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Abstract 
 

Fast and cost-effective production of blood cell count 
reports is of paramount importance in the healthcare 
industry. The traditional method of manual count under 
the microscope yields inaccurate results and put an 
intolerable amount of stress on the Medical Laboratory 
Technicians. Although there are hardware solutions such 
as the Automated Hematology Counter, developing 
countries like Sri Lanka are not capable of deploying such 
prohibitively expensive machines in every hospital 
laboratory in the country. As a solution to this problem, 
this research project aims to provide a software-based 
cost effective and an efficient alternative in recognizing 
and analyzing blood cells.  
 
Keywords: Microscopic Image Analysis, Standard Blood 
Cell Count, Differential White Blood Cell Count, Image 
Segmentation, Hough Transformation, Image Moments, 
Neural Networks 
 
1 Introduction 
1.1 Introduction to blood cell recognition & counting 

In almost all of the medical laboratories, blood cell 
count reports are taken on physicians’ recommendation, in 
order to assist the diagnosis of the particular ailments of 
the patients. In fact this test is one of the most frequent 
tests carried out in a medical laboratory. 

Producing blood cell reports can be broadly 
categorized into 2 areas: 

1. Standard Count for Red Blood Cells (RBC), White 
Blood Cells (WBC) and Platelets (PLT) 
2. Differential Count for WBC 

 

1.2 Standard Count for all cell types 
For this type of a count, the MLT is produced with a 

Hemacytometer shown in the figure, which is also known 
as the Counting Chamber (CC). The count is obtained for 
all the different blood cell types (i.e. RBC, WBC and 
PLT). 

Since blood cells are counted per unit volume (per 
liter), it is vital that the volume of blood, in which the cells 
are counted, corresponds to a known quantity. Usually, the 
CC has a special objective slide containing counting grids 
of the size 3mm x 3mm. In the figure below, there are 2 
such counting grids in the middle. 

 
Figure 1-1 Counting Chamber 

The schematic representation of the counting grid is 
represented in the figure below. The counting grid is 
composed of 9 big squares, measuring 1 x 1 mm.  From 
these squares, the central square contains 25 medium sized 
squares each measuring 0.2 x 0.2 mm. These are further 
divided into 16 small squares each measuring 0.05 x 0.05 
mm. The large central square is also called the 
“erythrocyte” grid. The squares highlighted in red 
correspond to 80 small squares, and are used to establish 
the RBC and PLT counts. The large squares marked in 
blue are used to establish the leukocyte or the WBC count. 

 
Figure 1-2 Schematic representation of the 

counting grid 
 
In the RBC and Platelet count, the erythrocyte grid in 

the middle is examined much closely.  
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1.3 Differential Count for WBC 
White blood cells in human blood can be put in to five 

main sub categories as follows. [1] 
1.  Neutrophils 
2. Eosinophils 
3. Basophils 
4. Monocytes 
5. Lymphocytes  
 

In differential counting, the white blood cells are 
counted and classified in to the above categories and 
output the number of each of the above types as a 
percentage. 

The above five types are broadly divided in to two 
categories; the “phils” category and the “cytes” category. 
This division is done based on how the names of the above 
types end. Therefore, Neutrophils, Eosinophils and 
Basophils fall in to the “phils” category while Monocytes 
and Lymphocytes fall in to the “cytes” category.  

The nucleus of each of the above types has a unique 
shape, and this is the most important feature used in cell 
classification. In addition to the shape of the nucleus, the 
“phils” category has granules with in the blood cell where 
as “cytes” category does not have granules.[1] 

 

1.3.1 Types of White blood cells 
 

Neutrophils 
Neutrophils are identified based on the blobbed nucleus 
small granules. The nucleus has 3 to 5 blobs. 

 
Figure 1.3-3 A Neutrophil 

 
Eosinophils 
The Eosinophil is distinguished by its red granules and 
blobbed nucleus. The granules are larger than that of a 
Neutrophil. 

 
Figure 1.3-4 An Eosinophil 

 
Basophils  
A Basophil is characterized by a lobed nucleus and it is 
filled by large blue-black granules that sometimes cover 
the nucleus.  

 
Figure 1.3-5 A Basophil 

 
Lymphocytes 

These have round shaped nucleus. They have large 
nucleus to cytoplasm ratio. No granules are present. 

 
Figure 1-6 A Lymphocyte 

 
Monocytes 
These have horse-shoe shaped nucleus. No granules. The 
nucleus to cytoplasm ratio is high but less than that of a 
Lymphocyte. 

 

 
Figure 1-7 A Monocyte 

 
2 Current Methods for blood cell counting 
2.1 Manual Method 

In general, the MLT would prepare the slide and 
examine it under the microscope. As explained in 
HemoSurf [2] and from the requirements of the MLTs, 
different parameters are taken for each of the cell type 
counts. These inputs are used in different equations and 
the count is obtained.  
 

2.1.1 Manual Red Blood Cell (RBC) Counting 
 
In a manual RBC count, 10 µl of blood is diluted in 

1990 µl of dilution solution. This results in a dilution of 
1:200. This suspension is usually well-mixed and be 
immediately placed into the counting chamber. After 
approximately 3 minutes, the RBCs will have settled, and 
the MLT begins counting the RBCs in 80 small squares. 

The calculation is achieved by following the formula 
below using these factors: 

i. The number of RBCs counted in the small 
squares  

ii. The dilution of the cell solution 
iii. The number of counted small squares  
iv. The volume above one small square  

 RBCୱஜ୪ ൌ ୬୳୫ୠୣ୰ ୭୤ ୡ୭୳୬୲ୣୢ RBCୱሺ୧ሻ ୶ ୢ୧୪୳୲୧୭୬ሺ୧୧ሻ୬୳୫ୠୣ୰ ୭୤ ୡ୭୳୬୲ୣୢ ୱ୯୳ୟ୰ୣୱሺ୧୧୧ሻ ୶ ୴୭୪୳୫ୣ ୟୠ୭୴ୣ ୭୬ୣ ୱ୫ୟ୪୪ ୱ୯୳ୟ୰ୣሺ୧୴ሻ   
Equation 2-1 Calculation of RBC per micro-liter 

 
In 80 small squares, around 400 RBCs are counted 

for normal values. This yields a coefficient of variation 
(variability) of ±5%. This constitutes the highest 
acceptable amount of random error (accuracy).  

 

2.1.2 Manual White Blood Cell (WBC) Counting 
 

In the manual WBC count, 50 µl of blood is mixed 
together with 950 µl dilution solution. This constitutes a 
dilution of 1:20. The RBCs will be lysed (i.e. cells are 
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destroyed by bursting), and the WBC nucleus is stained. 
The counting chamber is immediately filled after mixing. 
After 2 minutes, the MLT begins counting the WBCs in 
the 4 large squares. 

Calculation of the WBC count is achieved by 
following the formula below using these factors: 

i. The number of WBCs  counted in 
the big squares 

ii. The dilution of the cell solution 
iii. The number of counted big squares 
iv. The volume above a big square 
 WBCୱஜ୪ ൌ ୬୳୫ୠୣ୰ ୭୤ ୡ୭୳୬୲ୣୢ WBCୱሺ୧ሻ ୶ ୢ୧୪୳୲୧୭୬ሺ୧୧ሻ୬୳୫ୠୣ୰ ୭୤ ୡ୭୳୬୲ୣୢ ୱ୯୳ୟ୰ୣୱሺ୧୧୧ሻ ୶ ୴୭୪୳୫ୣ ୟୠ୭୴ୣ ୭୬ୣ ୠ୧୥ ୱ୯୳ୟ୰ୣሺ୧୴ሻ  

Equation 2-2 Calculation of WBC per micro-liter 
 

Since the WBC count shows greater physiologic 
variations, a coefficient of variation of ±10% is accepted.  

In addition since normoblasts (i.e. nucleated 
precursors of RBCS which would get erroneously counted 
as WBCs) are not recognized in this procedure, a large 
number of normoblasts can invalidate the result. This is 
also true for mechanical WBC counts. The number of 
normoblasts can only be accurately identified in a blood 
film and is expressed as the number of normoblasts per 
100 WBCs. If there are more than 5 normoblasts per 100 
WBCs, a correction must be used. 

The normoblast correction is achieved by using the 
formula below: 

 Corrected WBC count ൌ A୳୲୭୫ୟ୲୧ୡୟ୪୪୷ ୡ୭୳୬୲ୣୢ WBCୱଵ଴଴ ା M୧ୡ୰୭ୱୡ୭୮୧ୡୟ୪୪୷ ୡ୭୳୬୲ୣୢ ୬୭୰୫୭ୠ୪ୟୱ୲ୱ  ൈ 100  

Equation 2-3 Normoblasts correction for WBC count 
 

2.1.3 Manual Platelet (PLT) Counting 
 

The PLT count is very similar to the RBC count. 
However unlike in the RBC count, the solution has a 
dilution of 1:20 and the RBCs are completely lysed before 
analysis. The suspension is then mixed and put into the 
counting chamber. The chamber is left in a moist 
environment for 20-30 minutes so the platelets can settle 
without the chamber drying. Like in the RBC count, 80 
small squares are counted. 

Calculation of the PLT count is achieved by using 
the formula below using these factors: 

i. The number of PLTs counted in the 
small squares 

ii. The dilution of the cell solution 
iii. The number of counted squares 
iv. The volume above a square 
 PLTୱஜ୪ ൌ ୬୳୫ୠୣ୰ ୭୤ ୡ୭୳୬୲ୣୢ ୮୪ୟ୲ୣ୪ୣ୲ୱሺ୧ሻ ୶ ୢ୧୪୳୲୧୭୬ሺ୧୧ሻ୬୳୫ୠୣ୰ ୭୤ ୡ୭୳୬୲ୣୢ ୱ୯୳ୟ୰ୣୱሺ୧୧୧ሻ ୶ ୴୭୪୳୫ୣ ୟୠ୭୴ୣ ୭୬ୣ ୱ୫ୟ୪୪ ୱ୯୳ୟ୰ୣሺ୧୴ሻ  

Equation 2-4 Calculation of PLT per micro-liter 
 

A coefficient of variation of ±10% is acceptable for 
PLTs and at least 100 platelets must be counted.  

2.1.4 Drawbacks of the manual method 
 

• Visual inspection of microscopic images is time 
consuming and exhaustive. If the counting process 
is interrupted, the MLT has to start over again from 
the scratch. 

• Cell analysis is realized by an experienced MLT by 
comparing what she sees with images of cell types 
she is familiar with. An amateur MLT would have 
to check with medical literature to confirm on the 
cell types to determine the count of a given sample. 
Thus these manual methods are susceptible to 
human fatigue that can easily result in errors.  

• After the blood cell slides have been analysed, they 
are kept away. There is no quick and easy way of 
retrieving analyzing lot of images for future 
reference as with a computerized system. 

 
2.2 CellaVision 

This is a commercial product developed by 
CellaVisionAB. The CellaVision DM Analyzer (3) 
consists of a fully-automated system of counting blood 
cells. To analyze a sample of blood the following steps are 
undertaken: 

1. The vials containing the blood are bar-coded for 
identification. 

2. All the vials are fed in to the Automated 
Hematology Counter for the Standard Count. 

3. Samples are taken for morphological review, 
where a piece of hardware known as the “slide 
maker” or “stainer” is used to get blood on to a 
thin film on a slide. 

4. These slides are kept in a special container and 
placed in a hardware which is used to automate 
the manual differential count. 

5. The slides are then moved under a microscope 
using a robot arm and images of the WBCs are 
taken. 

6. The images are analysed and classified 
accordingly. 

 

2.2.1 Drawbacks of CellaVision 
 

• This product is not widely available. 
• The cost of a CellaVision unit is unbearable for 

medical laboratories in developing countries. 
 
 

3 Aims of the Lohitha 
Lohitha is a software that can be used for recognizing 

and analyzing blood cells and produce blood count 
reports. Lohitha is capable of performing standard counts 
which comprises of RBC counts, WBC counts, PLT 
counts and differential counts. 

The operation of Lohitha is purely based on image 
processing and computer vision technologies. The input is 
an image of the already prepared slide containing a film of 
blood, taken from a special camera attached to an ordinary 
microscope. The software would not consider about the 
preparation of the slides to be viewed through a 
microscope. It assumes that the preparation of the slides is 
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done by trained professionals and the image taken through 
a microscope is identical to what the MLT sees through a 
microscope. Therefore, unlike in CellaVision [3], Lohitha 
does not replace the MLTs. They are required to prepare 
the slides as they normally do. The main objective of 
Lohitha is to provide a software solution which is cost 
effective as well as efficient for countries like Sri Lanka to 
be widely utilized in the healthcare industry.  

The software is designed to be extensible, tiered and a 
highly efficient with great consideration on ease of use for 
the end user.  

 
4 Lohitha Functionality 

The methodology followed with the overall 
processing of a microscopic blood smear image is shown 
in the following figure.  

 
Figure 4-1 Overall flow of processing 

 
Based on the type, an image going through this flow of 

processing would end up in the ‘Standard Count’ or in the 
‘Differential Count’. Furthermore, standard count can be 
performed in the automatic mode, where the application 
would count the cells in the entire image or in the 
interactive mode, where it would require the MLT to 
select a region of interest and the locations of few blood 
cells in the image.  

 

 
 

Figure 4-2 Standard Count Process 
 
In the differential count, WBCs are differentiated 

based on the shape of their nucleus. The percentage area 
of the nucleus and the color of the granules are used to 
identify between the different types of WBCs.  

 

 
Figure 4-3 Differential Count Process 

 
 
 
 

4.1 Functionality of the System 
 

Basic functionality of Lohitha consists of following: 
• Standard count 

Standard count is performed for RBC, WBC and 
platelets. Given the image, the user will have the 
option of either going in to the automatic mode or 
the interactive mode. In the automatic mode, the 
application will determine the standard squares for 
the count operation, whereas in the interactive mode 
the user will have to select the regions in the image 
(i.e. squares preferred for counting) and perform the 
count.  
 
• Differential count 

Differential count is performed for WBC only. It 
provides a breakdown of the individual counts for 
lymphocytes, monocytes, neutrophils, eosonophils 
and basophils along with the percentage accuracy. 
The user has the option of selecting the image of 
his/her preference from the thumbnail view and 
loading in to the main image container for analysis. 

 

• Report generation 

After getting the blood count, user can request to 
prepare blood count reports. These reports can be 
either standard reports which consist of RBC and 
Platelet count or differential count reports. All these 
report formats will conform to HL7 or HIPAA, 
standards for health care specific data exchange 
between computer applications.  

 
5 Extensible architecture 
 

The system is designed on the conventional three tiered 
architecture composed of the Presentation Logic tier 
which contains all the logic related to the user interfaces 
and the display options, the Application Logic tier which 
contains all the logic related to blood cell counting, 
recognition, reporting, login and logging, and the Data 
Access tier which handles all the interactions the 
application has with the database.  

The logic related to counting and recognition of blood 
cells dominates the system. The presentation logic plays 
the next important role and the system has a very thin data 
access layer. Therefore, there was no need to go for more 
than three tiers since that would create a number of very 
thin layers and it would be difficult to manage the system. 

The business logic which composes of identifying and 
counting different types of cells is plugged in the form of 
DLLs and COMs into the presentation layer. The data 
layer is implemented separately.  
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Figure 5-1 Abstract System View 
 
 

6 Standard Count 
 

The Standard Count is used to count the amount of 
RBCs, WBCs and PLTs in a given microscopic image. 
The Intel Open Computer Vision library is used 
extensively to obtain the functionality required to identify 
the lines. Based on the lines identified all the repetitive 
lines are removed and the squares are constructed. The 
MLT then has the freedom to select the square of his or 
her choice and obtain a count. The type of cell being 
counted is determined by the input from the user, i.e. 
whether RBC, WBC or PLT. 

6.1 Handling Squares 
 

The square handling algorithm is mainly concerned 
about constructing the squares from the lines detected. The 
overview flow of the process is as follows. 

 
 

Figure 6-1 Top level flow chart for detecting the 
squares 

 
Filtering out unwanted lines is a special requirement, 

since care has to be taken for the following items: 

• The 3 lines close to each other in the outline 
erythrocyte grid that demarcates a particular square 
should be detected. 

• Lines formed due to dust particles or any other 
impurities should be neglected. 

• Very rarely, some cells may align in such as way that 
would form a line. These too have to be neglected. 

• Compensate for rotation of the grid. 

Correction for the above factors is achieved by 
primarily considering the shape and dimension of the 
counting grid. The algorithm for detecting unwanted lines 
in the image is as follows: 

 

 

Figure 6-2 Flow diagram for filtering lines 
 

Once these algorithms have been applied to the 
original counting chamber image, the lines will be 
identified as in figure. The image appears in black because 
the canny edge detection is applied. The lines drawn in red 
are all the lines detected, and the squares are identified in 
green.  

 
Figure 6-3 Standard Count applied to the erythrocyte 

grid 
 

6.2 Automatic Count 
 

This method is used to obtain a cell count with minimum 
user intervention. Once the image is input the image is 
pre-processed extensively to remove the noise which 
would occasionally consist of dust particles and air 
bubbles. Then the contours in the image are tracked, and a 
statistical method is used to filter out the unwanted items. 
This is done by calculating the areas of the contours and 
counting only the contours which falls within one standard 
deviation of the mean of the contours. With a considerable 
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number of sample images, it is found out that this method 
yields an acceptable accuracy. 

When the count is finished the user is presented with the 
output image which draws only the contours which have 
been counted. This gives an indication as to how accurate 
the count has been. 

The following flow chart summarises the steps 
followed in the automatic count. 

 

 
 
 

Figure 6-4 Automatic Cell Counting method 
 

Once the image has been processed with the ‘Automatic 
Count’ the MLT will be able to see the counted blood cells 
marked in blue as shown in the image below. 
 

 
 

Figure 6-5 After performing the automatic standard 
cell counting 

 
 

6.3 Interactive Count 
 

Interactive count is a method to recognize and count 
the blood cells in a blood sample.  

To recognize a blood cells in the given image, first the 
system has to know what you call a blood cell. The user 
provides positions of the center for several cells (5-7 is 
usually enough) by clicking on them. Optionally he/she 
gives the typical cell dimension in number of pixels that 
fits across a cell. Or else the system will use the default 
value for cell dimension.  

By these user provided information, the system gets 
to know the pixel values of a blood cell.  

Usually in a blood sample which is prepared to get the 
Red Blood Cell Count (RBC) following cells and particles 
will appear, 
• Blood Cells 
• Dust Particles 
• Air Bubbles 

 

 
Figure 6-6 Image of a Blood Sample prepared for 

RBC with impurities 
  
Images as above are first preprocessed by taking into 

consideration the pixel values of a typical blood cell which 
is provided by the user. Therefore this preprocessing will 
be specific to the image in interest.Preprocessing of the 
image consists of following steps, 

Step 1: Threshold the image using the average pixel 
value of a blood cell as the threshold value 

Step 2: Apply the Median filter and convert the 
image to a binary image 

Step 3: Dilate the image by two iterations 
Step 4: Erode the image by two iterations 
 
Last two steps make sure to eliminate all the dust 

particles. Now the image consists only of blood cells 
and air bubbles which are very bigger than blood cells. 
  To detect red blood cells in the preprocessed image, 
contours of the objects in the image are extracted and the 
area of each contour is calculated and compared with the 
area of blood cell to determine whether it is a blood cell or 
not. The identified number of blood cells is taken as the 
RBC of the blood sample in interest.  

 

 
Figure 6-7 Flow chart of the Interactive count process 
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6.4 Differential Count 
 

Differential Count is one of the core functionalities in 
Lohitha. Unlike in standard counting, a normal glass slide 
is used and there are no specific counting areas drawn in 
the slide. Approximately 50 – 100 white blood cells are 
counted and differentiated in to the five categories of 
white blood cells. The results are given as a percentage of 
the total counted cells. 

Given a set of images of a stained blood, obtained 
through a camera attached to a biological microscope, 
Lohitha is able to process the images, recognize the white 
blood cells and categorize them with an acceptable 
accuracy. 

The flow of work involved in differential counting is 
shown below. 

 

 
 

Figure 6-8 White Blood Cell Count Work flow chart 

6.4.1 Background Elimination 
 

In order to segment the white blood cells in a given 
image for further categorization, first the white blood cells 
have to be segmented. To do that, the white blood cells 
have to be isolated from the background by eliminating 
the background. 

 
Figure 6-9 Input image for Differential Counting 

containing white blood cells 
 

An input image for differential counting mainly 
consists of the following portions, as shown in the figure 
4.2.1-1 

1. Red blood cells 
2. White blood cells 
3. Background (contains the blood plasma, 
glass of the slide, dust particles etc.) 
 

Therefore, in isolating the white blood cells, it is 
needed to remove not only the Background, but also the 
red blood cells in the image. 

When slides are prepared for differential counting, 
they are stained with some chemicals, so that the 
nucleolus of the white blood cells takes a unique color as 
shown in the figure. This specific color comes handy in 
background elimination. 

The RGB histogram for the image is used for 
background elimination. The algorithm for generating the 
RGB histogram is shown below: 

 
 
 

 
 
 
 
 
 
 
 

Figure 6-10 Algorithm to Calculate the RGB 
Histogram 

 
 
The RGB histogram obtained for the above input image is 
shown below 

 
Figure 6-11 RGB Histogram 
 

The RGB histogram shows a sharp accent at a certain 
point when traversing the histogram from left to right. 
This feature is prominent in the RGB histogram for all the 
input images for differential counting. When the starting 
point of the sharp accent is found out and corresponding 
gray value of the histogram is used as a threshold value 
and contrast stretching is applied on the image, the 
following output is obtained. 

 
Figure 6-12 Contrast stretched and background 
eliminated 
 

The algorithm to find out the threshold in the RGB 
histogram depends on the gradient of accent. An optimum 
gradient is found out by testing with many input images 
with many gradients. Using that, the threshold is found 
and then linear contrast stretching is applied on the image. 
The contrast stretching algorithm is shown below. 

 

 

 

 

 
 

Figure 6-14 Contrast Stretching Algorithm 
 
 

rgb_histogram[256]; 
foreach pixel in the image 
    foreach channel  /* Red, Blue and Green */ 
          gray_val = channel_intensity_of the pixel; 
          rgb_histogram[gray_val]++; 
    end 
end 

threshold; //the threshold found from the RGB histogram 
foreach image pixel 
    foreach channel 
        gray_value = (255 * channel_intensity) // threshold; 
        new_channel_value = gray_value > 255 ? 255 : 
gray_value; 
    end 
end 
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6.4.2 White Blood Cell Segmentation 
 

Even though eliminating the image background 
isolates the white blood cells in the image, for further 
processing the location of each and every white blood cell 
has to be identified. That is the white blood cells that 
appear on the image have to be segmented. The approach 
taken for segmenting the cells is shown below. 

 

 
Figure 6-15: Cell segmentation work flow 

 
The binary image (i.e. an image only contains gray 

values 0 and 255) of the background eliminated image is 
obtained because a binary image can be used to find edges 
which separate the objects (i.e. the cells in this case) from 
the background. A sample image is shown below. 

 

 
Figure 6-16 Input image after making binary 

 
After obtaining the binary image, edge detection is 

applied to detect edges. The Canny edge detection 
algorithm is used for edge detection. OpenCV provides its 
implementation of Canny edge detection and Lohitha uses 
this canny implementation. 

Once the edges are detected, the edges have to be 
fine tuned, and contour tracking is applied. After contour 
tracking, all the cells can be separately identified. But 
contour tracking returns contours for areas which are not 
white blood cells. This happens due to the colored image 
segments that are left in the image after background 
elimination. Therefore, this noise has to be removed 
before further processing. 

 

 
Figure 6-17 Contour tracked Image 

 
To remove the noise, the rectangle that bounds each 

contour (bounding rectangle) is found and the area of that 
rectangle is calculated. The noise contours have very less 
area compared to the areas of the bounding rectangles of 
the cells. Depending on this difference, all the noise 
contours are detected and removed. 

The contours that are left are the ones belonging to 
the white blood cells that needed to be analyzed. When an 
input image is given, each of the blood cells has to be 
analyzed separately in order to classify them. Therefore, 
the bounding rectangle is calculated for each cell contour 
and an array of bounding rectangles are returned, which 
will be used in the cell identification functions. 

 
Figure 6-18 Image with bounding rectangles 

 
Without processing an entire image,the Region Of 

Interest (ROI) can be set in that image and only that region 
can be processed. OpenCV implements the ROI as a 
rectangular square. Therefore, once the white blood cell 
locations are returned as a rectangle array, for each blood 
cell, the ROI of the image can be set, and then process 
only that portion which reduces the cost of operation in a 
great deal. 

 

6.4.3 Improved Algorithm to eliminate background 
and segment white blood cells 

 
Since the approach explained above to eliminate the 

background of an image containing white blood cells is 
mainly based on the RGB histogram, the method directly 
depends on the illumination of the image since depending 
on the illumination, the shape of the histogram changes. 
At the same time, the efficiency of the algorithm was quite 
low when a number of images were subjected to 
processing and when the image resolution is high, since 
for each image three histograms for channels Red, Green 
and Blue has to be calculated and using them, the RGB 
histogram should be created.  

As a result, the white cell blood segmented image 
contained areas which were not really white blood cells, 
and a separate algorithm has to be written to identify and 
remove this erroneous segmented areas. This introduced a 
lot of inefficiencies to the approach. 

Therefore, an algorithm that doesn’t depend on the 
illumination of the image was in need and the following 
approach was implemented.  
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Figure 6-19 Improved approach to background 
elimination and WBC segmentation work flow 

 
 

As explained before, the illumination of the image 
has to be removed from the image. Therefore, the image is 
converted form RGB color space to HSI (Hue, Saturation, 
Illumination) color space and the “Saturation” plane is 
extracted. 
 

 
 

Figure 6-20 Sample Image 
 
 

 
 
Figure 6-21 “S” plane of the image 
 
As the Figure 4.2-13 shows, the white blood cells 

have a higher gray level than the rest in the “Saturation” 
plane of the HSV image. Once this is obtained the image 
is thresholded to eliminate background and obtain possible 
white blood cell segments. 
 

 

 
Figure 6-22 Thresholded “S” plane of the image 

 

 Once the “S” plane is thresholded, instead of the 
white blood cell segments, there are noise segments 
present. To eliminate the noise, median filter is applied to 
the image. But this only removes the noisy segments of 
which has a smaller area compared to the area of a white 
blood cell. But there are noisy segments that have a 
relatively larger area. To remove them, every segmented 
area that is left after applying median filter is subjected to 
a validation test. 

 
Validating possible white blood cell segments 
 As shown in figure 4.2.3-2, the nucleus of stained 
white blood cells has a distinctive color as a result of the 
chemicals applied in staining. Through statistical analysis 
of the nucleus areas of the images, it is found out that in 
each and every pixel that belongs to a nucleus of a white 
blood cell, the following is true; 

 Gray value of Red Channel > 70 
 Gray value of Blue Channel > 70 
 Gray value of Green Channel < 70 
 

 Using this statistical data each and every segmented 
area in the image is evaluated to check whether they 
actually represent a nucleus of a white blood cell. The 
algorithm for validation is shown below; 

 

 

 

 

 

 

 

 

 
Figure 6-23 Algorithm for validating the segments 
 

 
Figure 6-24 Image after validating the segments 

 
 As the figure above shows, due to the thresholding, 
the nucleus of some white blood cells are segmented in to 
two. To reconnect the segmented nucleolus of the white 
blood cells, the image is dilated. After dilation, segmented 
nuclei (if there’s any) reconnects to form a single segment 
and others remain as they are. 

 
Figure 6-25 Thresholded image after dilating the validated 

segments 
 

//Input is thresholded and noise removed “S” plane of the 
image 
#define red_threshold  70 
#define green_threshold 70 
#define blue_threshold   70 
 
foreach segmented area 
    foreach pixel 
        if(redChannel > red_threshold && blueChannel > 
blue_threshold  
 && greenChannel < green_threshold) then 
  Make all channel values 0;
 //fills the area with black color 
 end 
    end 
end 
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Now, only the white blood cells are segmented 
accurately. The resulting image is subjected to contour 
tracking and then the bounding rectangles are calculated. 
The final output is shown below. 

 
Figure 6-26 Original image after dilating the validated 

segments 
 

As shown in the above figure, the new approach is 
able to segment precisely the nuclei of the white blood 
cells. The algorithm doesn’t depend on image 
illumination, the size of the white blood cells or the back 
ground of the image, since it is based on the “Saturation” 
plane of the HSI image and since it uses statistical data to 
remove erroneous segments. 
 
 

7 Reporting 
 

Lohitha keeps all the configuration data, as well as 
the count specific data in XML format. Once the 
application has been installed at a particular laboratory, it 
is first required to configure the laboratory data. These 
data will be kept in the ‘’configLab.xml’ file and it will be 
useful in generating the report. In addition, there are 
parameters such as Dilution Factor, Default Squares, the 
Volume above the squares in the counting chamber, and 
the Cell Dimension all of which would be useful in the 
final calculation of the cell count per micro-liter. These 
configuration parameters are kept in the 
“configParams.xml” and are used where necessary. 
  Before a cell count is initiated Lohitha requires the 
MLT to enter the patient details through the form shown 
below. 

 
Figure 7-1 Entering details necessary for performing the 

count 
Once the count has finished the application will 

automatically save the count result in a file called 
“{SPECIMEN_ID}.xml”.  This file could later be used to 
retrieve the information related to the count performed. 

Then the MLT also has the option to generate the report. 
The content for the report is aggregated from several XML 
files and is output in HTML format with an XSL 
transformation.  

 

 
Figure 7-2 Blood Count Report 

 
 
8 RESULTS AND FINAL ANALYSIS 

 
8.1 Comparison 

8.1.1  Standard count 
 

The following table summarises the best result 
achieved out of all the images used for testing. Note that 
for interactive standard count have taken 10 count results 
on the same image with random clicks on cell centres and 
used statistics to interpret the result. 

 
 
 
 
 
 
 
 
 

Figure 8-1 Standard Count best results 
 

The following table summarises the results of the 
tests that have been performed with 8 sample images. It 
has to be noted that, based on the location of the click in 
the Interactive Standard Count, the result would vary. 

 
Count Type Mean Percentage Error

Automatic 0.074 % 

Interactive 0.267 % 

Figure 8-2 Standard Count Accuracy – mean 
percentage error 

8.1.2 Differential Count 
 

For the differential count, more than 100 
microscopic images were analysed. In all these images cell 
boundaries were identified, and the invariant moments 

Count 
Type 

Actual 
Value 

Lohitha Value Percentage 
Error 

Automatic 74 78 0.054 % 

Interactive 74 74 (Best),  

74.7 (Mean),  

3.05 (SD)  

0.009 % 
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were calculated as a first step in successfully 
differentiating the WBCs with an acceptable accuracy. 
Specifically, the results achieved were: 

 
• Number of WBCs in the image 
• Neutrophils, Eosinophils, Basophils (the “phils” 

category) were clearly separated from Lymphocytes 
and Monocytes (the “cytes” category) based on the 
significant differences in the nucleus 

• Lymphocytes were differentiated from Monocytes  
• The different cell types in the “phils” category were 

not able to be separated from each other properly 
 
The following matrix shows the percentage of 

accuracy in which Lohitha recognizes each type of white 
blood cells. 

 
Figure 8-3 Percentage Accuracy achieved with the 

Differential Count 
 
As shown in the above table, except for Basophils, 

Lohitha can recognize other four types of cells with a 
higher percentage of accuracy. 

Lohitha does the WBC recognition using artificial 
neural networks and currently the neural networks are 
trained using a sample of 130 cells. So increasing the 
number of samples will minimize the error in the neural 
net and the current accuracy can be improved by a great 
margin. 

Since the percentage of Basophils in human blood is 
very low compared to other four types of cells, the sample 
only had 5 images of Basophils which is not enough by 
any standard to train an artificial neural net to identify 
Basophils. This is the reason for Lohitha identifying 
Basophils with a very low accuracy. Therefore, as 
explained before, increasing the number of samples to 
train the neural net will increase the accuracy of 
identification. 

 
 
 
 
 
 
 

9 Evolvements 
 

• Train the neural network used in the Differential 
Count with more samples 
 
We worked under the constraints of the images that 

were available to us. However, with more sample images 
we believe the recognition of cells would be better. 

 
• Fine tuning the algorithm for Differential count   

 
The most advanced functionality of Lohitha is the 

differential count. We had to do a huge amount of research 
on it.  

Ultimately we decided to use the moment invariants 
of the nucleus in the white blood cells to differentiate 
them. At the moment we are carrying out the research to 
find a more accurate and efficient method for differential 
count. In the next phases of development we’ll be 
implementing these methods.  

WBC differentiation features we identified through 
our latest research are as follows, 

 
Feature set 1: 
1. Difference between nucleus and cytoplasm R/B 
ratios: 
2. “Cyan-shifted” R/B ratio of the cytoplasm 
3. Cyan-factor of the cytoplasm 
4. Nucleus blob area 
5. Compactness-like measure of the nucleus blob 
6. Steepness of the left side of green intensity 
histogram of the nucleus  

  
 Feature set 2: 

1. Shifted TUB ratio of the cytoplasm 
2. Shifted R/B ratio of the nucleus 
3. Red-blue HUE of the cytoplasm 
4. Standard deviation of nucleus green intensity 
5. Standard deviation of nucleus red intensity 
6. Nucleus smoothness as standard deviation of 
distances between nucleus centre and borders 

10 Conclusion 
Lohitha is a very domain specific application. 

Biological blood cells have their own distinct 
characteristics with regard to the shape and size of the 
nucleus, granularity, etc. Lohitha includes an effective and 
an efficient method for recognizing and counting blood 
cells as a practical alternative to the manual blood cell 
counting. It is much less tedious and very much effective 
than the mentioned manual method. In addition, it 
provides a very cost effective alternative to commercial 
applications. 
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Input cell identified (as a percentage) 

Neutro

phils 

Eosino

-phils 

Baso-

phils 

Lympho

-cytes 

Mono-

cytes 

Neutro-

phils 
85% 14% 0% 0% 1% 

Eosino-

phils 
13% 80% 0% 0% 7% 

Baso-

phils 
0% 0% 12% 61% 27% 

Lympho-

cytes 
0% 0% 3% 82% 15% 

Mono-

cytes 
0% 2% 3% 18% 77% 
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