
I.   INTRODUCTION
henever a scene composed of continuous  

intensity values is quantized and stored in a digital 

format, such as when using a digital camera or a 

scanner, there is inevitable distortion and data loss. 

Quantization divides the range of input values into a 

finite number (Q) of non-overlapping “quantization 

levels” and all input values within a given interval are 

assigned the same value. For example, most digital images 

are stored with Q = 255 possible values for the intensity at each pixel. 

When an unquantized image with intensity ranging from 0 to 1.0 is 

quantized linearly, all values from the original image are mapped to 

discrete integer values 0-255 in the quantized image.

ABSTRAC T

Coarsely quantized images can exhibit false contours in smooth low 
gradient regions. Images intended for standard displays such as cathode 
ray tube (CRT) monitors can show contours when moved to high 
dynamic range (HDR) devices such as HDR displays and film. While 
various other methods such as regularization and anisotropic diffusion 
exist for noise removal and image restoration, they are not able to 
remove these contouring artifacts completely and can impose substantial 
blurring. Our method performs iterative regularization within bounded 
intervals to remove false contours while preserving natural image 
features.
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Figure 1. A coarsely quantized image with Q = 16.
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The noticeable banding in the sky in 

Figure 1 is a result of coarse color quantization, 

shown with Q = 16 per color channel. Bands 

sometimes occur where there are large regions 

of gradual intensity change in the original 

unquantized image. When these smooth regions 

are quantized, the resulting visual effect can be 

an abrupt and isolated step or “contour” in the 

displayed image, where pixels on one side of the 

step are assigned to one quantization level and 

pixels on the other side are assigned to a neighbor-

ing level. We refer to this effect as contouring.

Fortunately, most images available today 

are stored with enough quantization levels that 

visible contouring is rare on ordinary CRT or 

liquid crystal displays (LCD). While these images 

usually do not reveal quantizing artifacts on 

standard displays, 8-bit contouring can appear 

on High Dynamic Range (HDR) displays or in 

cinema and film applications. As higher contrast 

displays become more common in professional 

and consumer markets, this problem will become 

more prominent. This paper proposes a novel 

method that repairs contouring due to quantiza-

tion in digital images.

II. MOTIVATION
Repairing quantization errors falls under the 

broader category of image restoration and 

reconstruction methods, which attempt to recover 

an undistorted ideal image u(x, y) from a distorted 

observed image z(x, y), where (x, y) represent bit 

coordinates in the image, which we will refer to 

simply as u and z. Anisotropic Diffusion Filtering1 

is an iterative method for reducing noise levels 

while retaining important image information. It 

relies on measurements of the intensity changes to 

determine the degree of smoothing to be applied 

for the given region. Any intensity gradient above 

a given threshold is considered an edge that 

exists in the ideal image and is preserved or even 

enhanced. Given enough iterations, this methods 

generates solutions that may be smooth, but 

introduces unwanted blurring and loss of image 

features even when an appropriate edge threshold 

is chosen, as shown in Figure 2a. Since sharp 

edges are preserved by the gradient threshold, 

this over-smoothing occurs in regions of gradual 

intensity change.

Regularization methods approach image 

restoration by using prior information about 

the ideal image (i.e. piecewise or global smooth-

ness) to iteratively improve their estimate of 

the solution. They also restrict their search to 

solutions which closely match the observed 

input z. Tikhonov Regularization2, 3 generates an 

estimate for the ideal image u by minimizing the 

cost functional E:

The first term R(u), also know as the regulariza-

tion functional, measures how well the estimate 

u satisfies the prior knowledge about the ideal 

image. The second term (u − z)2 measures the 

deviation from the observed image.  The constant 

λ controls the balance between the regularization 

cost and the deviation cost.  A common choice 

for R(u) is ∇u2, which penalizes roughness 

and favors images that are globally smooth. One 

improvement to this method is Edge Preserving 

Regularization,4 which modifies the regularization 

functional to prevent it from smoothing across 

sharp edges that should be preserved. Another 

regularization method, Total Variation5 uses 

∇u as the regularization functional and usually 

performs better than the quadratic functional at 

preserving edges. 

A feature of regularization methods is that 

the cost functional E penalizes any deviation from 

the observed data. While this penalty works very 

well for random noise, it can pose a problem when 

dealing with contouring due to quantization. 

E  =  ∫ λ R(u) + ( u − z )2 du (1)



Figure 2. The result from applying (a) anisotropic diffusion and (b) edge preserving regularization to Figure 1.

Figure 3. A scan-line representing an ideal unquantized image (red) that is coarsely quantized to the Q=16 levels (blue).  The q
i+1

 maximum 
boundaries for the quantization level are also shown (green line).
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Contouring consists of large bands of the same 

intensity value separated by abrupt intensity gra-

dients. Since the quantization process discarded 

all changes inside these bands, the roughness 

cost is very low and the deviation penalty (u − z)2 

dominates the search for the solution. This results 

in images that are very faithful to the observed 

input but fail to remove much of the visible 

contouring, as shown in Figure 2b, even when the 

regularization process is run for a large number of 

iterations. 

III. PROPOSED METHOD
As mentioned above, Tikhonov regularization 

penalizes any deviation from the initial observed 

data when searching for a solution. However, 

each value stored in a quantized image actually 

represents a range of possible intensity values that 

compose the quantization interval. The founda-

tion method proposed by these authors builds 

upon this idea by treating values in the observed 

image as a quantization interval instead of a single 

measurement, as show in Figure 3. Our method 

only penalizes deviations from the observed input 

when the resulting intensity exceeds the boundar-

ies of the quantization interval. This greatly 

relaxes the deviation penalty and permits smooth-

ing only as long as the estimated intensities stay 

within the quantization level boundaries. Because 

we know that the ideal unquantized intensity must 

lie within these boundaries, the method places 

(a)  Anisotropic Diffusion (b)  Edge Preserving Regularization
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a heavy penalty on any deviation that causes the 

intensity to exceed the quantization interval. This 

prevents it from over-smoothing both sharp edges 

and low gradient regions in the image. 

In order to incorporate the above modifica-

tions into our solution, we use the penalty term 

g(u − z) . The deviation penalty functional g(x) is 

chosen such that it has the following properties.

1. For each pixel in the estimate of the ideal 

image, there should be no deviation pen-

alty as long as it stays within the original 

quantization level boundaries, i.e. the 

pixel belongs to level i, then qi and qi+1 

are the lower and upper boundaries for 

that level. 

2. If the estimate exceeds (qi , qi+1)  bound-

aries, a strict penalty cost is imposed 

to force the intensity back within the 

interval, given by 
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From Figure 3 we can see that contouring 

in a coarsely quantized image can occur when two 

neighboring pixel intensities in a smooth region 

are assigned to different quantization levels. 

Because it is not possible for a uniformly smooth 

low-gradient region in the unquantized image u to 

become an edge that is larger than one quantiza-

tion level, we can conclude that deviations >> 1 

quantization interval were caused by features in 

the original image u. Based on this approach, our 

method ignores changes in intensity that exceed 

one quantization step in order to preserve the 

edge. However, since our smoothing is already 

limited by our deviation penalty, the addition of 

an edge preserving smoothing term provides only 

some limited visible improvements. 

In addition to uniform quantization where 

each quantization level is the same size, we also 

need to consider non-uniform quantization where 

such levels may not be equal. One common source 

of non-uniform quantization is gamma correc-

tion, where more quantization levels are dedicated 

to the lower (darker) intensities and fewer to 

the higher (brighter) ones. Our method handles 

non-uniform quantization by varying values for qi 

to match the quantization scheme. 

IV. IMPLEMENTATION
To minimize the cost functional E from 

Equation 2, our method uses an iterative gradient 

descent technique. We use the discrete membrane 

model in Equation 3 proposed by Blake and 

Zisserman6 combined with the deviation penalty 

functional g(u) defined in the previous section. 

In order to improve the convergence rate our 

implementation performs Successive Over 

Relaxation, overcorrecting by a factor ω every 

iteration. Based on our experiments, the method 

was able to converge within 20 iterations for a 

512×512 color image. 

 

 

For each pixel intensity in the current it-

eration ux,
n

y , we use the gradient of the cost E in 

Equation 3 to determine the intensity in the next 

iteration ux,
(n

y
+1). 

 

 

 

Combining Equations 3 and 4, we arrive at the 

following implementation for the gradient descent 

algorithm. 

For each pixel ux,
n

y , if qi ≤ ux,
n

y ≤ qi+1 ,  

 

 

 

Otherwise, if ux,
n

y< qi , qk = qi , and if 

ux,
n

y > qi+1 , qk = qi+1 

 

 

V. RESULTS
The simulation results from the proposed method 

show a significant improvement in both contour 

removal and edge preservation in the restored 

images. Figure 4 provides a scan-line comparison 

between our method (top), edge preserving 
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g (u) =

E = ∫ λ R(u) + g(u) du (2) E = λ {( ux+1, y − ux, y )
2 + ( ux, y+1 − ux, y )
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Figure 4. The scan-line graph from solution generated by (top) the proposed method, (middle) edge-preserving regularization, and (bottom) 
anisotropic diffusion. The quantization interval boundaries are also included for reference.
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regularization (middle), and anisotropic filtering 

(bottom). The figure shows that our method is 

able to generate a smooth estimate of the ideal im-

age which stays completely inside the quantization 

boundaries while edge preserving regularization 

was not able to completely remove the contours 

in the image and still shows partially smoothed 

steps.  In both edge preserving regularization and 

anisotropic diffusion there are areas where the 

solution deviates from the quantization boundar-

ies which is inconsistent with the ideal image. 

While the result of anisotropic diffusion provided 

a smoother curve with less significant contours, 

there are significant deviations from the original 

input. Since the gradient on the right side of the 

scan-lines is not sharp enough to trigger the edge 

threshold, both methods over-smoothed that 

region.  Figure 5 shows the result of our method 

on two coarsely quantized images with very visible 

contouring artifacts. The reconstruction we 

produced removes the contours in the sky while 

maintaining detail in the rest of the image. 



Figure 5. Reconstruction of coarsely quantized images.   
Coarsely quantized image with (left) Q=16 restored to (right) Q=255 using the proposed method.
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VI. DISCUSSION
This paper develops a novel regularization 

approach to repair contouring artifacts on color 

quantized images. Our approach treats the inten-

sities of the input image as an interval instead of 

individual measurements. This approach allows 

removal of contouring artifacts that are preserved 

by other methods.1, 2

The proposed method is most effective for 

images where the only significant error is due 

to quantization and is not intended as a general 

noise removal algorithm. For noisy images, it is 

possible to relax the deviation penalty g(u) from 

Equation 3 to better handle to noise. It may also 

be possible to apply another algorithm such as 

Total Variation regularization5 to first remove 

the noise before using our method to repair any 

contouring artifacts.
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