fifth rows, we show the spatially smoothed
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Video Amplification Temporal band Frame Rate Spatial Blur Temporal filter
baby 10x See Temporal filter 30 FPS 2px Difference of IIR lowpass filters of

the form yn = riyn−1 + (1− ri)xn
with r1 = 0.04 and r2 = 0.4.

baby blanket 30x See Temporal filter 30 FPS 2px Difference of IIR lowpass filters of
the form yn = riyn−1 + (1− ri)xn
with r1 = 0.04 and r2 = 0.4.

balance 10x 1- 8 Hz 300 FPS 2px Second order Butterworth bandpass
filter applied forwards and then
backwards

camera 60x 36- 62 Hz 300 FPS 2px Difference of first order Butterworth
lowpass filters

column 30x 78- 82 Hz 1500 FPS 3px Second order Butterworth bandpass
filter applied forwards and then
backwards

crane crop 50x 0.2- 0.4 Hz 24 FPS 2px Second order Butterworth bandpass
filter applied forwards and then
backwards

drum 10x 74- 78 Hz 1900FPS 2px Second order Butterworth bandpass
filter applied forwards and then
backwards

guitar 25x 72- 92 Hz 600 FPS 2px 300 Tap FIR filter with circular
boundary conditions

metal corner brace 100x See Temporal filter 10000FPS 5px Acceleration filter (Laplacian of
Gaussian filter with Gaussian of std.
dev. of 3 frames)

smoke 25x 9- 15 Hz 200 FPS 3px Second order Butterworth bandpass
filter applied forwards and then
backwards

violin 100x 340-370 Hz 5600 FPS 2px Second order Butterworth bandpass
filter applied forwards and then
backwards

Table 3. We give the parameters we used for each video. The phase signal in each video was temporally filtered, spatially smoothed and
then amplified. Note that the spatial smoothing specifies the standard deviation of a amplitude-weighted Gaussian blur filter in pixels.
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